
Blind Queues: The Impact of Consumer Beliefs

on Revenues and Congestion∗

Shiliang Cui Senthil Veeraraghavan

{scui, senthilv}@wharton.upenn.edu

The Wharton School, University of Pennsylvania, Philadelphia PA 19104.

January 2013

Abstract

In many service settings, consumers have to join the queue without being fully aware of the pa-

rameters of the service provider (for e.g., customers at check-out counters may not know the true

service rate prior to joining). In such “blind queues”, consumers typically make their decisions

based on the limited information about the service provider’s operational parameters (from past

service experiences, reviews, etc.), and the current state of the queue (the queue length). We

consider a firm that serves a consumer population that may have arbitrarily misinformed beliefs

about the service parameters. We show while revealing the service information to consumers

improves revenues under certain consumer beliefs, it may however destroy consumer welfare or

social welfare. Given a market size, the consumer welfare can be significantly reduced when a

fast server announces its true service parameter. We also show that learning the service rate

through sampling in blind queues leads to optimistically biased but asymptotically consistent

consumer beliefs.

Keywords: Queueing Games, Service Revelation, Consumer Beliefs.

1 Introduction

Much of the literature on queues assumes that the service parameters are common knowledge and fully

known to consumers when making their decisions. In reality, it is likely that only the service firm knows

∗Our sincere thanks for comments and suggestions from Gerard Cachon, Noah Gans, Sergei Savin and Xuanming Su, that led

to improvements in the manuscript.
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its capacity and the consumers may not be fully informed of the service capacity. It is even possible that

consumers could be systematically misinformed about a firm’s service capacity. Hence, it is important to

understand if the firm is motivated to reveal its private information on service rate to the customers, and

if the firm does reveal the information, whether the information would increase consumer welfare or firm

revenues. To be sure, there are papers that have focused on firms announcing (real time) delay information in

terms of queue and waiting time information to its customers. However, those models also typically assume

that the firm’s service parameters are known to the customers.

We expect that consumers that have had limited past interactions with the service provider will not be

able to accurately predict its true service rate. For instance, a customer might have visited a restaurant or an

amusement park only once or twice, and it is conceivable that her best estimate of the service capacity will be

based on the service times she had experienced (in the absence of other inputs). In some cases, consumers

might augment their information using feedback from external acquaintances, but even such information

is likely to be a smaller sample than what is needed to know the full service distribution (which is often

assumed to be known accurately in the literature). In line with many real-life services, but in contrast to the

existing literature, we allow for the customers to not know the service parameters accurately, unless they

are informed about it by the firm. We term such queues as blind queues.

Our approach is general, i.e., individual consumers can have arbitrarily different beliefs about the service

rate. It might be possible that the population is correct on average but individual customers may be

misinformed in a random fashion. We also consider the possibility that the consumer population as a whole

is mis-informed systematically.

In observable queues, when customers arrive with different beliefs about the true service rate, they end

up with different balking behaviors based on their beliefs. As a result of his belief, a consumer may be

misinformed about when to balk. For instance, a customer may join the queue, when he ought not to (if

he overestimates the service rate), and an impatient misinformed customer may balk from the queue when

he should not (due to underestimation). There is some recent empirical evidence (see Olivares et al. (2011)

that uses queueing data from a Deli), supporting the approach that customers in observable queues may rely

primarily on the length of the queue to make their purchasing/joining decisions. Thus, by understanding the

impact of balking thresholds on system performance, our results could be further implemented to models

where service values and waiting costs are heterogeneous.

1.1 Related Literature

The literature on queueing models with strategic customers dates back to the seminal paper of Naor (1969),

who studies a single-server system with an observable queue. In Naor’s model, homogeneous customers (who

know the service parameters) observe the queue length upon arrival before making a decision to join the
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system. Because of homogeneity, customers have identical balking thresholds.

In our paper, consumers are not aware of the true service parameters. We allow them to have arbitrarily

distributed heterogeneous beliefs over the service rate. Thus, our work is also closely related to the classical

queueing papers with heterogeneous customers (with full information), in addition to those papers that deal

with announcement of delay information. Following Naor (1969), queues with heterogeneous service values

and time costs have been studied, as seen in the comprehensive review by Hassin and Haviv (2003).

There is a large volume of literature that examines the provision of fixed or variable delay information

(i.e. queue length or real-time waiting time, etc.) to arriving consumers. In the context of call-centers,

there are several papers that study the provision of current delay information. For instance, see Armony and

Maglaras (2004a,b) and Jouini et al. (2011). We refer the reader to an excellent review by Aksin et al. (2007)

of the call center literature, on the role of delay information on customers’ balking behavior. Nevertheless,

the service capacity and arrival information is often assumed to be known to all customers in these papers.

Hassin (1986) considers a revenue-maximizing server who may hide queue lengths to improve revenue.

Whitt (1999) shows that customers are more likely to be blocked in a system where the delay information

is not provided to a system where it is provided. Guo and Zipkin (2007) studies an M/M/1 queue extension

with three modes of information: no information, partial information (the queue length) and full information

(the exact waiting time). Economou and Kanta (2008) and Guo and Zipkin (2009) study models where

some partitioned queue information (such as range of queue-lengths) is available to consumers to make their

decisions. However, in all the aforementioned papers (including the no-information cases), the consumers

are aware of the service rate parameter.

Thus, there are very few papers that consider server information as private information of the firm and

then examine the impact of announcing this information to customers. Hassin (2007) considers an unob-

servable single server queuing system where the true service rate is either fast or slow, but the distribution is

known to consumers. Besbes, Dooley and Gans (2011) and Debo and Veeraraghavan (2011) analyze equilib-

rium joining in queues with limited information on service rate. Our paper is also related to Guo et al. (2011)

who studies an unobservable queue, in which partial distributional information is known to the customers,

who then employ the max-entropy distribution in deciding whether to join or balk from the queues. In con-

trast to all of the above papers, we do not impose any distributional criterion on the consumers’ knowledge

on the service rate. Thus, our results do not depend on the consumer belief distribution.

Finally, our approach complements the perspective in Besbes and Maglaras (2009) and Haviv and Rand-

hawa (2011), where the service firm does not fully know the demand (volume) information. Instead, we

study a system where consumers do not know a firm’s service information. However, we focus only on the

decision whether the firm should reveal the unknown information to the consumers. To our knowledge, we

are not aware of other papers that deal with consumer decisions when the service provider has not provided

any information about its service parameters to the consumers. Our main theoretical contributions can be
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summarized as follows:

1. Consumers may have arbitrary balking thresholds due to their beliefs. We characterize those beliefs

under which the firm will gain revenues from revealing its true service information.

2. We show that as consumer balking threshold beliefs become less dispersed in the population, the firm

improves its revenues. If the consumer population systematically underestimates the service capacity,

the service provider should always reveal its service rate information.

3. The welfare effects of information revealing are mixed. Typically, congestion (both queue lengths and

wait times) increase with information revelation. Individual consumer welfare thus typically worsens

with more information, especially when the server provides fast service. We find that when information

is revealed, the improvement in revenues may not often overcome the consumer welfare loss, leading to

reduced social welfare.

4. Our approach on blind queues is general and does not depend on the origin of the initial belief distri-

butions, which may emerge from bounded rationality, sampling, learning from past experiences, etc.

We show that sampling from finite data creates consumer optimism, but will lead to true-learning

asymptotically. We show that Quantal response beliefs (bounded rational errors) can be biased, but

are not consistent with learning by sampling.

The paper is structured as follows. Section 2 introduces the model and characterizes the system perfor-

mance in terms of belief distributions. In Section 3, we analyze consumer populations with different beliefs

for the single-server queue, and verify our results for beliefs in multi-server queues and beliefs with infinite

support. In Section 4, we investigate the impact of the revelation of service information on revenues, con-

gestion, and consumer welfare. Finally, we incorporate our belief structures into different cognitive models

in the literature: quantal response errors (in §5.1), sampling (in §5.2), and limited memories (in §5.3) and

conclude the paper by discussing some policy implications. All technical proofs are deferred to the appendix.

2 Model

We begin with a single-server queueing system (an extension to multi-server systems shown in §3.3 is straight-

forward). Consumers arrive to the queue according to a Poisson process at rate λ > 0 per unit time. The

service time at the server is distributed exponentially with service rate µ > λ. Let ρ , λ/µ denote the

traffic intensity. Arriving customers line up at the server if the server is busy, and the queue discipline is

first-come first-served (FCFS). Every arriving consumer can observe the number of the customers already

waiting in the system. All consumers incur a linear waiting cost of c per unit time when they wait. The

server provides a service of value v. Thus all customers are homogeneous in their valuation of the service

and in their waiting costs. The firm charges a price p for its service.
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Suppose customers are fully informed of the service rate µ. Upon arrival they irrevocably decide whether

to join the queue based on the net value they receive from the service (i.e., v − p) and their expected

waiting costs. For instance, a customer arriving when there are n customers in the system, joins when

v − p− (n+ 1)c/µ ≥ 0, and balks otherwise. We do not consider reneging.

Model of Consumer (mis-)Information: In contrast to the existing queueing literature, we relax

the assumption that customers are aware of the service time distribution or the service rate. We posit that

consumers typically will not have complete information on the true distribution. For instance, consumers

with their limited and idiosyncratic past interactions with the server, may have widely varying service rate

beliefs.

In this paper, we use the superscript ˜ to describe the consumer beliefs about the service parameters.

Consumers have heterogeneous beliefs on the service rate. (Specifically, consumer j may believe that the

service rate is µ̃j , which may differ arbitrarily from the true service rate µ). We denote consumer beliefs

by µ̃ ∈ (0,∞) with some cumulative distribution function (cdf) Gµ̃ across the entire population. Note that

every consumer has a deterministic belief. The beliefs form a random distribution because consumers with

different beliefs arrive to the system randomly.

The mean of the random variable, µ̃, could be the same as the true µ. In this case, we describe the

population beliefs as consistent, i.e., the belief of the population is “correct” on average. If the mean of the

random variable across the population is not the true µ, then we address the population beliefs as being

biased. Specifically, if the population mean is greater (less) than µ, the beliefs are optimistic (pessimistic),

i.e., the population is optimistic (pessimistic) on the service speed.

Upon arrival, consumer j with belief µ̃j who observes n customers currently waiting in the system

(including the person who is under the service, if any) makes the following decision:v − p ≥
(n+1)c
µ̃j

: customer j joins the queue;

otherwise: customer j balks from the queue.

We will assume v−p ≥ c
µ̃ , to eliminate trivial outcomes and ensure that consumers will join an empty queue.

Balking Threshold Beliefs: For each customer j, define, Ñj , b µ̃j(v−p)
c c, i.e., Ñj is an integer such

that Ñj ≤ µ̃j(v−p)
c < Ñj+1. Intuitively, Ñj describes the balking threshold belief for a consumer j: Consumer

j who arrives to see n customers waiting in the system will join if n + 1 ≤ Ñj and balks, otherwise. Since

all customers are homogeneous and differ only in their i.i.d. beliefs, we drop the subscript j, and denote the

balking threshold beliefs by a random variable Ñ . Again, note that a customer with a balking threshold

belief Ñj is making a deterministic decision upon observing the queue length. The balking thresholds are

random because the customers with different balking thresholds are appearing at random at the queue.
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Let FÑ be the cdf that characterizes the random variable Ñ . Note that customers’ beliefs on the

service rate are drawn from the continuous distribution Gµ̃, whereas the balking threshold beliefs are drawn

from a discrete distribution FÑ (n) = Pr[Ñ ≤ n]. Since v − p ≥ c
µ̃ , we have Ñ ∈ {1, 2, . . .}. In essence,

we translate the (uncountable) consumer beliefs on service rate to actions dictated by beliefs on balking

thresholds (which is countable). Henceforth, we will focus most of our analysis on the balking threshold

beliefs Ñ . For notational convenience, we suppress the subscript Ñ in FÑ and denote FÑ simply as F

wherever unambiguous. Our terminology on biases in beliefs (pessimism, optimism and consistency) also

applies to balking threshold beliefs.

System Evolution under Threshold Beliefs: We have a population comprising of consumers who

are heterogeneous in their joining behavior due to the varying individual balking threshold beliefs. Since

Ñ ∈ {1, 2, . . .}, we have a queuing system with state-dependent arrivals - a system whose buffer size equal

to the maximum balking threshold (possibly infinity, in which case we have an M/M/1 system). In contrast,

note that when consumers fully know µ, we get the classical M/M/1/K system with state-independent

arrivals that emerges in Naor (1969).

Let the state of system be denoted by i where i is the number of customers in the system (including

the customer at the server). Since λ < µ, this queueing system is recurrent, and long-run steady state

probabilities exist. Let πi denote the long-run probability that the system is in state i. Now consider state

i: among all arrivals, only those customers who have the balking threshold greater than or equal to i+1 will

join the queue. Thus, the effective joining probability at state i is given by Pr[Ñ ≥ i+1] = Pr[Ñ > i] = F̄ (i)

(by letting F̄Ñ (·) = 1− FÑ (·)). The effective arrival rate at any state i is λF̄ (i).

From the steady state rate balance equations, we have πi+1 = ρF̄ (i)πi for i ∈ {0, 1, 2, ...}, which gives

πi = ρiπ0

i−1∏
n=0

F̄ (n) for i ∈ {1, 2, 3, ...}. Since ρ < 1, it follows from
∞∑
i=0

πi = 1 that

π0 = 1

/(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
. (1)

The average number of customers in the system, L, is given by

L =

∞∑
i=0

iπi =

∞∑
i=1

iπi = π0

∞∑
i=1

iρi
i−1∏
n=0

F̄ (n) =

∞∑
i=1

iρi
i−1∏
n=0

F̄ (n)

/(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
. (2)

By convention, we set all the empty products in this paper to 1. For instance,
−1∏
n=0

F̄ (n) = 1. Then,

L =

∞∑
i=0

iρi
i−1∏
n=0

F̄ (n)

/( ∞∑
i=0

ρi
i−1∏
n=0

F̄ (n)

)
. (3)

Also note that, πi+1 = ρF̄ (i)πi for i ∈ {0, 1, 2, ...}. Summing up over i ≥ 0, we get,

∞∑
i=0

πi+1 =

∞∑
i=0

ρF̄ (i)πi ⇔
∞∑
i=1

πi = ρ

∞∑
i=0

F̄ (i)πi ⇔ (1− π0) = ρ

∞∑
i=0

F̄ (i)πi. (4)
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The long-run revenue rate at the server, R, is given by the product of price charged by the server and

the long-run effective arrival rate at the system: λe ,
∞∑
i=0

πiλF̄ (i). Thus, we have

R = pλ

∞∑
i=0

F̄ (i)πi = pµ · ρ
∞∑
i=0

F̄ (i)πi = pµ(1− π0) (from Condition (4)). (5)

Let W denote the average time a customer spends in the system, i.e, his waiting time in the queue plus

his service time. By Little’s Law,

W =
L

λe
=

π0

∞∑
i=1

iρi
i−1∏
n=0

F̄ (n)

µ(1− π0)
(from conditions (2) and (5)) =

1

µ

π0

1− π0

∞∑
i=1

iρi
i−1∏
n=0

F̄ (n). (6)

Now recall that π0 = 1

/(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
, hence, π0

1−π0
= 1

/( ∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
. Plugging in (6),

we have

W =

∞∑
i=1

iρi
i−1∏
n=0

F̄ (n)

/(
µ

∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
. (7)

Thus, as long as we can characterize Ñ , we can immediately derive the steady state probabilities and the

performance measures for the queueing system. This allows us to compare any two systems with populations

that differ arbitrarily in their beliefs. To this end, in the next section, we set up a sequence of systems with

consumer beliefs that are stochastically ordered in some sense. We first analyze the single-server queue in

which the consumers’ balking threshold beliefs are distributed over a finite interval. In other words, there is

no customer in the population who has infinite patience and will always join the queue. We then consider

multiple servers and beliefs with infinite support in subsequent sections.

3 Consumer Beliefs under the Lack of Service Information

When µ is fully known to consumers, the belief distribution is a one-point distribution (i.e., all consumers

have identical beliefs). In contrast, the beliefs are distributed arbitrarily, when consumers are not fully

informed. Recall that when there is optimism (pessimism) bias, the average balking threshold is higher

(lower) than the true threshold. In §3.1, we consider belief distributions that have bias. In §3.2, we look

at populations with consistent beliefs, where the average balking threshold beliefs are accurate, but there is

arbitrary variability on the individual threshold joining thresholds. Our analysis in these sections assists us

in pinning down the performance differences between the queueing systems which differ in consumer beliefs.

3.1 Population with Biased Beliefs

Recall that the random variable associated with balking threshold beliefs Ñ has a cdf F . When the thresh-

old beliefs are finite, F takes on values over a sequence of (not necessarily consecutive) natural numbers
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{a1, a2, . . . , an−1, an} such that a1 < a2 < . . . an−1 < an <∞. We now compare a system under population

beliefs Ñ and Ñ ′ that differ in their mean. We use first order stochastic dominance to order such random

variables.

Definition 1 First Order Stochastic Dominance (FOSD): [Quirk and Saposnik (1962)] Let F and

G be the cdf’s of random variables X and Y . X is said to be smaller than Y with respect to the first-order

stochastic order (written X ≤st Y ) if F(t) ≥ G(t) for all real t, or equivalently, if F̄(t) ≤ Ḡ(t) for all real t.

FOSD relation is also termed as usual stochastic order by Müller and Stoyan (2002), and frequently

called the stochastic order. Variables ordered by FOSD have different means as seen in Lemma 1.

Lemma 1 (Theorem 1.2.9/(a) in Müller and Stoyan (2002)) Let Ñ and Ñ ′ be random variables

with finite expectations. Ñ ≤st Ñ ′ implies E(Ñ) ≤ E(Ñ ′).

Through Lemma 1, we can compare two threshold beliefs with respect to their ‘biases’. Essentially, a

threshold belief that is more pessimistic is stochastically dominated by more optimistic beliefs. We use

RÑ , LÑ , WÑ (RÑ ′ , LÑ ′ , WÑ ′) to denote the long-run revenue (rate) at the firm, the average number of

customers and the average time a customer spends in the system when the customers’ balking threshold

beliefs are characterized by the random variable Ñ (and Ñ ′ respectively). Using the results of Lemma 1, we

can now compare the performance metrics, as seen in following Theorem 1.

Theorem 1 If Ñ ≤st Ñ ′, then (i) RÑ ≤ RÑ ′ , (ii) LÑ ≤ LÑ ′ and (iii) WÑ ≤WÑ ′ .

When Ñ ≤st Ñ ′, we have F̄Ñ < F̄Ñ ′ , which means at any state, a smaller fraction of arrivals will

join under beliefs Ñ (compared to Ñ ′). In other words, when Ñ ≤st Ñ ′ the consumers are stochastically

less patient (to waiting) under Ñ than under Ñ ′. In the light of this observation, the conclusion on the

revenue from Theorem 1/(i) becomes intuitive. Note that the revenue in the queueing system decreases

in π0. Examining equation (1), it is clear from that π0 under Ñ is greater than π0 under Ñ ′ whenever

Ñ ≤st Ñ ′. This is because, under beliefs Ñ ′, stochastically more customers join at all states higher than 0,

which reduces the visit frequency of the underlying stochastic process to state 0, and hence reduces π0.

However, the conclusions on the average queue length (Theorem 1/(ii)) and the average waiting time

(Theorem 1/(iii)) are not as immediate. For instance, examining the expression for L in equation (3), both

the numerator and the denominator in the ratio for L are smaller under Ñ (than under Ñ ′). Since Ñ and

Ñ ′ are arbitrarily different (except for the stochastic dominance), it is unclear when the ratio L increases or

decreases. Optimism in the consumer population beliefs causes two effects. First, it leads to stochastically

larger queue buffers which allow for more arrivals to join the system. Secondly, stochastically more customers

join at each state, and as a consequence, the queue grows faster at each state. Thus, the expected queue
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length is longer. In contrast, when the threshold beliefs are pessimistic each customer expects to spend less

time waiting in the system because of the shorter queues and the throughput is lower.

Note that raising the value of the service v, or lowering the charged price p, or letting the customers believe

in a faster service rate (Ñ with higher expectation) all lead to more optimistic balking thresholds. Thus, it

is intuitive that if the average customer can be made more patient, the firm would get more customers.

Finally, the results from Theorem 1 are distribution-free, i.e., the performance metrics of queueing systems

can be ordered for any belief distribution, as long as the underlying belief distributions can be (first-order)

stochastically ordered. Also, note that the ordering of performance metrics is invariant to the true service

rate of the system.

3.2 Population with Consistent Beliefs

In this section, we consider mean-preserving spreads to examine consistent belief distributions that have the

same mean (as the true belief distribution), but differ in how the individual thresholds are distributed. A

specific consistent belief distribution is the “true” belief distribution which is deterministic: If all consumers

knew the service rate as common knowledge, then every consumer uses the same balking threshold.

Definition 2 Single Mean Preserving Spread (SMPS): [Rothschild and Stiglitz (1970)] Let F and G

be the cdf’s of two discrete random variables X and Y whose common support is a sequence of real numbers

a1 < a2 < ... < an. Suppose the probability functions f and g describe X and Y completely: Pr(X = ai) = fi

and Pr(Y = ai) = gi where
n∑
i=1

fi =
n∑
i=1

gi = 1. Suppose fi = gi for all but four i, say i1, i2, i3 and i4 where

ik < ik+1. Define γik = gik − fik . Then we say that Y differs from X by a single Mean Preserving Spread

(written F ≤SMPS G) if γi1 = −γi2 ≥ 0, γi4 = −γi3 ≥ 0 and
4∑
k=i

aikγik = 0.

The notion of mean preserving spread (MPS) is often employed to model risk ordering of two random

variables that may have the same mean but different variability. If two distributions F and G describe the

returns of two risky investments, and F ≤MPS G, then the distribution F is considered less riskier. SMPS

in Definition 2 is a stricter condition than MPS: F ≤SMPS G ⇒ F ≤MPS G.

Now consider consistent beliefs Ñ , i.e., E[Ñ ] equals the balking threshold when the service parameters

are fully known to the consumers. Since balking threshold beliefs are countable and finite, we can write

the cdf F corresponding to the discrete random variable Ñ as follows: F has support over a finite sequence

of (not necessarily consecutive) natural numbers a1 < a2 < ... < an < ∞, with probability mass function

f(ai) > 0 for all i ∈ {1, . . . , n} and
n∑
i=1

f(ai) = 1.

We seek to compare the performance metrics under beliefs Ñ to the metrics if the true parameters of

the system were known. To accomplish this, we now create a sequence of random variables that begin at

the initial belief distribution under our consideration. Using a fairly general, but an intuitive construction
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technique, we will show that the sequence (generated using our construction) will terminate at a specific

“final” distribution within finite number of steps, regardless of the starting distribution. We then characterize

an ordering of performance metrics for the entire sequence. This construction allows us to not only compare

the performance with the initial belief system to the canonical system with fully informed consumers, but also

facilitates a comparison between any two arbitrary (consistent) belief distributions and their corresponding

system performances.

Let our initial beliefs be characterized by the random variable Ñ0. In Construction 1, we create a

sequence of random variables {ÑK} (term K in the sequence is distributed with the cdf FK), and discuss

the properties of the sequence. A cdf FK corresponding to ÑK in the sequence has support over some finite

sequence of natural numbers aK1
< aK2

< ... < aKn
where Kn ≥ 2. Again, let fK be its probability mass

function such that fK(aKi
) > 0 for i ∈ {1, 2, ..., n} and

n∑
i=1

fK(aKi
) = 1.

Consider the transformation of ÑK to ÑK+1 in Construction 1. The succeeding random variable in the

sequence, ÑK+1 is constructed from the preceding random variable ÑK by taking an equal probability mass

from both ends of the distribution FK and adding those weights to the “middle” of the support.

Construction 1

When aKn
− 1 > aK1

+ 1,



fK+1(aK1
) = fK(aK1

)−min{fK(aK1
), fK(aKn

)}

fK+1(aK1
+ 1) = fK(aK1

+ 1) + min{fK(aK1
), fK(aKn

)}

fK+1(x) = fK(x) ∀ x ∈ {aK1
+ 2, aK1

+ 3, ..., aKn
− 2}

fK+1(aKn
− 1) = fK(aKn

− 1) + min{fK(aK1
), fK(aKn

)}

fK+1(aKn
) = fK(aKn

)−min{fK(aK1
), fK(aKn

)}

fK+1 = 0 otherwise.

When aKn
− 1 = aK1

+ 1,



fK+1(aK1
) = fK(aK1

)−min{fK(aK1
), fK(aKn

)}

fK+1(aK1
+ 1) = fK(aK1

+ 1) + 2 min{fK(aK1
), fK(aKn

)}

fK+1(aKn
) = fK(aKn

)−min{fK(aKK1
), fK(aKn

)}

fK+1 = 0 otherwise.

Stop the sequence when ÑT is such that aTn − 1 < aT1 + 1.

In Construction 1, we created the sequence {Ñ0, Ñ1, . . . , ÑT } with corresponding cdf’s {F0, F1, . . . , FT }

respectively. Thus, we now have a sequence of random variables that describe consumer threshold beliefs

that are ordered in some sense. In the following Lemma 2, we show they are mean-preserving spreads.

Lemma 2 Consider the sequence of random variables {ÑK} with corresponding cdf’s {FK}. Then, (i) The

sequence terminates at some finite K = T . (ii) FK ≤SMPS FK−1 for K ∈ {1, 2, . . . , T}.
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Lemma 2 states that all the distributions along the sequence built through Construction 1 have the same

mean (i.e., they obey the mean preserving property). As long as the first distribution is consistent, all

belief distributions in Construction 1 will be consistent. Furthermore, every succeeding distribution in the

sequence is dominated (under the SMPS criterion) by the preceding distribution, i.e., every distribution in

the sequence is followed by a distribution that has a lower “spread” or variability.

Corollary 1 All terms in the sequence {FK}K=0,1,...,T have the same mean E(Ñ0), and are ordered according

to SMPS.

Corollary 1 (proof skipped) follows immediately from Lemma 2 and the definition of SMPS. We now

show in Lemma 3, that for any initial belief distribution that belongs to the family of distributions with the

same mean, the sequence always terminates at the same distribution ÑT . Depending on the parameters of

the initial distribution (support etc.), the number of steps taken to reach the final distribution may differ.

Thus, T depends on the distribution of Ñ0, but ÑT does not. In addition, we characterize this terminal

distribution.

Lemma 3 Given any Ñ0, the sequence {FK} terminates at the same FT with the random variable ÑT ∈

{bE(Ñ0)c, dE(Ñ0)e} such that E(ÑT ) = E(Ñ0).

Now that we have a sequence of random variables ordered SMPS, by Construction 1, we can compare the

performance metrics of the queueing system under different beliefs along the sequence. Using our notation

introduced earlier, let RÑK
, LÑK

and WÑK
be the revenues, the average queue length, and the average

waiting time corresponding to ÑK in the sequence of belief distributions {ÑK}. We can now compare the

performance metrics of the queues associated with the beliefs defined along the sequence in Construction 1.

Lemma 4 Let {ÑK} be any sequence from Construction 1. Then (i) RÑK
< RÑK+1

for all ρ; (ii) LÑK
<

LÑK+1
if ρ ≤ 1

2

(√
(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
; and (iii) WÑK

< WÑK+1
if ρ ≤ 1

2

(√
(
aKn−1
aKn−2 )2 + 4− aKn−1

aKn−2

)
.

Recall that Construction 1 builds a sequence of consumer belief distributions with decreasing spreads,

while maintaining consistency (i.e., identical means). It follows from Lemma 4/(i) that, regardless of the

traffic in the system, the revenues at the firm improve as the consumers’ belief distributions become less

spread out (or narrower).

Note again, the revenues are in fact decreasing in idle state probability π0. One could incorrectly surmise

that the revenue ordering arises because π0’s are ordered in the sequence. However, unlike the biased beliefs

case in §3.1, examining the π0 terms along the sequence of beliefs (in Construction 1) yields no ordering.

Also the result that the revenues improve when the beliefs become less spread out, is not due to Jensen’s

inequality.1 Revenue improvements along the sequence emerge from the following two mechanisms: (i) The

1Consider belief Ñ0 with pdf f0, cdf F0 and integer E(Ñ0). Jensen’s inequality would imply RE(Ñ0)
> f0(N)RN where

RE(Ñ0)
and RN are revenues when all consumers use the balking threshold E(Ñ0) and N respectively. Lemma 4 states that

11



consumer beliefs are gradually altered along the sequence in the construction which immediately changes

the long-run probabilities for all states. (ii) Along the construction path, the balking threshold increases

for some consumers, and decreases for some other consumers. We prove that the increased joining of the

consumers with improved balking thresholds, compensates for the decreased joining of those consumers with

decreased balking thresholds. This is proven for any belief distribution.

Using similar proof arguments, Lemma 4/(ii) and (iii) provide distribution-free sufficient conditions for

LÑK
< LÑK+1

and WÑK
< WÑK+1

, respectively. (It is possible to derive stronger distribution-specific

conditions for each inequality). Unlike revenues which always increase as beliefs become less spread out, the

expected queue lengths and/or the expected waiting times can decrease. We provide numerical examples

below to support this observation.

Numerical Illustration: We explore the performance metrics as the balking threshold belief ÑK is

transformed into ÑK+1 according to Construction 1. We know λe must increase because RÑK
< RÑK+1

.

Following Little’s Law, it is impossible to have LÑK
> LÑK+1

and WÑK
< WÑK+1

at the same time. All three

other cases are possible: (i) LÑK
< LÑK+1

and WÑK
< WÑK+1

, (ii) LÑK
< LÑK+1

and WÑK
> WÑK+1

, and,

(iii) LÑK
> LÑK+1

and WÑK
> WÑK+1

. For example, consider the random variable ÑK ∈ {3, 4, 5}, such that

its probability mass function fK(x) = {0.2, 0.6, 0.2} for x = {3, 4, 5} respectively. Following Construction 1,

we have ÑK+1 such that Pr(ÑK+1 = 4) = 1. It is also clear that ÑK+1 is the last transformation step in

Construction 1. Let µ = 1 in all cases below.

Case (i): ρ = 0.4: LÑK
= 0.609 < LÑK+1

= 0.615 and WÑK
= 1.551 < WÑK+1

= 1.562,

Case (ii): ρ = 0.825: LÑK
= 1.617 < LÑK+1

= 1.621 and WÑK
= 2.265 > WÑK+1

= 2.262.

Case (iii): ρ = 0.9: LÑK
= 1.793 > LÑK+1

= 1.790 and WÑK
= 2.380 > WÑK+1

= 2.368. �

Having illustrated the comparative statics for the sequence of beliefs in Lemma 4, we can now compare

the performance metrics of (any) initial belief with the terminal belief distribution. This is captured in

Theorem 2. It turns out that when consumers beliefs become more accurate the firm always improves its

revenues, while individual consumers have to wait longer if the traffic is smaller than some threshold level.

Theorem 2 Let Ñ be any balking threshold belief. Let ÑT be the last term from Construction 1 initiated

at Ñ0 = Ñ . Then, (i) RÑ < RÑT
; (ii) ∃ ρL s.t. LÑ < LÑT

∀ ρ ≤ ρL; and (iii) ∃ ρW s.t. WÑ < WÑT
if

ρ ≤ ρW .

Theorem 2 indicates that revenue at the server always improves when beliefs become less spread-out. In

the meantime, some consumers with high balking threshold thresholds become less patient, and some others

with low balking thresholds become more patient. When the firm provides fast service (small ρ), the system

RE(Ñ0)
> RÑ0

= pµ(1− π0) where π0 = 1

/(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄0(n)

)
(from Equation (1)) which is not equivalent to f0(N)RN .
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occupancy is typically low. As a result, there is increased joining of customers with low-thresholds who

became more patient in their beliefs. On the other hand, there is not much effect from the higher-threshold

consumers who became less-patient as the higher states are rarely reached. Thus, when the traffic intensity

ρ is small, beliefs that are less spread-out can increase congestion (L or W ).

As beliefs become more accurate, customers wait longer and suffer higher disutility at a fast server. This

result is intriguing and quite pronounced: even when the sufficient conditions do not hold, the queue-lengths

(L) and waiting times (W ) exhibit this property. Theorem 2 indicates that L and W can decrease only when

traffic ρ is sufficiently large, as seen in the Numerical Illustration Cases (ii)-(iii).

Lower Bounds: We can use the analytical properties of the bounds along the sequence to derive

distribution-free (w.r.t. Ñ) bounds on ρL and ρW that hold for any arbitrary consumer belief. The lower

bounds ρ
L

and ρ
W

are such that ρL ≥ ρL = 0.5 and ρW ≥ ρW = 0.414 respectively. We defer the details of

the derivation to the appendix.

We now extend our theoretical findings to the case of a firm with multiple servers (in §3.3) and consumer

beliefs that have infinite support (in §3.4).

3.3 Beliefs with Multiple Server Queues

We begin by characterizing the evolution of the queue when there are s identical servers each with service

rate parameter µ (M/M/s model). Assume that sµ > λ so the traffic ρ = λ/sµ < 1. All other aspects of

the model are the same as in the single-server setting.

Let Ñ ∈ {1, 2, 3, . . . }, whose cdf is F , describe consumers’ balking beliefs. As in the single server

case, we assume that every consumer will join the system on arrival if one of the servers is idle. Thus we

associate a consumer j’s balking threshold belief Ñj ∈ {1, 2, 3, . . . } in the M/M/s system in the following

way: Consumer j with Ñj , will join the M/M/s system upon arrival, if and only if she observes less than

Ñj + s− 1 consumers already in the system.2 This specification ensures that no-one balks when a server is

idle, and is consistent with the single-server model when s = 1.

Let {0, 1, 2, . . .} be the states of the M/M/s system (number of consumers in the system), and {πi : i =

0, 1, 2, . . .} be the corresponding steady-state probabilities. From the rate balance equations, we have:

πi =


ρi

i! π0 for i = 1, 2, . . . , s− 1, s.

ρi

s!

i−s∏
n=0

F̄ (n)π0 for i = s, s+ 1, s+ 2, . . .
(8)

Note that when i = s the two cases in Equation (8) provide the same result, i.e., ρi

i! π0 = ρi

s!

i−s∏
n=0

F̄ (n)π0,

2For example, consider consumer j with the strictest balking threshold, i.e., Ñj = 1. This consumer will join the system if and

only if she observes less than s (= Ñj + s− 1) consumers in the system, i.e., at least one of the servers is idle.
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because F̄ (0) = 1. Let a∧ b , min{a, b} and let empty products, if any, be equal to 1, then from (8) we have

πi =
ρi

(i ∧ s)!

i−s∏
n=0

F̄ (n)π0 for i = 1, 2, 3, . . . (9)

From (9), we derive expressions for performance metrics for the M/M/s system under the consumer

beliefs Ñ with cdf F :

π0 = 1

/(
s−1∑
i=0

ρi

i!
+
ρs−1

s!

∞∑
i=1

ρi
i−1∏
n=0

F̄ (n)

)
(10)

RÑ = p · µ[s− (sπ0 + (s− 1)π1 + . . .+ 2πs−2 + 1πs−1)] (11)

LÑ =

∞∑
i=0

iπi =

∞∑
i=0

iρi

(i ∧ s)!

i−s∏
n=0

F̄ (n)

/ ∞∑
i=0

ρi

(i ∧ s)!

i−s∏
n=0

F̄ (n) (12)

WÑ =
LÑ
λe

=

∞∑
i=1

iρi

(i ∧ s)!

i−s∏
n=0

F̄ (n)

/
µ

∞∑
i=1

(i ∧ s) ρi

(i ∧ s)!

i−s∏
n=0

F̄ (n) (13)

Note that all expressions from (10) to (13) coincide with the corresponding expressions for the M/M/1

system when s = 1. We now recover the results of Theorem 1 and Theorem 2 for consumer beliefs in

multi-server queues. The proofs can be found in the appendix.

Theorem 1’ Consider consumer beliefs Ñ and Ñ ′ at an M/M/s queue. If Ñ ≤st Ñ ′, then (i) RÑ ≤ RÑ ′ ,

(ii) LÑ ≤ LÑ ′ and (iii) WÑ ≤WÑ ′ .

Theorem 2’ Let Ñ be any balking threshold beliefs distribution for the M/M/s queue. Let ÑT be the last

term from Construction 1 initiated at Ñ0 = Ñ . Then, (i) RÑ < RÑT
; (ii) ∃ ρL s.t. LÑ < LÑT

∀ ρ ≤ ρL;

and (iii) ∃ ρW s.t. WÑ < WÑT
if ρ ≤ ρW .

3.4 Beliefs over an Infinite Support

We further relax the assumption that the balking threshold beliefs have finite support. Recall that Theorem

1 in §3.1 states that when consumers have two sets of balking threshold beliefs Ñ and Ñ ′ (which have finite

supports) such that Ñ ≤st Ñ ′, then RÑ ≤ RÑ ′ , LÑ ≤ LÑ ′ and WÑ ≤ WÑ ′ . It is clear that the approach

used in the proof of Theorem 1 continues to hold when Ñ and Ñ ′ have infinite support. Thus we have the

following theorem.

Theorem 1” Consider consumer beliefs Ñ and Ñ ′ that may be distributed on an infinite support. If

Ñ ≤st Ñ ′, then (i) RÑ ≤ RÑ ′ , (ii) LÑ ≤ LÑ ′ and (iii) WÑ ≤WÑ ′ .

However, to extend Theorem 2 to the infinite support case, we need additional preparatory groundwork.

Recall that for consistent beliefs Ñ with finite support, Theorem 2 states that RÑ < RÑT
for all ρ, LÑ < LÑT
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and WÑ < WÑT
for small ρ, where ÑT is the terminal distribution in the sequence formed by Construction

1 initiated from Ñ . Lemma 3 shows that ÑT ∈ {bE(Ñ)c, dE(Ñ)e} such that E(ÑT ) = E(Ñ).

Now we relax the assumption on the finite support and allow Ñ to take values from a countable set

within {1, 2, 3, . . .} with finite mean E(Ñ). Our approach is to develop a new sequence of random variables

ÑK , in Construction 2, each with finite support and mean E(Ñ). We then show that the sequence {ÑK}

converges to Ñ in probability, i.e., ÑK p→ Ñ .

Construction 2 Let Ñ ∈ {1, 2, 3, . . .} with E(Ñ) < ∞. For each K, let ÑK be a random variable that

takes values only in {1, 2, . . . ,K − 1,K} ∪ {bE[Ñ |Ñ > K]c, dE[Ñ |Ñ > K]e} such that

When E[Ñ |Ñ > K] is an integer,

Pr(ÑK = n) = Pr(Ñ = n) for n ∈ {1, 2, . . . ,K − 1,K}

Pr(ÑK = E[Ñ |Ñ > K]) = Pr(Ñ > K)

Otherwise,


Pr(ÑK = n) = Pr(Ñ = n) for n ∈ {1, 2, . . . ,K − 1,K}

Pr(ÑK = bE[Ñ |Ñ > K]c) = (dE[Ñ |Ñ > K]e − E[Ñ |Ñ > K]) Pr(Ñ > K)

Pr(ÑK = dE[Ñ |Ñ > K]e) = (E[Ñ |Ñ > K]− bE[Ñ |Ñ > K]c) Pr(Ñ > K)

Construction 2 replaces the tail of the distribution of Ñ (the portion where Ñ > K), with a single or two

finite probability mass points that take on the corresponding conditional mean E[Ñ |Ñ > K]. It then can be

easily verified that E(ÑK) = E(Ñ). Thus Construction 2 provides a mean-preserving transformation, i.e.,

the consistency of beliefs is preserved.

Let {ÑK}K=1,2,3,... be built from Ñ using Construction 2. Note that Pr(Ñ 6= ÑK) ≤ Pr(Ñ > K)

and lim
K→∞

Pr(Ñ > K) = 0. So {ÑK} converges to Ñ in probability which also implies the convergence in

distribution. It immediately follows that lim
K→∞

RÑK = RÑ , lim
K→∞

LÑK = LÑ , lim
K→∞

WÑK = WÑ . For each

K, ÑK is a random variable with mean E(Ñ) and a finite support. By Theorem 2 (for the finite support

case), we have (for each K), RÑK < RÑT
for all ρ, LÑK < LÑT

and WÑK < WÑT
for small ρ. By letting

K →∞, we can extend Theorem 2 to the case when Ñ takes an infinite support.

Theorem 2” Let Ñ be any balking threshold beliefs distribution that may have an infinite support. Let

ÑT ∈ {bE(Ñ)c, dE(Ñ)e} such that E(ÑT ) = E(Ñ). Then, (i) RÑ ≤ RÑT
; (ii) ∃ ρL s.t. LÑ ≤ LÑT

∀ ρ ≤ ρL;

and (iii) ∃ ρW s.t. WÑ ≤WÑT
if ρ ≤ ρW .

Thus, we recover the conclusions from Theorems 1 and 2, when applying our results to beliefs that have

infinite supports. The lower bounds derived on ρ
L

and ρ
W

in §3.2 also continue to hold.
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4 Impact of Revealing Service Information

So far, we discussed the revenue and congestion effects of consumer beliefs, when only the firm knows its

service parameters. Now, we address whether a firm should reveal service information, i.e., its true service

rate µ, and then calibrate the impact of revealing the true information. To begin with, when consumers

are uninformed, they may have arbitrary beliefs over the service rate, and the balking thresholds could be

distributed according to some Ñ . When the firm chooses to inform its consumers of the true service rate, the

consumers will follow identical balking thresholds, say N .3 Since the native beliefs are arbitrary, it is unclear

when a firm should reveal its service rate. We characterize this condition in the following Proposition 1.

Proposition 1 In an M/M/s queue, when E(Ñ) ≤ N , the firm benefits from revealing service information

(R ↑). In addition, when traffic ρ is small, the average queue length and the average waiting time for a

customer both increase on announcement (L,W ↑).

From Proposition 1, we find that when consumer balking beliefs are pessimistic, i.e., E(Ñ) ≤ N , it is

always in the firm’s interest to reveal its service rate (the firm sees more revenue as the announcement is

made). When ρ is small, the system congestion (the average queue length and the average customer waiting

time) increases on consumers knowing the true information.

These results are distribution-free w.r.t. µ̃ and also parameter-free w.r.t. µ. It is sufficient for the firm

to only know that the beliefs are pessimistic or consistent, before the decision to reveal true information is

made. Under such cases, the exact distribution of beliefs do not influence the decision to reveal information.

To intuit this result, we first consider a population with beliefs Ñ . Let {Ñ0, Ñ1, . . . , ÑT } be a sequence of

balking threshold beliefs from Construction 1 starting with Ñ0 = Ñ . (We can use a similar argument using

Construction 2 for beliefs with infinite support). Theorem 2 states that R ↑ and L,W ↑ (for small ρ) when

consumers adopt ÑT instead of Ñ . Now suppose the beliefs are pessimistic or consistent, i.e., E(Ñ) ≤ N ,

it then follows that ÑT ≤st N . So by Theorem 1, on revealing, we have R ↑ and L,W ↑. Thus, combining

Theorems 1 and 2, when E(Ñ) ≤ N , we have R ↑ and L,W ↑ (for small ρ).

Now suppose that consumers have optimism bias (N < E(Ñ)). Again, we construct the sequence

{Ñ0, Ñ1, . . . , ÑT } using Construction 1 starting with Ñ0 = Ñ . We have RÑ < RÑ1
< . . . < RÑT

by

Theorem 2. On the other hand, N < E(Ñ) implies N <st ÑT , so by Theorem 1 we have RN < RÑT
.

Depending on Ñ , we may have RN < RÑ or RN > RÑ . Recall that {Ñ0, Ñ1, . . . , ÑT } is a sequence of

beliefs that have progressively lower spreads. So we conclude that when consumers population is optimistic,

the firm may still reveal its service information as long as it observes high variance in consumers’ balking

behaviors. We provide numerical examples to support this observation in the following section.

3For example, in the M/M/1 queue, the balking threshold beliefs are given by Ñ = b µ̃(v−p)
c
c and true balking threshold is given

by N = bµ(v−p)
c
c. Similar conclusions hold for the M/M/s queues.
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4.1 Revenue and Welfare Effects of Service Revelation under Bias

We now examine specific cases where our findings will apply by studying M/M/1 queues under different

beliefs in the population. In all cases, we set the service value v = $8, price p = $2, and consumer linear

waiting cost at c = $4/min. Consumers are not aware of the provider’s true service rate, µ and their

beliefs are uniformly distributed over [2, 8], i.e., µ̃ ∼ U [2, 8] (with mean 5). As a result, consumers’ balking

threshold beliefs, Ñ = b µ̃(v−p)
c c = b3µ̃/2c, is a discrete uniform distribution taking values {3, 4, . . . , 11} with

E(Ñ) = 7.

We examine three scenarios where the true threshold N from announcing the true service rate is (i) greater

than, (ii) equal to or (iii) less than E(Ñ). These three instances correspond to pessimism, consistency and

optimism in beliefs. For each case, we examine the firm’s revenue, the average queue length and the consumer

average waiting time, as well as consumer welfare and social welfare.

The first line in each table that follows corresponds to the situation when the firm hides the service

information from its customers (customers adopt balking threshold beliefs Ñ); the last line of each table

corresponds to the situation when the firm reveals the service information to its customers (customers thus

adopt balking threshold beliefs N). All rows in between the first and the last rows communicate the terms

in the sequence in Construction 1. The percentage change in a parameter (compared to the original beliefs

Ñ , first line) is noted in parenthesis.

Pessimistic Beliefs: The arrival rate is λ = 5/min and the true service rate is µ = 6/min. Note that

µ = 6 > E(µ̃) = 5 and N = 9 > E(Ñ) = 7. Therefore, consumers have pessimistic beliefs.

Beliefs Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 8.75 1.86 0.42 18.81 27.56

Construction:Ñ1 8.87 (+1.41%) 1.94 (+4.32%) 0.44 (+2.87%) 18.86 (+0.26%) 27.73 (+0.62%)

Ñ2 9.03 (+3.23%) 2.08 (+11.94%) 0.46 (+8.44%) 18.77 (-0.21%) 27.80 (+0.88%)

Ñ3 9.17 (+4.88%) 2.24 (+20.47%) 0.49 (+14.86%) 18.57 (-1.28%) 27.75 (+0.68%)

Ñ4 = ÑT 9.23 (+5.47%) 2.29 (+23.35%) 0.50 (+16.95%) 18.52 (-1.58%) 27.74 (+0.66%)

Informed N 9.52 (+8.83%) 2.84 (+52.78%) 0.60 (+40.38%) 17.21 (-8.52%) 26.73 (-3.01%)

In this case, revealing the true service rate increases the firm’s revenue by 8.83% but also increases the

average queue length by 52.78% and the average waiting time by 40.38%. The firm thus benefits from

revealing its service information (in line with Proposition 1), but the increased benefit is not sufficient to

overcome the loss in consumer welfare (-8.52%). As a result, the overall social welfare drops by 3.01%.

Consistent (but Noisy) Beliefs: Let λ = 4/min, µ = 5/min. Note that µ = E(µ̃) = 5 and

N = E(Ñ) = 7. Therefore beliefs are consistent in the population. Nevertheless, the individual consumer

beliefs could vary arbitrarily (uniformly distributed in this case).
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Belief Type Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 7.08 (+0.00%) 1.74 (+0.00%) 0.49 (+0.00%) 14.29 (+0.00%) 21.37 (+0.00%)

Construction Ñ1 7.18 (+1.43%) 1.82 (+4.37%) 0.51 (+2.89%) 14.29 (+0.00%) 21.47 (+0.47%)

Ñ2 7.31 (+3.24%) 1.95 (+11.89%) 0.53 (+8.37%) 14.15 (-0.97%) 21.46 (+0.43%)

Ñ3 7.43 (+4.86%) 2.09 (+20.19%) 0.56 (+14.62%) 13.92 (-2.61%) 21.34 (-0.13%)

Ñ4 = ÑT 7.47 (+5.46%) 2.14 (+23.12%) 0.57 (+16.75%) 13.84 (-3.15%) 21.31 (-0.30%)

Informed N = ÑT 7.47 (+5.46%) 2.14 (+23.12%) 0.57 (+16.75%) 13.84 (-3.15%) 21.31 (-0.30%)

In the consistent beliefs case, revealing the true service rate improves revenues (by 5.46%) in line with

Proposition 1. On the other hand, the average queue length and the average waiting time both increase

significantly (by 23.12% and 16.75% respectively). The firm benefits from revealing the service rate, almost

fully at the expense of consumer welfare (-3.15%), but the overall social welfare does not fall significantly

(-0.30%) due to the increase in throughput (i.e., number of consumers served).

Optimistic Beliefs: Let λ = 3/min and µ = 4/min. Note µ = 4 < E(µ̃) = 5 and N = 6 < E(Ñ) = 7.

Hence, population beliefs are pessimistic.

Beliefs Firm Revenue Avg. Queue Length Avg. Waiting Time Consumer Welfare Social Welfare

Uninformed Ñ = Ñ0 5.40 (+0.00%) 1.57 (+0.00%) 0.58 (+0.00%) 9.93 (+0.00%) 15.33 (+0.00%)

Construction: Ñ1 5.48 (+1.45%) 1.64 (+4.39%) 0.60 (+2.90%) 9.89 (-0.41%) 15.37 (+0.25%)

Ñ2 5.58 (+3.22%) 1.75 (+11.65%) 0.63 (+8.17%) 9.72 (-2.11%) 15.30 (-0.23%)

Ñ3 5.66 (+4.76%) 1.88 (+19.48%) 0.66 (+14.04%) 9.48 (-4.54%) 15.14 (-1.26%)

Ñ4 = ÑT 5.69 (+5.34%) 1.92 (+22.37%) 0.68 (+16.16%) 9.39 (-5.43%) 15.08 (-1.64%)

Informed N 5.57 (+3.03%) 1.70 (+8.31%) 0.61 (+5.13%) 9.90 (-0.31%) 15.46 (-0.86%)

Although consumers are optimistic about the service rate, revealing the true service rate would still increase

firm’s revenue by 3.03%. Examining the second column of the table (firm’s revenue column) reveals what we

have discussed for the optimism bias case: When consumers’ optimistic balking threshold beliefs are more

dispersed (as in the example the original belief Ñ), it is beneficial for the firm to reveal service rate.

In this example, we see that if consumers’ balking beliefs is characterized by Ñ or Ñ1, the firm increases

its revenue from revealing the true service rate. As in the previous cases, the revenue accrual comes from the

expense of increased queue lengths and waiting times for consumers. On the contrary, if consumer beliefs

are less dispersed, (for e.g., if the beliefs were Ñ3), the firm does not gain from revealing its service rate. In

this case, consumers are better off in both expected queue lengths and wait times.

To summarize, while the revenues improve with more information, the welfare effects are mixed. Typically

the firm benefits from revealing service information, to the detriment of consumer welfare. Often, but not

always, the gains in revenues are lower than consumer welfare loss. In such case, the social welfare reduces,

as a consequence of more information in the system. However, it is also possible that both the firm revenues

18



and consumer welfare improve upon service information revelation. This can occur when the traffic is very

high and consumers’ prior beliefs are almost deterministic. One such example is given by Case (iii) of the

numerical illustration in §3.2.

5 Applying our Findings to Specific Belief Models

While our results hold for any general belief structure, it is helpful to evaluate what our findings imply under

some specific belief considerations that have been examined in the literature. In this context, it is germane to

consider the following issue: If consumers arrive to a queue endowed with some pre-existing beliefs, how do

these different beliefs form? In the following section, we consider some behavioral/operational antecedents

to belief structures, show our analysis apply to those cases and derive conclusions from those applications.

5.1 Quantal Response Errors

Quantal response models are used to model deviations from optimal consumer decisions in the absence of

full information. For instance, in queues, consumers may make “errors” in their estimate of the true service

rate due to cognitive limitations following Quantal Choice Theory (Luce, 1959), which argues that decision

makers do not always choose the “correct” alternative, but better alternatives (i.e., alternatives with smaller

errors) are chosen with a higher probability than the alternatives that are worse. Quantal choice approach

has been employed to model bounded rationality in the newsvendor contexts by Su (2008), and subsequently

in queueing settings by Huang et al. (2012).

If consumer population made i.i.d. belief draws from a distribution that align with Quantal Choice

Theory, a large fraction of the population will have small errors in their beliefs about the true service rate,

and a diminished fraction of customers make arbitrarily large errors in their beliefs. Furthermore, the mode

of such a belief distribution will coincide with the true service parameter.

For a consumer j, let the belief on the true service rate (µ) be µ̃j . We use [|µ̃j − µ| + 1]−1 ∈ (0, 1] to

indicate the accuracy of her belief.4 Assuming i.i.d. customers, we could use a logit model – the mostly

commonly used Quantal response distribution – for µ̃, to model the accuracy of consumer beliefs. Then, the

pdf for the belief distribution µ̃ is given by:

fµ̃(x) =
exp{[β(|x− µ|+ 1)]−1}

x=µ̄∫
x=µ

exp{[β(|x− µ|+ 1)]−1}dx

where β is a cognitive parameter that measures “distance” from perfect rationality. As β →∞, µ̃ ∼ U [µ, µ̄]

(consumers are totally uninformed and make ‘random’ errors), and when β → 0, Pr(µ̃ = µ) = 1 (consumers

4Other measures of accuracy could be employed without altering our conclusions.
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are fully informed and we recover Naor’s model in this context). When the belief distribution is symmetric,

i.e., µ = (µ + µ̄)/2, we note that as β decreases from ∞ to 0, the underlying consumer beliefs undergo the

transformation described in Construction 1.

Quantal response choices only require that the zero-error choice is chosen with the highest probability,

and therefore are not necessarily consistent beliefs. For example, consumer beliefs can be optimistic (if

µ < (µ + µ̄)/2) or pessimistic (if µ > (µ + µ̄)/2). Quantal response beliefs are examples of beliefs where

the results of our paper apply. Although Quantal response beliefs can explain some deviations from the

optimal/true choice, they do not inform how these beliefs form. We examine some specific causes (e.g., past

experiences) in the following sections.

5.2 Learning by Sampling Past Experiences

In many service instances, consumers have limited and infrequent interactions with the service provider. In

such cases, consumers could use their past service experience as samples to learn more about the service

rate. This sampling helps consumers to arrive at their beliefs and eventually make their decisions. Suppose

that all consumers in a sufficiently large population, use only their past service experience to estimate the

service rate. Specifically, let us examine a case in which all consumers have visited the server s times, (s ≥ 1)

or only remember the past s service time experiences. We assume that consumers are homogeneous in s in

this section, but relax the assumption in §5.3.

Consider a consumer with the following service time samples {τ1, τ2, . . . , τs}. A rational consumer who

knows the service distribution, but not the exact parameters, will use the observed samples to arrive at an

estimate that maximizes the likelihood of observing those s samples. Simply, a rational consumer would use

Maximum Likelihood Estimator (MLE) for calculating the parameters of the service distribution. Suppose

the service times are i.i.d. exponential, then it is well known that the MLE for the service rate is given by

µ̂|(τ1, τ2, . . . , τs) = s

/
s∑
i=1

τi . (14)

This is the point estimate for the service rate for the consumer with samples {τ1, τ2, . . . , τs}. Thus,

consumers will have different beliefs (estimates) based on their individual samples. Define µ̃s to be the

random variable associated with the belief distribution, when all consumers use s samples to arrive at their

beliefs through MLE. We note that
s∑
i=1

τi in equation (14) has an Erlang distribution with shape parameter s

and rate parameter µ. It follows that over the population, the individual consumer beliefs µ̃s are distributed

Inverse-Gamma with shape parameter s and scale parameter sµ, i.e., µ̃s ∼ Inv-Gamma(s, sµ). The pdf for

µ̃s is given by

fµ̃s
(x) =

(sµ)s

Γ(s)
x−s−1 exp(−sµ

x
) for x > 0 (15)
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where Γ denotes the upper incomplete gamma function. Furthermore, if the service times are independent,

the estimate remains unchanged if these samples are collected on a single visit or over multiple visits.

x value

f
Μ
�

s
HxL

s=50

s=30

s=10
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s=2

s=1

Μ (s=¥)

Figure 1: As consumers remember more service experiences (s ↑ ∞), their estimates of the service rate

become consistent with the true service rate. Specifically, we observe that (i) E(µ̃s) ↓ µ, and (ii) Var(µ̃s) ↓ 0.

In Figure 1, we illustrate µ̃s for different sampling sizes s. Since E(µ̃s) = s
s−1µ and Var(µ̃s) =

s2

(s−1)2(s−2)µ, we note that for any finite s, the population mean is higher than the true µ. Thus the

population is optimistically biased. Further, as s increases, consumer beliefs get less noisy (i.e., Var(µ̃s)→ 0

as s ↑ ∞), as reflected in the distributions getting less spread-out in Figure 1. Eventually, as the number

of samples approaches infinity in (15), the distribution of µ̃s approaches a one-point distribution at µ, i.e.,

Pr(µ̃ = µ) = 1. As consumers learn service rate through sampling, they remain optimistic but diminish-

ingly so, as they collect more samples. Thus MLE derived through sampling is biased but asymptotically

consistent.

Finally, for any s, the mode of the belief distribution µ̃s does not coincide with the true service rate µ

(s = ∞ line). Therefore, the beliefs that emerge from learning through sampling, are not Quantal choice

beliefs. Hence, sampling distributions are another distinct example of our belief distribution results.

Learning through Waiting Times: Note that for a given s, as long as the service times are i.i.d.,

it does not matter whether a consumer’s MLE is built from her own service times, or from her observations

of service times for other consumers. In some cases, consumers may not be able to observe all other service

times, due to limited cognitive attention to the sequence of events, or due to system environment. As an

example, consider ticket queues (see Xu et al. (2007)) where a consumer learns only her own wait time and

ticket number. Another similar setting occurs at emergency room queues, where consumers learn their own

total wait time but not the exact service times of everyone in the queue.

Suppose that a consumer only knows her total wait time Ws and the number of customers during the
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wait, s (for e.g., queue length), but does not observe the individual service times (τ1, τ2, . . . , τs) during the

wait. Her service time belief is based on the observed waiting time, i.e., τ̂ |Ws = Ws/s and the corresponding

service rate belief is µ̂|Ws = [τ̂ |Ws]
−1 = s/Ws. This estimate µ̂|Ws is identical to the MLE in equation (14)

for a consumer who observed individual service times which sum up to Ws. The overall belief distribution

using the waiting time estimate Ws is thus identical to the MLE case with s samples.

5.3 Consumer Heterogeneity in Learning

So far, we limited consumer sampling to be homogeneous across the entire population. However, it is possible

that consumers differ in s. Typically, there is some underlying distribution of s in the population, based on

how consumers accumulate information or are exposed to it. For instance, consumers may consider external

reviews or auxiliary information from other consumers. We denote this sampling heterogeneity by a discrete

random variable S taking values in {1, 2, . . .} with pdf fS . When S is a one-point distribution, we retain

homogeneity in learning. With (15) in hand, we can write the continuous unconditional distribution of

beliefs denoted by µ̃ in the population, through the following pdf:

fµ̃(x) =
∑
s∈S

(sµ)s

Γ(s)
x−s−1 exp(−sµ

x
)fS(s) for x > 0. (16)

We now consider two different ways to model the learning heterogeneity, fS(s).

Sampling through Poisson Arrivals: One natural distribution of sampling in the population could

be based on what consumers observe when they arrive to a queue. Applying PASTA property (Wolff,

1982), when consumers arrive according to a Poisson process to the server, their sampling distribution

follows the steady state distribution of the queuing system. In an M/M/1 queue, a customer who arrives

at the state s − 1 observes s samples in total. With traffic intensity ρ = λ/µ, the sampling distribution

would be fS(s) = (1 − ρ)ρs−1, s ≥ 1. Clearly, if the queue is a system with limited buffer size, then the

sampling distribution is on finite support, and therefore the population becomes more optimistic, following

our previous discussion.

Limited Recall/External Reviews: Consumers may come across information (for e.g., reviews on

bulletin boards or websites), but may not recall all observed information due to cognitive limitations. When

subjected to an increasing amount of information, a consumer may remember only a limited amount of

information, and forget an amount that is proportional to the information she is exposed to. We examine

such a sampling system, using the model of limited memories due to Nelson (1974). We assume that

consumers confront reviews according to a Poisson Process with rate r and they also forget a review at a

rate that is directly proportional to the number of reviews a person remembers. Let a be the constant of the

proportionality. We denote the state n ∈ {0, 1, 2, . . .} as the number of reviews that a particular customer
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remembers in the long run. The fraction of customers who remember n reviews is given by steady-state

probability distribution {πn : n = 0, 1, 2, . . .}. We then have πn = (r/a)ne−r/a/n! for n ∈ {0, 1, 2, . . .}.

Suppose that consumers form their beliefs only after reading at least one review or service experience.

Then, the fraction of consumers who remember s reviews among the population is given by

fS(s) =
πs

1− π0
=

(r/a)n

n!

e−r/a

1− e−r/a
for s = 1, 2, . . .

The fraction fS(s) use s reviews to arrive at their belief µ̃s. We can then use fS to build the distribution of

consumer beliefs in the queue through equation (16).

Regardless of how we model the sampling heterogeneity fS , we conclude that consumer population

will tend to be optimistic, even though all reviews/service experiences are assumed to be accurate. This

is because, using MLE, each consumer class is optimistic. Thus, learning through sampling can lead to

optimism bias even in heterogenous populations. We briefly examine how pessimistic beliefs can emerge.

From a behavioral point of view, consumers may have availability bias (Tversky and Kahneman, 1973)

when processing information. Under availability bias, consumers remember unusual experiences saliently,

in forming their beliefs. In the case of exponential servers, when consumers have finite sample sizes, short

service times are much likely to be present in their sample than long service times. Thus, consumers recall

longer-than-usual service times more vividly. As a result, availability bias could lead to tempered optimism

or even pessimism in the population beliefs, i.e., E(µ̃) < µ. Another cause of pessimistic bias, can be due to

Prospect Theory (Kahneman and Tversky, 1979), where longer (worse) service times affect updating more

significantly. See Gaur and Park (2007) for such asymmetric consumer learning in inventory context.

5.4 Conclusions and Implications.

Consumers often join queues with very limited information. Much of the literature has assumed that service

parameters that influence the joining behavior as common knowledge. For instance, almost all queueing

research in observable queues assumes that the service capacity µ is known. However, consumers cannot

always fully characterize these service parameters; sometimes even the calculation of mean service time may

require repeated sampling or collection of data. In such blind queues, not much is known on how revenues

and welfare are impacted, when a firm reveals its service information (specifically, service capacity). Our

paper seeks to fill this gap.

Our approach to solving the information problem is distribution-free. We begin with any belief distri-

bution that consumers may have on the service rate in the uncountable space, and reduce it to balking

threshold beliefs in the countable space. Using our general but intuitive approach, we calibrate the im-

pact of information revelation on the performance of the queueing system, without any restrictions on the

distribution of the initial consumer beliefs.
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We can apply the results from our general model on specific belief structures, such as Quantal-response

based bounded rationality, learning through sampling either from past experiences or reviews, and other

cognitive biases to characterize their effects on revenues and consumer welfare. In fact, we find that learning

from sampling can lead to optimism bias, even though sampling can be asymptotically consistent. We show

that learning through sampling imposes fundamentally different beliefs structures from the bounded rational

models based on Quantal response.

We find that, under consistent or pessimistic beliefs, the service provider always improve revenues by

revealing its service parameters. Unlike the impact on revenues, the impact of service rate information on

congestion and welfare is mixed. Even though a firm’s revenues improve on announcing its service rate,

the impact on the congestion levels (such as the average queue lengths, or average wait times) are typically

negative. As a result, consumer welfare worsens on revelation, despite the increased market coverage. In

fact, the impact on consumer welfare could be significantly negative, compared to revenue improvements at

the firm. Hence, social welfare can fall even though there is increased information in the population.

Given a market size, consumer welfare likely worsens in the case when a fast service reveals its service

rate, compared to the case when a slow server reveals its rate. Thus, consumers are worse off, if a faster/better

firm with more service capacity reveals its service information.

Hence, intriguingly, with informational uncertainty, the social welfare typically improves, compared to

the case in which consumers have full information. When left to their own devices, with full information,

more consumers join the queue than what is socially optimal. In Naor (1969), tolls/taxes are levied to

control the joining population which improves welfare. Likewise, we find that the lack of information acts

as an information tax that deters admission, which can lead to improved welfare. Several future research

directions related to queue information appear promising. For instance, we could examine the impact of

unobservability of queue lengths using our approach, and measure its impact on consumer beliefs.

Our findings have several implications for queue management policies. In primary healthcare settings

where the access to service providers is important, revealing the capacity information can lead to an increased

consumer access to the queue (i.e., more consumers will visit the service provider). Nevertheless, consumers

will observe longer queues on average, and also suffer a higher disutility in waiting time on average.

Thus when there is a significant impetus on treating admitted patients quickly, as in some emergency

room settings, revealing the queue information may lead to increased crowding and worsen the average wait

times. Furthermore, this effect is exacerbated for a facility that has ample service capacity. So, the decision to

reveal the queue information in aforementioned settings depends critically on the tradeoffs between improved

access and increased congestion.
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Appendix

Proof of Theorem 1:

(i) For j ∈ {Ñ , Ñ ′}, recall from (5) that Rj = pµ(1− π0) where π0 = 1

/(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄j(n)

)
. It is clear

that the greater
∞∑
i=1

ρi
i−1∏
n=0

F̄j(n) is, the greater Rj will be. Since Ñ ≤st Ñ ′, we have F̄Ñ (n) ≤ F̄Ñ ′(n) for

every n. Thus
∞∑
i=1

ρi
i−1∏
n=0

F̄Ñ (n) ≤
∞∑
i=1

ρi
i−1∏
n=0

F̄Ñ ′(n) and RÑ ≤ RÑ ′ .

(ii) Using equation (3) for the random variable associated with beliefs, Ñ , and given Ñ ≤st Ñ ′, we would

like to prove that

∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ ′(n)

∞∑
i=0

ρi
i−1∏
n=0

F̄Ñ ′(n)

≥

∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ (n)

∞∑
i=0

ρi
i−1∏
n=0

F̄Ñ (n)

⇔

∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ ′(n)

∞∑
j=0

ρj
j−1∏
n=0

F̄Ñ ′(n)

≥

∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ (n)

∞∑
j=0

ρj
j−1∏
n=0

F̄Ñ (n)

,

⇔

[
∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ′(n)

][
∞∑
j=0

ρj
j−1∏
n=0

F̄Ñ (n)

]
≥

[
∞∑
i=0

iρi
i−1∏
n=0

F̄Ñ (n)

][
∞∑
j=0

ρj
j−1∏
n=0

F̄Ñ′(n)

]
,

⇔
∞∑
i=0

∞∑
j=0

iρi+j
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n) ≥
∞∑
i=0

∞∑
j=0

iρi+j
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n),

⇔
∞∑
i=0

∞∑
j=0

iρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n)

)
≥ 0,

⇔
∑
i,j≥0:

∑
i 6=j

iρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n)

)
≥ 0,

⇔
∑
i,j≥0:

∑
i>j

iρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n)

)

+
∑
i,j≥0:

∑
i<j

iρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n)

)
≥ 0,

⇔
∑
i,j≥0:

∑
i>j

iρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
i−1∏
n=0

F̄Ñ (n)

j−1∏
n=0

F̄Ñ′(n)

)

+
∑
i,j≥0:

∑
i>j

jρi+j
(
j−1∏
n=0

F̄Ñ′(n)

i−1∏
n=0

F̄Ñ (n)−
j−1∏
n=0

F̄Ñ (n)

i−1∏
n=0

F̄Ñ′(n)

)
≥ 0.

Regrouping again, gives

∑
i,j≥0:

∑
i>j

(
(i− j)ρi+j

i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n) + (j − i)ρi+j
j−1∏
n=0

F̄Ñ′(n)

i−1∏
n=0

F̄Ñ (n)

)
≥0,

⇔
∑
i,j≥0:

∑
i>j

(i− j)ρi+j
(
i−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)−
j−1∏
n=0

F̄Ñ′(n)

i−1∏
n=0

F̄Ñ (n)

)
≥0,

⇔
∑
i,j≥0:

∑
i>j

(i− j)ρi+j
j−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)

(
i−1∏
n=j

F̄Ñ′(n)−
i−1∏
n=j

F̄Ñ (n)

)
≥0. (17)
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Finally, N ≤st N ′ implies that
i−1∏
n=j

F̄Ñ ′(n)−
i−1∏
n=j

F̄Ñ (n) ≥ 0. Thus LN ′ ≥ LN from (17).

(iii) Using equation (7) for the beliefs Ñ , and comparing equation (3) to (7), we find that a similar approach

used in the proof of part (ii) would be applied to show that

WÑ′ ≥WÑ ⇔
∑
i,j≥1:

∑
i>j

(i− j)ρi+j
j−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)

(
i−1∏
n=j

F̄Ñ′(n)−
i−1∏
n=j

F̄Ñ (n)

)
≥ 0. (18)

The result thus follows again from the fact that
i−1∏
n=j

F̄Ñ ′(n)−
i−1∏
n=j

F̄Ñ (n) ≥ 0. �

Proof of Lemma 2:

(i) By construction, the entire probability mass at one end of the distribution is transferred to the middle

of the support. As a result, the range of the random variable ÑK+1 is a strict subset of the range of ÑK .

Specifically, a(K+1)1 = aK1 + 1 if fK(aK1) ≤ fK(aKn) and a(K+1)N = aKN
− 1 if fK(aK1) ≥ fK(aKn). The

length of the range of ÑK , |aKn
−aK1

|, is strictly decreasing in K. Within a finite number of steps, for some

time K = T , the length will be less than 2. When aTn
− 1 < aT1

+ 1, the process stops. Thus, T is finite.

(ii) We show that FK+1 ≤SMPS FK . Let ai1 , ai2 , ai3 , ai4 in Definition 2 be aK1
, aK1

+ 1, aKn
− 1

and aKn respectively. fK+1 = fK for all but these four points. Define γik = fK(aik) − fK+1(aik) for

k = 1, 2, 3, 4. Then, γi1 = −γi2 = −γi3 = γi4 = min{fK(aK1), fK(aKn)} > 0. Moreover,
4∑
k=i

aikγik =

[aK1
− (aK1

+ 1)− (aKn
− 1) + aKn

] min{fK(aK1
), fK(aKn

)} = 0 ·min{fK(aK1
), fK(aKn

)} = 0. �

Proof of Lemma 3:

Suppose that ÑT has two elements which are not consecutive. Then, it must be that aT1 + 1 < aTn . By

Construction 1, then sequence is not completed, which contradicts the definition of T . Else, suppose that ÑT

has three or more elements. Again, it must be that aT1
+ 1 < aTn

, and hence, the sequence in Construction

1 is incomplete, which contradicts the definition of T . Therefore, ÑT can either take a single value or two

consecutive values. Case (i): When if E(Ñ0) is an integer, since the transformation is mean preserving, we

have ÑT is a singleton with ÑT = E(Ñ0) = bE(Ñ0)c = dE(Ñ0)e. Case (ii): When E(Ñ0) is not an integer, ÑT

cannot be a singleton. Thus, ÑT takes on two consecutive values. Since the transformation in Construction

1 is mean-preserving with E(Ñ0), we have E(ÑT ) = E(Ñ0). Then we must have ÑT ∈ {bE(Ñ0)c, dE(Ñ0)e},
with Pr(ÑT = bE(Ñ0)c)bE(Ñ0)c+ Pr(ÑT = dE(Ñ0)e)dE(Ñ0)e = E(Ñ0). It is also clear that the distribution

of ÑT is independent of the distribution of Ñ0. �

Proof of Lemma 4:

(i) For j ∈ {K,K + 1}, recall from (5) that RÑj
= pµ(1 − π0) where π0 = 1/

(
1 +

∞∑
i=1

ρi
i−1∏
n=0

F̄j(n)

)
. It is

thus sufficient to show that
∞∑
i=1

ρi
i−1∏
n=0

F̄K(n) <

∞∑
i=1

ρi
i−1∏
n=0

F̄K+1(n). (19)

To verify (19), our strategy is to form a partition of i ∈ {0, 1, 2, ...} based on the sign of ρi
i−1∏
n=0

F̄K(n) −
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ρi
i−1∏
n=0

F̄K+1(n). We specifically focus on terms that make the product
i−1∏
n=0

F̄K(n), namely F̄K(n). Since

F̄K(n) = fK(n+ 1) + fK(n+ 2) + . . ., applying Construction 1, we have

F̄K+1(0) = F̄K(0) = 1,

F̄K+1(1) = F̄K(1) = 1,

...

F̄K+1(aK1 − 2) = F̄K(aK1 − 2) = 1,

F̄K+1(aK1 − 1) = F̄K(aK1 − 1) = 1,

F̄K+1(aK1) = F̄K(aK1) + min{fK(aK1), fK(aKn)} ∈ (0, 1],

F̄K+1(aK1 + 1) = F̄K(aK1 + 1) ∈ (0, 1),

F̄K+1(aK1 + 2) = F̄K(aK1 + 2) ∈ (0, 1),

...

F̄K+1(aKn − 2) = F̄K(aKn − 2) ∈ (0, 1),

F̄K+1(aKn − 1) = F̄K(aKn − 1)−min{fK(aK1), fK(aKn)} ∈ [0, 1),

F̄K+1(aKn) = F̄K(aKn) = 0,

F̄K+1(aKn + 1) = F̄K(aKn + 1) = 0,

...

(20)

Thus, using transformation of ÑK to ÑK+1 in Construction 1, we see that F̄K(n) differs from F̄K+1(n)
at only two points, specifically n = aK1

and n = aKn
−1. In order to show (19), we verify, as an intermediate

step, that F̄K+1(aK1) · F̄K+1(aKn − 1) < F̄K(aK1) · F̄K(aKn − 1). We have

F̄K+1(aK1) · F̄K+1(aKn − 1) = [F̄K(aK1) + min{fK(aK1), fK(aKn)}][F̄K(aKn − 1)−min{fK(aK1), fK(aKn)}]
=F̄K(aK1)F̄K(aKn − 1) + min{fK(aK1), fK(aKn)}[F̄K(aKn − 1)− F̄K(aK1)−min{fK(aK1), fK(aKn)}]
<F̄K(aK1)F̄K(aKn − 1) since F̄K(aKn − 1) ≤ F̄K(aK1). (21)

Now we define S1 , {1, 2, . . . , aK1
}; S2 , {aK1

+ 1, aK1
+ 2, . . . , aKn

− 1}; S3 , {aKn
}; and S4 ,

{aKn
+ 1, aKn

+ 2, . . .}. S1, S2, S3 and S4 then form a partition of the space {1, 2, 3, . . .}. Our goal (19) is

equivalent to
∑

i∈S1∪S2∪S3∪S4
ρi

i−1∏
n=0

F̄K(n) <
∑

i∈S1∪S2∪S3∪S4
ρi

i−1∏
n=0

F̄K+1(n).

From (20) and (21) we have ∀i ∈ S1 :
i−1∏
n=0

F̄K(n) =
i−1∏
n=0

F̄K+1(n) = 1; ∀i ∈ S2 :
i−1∏
n=0

F̄K(n) <
i−1∏
n=0

F̄K+1(n);

∀i ∈ S3 :
i−1∏
n=0

F̄K(n) >
i−1∏
n=0

F̄K+1(n); and ∀i ∈ S4 :
i−1∏
n=0

F̄K(n) =
i−1∏
n=0

F̄K+1(n) = 0.

It is clear that S1 and S4 are collection of the indices i where
i−1∏
n=0

F̄K(n) =
i−1∏
n=0

F̄K+1(n). Hence, to prove

(19), we just need to show that
∑

i∈S2
⋃
S3
ρi

i−1∏
n=0

F̄K(n) <
∑

i∈S2
⋃
S3
ρi

i−1∏
n=0

F̄K+1(n).

As ρi
i−1∏
n=0

F̄K(n) < ρi
i−1∏
n=0

F̄K+1(n) for all i ∈ S2, the previous inequality will hold, if there exists some

S2′ ⊆ S2 such that ∑
i∈S2′∪S3

ρi
i−1∏
n=0

F̄K(n) <
∑

i∈S2′∪S3

ρi
i−1∏
n=0

F̄K+1(n). (22)
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On the other hand, the existence of ÑK+1 guarantees that aKn
− 1 ≥ aK1

+ 1 and aK1
≥ 1 so there exists

at least one index in S2 (i.e., i = aK1 + 1). There is only one element in S3 (i.e., i = aKn). Define

S2′ , {aK1
+ 1}. So S2′ ∪ S3 = {aK1

+ 1, aKn
}. Inequality (22) is therefore equivalent to

∑
i∈{aK1

+1,aKn}

ρi
i−1∏
n=0

F̄K(n) <
∑

i∈{aK1
+1,aKn}

ρi
i−1∏
n=0

F̄K+1(n),

⇔ ρaK1
+1

aK1∏
n=0

F̄K(n) + ρaKn

aKn−1∏
n=0

F̄K(n) < ρaK1
+1

aK1∏
n=0

F̄K+1(n) + ρaKn

aKn−1∏
n=0

F̄K+1(n).

And the last condition is true because

ρaKn

aKn−1∏
n=0

F̄K(n)− ρaKn

aKn−1∏
n=0

F̄K+1(n) < ρaKn min{fK(aK1), fK(aKn)}
aKn−2∏
n=0

F̄K(n}

≤ρaKn min{fK(aK1), fK(aKn)} < ρaK1
+1 min{fK(aK1), fK(aKn)}

=ρaK1
+1 min{fK(aK1), fK(aKn)}

aK1
−1∏

n=0

F̄K(n) = ρaK1
+1

aK1∏
n=0

F̄K+1(n)− ρaK1
+1

aK1∏
n=0

F̄K(n),

which implies in the backward direction that inequality (22)-(19) all hold, and thus RÑK
< RÑK+1

.

(ii) From equation (17) in the proof of Theorem 1, we note that LK < LK+1 if and only if

∑
i,j≥0:

∑
i>j

(i− j)ρi+j
j−1∏
n=0

F̄K+1(n)

j−1∏
n=0

F̄K(n)

(
i−1∏
n=j

F̄K+1(n)−
i−1∏
n=j

F̄K(n)

)
> 0.

Since, aKn is the largest value on the support of F̄K , we have F̄K+1(i − 1) = F̄K(i − 1) = 0 for i ∈
{aKn

+ 1, aKn
+ 2, . . .}. Hence, those indices can be dropped, which gives us

∑
aKn≥i>

∑
j≥0

(i− j)ρi+j
j−1∏
n=0

F̄K+1(n)

j−1∏
n=0

F̄K(n)

(
i−1∏
n=j

F̄K+1(n)−
i−1∏
n=j

F̄K(n)

)
> 0. (23)

Let us define AK+1(i, j) , (i− j)ρi+j
j−1∏
n=0

F̄K+1(n)

j−1∏
n=0

F̄K(n)

i−1∏
n=j

F̄K+1(n);

AK(i, j) , (i− j)ρi+j
j−1∏
n=0

F̄K+1(n)

j−1∏
n=0

F̄K(n)

i−1∏
n=j

F̄K(n). (24)

Then (23) reduces to
∑

aKn≥i>

∑
j≥0

[AK+1(i, j)−AK(i, j)] > 0.

Similar to the approach used in the proof of part (i), our strategy is to form a partition of (i, j) based on
the sign of AK+1(i, j)− AK(i, j). The underlying space is the 2-dimensional set {(i, j) : aKn

≥ i > j ≥ 0}.

Since AK+1(i, j) > AK(i, j) if and only if
i−1∏
n=j

F̄K+1(n) >
i−1∏
n=j

F̄K(n), we shall seek a partition over {(i, j) :

aKn ≥ i > j ≥ 0} based on the sign of
i−1∏
n=j

F̄K+1(n)−
i−1∏
n=j

F̄K(n) instead.

Define G1 , {aKn
}×{0, 1, 2, . . . , aKn

−1}; G2 , {aK1
+1, aK1

+2, ..., aKn
−2, aKn

−1}×{0, 1, 2, . . . , aK1
};

and G3 , {(i, j) : aKn ≥ i > j ≥ 0} − {G1 ∪ G2}, i.e., G3 contains all the elements that are not in G1 or G2.
From (20) and (21), we can verify that

∀(i, j) ∈ G1 :

i−1∏
n=j

F̄K+1(n) <

i−1∏
n=j

F̄K(n)⇒ AK+1(i, j)−AK(i, j) < 0;
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Order l G1 contains: G2′ contains:
l = 1 (aKn , aKn − 1) (aK1

+ 1, aK1
)

l = 2 (aKn , aKn − 2) (aK1
+ 1, aK1

− 1)

l = 3 (aKn , aKn − 3) (aK1
+ 1, aK1

− 2)

...
...

...

l = aK1
− 1 (aKn , aKn − aK1

+ 1) (aK1
+ 1, 2)

l = aK1
(aKn , aKn − aK1

) (aK1
+ 1, 1)

l = aK1
+ 1 (aKn , aKn − aK1

− 1) (aK1
+ 1, 0)

l = aK1
+ 2 (aKn , aKn − aK1

− 2) (aK1
+ 2, 0)

l = aK1
+ 3 (aKn , aKn − aK1

− 3) (aK1
+ 3, 0)

...
...

...

l = aKn − 2 (aKn , 2) (aKn − 2, 0)

l = aKn − 1 (aKn , 1) (aKn − 1, 0)

l = aKn (aKn , 0)

Table 1: G1 and G2′ used in the proof of Lemma 4/(ii)

Order l G1 contains: G2′ contains:
l = 1 (aKn , aKn − 1) (aK1

+ 1, aK1
)

l = 2 (aKn , aKn − 2) (aK1
+ 1, aK1

− 1)

l = 3 (aKn , aKn − 3) (aK1
+ 1, aK1

− 2)

...
...

...

l = aK1
− 1 (aKn , aKn − aK1

+ 1) (aK1
+ 1, 2)

l = aK1
(aKn , aKn − aK1

) (aK1
+ 1, 1)

l = aK1
+ 1 (aKn , aKn − aK1

− 1) (aK1
+ 2, 1)

l = aK1
+ 2 (aKn , aKn − aK1

− 2) (aK1
+ 3, 1)

l = aK1
+ 3 (aKn , aKn − aK1

− 3) (aK1
+ 4, 1)

...
...

...

l = aKn − 2 (aKn , 2) (aKn − 1, 1)

l = aKn − 1 (aKn , 1)

Table 2: G1 and G2′ used in the proof of Lemma 4/(iii)

∀(i, j) ∈ G2 :

i−1∏
n=j

F̄K+1(n) >

i−1∏
n=j

F̄K(n)⇒ AK+1(i, j)−AK(i, j) > 0;

∀(i, j) ∈ G3 :

i−1∏
n=j

F̄K+1(n) =

i−1∏
n=j

F̄K(n)⇒ AK+1(i, j)−AK(i, j) = 0.

Since G3 contains all (i, j) whereAK+1(i, j)−AK(i, j) = 0, it suffices to show that
∑

(i,j)∈

∑
G1

⋃
G2

[AK+1(i, j)−

AK(i, j)] > 0 as a goal. Also since AK+1(i, j)−AK(i, j) > 0, ∀ (i, j) ∈ G2, the previous inequality will hold

if there exists a subset G2′ ⊆ G2 such that∑
(i,j)∈

∑
G1∪G2′

[AK+1(i, j)−AK(i, j)] > 0. (25)

We shall prove that the sufficient condition on ρ stated in the lemma guarantees for inequality (25) to

hold. To do that, we need to consider the elements of G1 and G2 in greater detail.

From the construction of the partition above, we have |G1| = aKn , i.e., there are aKn pairs of (i, j)

in G1, represented by {(aKn
, aKn

− 1), (aKn
, aKn

− 2), (aKn
, aKn

− 3), ..., (aKn
, 1), (aKn

, 0)}. On the other

hand, |G2| = (aKn
− aK1

− 1)(aK1
+ 1). Treating aKn

− aK1
− 1 and aK1

+ 1 as the base and the height

of a rectangular and using the fact that a rectangular shape of fixed perimeter (aKn
) contains less area

(|G2|) when the shape is more asymmetric, we can show that |G2| ≥ aKn − 1, with equality holds only when

aK1 = aKn − 2 (or aK1 = 0 but is not possible).

The aKn
−1 pairs of (i, j) that are guaranteed to reside in G2 can be parametrized as {(aK1

+1, aK1
), (aK1

+

1, aK1
−1), (aK1

+1, aK1
−2), ..., (aK1

+1, 1), (aK1
+1, 0), (aK1

+2, 0), (aK1
+3, 0), ..., (aKn

−2, 0), (aKn
−1, 0)}.

We define this set to be G2′ . Note that |G1| = aKn
and |G2′ | = aKn

− 1. We now order elements of G1 and

G2′ in a specific way displayed in Table 1 (each element in either group is itself an (i, j) pair).

We denote Gl1 : l ∈ {1, 2, . . . , aKn
} and Gl2′ : l ∈ {1, 2, . . . , aKn

− 1} the l-th element in G1 and G2′ ,

respectively, according to the order specified in Table 1. Furthermore, for each Gl1 and each Gl2′ , we specific
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its Cartesian coordinates by subscript i and j, i.e., Gl1 = ({Gl1}i, {Gl1}j) and Gl2′ = ({Gl2′}i, {Gl2′}j). For

example, {GaKn
1 }i = aKn and {GaK1

2′ }j = 1. We note that ∀ l ∈ {1, 2, . . . , aKn − 1},

{Gl1}i = aKn = (aKn − 1) + 1 ≥ {Gl2′}i + 1 > {Gl2′}i (26)

{Gl1}i − {Gl1}j = l = {Gl2′}i − {Gl2′}j (27)

{Gl1}i + {Gl1}j = aKn + {Gl1}j = 2aKn − l > 2(aKn − 1)− l ≥ 2{Gl2′}i − l ≥ {Gl2′}i + {Gl2′}j (28)

Recall from (25), our goal is to find a sufficient condition such that the summation of AK+1(i, j)−AK(i, j)
over all (i, j) in G1∪G2′ is positive. We describe all the elements in G1∪G2′ by considering the first (aKn

−2)

rows of the Gl1, Gl2′ pair plus the last three elements at the (aKn
−1)-th and the aKn

-th rows (namely GaKn−1
1 ,

GaKn−1
2′ and GaKn

1 ) from Table 1 . Therefore, it is sufficient for (25) to hold when (a) ∀ l ∈ {1, 2, . . . , aKn−2},∑
(i,j)∈{Gl

1,Gl
2′}

[AK+1(i, j)−AK(i, j)] > 0 and (b)
∑

(i,j)∈{G
aKn

−1

1 ,G
aKn

−1

2′ ,G
aKn
1 }

[AK+1(i, j)−AK(i, j)] > 0.

We first show that (a) is true for all ρ. ∀ l ∈ {1, 2, . . . , aKn − 2}. Recall that [AK+1(i, j) − AK(i, j)]
evaluated at (i, j) = Gl1 is negative, and [AK+1(i, j)−AK(i, j)] evaluated at (i, j) = Gl2′ is positive. It is thus

equivalent to show that [AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=Gl

1

< [AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=Gl

2′

.

Denote d = min{fK(aK1), fK(aKn)} > 0, we have from (24) that

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=Gl

1

= ({Gl1}i − {Gl1}j)ρ{G
l
1}i+{G

l
1}j
{Gl

1}j−1∏
n=0

F̄K+1(n)

{Gl
1}j−1∏
n=0

F̄K(n)

{Gl
1}i−1∏

n={Gl
1}j

F̄K(n)−
{Gl

1}i−1∏
n={Gl

1}j

F̄K+1(n)


= (aKn

− {Gl1}j)ρaKn+{Gl
1}j
{Gl

1}j−1∏
n=0

F̄K+1(n)

{Gl
1}j−1∏
n=0

F̄K(n)

 aKn−1∏
n={Gl

1}j

F̄K(n)−
aKn−1∏
n={Gl

1}j

F̄K+1(n)


= l · ρaKn+{Gl

1}j
{Gl

1}j−1∏
n=0

F̄K+1(n)

{Gl
1}j−1∏
n=0

F̄K(n)

 aKn−1∏
n={Gl

1}j

F̄K(n)−
aKn−1∏
n={Gl

1}j

F̄K+1(n)


< l · ρaKn+{Gl

1}j
{Gl

1}j−1∏
n=0

F̄K+1(n)

{Gl
1}j−1∏
n=0

F̄K(n)

d · aKn−2∏
n={Gl

1}j

F̄K(n)


= l · d · ρaKn+{Gl

1}j
{Gl

1}j−1∏
n=0

F̄K+1(n)

aKn−2∏
n=0

F̄K(n)

< ({Gl2′}i − {Gl2′}j) · d · ρ{G
l
2′}i+{G

l
2′}j

{Gl
1}j−1∏
n=0

F̄K+1(n)

aKn−2∏
n=0

F̄K(n)

because l = {Gl2′}i − {Gl2′}j see (27), ρ < 1 and aKn
+ {Gl1}j > {Gl2′}i + {Gl2′}j see (28)

≤ ({Gl2′}i − {Gl2′}j) · d · ρ{G
l
2′}i+{G

l
2′}j

aKn−2∏
n=0

F̄K(n)

≤ ({Gl2′}i − {Gl2′}j) · d · ρ{G
l
2′}i+{G

l
2′}j

{Gl
2′}i−1∏

n=aK1
+1

F̄K(n) because aKn − 2 ≥ {Gl2′}i − 1 see (26)
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= ({Gl2′}i − {Gl2′}j)ρ{G
l
2′}i+{G

l
2′}j

{Gl
2′}j−1∏
n=0

F̄K+1(n)

{Gl
2′}j−1∏
n=0

F̄K(n)

d · {Gl
2′}i−1∏

n=aK1
+1

F̄K(n)


because

{Gl
2′}j−1∏
n=0

F̄K+1(n)

{Gl
2′}j−1∏
n=0

F̄K(n) = 1

= ({Gl2′}i − {Gl2′}j)ρ{G
l
2′}i+{G

l
2′}j

{Gl
2′}j−1∏
n=0

F̄K+1(n)

{Gl
2′}j−1∏
n=0

F̄K(n)

{Gl
2′}i−1∏

n={Gl
2′}j

F̄K+1(n)−
{Gl

2′}i−1∏
n={Gl

2′}j

F̄K(n)


because

aK1
−1∏

n={Gl
2′}j

F̄K+1(n) =

aK1
−1∏

n={Gl
2′}j

F̄K(n) = 1, F̄K+1(aK1)− F̄K(aK1) = d

and F̄K+1(x) = F̄K(x), ∀x ∈ {aK1 + 1, . . . , {Gl2′}i − 1}

= [AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=Gl

2′

, as required.

Next, for (b) to hold, i.e.,
∑

(i,j)∈{G
aKn

−1

1 ,G
aKn
2′ ,G

aKn
1 }

[AK+1(i, j)−AK(i, j)] > 0, equivalently we have:

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=G

aKn
−1

1

+ [AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=G

aKn
1

< [AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=G

aKn
−1

2′

⇔

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,1)

+[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,0)

< [AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=(aKn−1,0)

(29)

Note that (with any empty product being equal to = 1)

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,1)

= (aKn − 1)ρaKn+1 ·

aKn−1∏
n=1

F̄K+1(n)−
aKn−1∏
n=1

F̄K(n)


< (aKn − 1)ρaKn+1 · d ·

aKn−2∏
n=aK1

+1

F̄K(n),

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,0)

= aKnρ
aKn ·

aKn−1∏
n=0

F̄K+1(n)−
aKn−1∏
n=0

F̄K(n)


< aKnρ

aKn · d ·
aKn−2∏
n=aK1

+1

F̄K(n),

[AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=(aKn−1,0)

= (aKn − 1)ρaKn−1 ·

aKn−2∏
n=0

F̄K+1(n)−
aKn−2∏
n=0

F̄K(n)


= (aKn − 1)ρaKn−1 ·

aKn−2∏
n=aK1

F̄K+1(n)−
aKn−2∏
n=aK1

F̄K(n)


= (aKn − 1)ρaKn−1 · d ·

aKn−2∏
n=aK1

+1

F̄K(n).

Therefore, it is sufficient for (29) to hold if

(aKn − 1)ρaKn+1 · d ·
aKn−2∏
n=aK1

+1

F̄K(n) + aKnρ
aKn · d ·

aKn−2∏
n=aK1

+1

F̄K(n) ≤ (aKn − 1)ρaKn−1 · d ·
aKn−2∏
n=aK1

+1

F̄K(n),
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⇔ (aKn − 1)ρaKn+1 + aKnρ
aKn ≤ (aKn − 1)ρaKn−1,

⇔ ρ2 +
aKn

aKn − 1
ρ ≤ 1. (30)

Solving quadratic equation (30) gives the condition

1

2

(
−
√

(
aKn

aKn − 1
)2 + 4− aKn

aKn − 1

)
≤ ρ ≤ 1

2

(√
(

aKn

aKn − 1
)2 + 4− aKn

aKn − 1

)
.

where it is clear that 1
2

(
−
√

(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
< 0 and 0 < 1

2

(√
(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
< 1.

Since ρ ∈ (0, 1), we have that, when ρ ≤ 1
2

(√
(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
, (30) (29),(25) and (23) all hold

and thus LÑK
< LÑK+1

. This completes the proof of part (ii).

(iii) Recall from (18) that

WÑ′ ≥WÑ ⇔
∑
i,j≥1

∑
i>j:

(i− j)ρi+j
j−1∏
n=0

F̄Ñ′(n)

j−1∏
n=0

F̄Ñ (n)

(
i−1∏
n=j

F̄Ñ′(n)−
i−1∏
n=j

F̄Ñ (n)

)
≥ 0.

Thus, WÑ ′ > WÑ ⇔
∑

aKn≥i>

∑
j≥1

[AK+1(i, j) − AK(i, j)] > 0. The rest of the proof is then almost identical

to the proof of part (ii) except now i, j cannot take on 0. Define G1 , {aKn} × {1, 2, . . . , aKn − 1},
G2 , {aK1

+1, aK1
+2, ..., aKn

−2, aKn
−1}×{1, 2, . . . , aK1

}, and G3 , {(i, j) : aKn
≥ i > j ≥ 1}−{G1∪G2}.

There are now at least aKn
− 2 elements in the set G2 which defines the subset G2′ . The elements in

G1 and G2′ are ordered in a similar fashion as before and displayed in Table 2. A sufficient condition for

WÑK
< WÑK+1

is that
∑

(i,j)∈G1∪G2′
[AK+1(i, j)−AK(i, j)] > 0. It can be shown that conditions (26)-(28) still

hold, and thus ∀ l ∈ {1, 2, . . . , aKn
− 3} and for all ρ,

∑
(i,j)∈{Gl

1,Gl
2′}

[AK+1(i, j) − AK(i, j)] > 0. A sufficient

condition for WÑK
< WÑK+1

is then that
∑

(i,j)∈{G
aKn

−2

1 ,G
aKn

−2

2′ ,G
aKn

−1

1 }

[AK+1(i, j)−AK(i, j)] > 0.

Since [AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,2)

< (aKn
− 2)ρaKn+2 · d ·

aKn−2∏
n=aK1

+1

F̄K(n),

[AK(i, j)−AK+1(i, j)]

∣∣∣∣
(i,j)=(aKn ,1)

< (aKn − 1)ρaKn+1 · d ·
aKn−2∏
n=aK1

+1

F̄K(n),

and [AK+1(i, j)−AK(i, j)]

∣∣∣∣
(i,j)=(aKn−1,1)

= (aKn − 2)ρaKn · d ·
aKn−2∏
n=aK1

+1

F̄K(n), we have

(aKn − 2)ρaKn+2 · d ·
aKn−2∏
n=aK1

+1

F̄K(n) + (aKn − 1)ρaKn+1 · d ·
aKn−2∏
n=aK1

+1

F̄K(n) ≤ (aKn − 2)ρaKn · d ·
aKn−2∏
n=aK1

+1

F̄K(n),

⇔ (aKn − 2)ρaKn+2 + (aKn − 1)ρaKn+1 ≤ (aKn − 2)ρaKn ,

⇔ ρ2 +
aKn − 1

aKn
− 2

ρ ≤ 1.

The solution of the quadratic inequality on the set ρ ∈ (0, 1) is ρ ≤ 1
2

(√
(
aKn−1
aKn−2 )2 + 4− aKn−1

aKn−2

)
. �
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Proof of Theorem 2:

(i) Result follows immediately from Lemma 4/(i) since RÑK
< RÑK+1

for all K.

(ii) Recall from Lemma 4/(ii) that LÑK
< LÑK+1

if ρ ≤ 1
2

(√
(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
. It can be easily

verified that 1
2

(√
(
aKn

aKn−1 )2 + 4− aKn

aKn−1

)
increases in aKn

. Plugging in the smallest possible value of aKn

which is 3, we get ρ = 0.5. Therefore, when ρ ≤ 0.5, LÑK
< LÑK+1

for all K (regardless of the distributions

of {ÑK}K=0,1,2,...,T ). Result thus follows.

(iii) Recall from Lemma 4/(iii) that WÑK
< WÑK+1

if ρ ≤ 1
2

(√
(
aKn−1
aKn−2 )2 + 4− aKn−1

aKn−2

)
. It can be verified

that 1
2

(√
(
aKn−1
aKn−2 )2 + 4− aKn−1

aKn−2

)
increases in aKn

. Plugging in the smallest possible value of aKn
which is

3, we get ρ = 0.414. Therefore, when ρ ≤ 0.414, WÑK
< WÑK+1

for all K. Result thus follows. �

Proof of Theorem 1’:

(i) From (11), we then have RÑ = p ·µ[s− (sπ0 + (s− 1)π1 + . . .+ 2πs−2 + 1πs−1)] so RÑ is decreasing in π0

(given that p, µ, λ, ρ, s are all fixed). Since π0 itself is decreasing in
∞∑
i=1

ρi
i−1∏
n=0

F̄ (n) from (10), we have RÑ

increases in
∞∑
i=1

ρi
i−1∏
n=0

F̄ (n). The rest of the proof follows the proof of Theorem 1/(i).

(ii) Proof is similar to that of Theorem 1/(ii). Result follows because LÑ ≤ LÑ ′ if and only if

∑
i,j≥0:

∑
i>j

(i− j) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄Ñ′(n)

j−s∏
n=0

F̄Ñ (n)

(
i−s∏

n=j−s+1

F̄Ñ′(n)−
i−s∏

n=j−s+1

F̄Ñ (n)

)
≥ 0.

(iii) Proof is similar to that of Theorem 1/(iii). We have WÑ ≤WÑ ′ if and only if

∑
i,j≥1:

∑
i>j

(i(j ∧ s)− j(i ∧ s)) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄Ñ′(n)

j−s∏
n=0

F̄Ñ (n)

(
i−s∏

n=j−s+1

F̄Ñ′(n)−
i−s∏

n=j−s+1

F̄Ñ (n)

)
≥ 0

and result follows because (i(j ∧ s)− j(i ∧ s)) ≥ 0 for all {i, j ≥ 1 : i > j}. �

Proof of Theorem 2’:

We will prove the following lemma (a general version of Lemma 4 but with the M/M/s queue setting) then

the results of Theorem 2’ immediately follow.

Let {ÑK} be any sequence from Construction 1 in an M/M/s queue. We can show (i) RÑK
< RÑK+1

for

all ρ; (ii) LÑK
< LÑK+1

if ρ ≤ 1
2

(√
(
aKn+s−1
aKn+s−2 )2 + 4− aKn+s−1

aKn+s−2

)
; And (iii) when s = 1, WÑK

< WÑK+1
if

ρ ≤ 1
2

(√
(
aKn−1
aKn−2 )2 + 4− aKn−1

aKn−2

)
; when s ≥ 2, WÑK

< WÑK+1
if ρ ≤ 1

2

(√
1 + 4(

aKn−2
aKn−1 )− 1

)
.

(i) Recall from the proof of Theorem 1’/(i), RÑ increases in
∞∑
i=1

ρi
i−1∏
n=0

F̄ (n). Therefore it is sufficient to show

that
∞∑
i=1

ρi
i−1∏
n=0

F̄K(n) <
∞∑
i=1

ρi
i−1∏
n=0

F̄K+1(n). Result then follows the proof of Lemma 4/(i).

(ii) We can apply the same approach used in the proof of Lemma 4/(ii) here. Define

AK+1(i, j) , (i− j) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄K+1(n)

j−s∏
n=0

F̄K(n)

i−s∏
n=j−s+1

F̄K+1(n)

AK(i, j) , (i− j) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄K+1(n)

j−s∏
n=0

F̄K(n)

i−s∏
n=j−s+1

F̄K(n)
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Order l = G1 contains: G2′ contains:

1 (aKn + s− 1, aKn + s− 2) (aK1
+ s, aK1

+ s− 1)

2 (aKn + s− 1, aKn + s− 3) (aK1
+ s, aK1

+ s− 2)

3 (aKn + s− 1, aKn + s− 4) (aK1
+ s, aK1

+ s− 3)

.

.

.

.

.

.

.

.

.

aK1
− 1 (aKn + s− 1, aKn + s− aK1

) (aK1
+ s, 2)

aK1
(aKn + s− 1, aKn + s− aK1

− 1) (aK1
+ s, 1)

aK1
+ 1 (aKn + s− 1, aKn + s− aK1

− 2) (aK1
+ s, 0)

aK1
+ 2 (aKn + s− 1, aKn + s− aK1

− 3) (aK1
+ s + 1, 0)

aK1
+ 3 (aKn + s− 1, aKn + s− aK1

− 4) (aK1
+ s + 2, 0)

.

.

.

.

.

.

.

.

.

aKn + s− 3 (aKn + s− 1, 2) (aKn + s− 3, 0)

aKn + s− 2 (aKn + s− 1, 1) (aKn + s− 2, 0)

aKn + s− 1 (aKn + s− 1, 0)

Table 3: G1 and G2′ used in the proof of Theorem 2’/(ii)

Order l = G1 contains: G2′ contains:

1 (aKn + s− 1, aKn + s− 2) (aK1
+ s, aK1

+ s− 1)

2 (aKn + s− 1, aKn + s− 3) (aK1
+ s, aK1

+ s− 2)

3 (aKn + s− 1, aKn + s− 4) (aK1
+ s, aK1

+ s− 3)

.

.

.

.

.

.

.

.

.

aK1
− 1 (aKn + s− 1, aKn + s− aK1

) (aK1
+ s, 2)

aK1
(aKn + s− 1, aKn + s− aK1

− 1) (aK1
+ s, 1)

aK1
+ 1 (aKn + s− 1, aKn + s− aK1

− 2) (aK1
+ s + 1, 1)

aK1
+ 2 (aKn + s− 1, aKn + s− aK1

− 3) (aK1
+ s + 2, 1)

aK1
+ 3 (aKn + s− 1, aKn + s− aK1

− 4) (aK1
+ s + 3, 1)

.

.

.

.

.

.

.

.

.

aKn + s− 3 (aKn + s− 1, 2) (aKn + s− 2, 1)

aKn + s− 2 (aKn + s− 1, 1)

Table 4: G1 and G2′ used in the proof of Theorem 2’/(iii)

It can be shown that LÑK
< LÑK+1

if
∑

(i,j)∈

∑
G1∪G2′

[AK+1(i, j) − AK(i, j)] > 0 where the elements of

G1 and G2′ are listed in Table 3. It then can be verified that conditions (26)-(28) still hold, and that
∀ l ∈ {1, 2, . . . , aKn

+ s − 3} and for all ρ,
∑

(i,j)∈{Gl
1,Gl

2′}
[AK+1(i, j) − AK(i, j)] > 0. One sufficient condition

for
∑

(i,j)∈{G
aKn

+s−2

1 ,G
aKn

+s−2

2′ ,G
aKn

+s−1

1 }

[AK+1(i, j) − AK(i, j)] > 0, which also makes LÑK
< LÑK+1

, is that

(aKn
+ s − 2)ρaKn+s + (aKn

+ s − 1)ρaKn+s−1 ≤ (aKn
+ s − 2)ρaKn+s−2. It then follows by solving the

quadratic equation that ρ ≤ 1
2

(√
(aKn+s−1)2

(aKn+s−2)2 + 4− aKn+s−1
aKn+s−2

)
.

(iii) We can apply the same approach used in the proof of Lemma 4/(iii) here. Define

AK+1(i, j) , (i(j ∧ s)− j(i ∧ s)) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄K+1(n)

j−s∏
n=0

F̄K(n)

i−s∏
n=j−s+1

F̄K+1(n)

AK(i, j) , (i(j ∧ s)− j(i ∧ s)) ρi+j

(i ∧ s)!(j ∧ s)!

j−s∏
n=0

F̄K+1(n)

j−s∏
n=0

F̄K(n)

i−s∏
n=j−s+1

F̄K(n)

It can be shown that WÑK
< WÑK+1

if
∑

(i,j)∈

∑
G1∪G2′

[AK+1(i, j) − AK(i, j)] > 0 where the elements of G1

and G2′ are listed in Table 4. It then can be verified that ∀ l ∈ {1, 2, . . . , aKn + s − 4} and for all ρ,∑
(i,j)∈{Gl

1,Gl
2′}

[AK+1(i, j) − AK(i, j)] > 0. Further, when s ≥ 2 (the case when s = 1 is proved in Lemma

4/(iii)), one sufficient condition for
∑

(i,j)∈{G
aKn

+s−3

1 ,G
aKn

+s−3

2′ ,G
aKn

+s−2

1 }

[AK+1(i, j)−AK(i, j)] > 0, which leads

to WÑK
< WÑK+1

, is that (aKn
− 1)ρaKn+s+1 + (aKn

− 1)ρaKn+s ≤ (aKn
− 2)ρaKn+s−1. It then follows by

solving the quadratic equation that ρ ≤ 1
2

(√
1 + 4(

aKn−2
aKn−1 )− 1

)
.

Proof of Proposition 1:

Consider the random variable ÑT ∈ {bE(Ñ)c, dE(Ñ)e} such that E(ÑT ) = E(Ñ). By Theorem 2, we have

RÑ ≤ RÑT
for all ρ, and LÑ ≤ LÑT

, WÑ ≤ WÑT
for small ρ. On the other hand, since E (Ñ) ≤ N and N

is an integer, we must have dE(Ñ)e ≤ N . It follows that ÑT ≤st N so by Theorem 1, we have RÑT
≤ RN

for all ρ, and LÑT
≤ LN , WÑT

≤WN for small ρ. Result thus follows. �
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