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Abstract

A number of recent empirical studies of traffic measurements from a variety of working packet networks
have convincingly demonstrated that actual network traffic is self-similar or long-range dependent in nature
(i.e., bursty over a wide range of time scales) in sharp contrast to commonly made traffic modeling as-
sumptions. In this paper, we provide a plausible physical explanation for the occurrence of self-similarity in
LAN traffic. Our explanation is based on new convergence results for processes that exhibit high variability
(i.e., infinite variance) and is supported by detailed statistical analyses of real-time traffic measurements
from Ethernet LAN’s at the level of individual sources. This paper is an extended version of [53] and
differs from it in significant ways. In particular, we develop here the mathematical results concerning the
superposition of strictly alternating ON/OFF sources.

Our key mathematical result states that the superposition of many ON/OFF sources (also known
as packet trains) with strictly alternating ON- and OFF-periods and whose ON-periods or OFF-periods
exhibit the Noah Effect (i.e., have high variability or infinite variance) produces aggregate network traffic
that exhibits the Joseph Effect (i.e., is self-similar or long-range dependent). There is, moreover, a simple
relation between the parameters describing the intensities of the Noah Effect (high variability) and the
Joseph Effect (self-similarity). An extensive statistical analysis of high time-resolution Ethernet LAN
traffic traces (involving a few hundred active source-destination pairs) confirms that the data at the level
of individual sources or source-destination pairs are consistent with the Noah Effect. We also discuss
implications of this simple physical explanation for the presence of self-similar traffic patterns in modern
high-speed network traffic for (i) parsimonious traffic modeling, (ii) efficient synthetic generation of realistic
traffic patterns, and (iii) relevant network performance and protocol analysis.

1 Introduction

Starting with the extensive analyses of traffic measurements from Ethernet LAN’s over a 4-year period de-
scribed in [27], there have been a number of recent empirical studies that provide evidence of the prevalence
of self-similar or fractal traffic patterns in measured traffic from today’s high-speed networks. Prominent
among these studies are the in-depth statistical analysis of large amounts of wide-area traffic measurements
reported in [37, 38] and the detailed investigation of traffic data collected at the packet level from multiple
NSFNET core switches presented in [22]. One of the most surprising findings from these and other studies
concerns the ease with which it is possible to statistically distinguish between measured network traffic and

traditional traffic models: actual traffic exhibits correlations over a wide range of time scales (i.e., has long-

range dependence), while traditional traffic models typically focus on a very limited range of time scales and
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are thus short-range dependent in nature. Although such findings can in general be expected to favor the use of
self-similar models (with underlying long-range dependent structure) over traditional models, there has been
considerable resistance toward self-similar traffic modeling on practical grounds. One of the major reasons
for this resistance has been the absence of satisfactory answers to the following 2 questions. (1) What is the
physical “explanation” for the observed self-similar nature of measured traffic from today’s packet networks?
and (2) What is the impact of self-similarity on network and protocol design and performance analysis?

In this paper, we present an answer to question (1) by providing the appropriate mathematical results
and by validating our findings with detailed statistical analyses of high time-resolution Ethernet traffic mea-
surements. In particular, we provide a plausible and simple explanation for the observed self-similarity of
measured Ethernet LAN traffic in terms of the nature of the traffic generated by the individual sources or
source-destination pairs that make up the aggregate packet stream. Developing an approach originally sug-
gested by Mandelbrot [31], we show that the superposition of many (strictly alternating) independent and
identically distributed (i.i.d.) ON/OFF sources, each of which exhibits a phenomenon called the “Noah Effect”,
results in self-similar aggregate traffic. Here, by a strictly alternating ON/OFF source, we mean a model where
the ON- and OFF-periods strictly alternate, where the ON-periods are independent and identically distributed
(ii.d.), the OFF-periods are i.i.d., and where the ON- and OFF-period sequences are independent from one
another. The ON- and OFF-periods do not need to have the same distribution. By presenting the results in
the well-known framework of these ON/OFF source models (also known as “packet train models”), we identify
the Noah Effect as the essential point of departure from traditional to self-similar traffic modeling. Intuitively,
the Noah Effect for an individual ON/OFF source model results in ON- and OFF-periods, i.e., “train lengths”
and “intertrain distances” that can be very large with non-negligible probability. In other words, the Noah
Effect guarantees that each ON/OFF source individually exhibits characteristics that cover a wide range of
time scales. The Noah Effect is synonymous with the infinite variance syndrome the empirical observation
that many naturally occurring phenomena can be well described using distributions with infinite variance
(for references, see [44, 42, 54]). Mathematically, we use heavy-tailed distributions with infinite variance (e.g.,
Pareto or truncated stable distributions) to account for the Noah Effect, and the parameter « describing the
“heaviness” of the tail of such a distribution gives a measure of the intensity of the Noah Effect. We also
provide a simple relation between « and the Hurst parameter H, where the latter has been suggested in [27]
as a measure of the degree of self-similarity (or equivalently, of the “Joseph Effect”) of the aggregate traffic
stream.

In sharp contrast to our findings, traditional traffic modeling, when cast in the framework of ON/OFF
source models, without exception assumes finite variance distributions for the ON- and OFF-periods (e.g.,
exponential distribution, geometric distribution). These assumptions drastically limit the ON/OFF activities
of an individual source, and as a result, the superposition of many such sources behaves like white noise in the

sense that the aggregate traffic stream is void of any significant correlations, except possibly some in the short



range. This behavior is in clear contrast with measured network traffic (for details, see for example [28]). Note
that the results of the present study suggest yet another, equally simple, statistical method for distinguishing
between traditional and self-similar traffic: an analysis of network traffic that checks for the presence or
absence of the Noah Effect in the traffic generated by the individual sources or source-destination pairs. To
demonstrate the effectiveness of such an analysis, we used two Ethernet traffic traces, generated by about 100
and 3,200 individual sources (resulting in about 700 and 10,000 active source-destination pairs), respectively.
The data were collected at the Bellcore Morristown Research and Engineering Center (MRE). One of the data
sets is representative of Ethernet LAN traffic (consisting of all internal Ethernet packets), was collected in
August of 1989, has been studied extensively in the past (at the aggregate packet level), and was, in fact,
part of the analysis presented in [27]. The second data set represents a recent (December 1994) collection of
high time-resolution WAN traffic measurements (consisting of all “remote” Ethernet packets, i.e., all packets
destined for points outside of Bellcore ot for Bellcore from the outside), and includes applications such as
WWW and Mbone. The motivation for including this second data set was to check whether WAN traffic
self-similarity can be explained the same way as LAN traffic self-similarity or requires a different approach.

Although the main objective of this paper is to provide an answer to question (1) (physical “explanation”),
our results concerning individual source behavior are clearly significant for answering question (2) (possible
impact of self-similarity on network and protocol design and performance analysis). Starting with the work
by Norros [35], there has been mounting evidence that clearly shows that the performance of queueing models
with self-similar inputs can be radically different from the performance predicted by traditional traffic models,
especially by Markovian models (e.g., see [9, 8, 12]). Here we complement this evidence by illustrating the
practical relevance of our findings for (i) parsimonious traffic modeling for high-speed networks, (ii) efficient
simulation of actual network traffic, and (iii) analyzing queueing models and protocols under realistic traffic
scenarios.

Two previous studies of LAN traffic measurements are of particular relevance in the present setting. Jain
and Routhier [19] used packet data collected at a ring network at MIT and proposed a “packet train” (or
ON/OFF) source model in order to capture the observed burstiness in actual packet streams. In this context,
our results show that packet train models are consistent with measured Ethernet LAN traffic collected at
the level of individual source-destination pairs once the Noah Effect for the packet-train lengths and the
inter-train distances has been accounted for. By doing so, some of the shortcomings of the original packet
train modeling approach (e.g., lack of any physical interpretation, arbitrary choice of crucial parameter values)
are remedied; in particular, the use of infinite variance distributions for packet-train lengths and inter-train
distances implies that packet trains (and inter-train distances) can be sensibly defined on all (or a wide range
of) time scales. As a result, the need to pre-select a time scale that lacks physical interpretation and is often
arbitrary can be avoided. Of particular importance to our work are Gusella’s extensive studies [14, 15, 16]

of traffic measurements from a 10 Mb/s Ethernet LAN. In view of the results discussed in the present paper,



Gusella’s work falls strictly within the traditional approach to traffic modeling: phenomena like the Joseph
and Noah Effects are attributed to non-stationarity in the data and are ignored in subsequent data modeling.
Naturally, the resulting models, based on burstiness characterizations using indices of dispersion, are adequate
only over a limited range of time scales. Note that certain types of non-stationarity can indeed potentially
imitate long-range dependence. However, applying new methods for testing the long-range dependence hy-
pothesis against certain non-stationarity alternatives (e.g., see [50, 52]) shows that the long-range dependence
hypothesis cannot be rejected for the majority of Ethernet traffic measurements considered in [27]. Thus, our
approach suggests a viable alternative: by expanding the range of traditional traffic models to account for the
Joseph and Noah Effects, it is possible to describe these phenomena in a stationary setting. The benefits for
doing so include new insights into the time dynamics of high-speed network traffic, and the applicability of
simple models for the very complex traffic patterns observed in today’s networks.

The rest of the paper is organized as follows. In Section 2, we consider the superposition of many ON/OFF
source models and present the convergence theorems that form the basis of our approach. In contrast to [53]
where we assumed a special kind of ON/OFF sources, we consider here the more commonly used ON/OFF
source model with strictly alternating ON- and OFF-periods. Due to space limitation, a proof of the main
result and generalizations thereof will appear elsewhere (see the companion paper [48]). In Section 3, we
discuss the available traffic measurements and present our statistical analysis of these data, concentrating on
detecting the Noah Effect in LAN traffic generated by individual source-destination pairs. Finally, in Section
4 we illustrate the significance of the presence of the Noah Effect at the source level and its implications
for aggregate traffic streams with a number of examples that are of practical importance for the design and
performance analysis of modern communication networks and protocols. We conclude in Section 5 by outlining
our current work focusing on an application-level based physical explanation of traffic self-similarity in a WAN

environment.

Terminology: The main themes of this paper are “long-range dependence” and “self-similarity.” In general,
these two notions are not equivalent; the former involves the tail behavior of the autocorrelation function
of a stationary time series, while the latter typically refers to the scaling behavior of the finite dimensional
distributions of a continuous time or discrete time process. However, Cox [5] introduced the term “exactly
second-order self-similar” for stationary sequences whose aggregated processes possess the same non-degenerate
autocorrelation functions as the original process (“asymptotically second-order self-similar” has been defined
in a corresponding way). In view of this definition, we use the terms “long-range dependence” and “(exactly
or asymptotically second-order) self-similarity” in an interchangeable fashion, because both refer to the tail
behavior of the autocorrelations and are essentially equivalent. In particular, when dealing with Gaussian
processes as we do in this paper we call fractional Brownian motion as well as its increment process (i.e.,

fractional Gaussian noise) self-similar; while in the former case, self-similarity refers to the scaling behavior of



the finite dimensional distributions of a continuous time process, in the latter case it is understood to mean
exact second-order self-similarity and is synonymous with long-range dependence. (For a related discussion, see
also Taqqu, Teverovsky and Willinger [47].) The context in which these notions appear will typically resolve
any potential confusion. Note also that long-range dependence (Joseph Effect), self-similarity (regardless of
the specific definition), as well as infinite variance (Noah Effect) are convenient mathematical idealizations
(just as Markov processes and Brownian motions are) and can never be fully validated from finite data sets.
As we will show, however, these idealizations offer simplification and clarity and capture in a parsimonious

manner important characteristics of the data at hand. The terms “Joseph Effect” and “Noah Effect” were

coined by Mandelbrot [33].

2 Self-Similarity Through High-Variability

In [53], we presented an idealized ON/OFF source model which allows for long packet trains (“ON” periods,
i.e., periods during which packets arrive at regular intervals) and long inter-train distances (“OFF” periods, i.e.,
periods with no packet arrivals). In that model, however, the ON- and OFF-periods did not strictly alternate:
they were i.i.d. and hence an ON-period could be followed by other ON-periods, and an OFF-period by other
OFF-periods. The model was a relatively straightforward extension of the one first introduced by Mandelbrot
[31] and Taqqu and Levy [46]. The processes we describe here have strictly alternating ON- and OFF-periods
and agree therefore with the ON/OFF source models commonly considered in the communications literature.
The ON- and OFF-periods, moreover, may have different distributions, either with infinite or finite variance (a
partial treatment of the finite variance case can be found in [24]). Although our main result is essentially the
same as in [53], namely, that the superposition of many such packet trains exhibits, on large time scales, the
self-similar behavior that has been observed in the Ethernet LAN traffic data and WAN traces (see [27, 37]),
the case of strictly alternating ON/OFF sources is much more delicate, and we provide a rigorous proof in
the Appendix. Motivated by our earlier work in [53], Heath et al. [17] have independently obtained a proof
for the asymptotics of the tail decay of the autocorrelation function of a heavy-tailed ON/OFF source that is
essentially identical to the one presented in the Appendix; they also give the precise rate of decay. For related

work, see also [29].

2.1 Homogeneous Sources

Suppose first that there is only one source and focus on the stationary binary time series {W(t), ¢ > 0} it
generates. W (t) = 1 means that there is a packet at time ¢ and W (¢) = 0 means that there is no packet.
Viewing W (t) as the reward at time ¢, we have a reward of 1 throughout an ON-period, then a reward of
0 throughout the following OFF-period, then 1 again, and so on. The length of the ON-periods are i.i.d.,
those of the OFF-periods are i.i.d., and the lengths of ON- and OFF-periods are independent. The ON- and
OFF-period lengths may have different distributions. An OFF-period always follows an ON-period, and it is



the pair of ON- and OFF-periods that defines an interrenewal period.
Up to this point, we have considered only one source. Suppose now that there are M i.i.d. sources. Since
each source sends its own sequence of packet trains it has its own reward sequence {W (™) (¢), ¢t > 0}. The

superposition or cumulative packet count at time ¢ is 2%21 W ™) (t). Rescaling time by a factor 7', consider

W, (Tt) = /Tt (Z W“’”(u)) du,

the aggregated cumulative packet counts in the interval [0, Tt]. We are interested in the statistical behavior
of the stochastic process {W;,(T't), t > 0} for large M and T. This behavior depends on the distributions
on the ON- and OFF-periods, the only elements we have not yet specified. Motivated by the empirically
derived fractional Brownian motion model for aggregate cumulative packet traffic in [53], or equivalently,
by its increment process, the so-called fractional Gaussian noise model for aggregate traffic (i.e., number of
packets per time unit), we want to choose these distributions in such a way that, as M — oc and T' — oo,
{Wy,(Tt), t > 0} adequately normalized is {o1m B (t), t > 0}, where oy, is a finite positive constant and By
is fractional Brownian motion, the only Gaussian process with stationary increments that is self-similar. By
self-similar, we mean that the finite-dimensional distributions of {T'~# By (Tt), t > 0} do not depend on the
chosen time scale T'. The parameter 1/2 < H < 1 is called the Hurst parameter or the index of self-similarity.
Fractional Brownian motion is a Gaussian process with mean zero, stationary increments and covariance
function EBg (s)Bp (t) = (1/2){s*" +#2# —|s — ¢|*H}. Its increments G; = By (j) — Bu(j — 1), j = 1,2,...

are called fractional Gaussian noise. They are strongly correlated:
EGu(j)Gu(j +k) ~ H2H — )E*"™% as k — oo,

where ay ~ by means ay /b, — 1 as k — oco. The power law decay of the covariance characterizes long-range
dependence. The higher the H the slower the decay. For more information about fractional Brownian motion
and fractional Gaussian noise, refer for example to Chapter 7 of Samorodnitsky and Taqqu [42].

To specify the distributions of the ON- and OFF-periods, let

hw. A= [ " fiwdu, Fio(@) =1 Fi(2), = / " ehi(@)de, of = / C(@ - ) fr (@)

denote the probability density function, cumulative distribution function, complementary (or tail) distribution,
mean length and variance of an ON-period, and let fy, Fy, Fy., 2, 03 correspond to an OFF-period. Assume
as r — o0,

either Fi.(z) ~ (1x" ' Li(x) with 1 < a; <2 or o7 < 00,

and

either Fy,(x) ~ oz 2 Ly(x) with 1 < ay <2 or o3 < oo,

where £; > 0 is a constant and L; > 0 is a slowly varying function at infinity, that is lim,_,o L;(tz)/L;(z) =1

1

for any ¢t > 0. For example, L;(z) could be asymptotic to a constant, to log z, to (logz) ™', etc. Since the



function L; will be used as normalization in (1) below, it is preferable not to absorb the constant ¢; into it.
(We also assume that either probability densities exist or that F;(0) = 0 and F} is non-arithmetic, where
F; is called arithmetic if it is concentrated on a set of points of the form 0,4\, 42X,---.) Note that the
2

mean p; is always finite but the variance o7

; 1s infinite when a; < 2. For example, F; could be Pareto, i.e.

Fjc(z) = K®z % forx > K > 0,1 < a; < 2 and equal 0 for z < K, or it could be exponential. Observe
that the distributions F; and F3 of the ON- and OFF-periods are allowed to be different. One distribution,
for example, can have a finite variance, the other an infinite variance.

In order to state the main result, we need to introduce some notation. When 1 < a; < 2, set a; =
(7 (2 — j))/(ej —1). When 07 < oo, set a; = 2,L; =1 and a; = 03. The normalization factors and the

limiting constants in the theorem below depend on whether

Lq(t
A = lim ta"”a‘—l( )
t—oo L2 (t)
is finite, 0, or infinite. If 0 < A < 00, set amin = @1 = s,
2 2(p3a1 A + pias)
Olim = 3 , and L = Lo;
(,Ul + N2) ? (4 - amin)
if, on the other hand, A =0 or A = oo, set
< 2 2 min
2 — umaxa , and L = Lmin;

Olim
: (1 + p2)3? (4 — amin)
where min is the index 1 if A = oo (e.g. if @1 < @) and is the index 2 if A = 0, max denoting the other index.

We claim that under the conditions stated above the following holds:

Theorem 1. For large M and T, the aggregate cumulative packet process {Wy,(Tt), t > 0} behaves statisti-
cally like

TM%t + TH\/L(T)Moym By ()
M1 T+ U2

where H = (3 — @min) /2 and o1im is as above. More precisely,

. . ~Hp—1/2 —1/2 * _ 7/“ = o
£ lim £ lim T=HL72(T)M (WM(Tt) TMM1+H2t> Otim B (1), (1)

where Llim means convergence in the sense of the finite-dimensional distributions.

Heuristically, Theorem 1 states that the mean level T M (u1 /(11 + p2))t provides the main contribution for
large M and T'. Fluctuations from that level are given by the fractional Brownian motion oy, By (t) scaled
by a lower order factor THL(T)'/2M'/2. As in [46], it is essential that the limits be performed in the order
indicated. Also note that 1 < ami, < 2 implies 1/2 < H < 1, i.e., long-range dependence. Thus, the main

ingredient that is needed to obtain an H > 1/2 is the heavy-tailed property

Fjc(z) ~ljz~* Lj(z), asz—o00, 1<a; <2 (2)



for the ON- or OFF-period; that is, a hyperbolic tail (or power law decay) for the distributions of the ON- or
OFF-periods with an a between 1 and 2. A similar result obtains if W}, (T't) is replaced by the cumulative
number of bytes in [0,T't]. For a proof of Theorem 1, a generalization of the results to allow for the case of
heterogeneous sources, for a detailed description of the limiting behavior in (1) when F; and F5 satisfy special

properties, and for a weak convergence analogue of Theorem 1, see [48].

3 Ethernet Traffic Measurements at the Source Level

In this section, we first describe two sets of Ethernet traffic measurements that will be analyzed in detail. The
first data set is used to support our claim that the self-similar nature of Ethernet LAN traffic is caused by the
presence of the Noah Effect in the traffic generated by the individual source-destination pairs that make up
the aggregate packet stream. The data consist of one hour worth of Ethernet LAN traffic and is representative
of the Ethernet LAN traces considered in [27] which have been shown to be consistent with (second-order)
self-similarity. The other Ethernet LAN traces analyzed in [27] reveal a similar behavior (not shown here) in
terms of the Noah Effect of the underlying source-destination pairs and could have been used for our purpose
as well.

The motivation to include a second data set is as follows. Recall that some of the traces analyzed in [27]
are comprised entirely of “remote” Ethernet packets and hence represent what is typically referred to as WAN
traffic. Since these WAN traces have also been shown in [27] to be consistent with (asymptotic second-order)
self-similarity, it is natural to pose the question whether WAN traffic self-similarity can be explained in the
same way as LAN traffic self-similarity, namely in terms of the Noah Effect exhibited by the underlying source-
destination pairs that make up the aggregate traffic, or whether WAN traffic points toward a different physical
explanation, possibly at the application level. To this end, we could have considered one of the WAN traces
previously analyzed in [27], but we decided instead to choose as our second data set a more recent, hour-long
WAN traffic trace that contains WWW as well as Mbone traffic. The findings reported below, however, apply
to the earlier WAN traces as well.

The two data sets result in about 500 and 10,000 active source-destination pairs, respectively. These
numbers present a considerable challenge when trying to investigate in a statistically rigorous manner the
presence of the Noah Effect in the traffic streams generated by all or a large part of these individual active
source-destination pairs. Clearly, a compromise is needed between making the analysis “fully compelling” and
keeping at the same time the amount of work at a reasonable level. Being “persuasive” is perhaps all we
can achieve under these circumstances, in addition to providing mathematical and statistical rigor, setting a
reasonable standard for future empirical and statistical analysis of such data, and motivating other researchers
to reproduce our results in different network environments. Thus, one of the main objectives of this section is
to illustrate the use of exploratory data analysis tools that can assist in extracting essential information out of

an abundance of traffic measurements without an extraordinary effort. While some of the tools applied below



are well-known, others are less familiar and will be explained in more detail as they are used.

A delicate compromise is also needed between “theory” and “practice” of parameter estimation for heavy-
tailed data. Parameter estimation for heavy-tailed distributions is an active area of research, the few known
estimation procedures (see below), which are theoretically reasonably well understood can perform quite
erratically in practice, and some theoretical results (e.g., confidence intervals) for these procedures are known
to hold only under conditions that often cannot be validated in practice. The resulting balancing act favors
data-intensive heuristics over unfounded statistical rigor, and typically results in strong empirical evidence
at the macroscopic level (i.e., for or against the presence of the Noah Effect in a given data set), but only
approximate results at the microscopic level (i.e., estimating the intensity of the Noah Effect, that is, point
estimates for a). In this paper, we have made a conscious decision in favor of data-intensive heuristics. As
a result, precise point estimates for the index a appearing in equation (2) and measuring the exact intensity
of the Noah Effect for a given source or source-destination pair are of secondary interest; we are primarily
concerned with determining ranges of a-values that are consistent with the data representing individual source-

destination pairs.

3.1 Traffic Measurements

The first set of traffic measurements is the busy hour of the August 1989 Ethernet LAN measurements
presented and analyzed (and denoted by AUG89.HB and AUG89.HP in Table 1) in [27] (for further details
about this data set, see also [28]). In addition to the information about time stamp and size (in bytes) of every
(internal) Ethernet packet seen during this hour, the data set also contains the source and destination address
of each recorded packet. During this busy hour, 105 hosts sent or received packets over the network (out of
121 hosts that were active during the whole 27 hour long monitoring session). The source-destination matrix
(based on Ethernet addresses) corresponding to this set of traffic data is depicted in Figure 1, where we also
indicated the activity level (i.e., total number of bytes sent by an individual source or source-destination pair,
normalized by the total numbers of bytes sent by all hosts during this period) for each source (see marginals
along x-axis), for each destination (marginals along y-axis), and for each individual source-destination pair.
Notice that out of 11,025 possible source-destination pairs, only 748 or about 6.8% were actually sending or
receiving packets (this effect has also been observed in previous traffic studies, e.g., [7, 36]). The most active
hosts were sources 1, 7, 11, 27, 32, 58 (6 Sun-3 fileservers), sources 2 and 47 (2 DEC 3100 fileservers), source
34 (a Sun-4 server), sources 6, 15, 20, 25, 30, 63 (6 diskless Sun-3 clients), source 8 (a DEC 3100 client), and
sources 10 and 17 which served as routers. Only about 5% of the traffic on this network was ezternal, i.e.,
destined for machines on other networks or outside the company.

While the first data set consists of LAN traffic, the second data set is made up entirely of remote traffic, i.e.,
of packets destined for points on the Internet outside of Bellcore or for Bellcore from the outside, and represents

what is usually referred to as WAN traffic. More precisely, the second data set consists of a “typical” hour of



Destination#

105

90—

75—

60—

45

30—

15—

a a
a a
a a

a

I a

2 2

a a

a a

o o

a a a
A

=] o o a
A

2

a a

=] a
=] o
a

a a

a

=] o

n =

2 an
=] o

A

a

a

=] o

A

a

=

o

o o

=]

A a

a

o

a] o
S a a
o

= = o
H =

o a
= ao
o

&

& -
=] a

A

=] =]
A 2
= o &
a a
a oa
a]

= am

a

A a
2 a
&

o ao

= = =

H LI
H =] a
5] o

a a

= = LIPN
= = an
a a

> BB DD DD

> >

>0

Emm ACEEE OmA O O

= ooom

a
o
o
o a
a &
a
a
a
o a o
o
o
o
a
[
o
o
a
a
o
a
= A O
a o o
L)
a
a a
= a
= = oEEECOO0 AAD O m o

= >1%(21)
o .1-1% (47)
& .01-.1% (96)
R
<.01% (584)
idle (10277)
R
4, a
a a
R
R
s s oo
oa L o, R
5 =o s o s
R s

Figure 1: Source-Destination matrix for the August 1989 traffic data set.

15

\ \
30 45

Source#

10

60

105



traffic gathered from the stub Ethernet between the router provided by Bellcore’s Internet service provider and
a second Bellcore-controlled router that enforces security. For this data set, the number of active hosts (based
on IP addresses) turns out to be about 3,500, while the percentage of active to possible source-destination
pairs is about 0.25%. The most active host in this data set was the machine outside of Bellcore that sent
Mbone packets (see below and Section 3.6 for more details regarding Mbone). Also included in the most active
machines were four machines outside of Bellcore supplying data in response to file transfer (FTP) sessions,
along with one Bellcore host supplying file transfer, E-mail, and Domain name service to the outside world.
Other active hosts included one Bellcore host supplying Network News to the outside and three machines
supplying news to Bellcore. Of the two Bellcore machines mentioned above, one is a Sun Sparcserver 690MP
and the other (the network news supplier) is a Sparc-1. Note that all remote traffic is bandwidth limited by
Bellcore’s 1.5 Mb/s link to the outside world. A brief investigation of what applications generated this second
hour-long data set revealed that a new Internet service called Mbone (see for example, [11]) was responsible
for over 50% of the recorded traffic (in bytes). Another service, the World Wide Web (WWW) information
retrieval service (e.g., see [1]), made up 9.4% of the total traffic. Neither Mbone nor WWW traffic was present
in the first data set, nor in any of the earlier WAN traces studied in [27]. Services such as file transfer (14.5%),
telnet /rlogin (2.8%), electronic mail (SMTP) (3.2%) and Network News transfer (NNTP) (12.2%) still present

significant components of the total traffic but no longer dominate it.

3.2 Textured Plots and the Packet Train Assumption

We consider here the first data set that has been shown in [27] to be consistent with second-order self-similarity,
with a Hurst parameter of H =~ 0.90 for the time series representing the packet counts per 10 milliseconds. This
conclusion was reached by treating the Ethernet packets as black boxes, i.e., without using any information
contained in the packet header fields. In contrast, for the present study, we extracted from the header field of
each packet monitored during this hour the corresponding pair of source-destination addresses. This process
resulted in 105 individual time series representing the packet arrivals on the Ethernet from the 105 hosts that
were active (i.e., sent or received packets) during this hour. Furthermore, separating the packets generated by
a given source depending on the packet’s destination address yields a total of 748 time series corresponding to
the number of active source-destination pairs. In view of the results presented in Section 2, we are thus faced
with the challenging task of analyzing 748 time series with sufficient statistical rigor and accuracy to conclude
whether or not these data support our physical explanation for self-similarity, i.e., whether or not the data are
consistent (i) with the ON/OFF traffic model assumption for individual sources or source-destination pairs
and (ii) with the crucially important assumption of the Noah Effect for the corresponding ON- and OFF-
periods. To this end, our goal is not to provide a single point estimate for the intensity « of the Noah Effect,
but to examine if there is evidence for the Noah Effect in the data and if so, to determine the “typical” range

of a-values. Note that because of the basic relation H = (3 — a)/2 (see Theorem 1), the earlier findings in
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[27] of H = 0.90 for the time series of (aggregate) packet counts suggests the presence of the Noah Effect with
a low a-value of about 1.20.

For the purpose of checking the appropriateness of the ON/OFF traffic modeling assumption for individual
sources or source-destination pairs, we first make use of a simple exploratory data analysis tool called textured
dot strip plot or simply textured plot, originally proposed in [51] and subsequently incorporated into XGobi, a
tool for interactive dynamic graphics and analysis of multi-dimensional data (e.g., see [43]). Intuitively, the
idea of textured plots is to display one-dimensional data points in a strip in an attempt to show all data points
individually. Thus, if necessary, the points are displaced vertically by small amounts that are partly random,
partly constrained. The resulting textured dot strip facilitates a visual assessment of changing patterns of
data intensities in a way other better-known techniques such as histogram plots, one-dimensional scatterplots,
or box-plots are unable to provide, especially in the presence of extreme values. To illustrate the effectiveness
of textured plots for assessing the bursty or ON/OFF nature of traffic generated by an individual source or
source-destination pair, we display in Figure 2 six textured plots associated with source 10 (other sources
result in similar plots). Each point in the plots represents the time of a packet arrival. Serving as a router,
this source contributed 1.85% to the overall number of packets and sent data to 25 different destinations.
The top plot in Figure 2 represents the textured dot strip corresponding to the arrival times of all packets
originating from source 10 (there are 26,330 packets), and the subsequent 5 panels result from applying the
textured plot technique to the arrival times of all packets originating from source 10 and destined for sources
1, 18, 70, 13 and 17, respectively. These 5 source-destination pairs were responsible for 5,901, 4,050, 3,407,
2,135, and 1,918 packets, respectively, and make up about 66% of all the packets generated by source 10.

Figure 2 supports two important observations regarding the bursty behavior of traffic generated by (i)
a reasonably active individual source (e.g., source 10) and (ii) a “typical” individual source-destination pair
(e.g., source-destination pair 10-18). First, a close look at the top plot of Figure 2 (source 10) clearly reveals
the burstiness expected from actual packet traffic, but offers little hope for supporting the ON/OFF nature
of the underlying traffic that gave rise to this strip plot. The plot is even more discouraging from the point
of view of hoping for some “objective” criterion for identifying ON/OFF periods. However, a glance at the
5 source-destination plots in Figure 2 makes the ON/OFF behavior of the traffic generated by the individual
source-destination pairs immediately apparent. There is little question of what is meant by an ON- or OFF-
period, and subsequent extraction of the lengths of the ON- and OFF-periods from a given source-destination

traffic trace is greatly facilitated by use of of the corresponding textured plot of packet arrival times.

3.3 Checking for the Noah Effect

Next we illustrate the techniques used for determining the presence or absence of the Noah Effect for the ON-
and OFF-periods derived from the traffic data generated by individual sources or source-destination pairs. In

the case where the data are found to be consistent with the Noah Effect, these techniques also allow for fast
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Figure 2: Textured plots of packet arrival times for (top to bottom) source 10 and source-destination pairs
10-1, 10-18, 10-70, 10-13 and 10-17.
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procedures (partly heuristic, partly rigorous) for estimating the intensity « of the Noah Effect. As we will
demonstrate, these techniques work best when applied in combination with each other and with attention to
the physical structure of the data. Specifically, we make extensive use of complementary distribution plots

(related to the gg-plot method [23]) and Hill’s method [18, 41] for estimating a.
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Figure 3: Complementary distribution plots for ON-periods (top left) and OFF-periods (top right) for the
source-destination pair 10-18, using a threshold value of ¢t = 2s; for a sample from an exponential distribution
that matches the mean of the ON-periods (lower left), and for a sample from a Pareto distribution that matches
the mean of the OFF-periods (lower right). (The vertical solid, dotted and dashed lines indicate that 10%,
20% and 50% of all data points are to the right of the respective lines.)

In order to determine the presence or absence of the Noah Effect in a given data set, we take logarithms

of both sides of relation (2), obtaining
log Fjc(z) ~log(l;) —aj log(x), as = — o0, 1 < a; <2. (3)

Using complementary distribution plots, i.e., plotting (on a log —log scale) the complementary empirical
distribution function of a sample that was presumably drawn from a distribution that exhibits hyperbolic tails
(i.e., satisfies (2)), results in an approximately straight line for large xz-values, with a slope of —a,1 < a < 2.
To illustrate the effectiveness of this technique for the data at hand, we concentrate on source-destination pair
10-18 (Figure 2, panel 3); other source-destination pairs yield similar results. Based on its textured plot, we
define an OFF-period to be any interval of length t > 2 seconds that does not contain any packet; this, in turn,

defines the ON-periods unambiguously and results in a total of 202 ON-periods and the same number of OFF-
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periods for this source-destination pair. (We will return to the issues of the particular choice of the threshold
t and of the robustness of our results under different threshold values in Section 3.4 below.) Figure 3 depicts
the complementary distribution plots (on log — log scale) of the ON-periods (top left) and OFF-periods (top
right) and indicates a straight line behavior for large z-values, i.e., a hyperbolic tail distribution satisfying (2)
for the ON- and OFF-periods. In fact, a heuristic estimate (obtained by “eyeballing” a straight line through
the points to the right of the dashed vertical line) yields a ~ 1.7 for the ON-periods and « =~ 1.2 for the
OFF-periods. To compare, Figure 3 also includes the complementary distribution plot of (i) an exponential
distribution with the same mean of 7.2 s as the ON-periods (bottom left), and (ii) a Pareto distribution with
a = 1.2 and the same mean of 10.5 s as the OFF-periods (bottom right). Clearly, when compared to the
distribution of the ON-periods, the exponential distribution as a whole as well as its right tail are concentrated
on a more narrower range of xz-values; in addition, the tail of the exponential distribution falls off much faster
than the tail of the ON-periods. On the other hand, the Pareto distribution covers practically the same range
of time scales as the empirically observed OFF-periods and matches the straight line behavior of the data over

practically the whole z-axis.

Lo * [¥e) - :

- — ~ — :

= = |

g o T g o = |
4 o~ N e

= = I
— —+ — 4 = =7 N |

|

(=) — ! (==} — !
o 20 40 [S]e] 80 100 o 20 40 60 80 100

K K

Lo — T Lo — T

| |

-~ — : ~ — :

= | = |
g o = \/\/\ ! _g Sel = !
e | e |
= o~ T 7 7 7777%@(\7 = o~ T T T r— T T
0= | pum |
-— N L = | -— ,,%&fw#

| |

(=) — ! (=] — !
o 20 40 [S]e] 80 100 o 20 40 [S1e] 80 100

Kk K

Figure 4: Hill estimate plots for ON-periods (top left) and OFF-periods (top right) for the source-destination
pair 10-18, using a threshold value of ¢ = 2s; for a sample from an exponential distribution that matches the
mean of the ON-periods (lower left), and for a sample from a Pareto distribution that matches the mean of

the OFF-periods (lower right). (The vertical solid, dotted and dashed lines indicate that 10%, 20% and 50%
of the largest order statistics have been included in the Hill estimation calculation.)

While complementary distribution plots often provide solid evidence for or against the Noah Effect in a
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given data set, the eyeballing method described above for producing a rough estimate for a is cumbersome and
unsatisfactory. A statistically more rigorous method for estimating the intensity of the Noah Effect is known
as Hill’s estimator and is described in [18] (see also [41]). Briefly, let Uy, Us, ..., U, denote, for example, the
observed ON-periods, and write Uy) < Uy < ... < Uy, for the corresponding order statistics. The Hill

estimator of « is .

i=k—1

i=0

where the choice of 1 < k < n indicates how many of the largest observations enter into the calculation of
formula (4). In practice, one plots the Hill estimator ¢, as a function of k, for a range of k-values. In the
presence of a tail behavior in the data that is consistent with (2), a typical Hill plot varies considerably for
small values of k (i.e., only a small fraction of the largest observations are considered), but becomes more stable
as more and more data points in the tail of the distribution are included (often up to a cut-off value, to the
left of which (2) no longer holds). An apparent straight line behavior for large z-values in the complementary
distribution plot corresponds to a region of k-values where the Hill’s estimate remains stable. In the absence
of such a straight line behavior, the Hill’s estimate will continue to decrease as k increases, a strong indication
that the data are not consistent with the hyperbolic tail assumption (2). Although a number of theoretical
properties of the Hill estimator are known (e.g., see [40]), they typically require extra assumptions on the
underlying distribution which are essentially unverifiable in practice. This is especially true for the asymptotic
normality property of the Hill estimator, which is used to compute confidence intervals.

This is why, in this paper, we prefer data-intensive heuristics for specifying ranges for the Hill estimator
over the use of confidence intervals that are theoretically exact but rely on conditions that cannot be verified
for a given data set. Figure 4 depicts the Hill estimate plots corresponding to the data used in Figure 3.
Recalling that each data set contains 202 observations, the top left plot depicts the Hill estimate for the ON-
periods and should be viewed together with the top left plot in Figure 3; note the region of stability in the Hill
plot (k-values between 20 to about 70), i.e., the tail of the distribution that is consistent with the hyperbolic
decay as given in (2) contains about 40% of all the observations. Moreover, the Hill estimate can be readily
read off from the y-axis and yields & ~ 1.7. In the case of the Hill plot for the OFF-periods (top right) and the
fitted Pareto model (bottom right), the situation is obvious and in agreement with the information contained
in the corresponding complementary distribution plots in Figure 3. Finally, the bottom left plot in Figure 4
illustrates the typical behavior of the Hill plot when the data are inconsistent with assumption (2); the plot
does not settle down but continues to decrease as more and more of the smaller order statistics are included
in the calculation of the estimator. Intuitively, this behavior is caused by the concave shape (throughout the

whole z-axis) of the complementary distribution plot (see bottom left plot in Figure 3).
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3.4 A Robustness Property of the Noah Effect

Before checking for the presence of the Noah Effect in the traffic traces generated by the remaining source-
destination pairs, we first point out a robustness feature of the Noah Effect that should greatly diminish any
reluctance toward using ON/OFF or packet train models at the source or source-destination level. In the past,
such reluctance has typically been based on a lack of physical interpretation or intuition for defining objectively
the notion of an OFF-period (or, using the notation of Section 3.3, for selecting the “right” threshold value t).
In the packet train terminology, the problem is to decide in a coherent manner on the “appropriate” intertrain
distance, i.e., on deciding when the “departure” of the previous train took place and when the “arrival” of
the next train occurs. Here we show, that as far as the Noah Effect is concerned, it does not matter how
the OFF-periods or intertrain distances (and subsequently, the ON-periods or packet train lengths) have been
defined. In other words, the Noah Effect is robust under a wide range of choices for the threshold value ¢ that
we used in Section 3.3 to explicitly define OFF-periods as any interval of length ¢ seconds or larger that sees

no packet arrival.
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Figure 5: An illustration of the robustness property of the Noah Effect for the OFF-periods (using source 10).
For threshold values ¢ = 1.0s,0.20s and 0.025s, the top row gives the complementary distribution plots and
the bottom row the corresponding Hill plots.

The reason behind this insensitivity of the Noah Effect for (non-degenerate) OFF-periods to different
choices of the threshold ¢ is the well-known scaling property of distributions that satisfy the hyperbolic tail

condition (2). Here, by scaling property we mean that if the distribution of the random variable U satisfies
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(2) and t denotes a threshold value, then for sufficiently large u,t with u > ¢,
P(U > ulU > t) ~(%)*ﬂ,1<a<2, (5)

(see [32], and also [37, 38] where this property is discussed and used for an intuitive explanation of the Joseph
Effect in measured TELNET traffic traces). Thus, the tail behavior of the (conditional) distributions of U
given U > t, for different choices of the threshold ¢, differs only by a scaling factor and hence gives rise to
complementary distribution plots (on log — log scale) with identical asymptotic slopes but different intercepts.
This appealing robustness property of the Noah Effect for the OFF-periods with respect to the choice of ¢
is illustrated in Figure 5 where we show the complementary distribution plots (top row) and corresponding
Hill estimate plots (bottom row) for three different ways of defining the OFF-periods for the traffic associated
with source 10 (see top plot of Figure 4). More specifically, we chose ¢-values that span 3 orders of magnitude,
namely ¢t = 1s (left column, 313 observations), t = 0.2s (middle column, 4,537 observations), and ¢ = 0.025s
(right column, 19250 observations). Figure 5 confirms the robustness property of the Noah Effect under the
different choices of ¢, with an estimated intensity between 1.6 — 1.9. Recall, that our objective is not to come
up with a precise point estimate for «, but to identify a range of a-values that is consistent with the given
data.

A similar convincing robustness property of the Noah effect can be shown to hold for ON-periods (see [53],
Fig. 6), although slightly different arguments from the ones we used in the case of the OFF-periods are needed
to explain the insensitivity of the Noah Effect of the ON-periods to the different choices of the threshold ¢
(see [53], pp. 107-108). Thus, while there is no "natural” division into ON/OFF-periods at the source level,
such a division becomes apparent at all (a wide range of) time scales; moreover, these divisions appear in a

consistent manner.

3.5 Self-Similarity and the Noah Effect in LAN Traffic

To facilitate the full-fledged statistical analysis of the first data set (i.e., the busy hour of the August 1989
traffic measurements) at the source-destination level, we consider in detail only the 181 most active (out of
a total of 748 active) source-destination pairs. Together, these 181 source-destination pairs generated more
than 93% of all the packets seen on the Ethernet during this hour and represent more than 98% of the overall
traffic (in bytes). We chose to neglect all source-destination pairs that generated fewer than about 300 packets
during the whole hour. Our statistical analysis of this abundance of traffic data benefited tremendously from
the observed robustness property of the Noah Effects for the ON- and OFF-periods and from the availability
of graphical tools that allow for effective visualization of complex data structures.

The summary plots in Figure 6 were obtained by checking, for each of the 181 source-destination pairs, for
the presence or absence of the Noah Effect in their corresponding sequences of ON- and OFF-periods. For each
source-destination pair, we typically generated 5 sequences of ON- and OFF-periods using 5 different threshold

values, ranging between 5 s and 0.01 s. As a result of this data-intensive thresholding procedure, we obtain
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for each source-destination pair two ranges of a-values (one for the corresponding ON-periods, another for the
OFF-periods) that are consistent with the data and insensitive to the particular definition of ON/OFF-periods.
More precisely, we categorize the ON/OFF-nature of each source-destination pair, depending on whether the
a-estimates obtained from the corresponding five different ways of defining the ON/OFF-periods are more or
less the same and are consistent with a-estimates in the intervals (0,.85), (.75,1.35),(1.25,1.75), (1.65, 2.25) or
(2.25,2.75), representing the intuitively easy to define cases “definitely below 1.0”, “around 1.0”, “somewhere
in the middle of the interval (1,2)”, “around 2.0”, and “definitely above 2.0 or inconclusive”, respectively.
For each source-destination pair considered, this categorization is based on a combination of (i) textured
plots for visual assessment of ON/OFF nature of the traffic, (ii) complementary distribution plots as a quick
heuristic method for checking the tail behavior of a distribution, and (iii) a careful interpretation of Hill plots
(typically in connection with information obtained via (ii)). For the vast majority of source-destination pairs,
the categorization process worked well, slightly better for the OFF-periods than for the ON-periods. Moreover,
not all ON/OFF-periods fitted this framework, but the number of inconclusive cases was insignificant. The
results are shown in Figure 6, where we plot for each of the 181 source-destination pairs its load (in bytes, on
log scale) against the range of a-values that is consistent with its traffic trace. As can be seen, in the case
of the ON-periods (top plot), the a-estimates consistent with the data cover pretty much the whole interval
(1,2). In comparison, the bottom plot in Figure 6 shows that in the case of the OFF-periods, a-estimates
in the lower part of the interval (1,2) clearly dominate the picture. Note that the mathematical results in
Section 2 readily apply to this case involving different a-values for the ON- and OFF-periods.

When combined, the two plots in Figure 6 provide strong statistical evidence in favor of our proposed
physical explanation for the empirically observed self-similarity property of aggregate Ethernet LAN traffic,
in terms of the nature of traffic generated by each individual source-destination pair that sent packets over the
Ethernet. In particular, our analysis shows that the data at the source-destination level are consistent with an
ON/OFF modeling assumption for individual sources or source-destination pairs, and are in strong agreement
with the assumption of the Noah Effect for the distributions of the corresponding ON/OFF-periods. (We have
also done extensive testing of the independence assumption for the ON-periods and OFF-periods and have
found the data to be in full agreement with it; for example, ON/OFF event counts over disjoint time intervals
show, in general, no significant correlations.) In fact, one of the most astonishing findings from our analysis
has been the extremely widespread and often very obvious presence of the Noah Effect, expressed via relation
(2), in measured source-level LAN traffic data, regardless of whether the source represents a fileserver or a
client machine. Possible explanations for this phenomenon typically refer to application-level characteristics
and include (i) an empirically observed hyperbolic tail behavior for the file sizes residing in file systems such

as file servers (see the discussion and references in [37]), (ii) a Pareto-like tail behavior for measured CPU time

3

3

used by a typical Unix process (see [26]), (iii) measurements studies of an ISDN office automation application

reported in [34] that suggests that human-computer interactions occur over a wide range of time scales and
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thus, may require models based on infinite variance distributions, and in the case of more recent LAN
measurements  (iv) empirically observed infinite variance properties for the sizes of documents that reside on
many of today’s WWW-servers (see [6]). A similar, though less thorough analysis at the level of individual
source-destination pairs (not shown here) of some of the other Ethernet LAN traces considered in [27] shows
full agreement with the above-mentioned findings and demonstrates the robustness of traffic characteristics
such as the Joseph Effect (for aggregate LAN traffic) and the Noah Effect (for individual source-destination
traffic) under a variety of changes (e.g., with regard to network configuration, host population, hardware and

software upgrades, user applications) that working LANs experience over time.

3.6 Self-Similarity and the Noah Effect in WAN Traffic

In addition to discovering the self-similar nature of Ethernet LAN traffic, Leland et al. [27] also encountered
self-similarity in traces that were comprised entirely of “remote” Ethernet packets (i.e., packets destined for
points outside of Bellcore, or for Bellcore from the outside world) and represent what is commonly called WAN
traffic. Naturally, the question arises whether WAN traffic self-similarity can be explained in the same way
as LAN traffic self-similarity, namely in terms of the highly variable ON/OFF-nature of the traffic generated
by the individual source-destination pairs, or whether WAN traffic points toward the need for a physical
explanation at a different level. In addition, the question of robustness of traffic characteristics such as the
Joseph and Noah Effect also arise in the WAN context, because WANs are known to experience drastic changes
at the user and application level within relatively short periods of time (e.g., see [36].

To answer these questions, we considered some of the WAN traces that were collected between 1989 and
1992, analyzed in [27], and found to be consistent with (asymptotic second-order) self-similarity. In addition,
we considered another data set that is described in Section 3.1 and represents an hour worth of WAN traffic
collected in December 1994. For each of these data sets, we performed an analysis at the level of individual
source-destination pairs that was similar though less detailed to the one described in Section 3.5 for LAN
traces. Although we use mainly the December 1994 trace to illustrate our findings, the results described below
apply to the earlier WAN traces as well and are based on an analysis that combines techniques introduced
in [27] for analyzing aggregate traffic streams and methods illustrated earlier in Section 3.5 for dealing with
individual source-destination traffic traces.

Given the information provided in Section 3.1 about the second data set, we first split the hour-long trace
into two subsets; the first subset represents the traffic sent from the machine that furnishes Mbone traffic to
Bellcore. It makes up about 52% of the total traffic (in bytes). The second subset consists of the remaining,
i.e., all non-Mbone packets recorded during the given hour. Concentrating first on the non-Mbone traffic, an
analysis along the lines of [27] of the aggregate traffic (number of packets per 10 milliseconds) reveals that
this data set is consistent with (second-order asymptotic) self-similarity, and as an estimate of the degree of

the Joseph Effect (i.e., the Hurst parameter), we obtain an H-value between 0.85 and 0.90. After separating
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the aggregate traffic into traffic traces generated by individual source-destination pairs, we get that the 300
most active (out of a total of about 10,000) source-destination pairs are responsible for 83% of the non-Mbone
traffic. Analyzing these 300 traces in the same way as above shows again overall consistency of the data with
the ON/OFF source model assumption. However, in contrast to the LAN traffic traces considered in Section
3.5, our findings for the WAN traces strongly suggest a-values for the Noah Effects for the OFF-periods that
are typically around 1.0 and often even below 1.0 (implying infinite mean). On the other hand, the a-values
corresponding to the ON-periods are typically around 2.0 (i.e., on the borderline between finite and infinite
variance).

Upon closer examination of the behavior of the OFF-periods, we observe that a typical source-destination
pair extracted from a WAN traffic trace starts transmission at some time into the data set, transmits packets
(in some fashion) for a random duration, and then ceases transmitting packets for the remainder of the data
set. Clearly, the long periods of inactivity at the beginning/end of a traffic trace generated by such a source-
destination pair give rise to OFF-periods whose distributions exhibit extreme heavy right tails. This property
of the OFF-periods is typical for all the WAN traces at hand and indicates that WAN traffic self-similarity
cannot be explained in the same simple manner as LAN traffic self-similarity, namely in terms of the highly
variable ON/OFF-nature of the individual source-destination pairs that make up the aggregate traffic. At the
same time, the observed behavior of a typical source-destination pair in a WAN environment is consistent with
the ground-breaking work by Floyd and Paxson [37] on WAN traffic characterization and suggests a different

equally simple plausible physical explanation for the empirically observed self-similar nature of measured
WAN traffic, but at the level of individual applications instead of individual source-destination pairs. We will
expand on this explanation of WAN traffic self-similarity in Section 6.

In the case of the Mbone traffic data set, only an analysis of the aggregate packet stream was performed.
The results indicate that Mbone traffic is asymptotically self-similar, with an H-value in the high 0.9 range.
Its distinctive feature, however, is that only after aggregation levels beyond 100 ms does the strong intensity
of the Joseph Effect become obvious, i.e., does the correlation structure of Mbone traffic remain unchanged
as aggregation levels increase further. Based on our current understanding (see Section 2) and on extensive
simulation studies (see Section 4 and, especially [39]), this property of Mbone traffic suggests the absence of
the Noah Effect for the ON-periods (i.e., a corresponding intensity level for the ON-period « that exceeds 2.0)
and at the same time, the presence of a strong (i.e., a-values closer to 1.0 than to 2.0) intensity of the Noah

Effect for the OFF-periods of the individual user applications that typically run over Mbone.

4 TImplications of the Noah Effect in Practice

Recall that the empirically observed self-similarity property in measured LAN traffic allows for a clear dis-
tinction — on statistical grounds — between traditional traffic models and actual traffic collected from working

networks. The proposed physical explanation based on the Noah Effect enables us to identify the essential
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difference between self-similar and traditional traffic modeling in the setting of the well-known ON/OFF source
models: traditional traffic modeling assumes finite variance distributions for the ON- and OFF-periods (in
fact, exponential or geometric distributions are used almost exclusively), while self-similar modeling is based
on the assumption of the Noah Effect, i.e., requires infinite variance distributions. Moreover, traditional traf-
fic modeling becomes a special case of the self-similar approach by chosing a-values bigger than 2.0. From a
more applied viewpoint, questions related to the impact of self-similarity in practice (e.g., generating realistic
network traffic, performance of networks, protocols, and controls) can be reduced to the more basic question of
the practical implications of the Noah Effect. In this section, we illustrate its impact with examples concerning

traffic modeling, synthetic traffic generation, and network performance analysis.

4.1 Traffic Modeling and Generation

There is no question that today’s network traffic is complex. Often, this is interpreted as saying that a
mathematical model of this traffic must be complicated in nature, i.e., must be highly parameterized in order
to realistically account for the observed complexity. One of the main results of this paper is that although
network traffic is intrinsically complex, parsimonious modeling is still possible; we demonstrate, moreover, that
it gives rise to a physical explanation for the self-similarity phenomenon that is simple and fully consistent with
actual traffic measurements from a LAN environment. Thus, for aggregate traffic measurements, insistence
on parsimonious modeling has lead to the use of self-similar (or long-range dependent) processes for traffic
modeling at the aggregate level. In this paper, the desire for a “phenomenological” explanation of self-similarity
in LAN traffic has resulted in new insights into the nature of traffic generated by the individual sources that
contributed to the aggregate stream. We identified the Noah Effect as an essential ingredient, thus describing
an important characteristic of the traffic in today’s networks by essentially a single parameter, namely the
intensity « of the Noah Effect in the ON- and OFF-periods of a “typical” network host. Whether we consider
an idealized setting involving i.i.d. ON- and OFF-periods (see [53, Theorem 1]) or strictly alternating ON/OFF
sources (see Section 2, Theorem 1) is not important for this finding. Generalizations accommodating more
realistic conditions are possible (see [48]), maintain the simplicity of the basic result, and may require the
addition of only a small number of physically meaningful parameters.

Explaining, and hence modeling self-similar phenomena in the traffic context in terms of the superposition
of many ON/OFF sources with infinite variance distribution for the lengths of their ON/OFF-periods, leads
to a straightforward method for generating long traces of self-similar traffic within reasonable (i.e., linear)
time assuming a parallel computing environment. Indeed, the results (e.g., Theorem 1) are tailor-made for
parallel computing: letting every processor of a parallel machine generate traffic according to an alternating
ON/OFF model (same «), simply adding (i.e., aggregating) the outputs over all processors produces self-similar
traffic. For example, producing a synthetic trace of length 100,000 on a MasPar MP-1216, a massively parallel

computer with 16,384 processors, takes on the order of a few minutes. In fact, Figure 8 shows the result of a

23



£ £ 60000 £ 60000
> o) >
aE) 00000 E 40000 QE) 40000
% 40000 % %
E 20000 § 20000 ;&‘S 20000
& & &
o 0 [N 0 o 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Unit = 100 Seconds Time Unit = 100 Seconds Time Unit = 100 Seconds
5 S 6000 5 6000
@ 6000 [} ©
£ £ 4000 £ 4000
= 4000 £ [~
%] [%] 0
2 2000 ° 2000 ® 2000
& 4 &
§ o _— S o § o =
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Unit = 10 Seconds Time Unit = 10 Seconds Time Unit = 10 Seconds
£ g 800 £ 800
o 800 2 2 600
E 600 g 600 £
5 400 5 400 5 400
2 200 2 200 2 200
& & &
a 0 a O a 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Unit = 1 Second Time Unit = 1 Second Time Unit = 1 Second
E 100 £ 100 £ 100
o 80 o 80 o 80
£ o0 E £ o0
% 40 ,g 40 % 40
-:‘% 20 é 20 :{s’ 20
o 0 o 0 o 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Unit = 0.1 Second Time Unit = 0.1 Second Time Unit = 0.1 Second
5 15 S 15 S 15
() Q Q
£ 10 E 10 E 10
E £ E
%]
g 5 g 5 g 5
X X X
Q Q Q
g o g o g o
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Unit = 0.01 Second Time Unit = 0.01 Second Time Unit = 0.01 Second

Figure 7: Actual Ethernet traffic (left column), synthetic trace generated from an appropriately chosen tradi-
tional traffic model (middle column), and synthetic trace generated from an appropriately chosen self-similar
traffic model with a single parameter (right column) on five different time scales. Different gray levels
indicate the same segments of traffic on the different time scales.
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simulation where we used this method to generate 27 hours worth of Ethernet-like traffic at the 10 millisecond
time scale (i.e., a time series of approximately 10,000,000 observations). More precisely, our objective here
was to experimentally “verify” Theorem 1 in the context of the August 1989 traffic measurements; i.e., we
chose @ = 1.2 (corresponding to the estimated Hurst parameter of H = 0.9 that is consistent with the
August 1989 data set), M = 500 (number of processors used to generate traffic, corresponding roughly to
the number of active source-destination pairs during the observed period), and strictly alternating ON/OFF
sources with the same a-value for the distributions of the ON- and OFF-periods. To check whether or not
the resulting synthetic traffic trace “looks like” actual Ethernet LAN traffic as measured in August 1989,
we plot in Figure 8 (right most column) the synthetic trace on 5 different time scales, the same way it was
done in [28], the original traffic measurements (left most column), and a synthetic trace (middle column)
generated from an appropriately matched batch Poisson process (the latter was taken as representative of
traditional traffic modeling). As can be seen, our synthetic traffic passes the “visual” test easily, with the
possible exception of the plot in the top row (the effect of the diurnal cycle in the 27 hour trace of Ethernet
traffic on the 100s time scale becomes noticeable, especially because it is by definition not part of the
stationary model that gave rise to the top right plot). On a more rigorous level, the trace also fits the data
well in a statistical sense, i.e., the estimated Hurst parameter matches the one from the data. Similarly
striking agreement between synthetically generated traffic and actual Ethernet LAN traces was obtained in a
number of different scenarios, e.g., chosing M = 16,000 (close to the total number of processors on the MasPar
machine), allowing for different source types (see [48]), selecting different a-values for the ON- and OFF-period
distributions (including different combinations of finite/infinite variance scenarios), and generating under the
i.i.d. and alternating renewal assumptions, respectively (see Section 2). Recall that the Ethernet-like behavior
of the synthetically generated trace in Figure 7 has essentially been accomplished with only one parameter,
namely the intensity « of the Noah Effect for the ON/OFF-periods of the traffic generated by a “typical” user.
Thus Figure 7 is testimony to parsimonious modeling at its best, and proof that today’s complex network
traffic dynamics can be modeled in a simple manner without requiring highly parameterized mathematical

models.

4.2 Performance and Protocol analysis

The practical benefits of parsimonious modeling of measured network traffic become especially apparent when
focusing on the potential impacts of traffic characteristics such as the Joseph and Noah Effects on queueing and
network performance, protocol analysis, and network congestion controls. Clearly, the appeal lies in the small
number of physically meaningful parameters whose practical impacts need to be investigated. Starting with
the empirical finding of self-similarity in Ethernet LAN traffic data reported in [27], there has been mounting
evidence for the practical importance of the Hurst parameter H for traffic engineering purposes. In particular,

work in [35, 9] (see also [12, 3]) demonstrates a significant difference in queueing performance (expressed in
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terms of the queue length distribution) between traditional (Markovian) traffic models and those exhibiting
the Joseph Effect. More specifically, while the queue length distribution of the former decreases exponentially
fast, that of the latter decreases much more slowly (depending on the intensity H of the Joseph Effect), namely
like the tail of a Weibull distribution. In practice, not accounting for the Joseph effect at the modeling stage
can lead to overly optimistic performance predictions and thus to quality-of-service requirements that are
impossible to guarantee in a realistic network scenario. This observation is of particular importance in the
context of the widely used concept of equivalent bandwidth [10], used in a number of proposed call admission
control schemes. At the same time, the presence of the Joseph Effect in measured traffic does not preclude
economies of scale (i.e., statistical multiplexing gains) by multiplexing a large number of such sources (see [8]).

In view of our physical explanation that the Joseph Effect in aggregate LAN traffic is caused by the Noah
Effect in the individual ON/OFF sources that generate the aggregate stream, understanding the impacts of
the Noah Effect in simple ON/OFF source models on queueing performance becomes essential and is likely to
provide valuable new insights into questions related to the design of efficient protocols and effective controls for
realistic network traffic. In fact, work is already under way that provides such new insights (e.g., see [39, 3]). For
example, investigating the queue length distribution for ON/OFF traffic that exhibits the Noah Effect (either
directly or via a corresponding M/G/1 model), these authors show that the Noah Effect gives rise to an infinite
mean waiting time, i.e., to queue length distributions that decrease much slower than a Weibull distribution
(i.e., the corresponding distribution obtained when aggregating many such ON/OFF sources). Clearly, this
is bad news from the point of view of trying to keep the traffic generated by individual sources isolated from
other traffic as far into the network as possible: the resulting buffer requirements at each network node and
the ensuing potential delays will be overwhelming. Similarly, traffic shaping at the source may not be feasible
in practice due to the naturally occurring large ON-periods for these sources, which in turn would require
huge buckets and thus give rise to unreasonably large delays. On the other hand, the results strongly suggest
the idea of statistically multiplexing a large number of sources that exhibit the Noah Effect at the earliest
possible stage in the network. By doing so, the theory ([35], [3], [17]) predicts smaller buffer requirements for
the network elements and hence smaller packet delays. The simulation results presented in [39] also suggest a
wide range of possibilities for protocols and controls for dealing with traffic scenarios that consist of sources
with different combinations of infinite variance/finite variance ON- and OFF-periods. For example, protocol
design should be expected to be sensitive to and take into account knowledge about network traffic such as
the presence or absence of the Noah Effect in a “typical” traffic source. However, how to effectively design
protocols that take such information into account remains largely an open issue. Similarly, call admission
control algorithms and congestion control schemes that incorporate information about the presence or absence
of the Noah Effect at the source level and the Joseph Effect at the aggregate level have yet to be proposed
and investigated (however, for some recent work on admission control schemes that take source characteristics

such as the Noah Effect into account, see [20]).
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5 Conclusion

Traditional ON/OFF' source models typically assume exponential or geometric distributions for their ON-
and OFF-periods (or more generally, finite variance distributions). These models are widely used and are
especially popular with queueing and performance analysts because of their analytic tractability. However,
in recent years, it has been recognized that multiplexing a large number of sources with such distributions
results in aggregate traffic that is inconsistent with traffic measurements from working networks. On the other
hand, Jain and Routhier’s packet train models [19] which arose directly from traffic measurement studies, were
criticized because of their lack of a clear definition of a “train”, their lack of suggestions for chosing the crucial
model parameters, and their lack of a physical interpretation. Motivated by the desire to provide a physical
explanation for the empirically observed self-similarity property in actual network traffic, we propose in this
paper to expand the range of traditional traffic modeling at the level of individual sources to account for the
Noah Effect, i.e., for the ability of individual sources to exhibit characteristics that cover a wide range of time
scales (“high-variability sources”). By doing so, the criticisms for the ON/OFF source model as well as for
the packet train model are deflected. Our results in Section 2 show that the superposition of many ON/OFF
models, each of which exhibits the Noah Effect, results in aggregate packet streams that are consistent with
measured LAN traffic and exhibits the same self-similar or fractal properties as can be observed in the data.
Moreover, our statistical analysis in Section 3 confirms the presence of the Noah Effect in measured Ethernet
LAN traffic at the source level, and demonstrates an appealing robustness property that renders the stated
objections against packet train source models irrelevant.

By being able to (i) reduce the self-similarity phenomenon for aggregate LAN traffic to properties of
the individual traffic components that make up the aggregate stream, (ii) expressing the essential difference
between traditional and self-similar traffic modeling in the context of the well-known ON/OFF source models,
and (iii) identifying the Noah Effect as the main point of departure from traditional to self-similar traffic
modeling, we hope to facilitate the acceptance of self-similar traffic models as viable and practically relevant
alternatives to traditional models. The benefits for doing so are immediate and include parsimonious and
physically meaningful models for the seemingly very complex traffic dynamics in today’s networks, and new
insights into problems related to the performance and analysis of protocols and network controls. We have
discussed in Section 4 some of the mounting evidence for the practical importance of the Noah and Joseph
Effects for network engineering, and it is safe to expect that these empirically observed traffic characteristics
will play an increasingly important role in the traffic modeling and network performance work for tomorrow’s
high-speed networks.

Finally, there remains the question about a plausible physical explanation of the empirically observed self-
similar nature of WAN traffic. Recall that while the results in Section 4 provide compelling evidence in favor
of explaining the self-similar nature of aggregate LAN traffic in terms of the Noah Effect of the individual

source-destination pairs that make up the aggregate packet stream, they also point toward the need for a
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different physical explanation when it comes to understanding the empirically observed self-similar nature of
WAN traffic. To this end, we recall a construction by Cox [5], also known as the immigration death process
or M/G/co model in queueing theory. In the context of WAN traffic, Cox’s construction concerns network
traffic at the application level and assumes that sessions (e.g., FTP, WWW) arrive in some random (e.g.,
Poisson or, more generally, renewal) fashion, transmit packets in some manner (e.g., constant rate) during
their “life time” (connection or holding time), and then cease transmitting packets. Cox [5] shows that the
aggregate packet stream (i.e., number of packets per time unit) generated by this process is (asymptotically
second-order) self-similar, provided the session holding times during which packets are transmitted exhibit the
Noah Effect. In fact, rigorous mathematical convergence results that lead to fractional Brownian motion limits
(in the spirit of Theorem 1) and are directly applicable to Cox’s construction and important generalizations
thereof have been recently obtained by Kurtz [25]. At the same time, there already exists strong empirical
evidence in favor of the Noah Effect at the application level in measured WAN traffic, e.g., see [38, 22, 6].
Further work on a rigorous physical explanation of WAN traffic self-similarity, together with a comprehensive
statistical analysis of WAN traffic at the application level with emphasis on the Noah Effect exhibited by
the individual applications (following the original work in [38]) are currently in progress. We expect that
the resulting detailed insights into the nature of WAN traffic will prove especially useful in understanding of
potential interactions between networks (e.g., controls, shaping mechanisms) and traffic (e.g., Mbone, TCP

traffic).
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