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Recently it has been shown that a repeating arbitrary spatiotemporal
spike pattern hidden in equally dense distracter spike trains can be ro-
bustly detected and learned by a single neuron equipped with spike-
timing-dependent plasticity (STDP) (Masquelier, Guyonneau, & Thorpe,
2008). To be precise, the neuron becomes selective to successive coinci-
dences of the pattern.

Here we extend this scheme to a more realistic scenario with multiple
repeating patterns and multiple STDP neurons “listening” to the incom-
ing spike trains. These “listening” neurons are in competition: as soon
as one fires, it strongly inhibits the others through lateral connections
(one-winner-take-all mechanism). This tends to prevent the neurons from
learning the same (parts of the) repeating patterns, as shown in simula-
tions. Instead, the population self-organizes, trying to cover the different
patterns or coding one pattern by the successive firings of several neu-
rons, and a powerful distributed coding scheme emerges.

Taken together, these results illustrate how the brain could easily en-
code and decode information in the spike times, a theory referred to
as temporal coding, and how STDP could play a key role by detecting
repeating patterns and generating selective response to them.
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1 Introduction

Spike-timing-dependent plasticity (STDP) is now a reasonably well-
established physiological mechanism of activity-driven synaptic regulation.
It has been observed extensively in vitro for more than a decade (Markram,
Lübke, Frotscher, & Sakmann, 1997; Bi & Poo, 1998; Zhang, Tao, Holt, Har-
ris, & Poo, 1998; Feldman, 2000) and more recently in vivo in the Xenopus
visual system (Vislay-Meltzer, Kampff, & Engert, 2006; Mu & Poo, 2006), the
locust mushroom body (Cassenaer & Laurent, 2007), and rat visual (Meliza
& Dan, 2006) and barrel (Jacob, Brasier, Erchova, Feldman, & Shulz, 2007)
cortex. It has also been shown to do a better job than more conventional
Hebbian correlation-based plasticity at explaining both cortical reorgani-
zation in cat primary visual cortex (Young et al., 2007) and connectivity
in locust olfactory system (Finelli, Haney, Bazhenov, Stopfer, & Sejnowski,
2008).

We recently demonstrated that a single leaky integrate-and-fire (LIF)
neuron equipped with STDP is able to solve a difficult computational prob-
lem: to robustly detect a repeating arbitrary spatiotemporal spike pattern
among its afferents by becoming sensitive to the successive coincidences
in the pattern and tracking back through the pattern until the beginning is
found. This is true even when the pattern is embedded in equally dense
distracter spike trains and even when it does not involve all the afferents
(Masquelier, Guyonneau, & Thorpe, 2008). The phenomenon emerges from
STDP: the rule specifically reinforces connections from afferents that helped
the neuron reach its threshold, so each time the neuron fires to the pattern,
it increases the probability that the threshold is reached again and earlier
next time the pattern is presented. As a result, the neuron becomes selective
to the pattern and tracks back through it until the beginning is found. The
mechanism was shown to be robust to a wide range of perturbations: miss-
ing spikes, jitter, noisy initial weights, infrequent patterns, and reductions
in the proportion of afferents involved in the pattern. While this result is of
theoretical importance, it is clear that a more realistic situation would be to
have multiple repeating patterns present in the input and multiple neurons
listening to them. This is the kind of situation we explore in this letter.

We simulated a population of 2000 afferents firing continuously for a
few hundred seconds according to a Poisson process with variable instan-
taneous rate that was independently generated for each afferent (see the
appendix for details). We inserted into these stochastic spike trains several
distinct 50 ms patterns, which repeated at random intervals, as can be seen
in Figure 1 (for clarity, the figure shows only 100 afferents). The repeating
patterns had roughly the same spike density as the distracter parts so as to
make them invisible in terms of firing rates. The firing rate averaged over
the population and estimated over 10 ms time bins has a mean of 64 Hz and
a standard deviation of less than 2 Hz (this firing rate is even more constant
than in the 100 afferent case of Figure 1 because of the law of large numbers).
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Figure 1: Spatiotemporal spike patterns. Here we show three different 50 ms
long patterns (black circles, black squares, and black diamonds) that repeat at
random intervals within otherwise stochastic Poissonian activity (gray circles).
Because of space constraints, we show only the first 100 afferents (out of 2000).
Notice that each of the three patterns involves only half of the afferents, and the
involved sets overlap. The bottom panel plots the population-averaged firing
rates over 10 ms time bins (we chose 10 ms because it is the membrane time
constant of the neuron used in the simulations) and demonstrates that nothing
about the population firing rates can be used to characterize the periods when
the pattern is present. Detecting the patterns thus requires taking the spike times
into account.

Each repeating pattern involved only half of the afferents (independently
randomly chosen—the selected sets were thus not disjoint, and individual
afferents could be implicated in multiple patterns). We increased the dif-
ficulty still further by adding a permanent 10 Hz Poissonian spontaneous
activity to all the neurons and a 1 ms jitter to the patterns.

As can be seen in Figure 2, several (three on the figure) downstream
LIF neurons were connected to these 2000 afferents, with random initial
synaptic weights (drawn from an equiprobable distribution over [0,1]). They
were equipped with STDP, and each integrated the spike trains in parallel.
Lateral inhibitory connections were set up between them, so that as soon
as a neuron fired, it sent a strong Inhibitory postsynaptic potential (IPSP)
to its neighbors. This is a biologically plausible way to implement a one-
winner-take-all (1WTA) mechanism (Thorpe, 1990). We will see through
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Figure 2: Network architecture. The 2000 input spike trains (we represented
only 3) are integrated in parallel by several (here three) downstream LIF neu-
rons, through excitatory synapses governed by STDP. Lateral inhibitory con-
nections are set up between them, so that as soon as a neuron fires, it sends
a strong IPSP to its neighbors (the apparent violation of Dale’s law can be
resolved via inhibitory interneurons). This is a biologically plausible way to im-
plement a one-winner-take-all mechanism (Thorpe, 1990). Unlike the excitatory
connections, the inhibitory connections are hard-wired and not plastic.

simulations that the neurons learn to detect the repeating patterns and
that the inhibition tends to prevent them from learning the same parts of
them. Instead, the neural population self-organizes, trying to cover all the
repeating input patterns or to code one pattern by the successive firing of
several neurons.

Note that the effect of winner-take-all on STDP-based learning has al-
ready been studied with both discrete spike volleys (Delorme, Perrinet,
Thorpe, & Samuelides, 2001; Guyonneau, VanRullen, & Thorpe, 2004;
Masquelier & Thorpe, 2007) and periodic inputs (Gerstner, Ritz, & van
Hemmen, 1993; Yoshioka, 2002). However, this is the first time that this
sort of mechanism has been used in a continuous regime in which patterns
occur at random intervals.

2 Results

2.1 One Pattern, n Neurons. As a first extension to our previous study
(Masquelier et al., 2008), we explored a situation in which there was still only
one repeating pattern but three downstream neurons. Without inhibition,
the three neurons are independent; they thus all behave exactly as in our
previous study. Specifically, they all learn to detect the repeating pattern
and track back through it until the beginning is found. The latencies of the
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postsynaptic spikes with respect to the beginning of the pattern are then
minimal (around 5 ms). Some differences between neurons may remain
after convergence due to differences in the initial synaptic weights, but
these variations are tiny (mean differences in postsynaptic latencies is 0.15
ms, with standard deviation 0.24 ms, estimated over 100 repetitions of a 225
second simulation sequence using three postsynaptic neurons).

The situation becomes more interesting with inhibition. As before, one
neuron (A) usually finds the start of the pattern and fires to it. But if a
second neuron B starts tracking back through the pattern, it cannot reach
the start of the pattern: since A inhibits B rapidly after the pattern is shown,
B will need some time to reach its threshold after A has fired. B thus has a
postsynaptic latency that is significantly greater than A’s. If a third neuron
C starts tracking back through the pattern, its progression will be stopped
by B. The neurons thus “stack,” that is, they fire to successive parts of
the pattern, and the delay between two successive parts depends on the
strength of the inhibition (the amplitude of the IPSP).

To demonstrate these points, we first ran a 225 s simulation with three
postsynaptic neurons and an IPSP of amplitude one-fourth of threshold (i.e
137.5 arbitrary units). Figure 3 (top) plots the membrane potentials of the
three neurons at the beginning of the simulation. Notice how the neurons
inhibit each other each time they fire. At this phase of the simulation,
the neurons are not selective. Since the presynaptic spike density is almost
constant, the thresholds are reached pseudoperiodically. We represented the
periods when the repeating pattern was presented with a gray rectangle,
and it can be seen that the neurons fire inside and outside it indifferently.
But as in our previous study (Masquelier et al., 2008), STDP rapidly causes
the neurons to become selective to the repeating pattern. What is new here
is that inhibition prevents them from all tracking back through the entire
pattern until the beginning. Instead the neurons stack; they become selective
to successive parts of the pattern, as can be seen in Figure 3 (middle). In
Figure 3 (bottom), we represent the postsynaptic-like latencies of the three
neurons with respect to the beginning of the pattern. By convention, the
latency is said to be zero if the neuron fired outside the pattern, that is,
generated a false alarm (these zero latencies are not taken into account in
the mean latencies). Notice how the neurons track back through the pattern
before stacking from the beginning of it.

We then varied the amplitude of the IPSP (0.1, 0.25, 0.5, and 1 times the
threshold). For each value, we ran 100 simulations with different pseudo-
randomly generated input spike trains. Most of the neurons usually learned
something (73% on average), that is, became selective to one part of the
pattern (criteria: a hit rate superior to 90% and a false alarm rate inferior to
1 Hz). We systematically reported the postsynaptic spike latencies for those
neurons and computed the differences between two successive latencies.
It can be seen in Figure 4 that as expected, the stronger the inhibition,
the longer the interval between two successive firings. A given pattern
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Figure 3: Learning. The top and middle panels plot the membrane potential of
the three neurons (arbitrary units), as a function of time. Peaks correspond to
postsynaptic spikes and are followed by a negative spike afterpotential. Notice
that each time a neuron fires, it sends an IPSP to the two others. This tends to
prevent neurons from firing too close to each other in time. (Top) Beginning
of the simulation. The neurons are not selective. They fire pseudoperiodically,
both inside and outside the pattern (shown in gray) indifferently. (Middle) End
of the simulation. Each neuron has become selective to a different part of the
pattern (i.e., has a different latency with respect to the beginning of the pattern;
see also the bottom panel). Note that the timescale is not the same for the top
and bottom plots. (Bottom) Postsynaptic spike latencies of the three neurons
during the learning process. By convention, the latency is said to be zero if
the neuron fired outside the pattern (i.e., generated a false alarm). Notice that
these false alarms stop after about 250 discharges: selectivity has emerged. Then
the neurons start tracking back through the pattern, but because of inhibition,
each one is stopped in its progression by the preceding one. The neurons thus
“stack” from the beginning of the pattern, with latencies of, respectively, 5, 12,
and 24 ms. Hit and false alarm rates are shown above the plots (both computed
over the last 75 s of simulated time).



Competitive STDP-Based Spike Pattern Learning 1265

Figure 4: Effect of inhibition on latency differences. Here we plotted the mean
latency difference between two successive successful neurons (criteria: hit rate
above 90%, false alarm rate below 1 Hz) for various inhibition strengths (ex-
pressed as the magnitude of the IPSP with respect to the neuron’s threshold).
As expected, the stronger the inhibition, the longer the intervals between two
successive firings.

can thus be coded by more or fewer neurons, depending on the strength
of the inhibition. To maximize coding efficiency, the system should avoid
having redundant neurons coding for virtually identical temporal parts of
a pattern, but should ensure the entire pattern is coded by avoiding having
blind zones where the input does not influence the output. A typical delay
of the order of the membrane time constant (here 10 ms) is thus close to
optimal. This corresponds to an IPSP of amplitude roughly one-fourth of
threshold. We used this value for the rest of the simulations.

2.2 n Patterns, m Neurons. What happens if more than one repeating
pattern is present in the input? Usually the same neuron cannot become
selective to two distinct patterns unless they happen to be very similar
(only once in the 100 simulations described below did a neuron become
responsive to two patterns). Chance determines the pattern to which each
neuron becomes selective, but inhibition encourages the neurons to dis-
tribute themselves across all the patterns.

To demonstrate these points, we ran one hundred 675-second-long sim-
ulations with different pseudorandomly generated spike trains, all of them
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involving three repeating patterns and nine neurons. Figure 5 shows a typi-
cal result. In this example patterns 1 and 2 were learned by two neurons, and
pattern 3 by three neurons. Two neurons “died”: they stopped firing after
too many discharges had occurred outside the patterns, causing too much
depression (in this letter, the STDP function is biased toward depression;
see the appendix).

Figure 6 shows statistics over the 100 runs. In more than two-thirds of
the cases, each of the three patterns was learned by at least one neuron.
On average, 5.7 out of 9 neurons (63%) learned something (criteria: hit rate
over 90%, false alarm rate below 1 Hz). This may seem lower than in the
single-neuron case studied previously (Masquelier et al., 2008), where the
pattern was learned in 96% of the cases. However, the problem faced by a
neuron B when it tries to learn a pattern that has already been learned by A
is harder than learning an unlearned pattern. Indeed, because of inhibition,
A will prevent B from firing immediately after it, so the period available
for B to fire is actually shorter than the length of the pattern. The problem
is thus equivalent to that of finding a shorter pattern, which is obviously
harder. This also means that neurons will effectively “prefer” to learn an
unlearned pattern (and track back through it) than stacking on an almost
saturated pattern. Again, this phenomenon will help distributing neurons
harmoniously across patterns.

3 Discussion

As in our previous study, we have again found that STDP proves to be
a robust mechanism for detecting and learning repeating spatiotemporal
spike patterns in continuous spike trains (Masquelier et al., 2008). But by
coupling it with a simple biologically plausible competitive mechanism, the
studies presented here significantly extend our previous findings. First, we
demonstrate that a given pattern can be divided in successive subpatterns,
with one neuron coding for each subpattern, and that the neurons stack,
learning in priority the first parts of the patterns. The subpattern durations
should be of the order of the membrane time constant, which defines an op-
timal level of inhibition. Second, different patterns can be coded by different
sets of (possibly overlapping) neurons. This powerful distributed coding
scheme naturally emerges from both unsupervised STDP-based learning
and lateral inhibition, which tends to prevent the neurons from learning
the same subpatterns.

STDP had been shown to be capable of learning spatiotemporal pat-
terns in both discrete spike volleys (Song, Miller, & Abbott, 2000; Gerstner
& Kistler, 2002; Guyonneau, Van Rullen, & Thorpe, 2005; Masquelier &
Thorpe, 2007) and periodic inputs (Gerstner et al., 1993; Gerstner, Kempter,
van Hemmen, & Wagner, 1996; Yoshioka, 2002; Finelli et al., 2008; Hosaka,
Araki, & Ikeguchi, 2008). In our previous study (Masquelier et al., 2008),
we showed how STDP can detect a single repeating pattern in continuous
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Figure 6: Performance with multiple patterns. The left panel plots the distri-
bution of the number of patterns learned by at least one neuron across the 100
simulations. In more than two-thirds of the cases, all three patterns were learned
by at least one neuron. The right panel plots the distribution of the number of
successful neurons (criteria: hit rate above 90%, false alarm rate below 1 Hz).
The mean is 5.71/9 = 63%.

spike trains and track back through it. That finding follows from the fact
that STDP reinforces synapses that correspond to correlated spike trains
(Kempter, Gerstner, & van Hemmen, 1999), and its sensitivity to the earliest
predictors of subsequent spike events (Mehta, Quirk, & Wilson, 2000; Song
et al., 2000). But to our knowledge, this is the first demonstration that by
coupling it with a competitive mechanism, it can detect multiple spike pat-
terns that occur at random intervals in continuous spike trains and to divide
them in subpatterns. It is also the first time that a stacking effect has been
predicted. Subsequent neurons with appropriate conduction delays could
easily code for the whole patterns at low cost (Izhikevich, 2006). Specifically,
the conduction delays should compensate for the differences of latencies,
so that the subsequent neurons receive the input spikes simultaneously if
and only if the subpatterns are presented in the correct order, that is, when
the whole pattern is presented.

There is no consensus on the definition of a spike pattern, and we admit
that ours is quite simple. Here, a pattern is seen as a succession of coin-
cidences. The neurons become selective to successive coincidences of the
patterns, whereas the exact temporal delays between the nearly simultane-
ous spikes of one coincidence do not matter. Note, however, that the suc-
cession of the coincidences is another temporal aspect, which, even though
not relevant after convergence, greatly facilitates the learning phase and al-
lows the neurons to stack. It would be much harder to find single repeating
coincidences on their own. But because the much longer sequences repeat
(here lasting 50 ms), the neurons only need to fire somewhere within a
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50 ms window to start learning the patterns and track back through them
until stacking from the beginning of them.

We emphasize that the proposed learning scheme is completely un-
supervised. No teaching signal tells the neuron when to learn. Nor is
there any mechanism for labeling the input patterns. Biologically plau-
sible mechanisms for supervised learning of spike patterns have also been
proposed (Gütig & Sompolinsky, 2006), sometimes using STDP in addition
(Legenstein, Naeger, & Maass, 2005).

It is known that in feedforward networks, no computational power is lost
if, like here, inhibition is used exclusively for unspecific lateral inhibition,
and no flexibility is lost if, like here, plasticity is restricted to excitatory
synapses (Maass, 2000). The circuit we propose is thus both powerful and in
accordance with the asymmetry between inhibition and excitation observed
in the cortex: only about 15% of synapses are inhibitory, evidence for their
direct involvement in plasticity is somewhat controversial, and their action
is usually found to be local and nonselective.

The classic k-winner-take-all (kWTA) problem has generally been stud-
ied with rate-based coding frameworks in which it means that the most
frequently firing neurons should inhibit their competitors and thereby stop
them from firing. Biophysical circuits to perform such operations (and the
particular case of 1WTA, i.e., max operation) have been proposed (Elias &
Grossberg, 1975; Amari & Arbib, 1977; Yuille & Grzywacz, 1989; Coultrip,
Granger, & Lynch, 1992; Yu, Giese, & Poggio, 2002; Knoblich, Bouvrie, &
Poggio, 2007; Kouh & Poggio, 2008). However, it is important to realize that
these circuits are significantly more complex than what we propose, and
they typically take several tens of milliseconds to reach a steady regime.
The duration of the transient increases if input values are close to each other
(Knoblich et al., 2007). With our approach, in which the latencies of single
spikes are reliable (as opposed to stochastic, e.g., Poissonian) and carry
information, kWTA simply means that the earliest firing neurons should
prevent their competitors from firing for a while—something that lateral
inhibition can easily do (Thorpe, 1990).

The mechanism presented here is generic and could be at work in all
brain areas. Nevertheless, if we focus on sensory systems, and in particular
audition or vision, it is easy to imagine how competitive STDP learning
could generate a vast dictionary of features from experience. The model
predicts that frequently occurring features are not only more likely to be
learned, but also will be processed and recognized faster than unfamiliar
ones (recall that postsynaptic latencies decrease with training). This last
point is in accordance with psychophysical results showing that familiar
categories such as faces are processed faster (Thorpe, Crouzet, Kirchner, &
Fabre-Thorpe, 2006; Crouzet, Thorpe, & Kirchner, 2007) or that processing
times can be speeded up with experience (Masquelier, 2008).

In the brain, evidence for reliable spike timing is growing (see Tiesinga,
Fellous, & Sejnowski, 2008, for a recent review), and electrophysiologists
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have reported the existence of repeating spatiotemporal spike patterns with
millisecond precision, both in vitro and in vivo. These repeating patterns
can last from a few tens of ms to several seconds (Frostig, Frostig, & Harper,
1990; Prut et al., 1998; Fellous, Tiesinga, Thomas, & Sejnowski, 2004; Ikegaya
et al., 2004; Abeles, 2004; Luczak, Barthó, Marguet, Buzsáki, & Harris, 2007;
Rolston, Wagenaar, & Potter, 2007). In this letter, we propose a cheap and
robust mechanism that can detect, learn, and represent these repeating
spatiotemporal patterns. The hypotheses we made (essentially the presence
of LIF neurons, STDP, and lateral inhibition based kWTA) are surprisingly
weak. The results thus constitute a strong argument in favor of temporal
coding, that is, the hypothesis that the brain uses the spike times, and not
only the firing rates, to encode, decode, and process information.

Appendix: Code

The simulations were performed using Matlab R14. The source code is
available from the authors on request.

A.1 Spike Trains. The methods used for generating the spike trains were
essentially identical to the ones used in our earlier study (Masquelier et al.,
2008), except that multiple patterns were copy-pasted. They are described
again here for the reader’s convenience.

The spike trains were prepared before the simulation (Figure 1 illustrates
the type of spike trains we used, though with a smaller set of neurons).
Because of memory constraints, we did not have a single nonrepeating
sequence. Instead, a spike sequence lasting one-third of the total simulation
time was repeated three times per run, but this repetition had no impact
on the results. Each afferent emits spikes independently using a Poisson
process with an instantaneous firing rate r that varies randomly between 0
and 90 Hz. The maximal rate change s was chosen so that the neuron could
go from 0 to 90 Hz in 50 ms. Time was discretized using a time step dt of
1 ms. At each time step:

1. The afferent has a probability of r.dt of emitting a spike (whose exact
date is then picked randomly within the 1 ms time bin).

2. Its instantaneous firing rate is modified: dr = s.dt, where s is the speed
of rate change (in Hz/s), and clipped in [0, 90] Hz.

3. Its speed of rate change is modified by ds, randomly picked from
a uniform distribution over [−360 + 360] Hz/s, and clipped in
[−1800 + 1800] Hz/s.

We chose to apply the random change to s as opposed to r so as to have a
continuous s function and a smoother r function.

A limitation of this work is the excitatory-only scheme. Consequently,
something like “afferent A must not spike” cannot be learned, and learning
will be limited to positive patterns. We thus wanted repeating patterns in
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which all the afferents spike at least once. We could have made up such
patterns, but we wanted the pattern to have exactly the same statistics
as the Poisson distracter part (to make the pattern detection harder), so
we preferred to randomly pick 50 ms periods from the original Poisson
spike trains and then to copy-paste them (see below). To make sure these
randomly selected periods all contain at least one spike from each afferent,
we implemented a mechanism that triggers a spike whenever an afferent
has been silent for more than 50 ms (leading to a minimal firing rate of
20 Hz). Clearly, such a mechanism is not implemented in the brain; it is just
an artifice we used here to make the pattern detection harder. As a result,
the average firing rate was 54 Hz, and not the 45 Hz we would have without
this additional mechanism.

Once the random spike train had been generated, some randomly se-
lected portions were selected and used to define the patterns to be repeated,
and these were copy-pasted at irregular intervals throughout the sequence.
For each pattern, the copy-paste did not involve all the afferents: half of
them (randomly picked) conserved their original spike trains. But we dis-
cretized the spike trains of the other half of afferents into 50 ms sections.
We randomly picked one of these sections and copied the corresponding
spikes. Then we randomly picked a certain number of these sections (1/3 ×
1/number of patterns, so that the total time with pasted patterns repre-
sented one-third of the simulation time), avoiding consecutive ones, and
replaced the original spikes by the copied ones. Jitter was added before
the pasting operation, picked from a gaussian distribution with a mean of
zero and standard deviation 1 ms. We repeated the copy-paste operation as
many times as the number of patterns we wanted, avoiding the situation
where two different patterns are pasted within the same 50 ms period. For
each pattern, the involved afferents were independently randomly chosen;
the selected sets were thus not disjoint.

After this copy-paste operation, a 10 Hz Poissonian spontaneous activity
was added to all neurons and all the time. The total activity was thus 64 Hz
on average, and spontaneous activity represented about 16% of it.

A.2 Leaky Integrate-and-Fire Neuron. The neuronal model is the same
as the one we used in our earlier study (Masquelier et al., 2008), except that
inhibitory postsynaptic potentials (IPSPs) are now involved.

Specifically, we modeled the LIF neuron using Gerstner’s spike response
model (SRM) (Gerstner et al., 1993). That is, instead of solving the membrane
potential differential equation, we used kernels to model the effect of spikes
on the membrane potential.

Each presynaptic spike j , with arrival time tj , is supposed to add to the
membrane potential an excitatory postsynaptic potential (EPSP) of the form

ε(t − tj ) = K ·
(

exp
(

− t − tj

τm

)
− exp

(
− t − tj

τs

))
· �(t − tj ),
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where τm is the membrane time constant (here 10 ms), τs is the synapse time
constant (here 2.5 ms), and � is the Heaviside step function:

�(s) =
{

1 if s ≥ 0

0 if s < 0
,

and K is just a multiplicative constant chosen so that the maximum value
of the kernel is 1 (the voltage scale is arbitrary in this letter).

The last emitted postsynaptic spike i has an effect on the membrane
potential modeled as follows:

η(t − ti ) = T ·
(

K1 · exp
(

− t − ti
τm

)
− K2 ·

(
exp

(
− t − ti

τm

)

− exp
(

− t − ti
τs

)))
· �(t − ti ),

where T is the threshold of the neuron (here 550, arbitrary units). The
first term models the positive pulse and the second one the negative spike
afterpotential that follows the pulse. Here we used K1 = 2 and K2 = 4.

When a neuron fires at time tk , it sends to the others an inhibitory post-
synaptic potential (IPSP). For simplicity, we used the same kernel as for
EPSP with a multiplicative constant α (0.25 in the baseline condition) used
to tune the inhibition strength:

µ(t − tk) = −α · T · ε(t − tk).

ε, η, and µ kernels were rounded to zero when, respectively, t − tj , t − ti ,
and t − tk were greater than 7τm.

At any time, the membrane potential is

p = η(t − ti ) +
∑

j/tj >ti

w j · ε(t − tj ) +
∑

k/tk>ti

µ(t − tk),

where the w j are the excitatory synaptic weights, between 0 and 1 (arbitrary
units).

This SRM formulation allows us to use event-driven programming: we
compute the potential only when a new presynaptic spike is integrated.
We then estimate numerically if the corresponding EPSP will cause the
threshold to be reached in the future and at what date. If it is the case, a
postsynaptic spike is scheduled. Such postsynaptic spike events cause all
the EPSPs and IPSPs to be flushed, and a new ti is used for the η kernel.
There is then a refractory period of 5 ms when the neuron is not allowed to
fire.
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A.3 Spike-Timing-Dependent Plasticity. The STDP model we used is
identical to the one used in our earlier study (Masquelier et al., 2008). It is
described again here for the reader’s convenience.

We used an additive exponential update rule:

�w j =




a+ · exp
(

tj − ti
τ+

)
if tj ≤ ti (LTP)

−a− · exp
(

− tj − ti
τ−

)
if tj > ti (LTD)

.

Following learning, the weights were clipped to [0,1]. Note that such a
bounded additive rule leads to a bimodal distribution after convergence
(VanRossum, Bi, & Turrigiano, 2000).

We used τ+ = 16.8 ms and τ− = 33.7 ms, in accordance with experimen-
tal measurements (Bi & Poo, 2001). We restricted the learning window to
[ti − 7 · τ+, ti ] for LTP and to [ti , ti + 7 · τ−] for LTD. For each afferent, we
also limited LTP (resp. LTD) to the last (first) presynaptic spike before (af-
ter) the postsynaptic one (nearest spike approximation). We did not take
the effects of finer triplets of spikes (Pfister & Gerstner, 2006) into account.

It was found that small learning rates led to more robust learning. We
used a+ = 0.03125 and a− = 0.85 · a+.

Importantly, a−τ− > a+τ+, meaning STDP function is biased towards
depression (Song et al., 2000). This means, among other things, that if no
repeating patterns were inserted, STDP would thus gradually decrease the
synaptic weights until the threshold would no longer be reached.
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