
277MODEL COUPLING TOOLKIT

THE MODEL COUPLING TOOLKIT: A
NEW FORTRAN90 TOOLKIT FOR
BUILDING MULTIPHYSICS PARALLEL
COUPLED MODELS

Jay Larson
Robert Jacob
Everest Ong

MATHEMATICS AND COMPUTER SCIENCE DIVISION
ARGONNE NATIONAL LABORATORY ARGONNE, IL
60439, USA (LARSON@MCS.ANL.GOV)

Abstract
Many problems in science and engineering are best simu-
lated as a set of mutually interacting models, resulting in a
coupled or multiphysics model. These models present
challenges stemming from their interdisciplinary nature
and from their computational and algorithmic complexi-
ties. The computational complexity of individual models,
combined with the popularity of the distributed-memory
parallel programming model used on commodity micro-
processor-based clusters, results in a parallel coupling
problem when building a coupled model. We define and
elucidate this problem and how it results in a set of
requirements for software capable of simplifying the con-
struction of parallel coupled models. We describe the
package, the Model Coupling Toolkit (MCT), which we
have developed to meet these general requirements and
the specific requirements of a parallel climate model. We
present the MCT programming model with illustrative code
examples. We present representative results that meas-
ure MCT’s scalability, performance portability, and a proxy
for coupling overhead.

Key words: Parallel computing, multiphysics, parallel cou-
pling, coupled models

1 Introduction

Complex systems comprising numerous, mutually inter-
acting subsystems abound in nature and engineering.
These models are commonly called coupled or multi-
physics models. Examples include models of climate
(Boville and Gent, 1998), space weather (Toth et al., 2004),
reactive flow (Lefantzi and Ray, 2003), solid rockets
(Heath and Dick, 1998) and fluid–structure interaction
(Baum et al., 2001).

A coupled climate model is an excellent example of a
multiphysics model, comprising interdependent models
that simulate the Earth’s atmosphere, ocean, cryosphere,
and biosphere. Each of these models requires boundary
condition data from other models and, in turn, provides
as output boundary condition data for other models in the
system. For example, the atmosphere provides to the
Earth’s surface downward radiative fluxes, momentum
fluxes in the form of wind stress, and freshwater flux in
the form of precipitation.

Until recently, computer simulation of physical, chem-
ical, biological, and environmental systems has focused
on individual subsystems that are part of a greater whole.
Study of the Earth’s climate system, for example, is
undertaken by scientists concentrating in one of the fol-
lowing fields: atmospheric physics, oceanography, sea
ice modeling, and land-surface modeling. These special-
ists work on models for their respective disciplines, and
in the past they ran their subsystem models in isolation,
using prescribed data from climatologies, reanalyses,
output from the other disciplines’ models run off-line, or
data computed by using drastically simplified versions of
the other subsystems (e.g. use of a mixed-layer ocean to
provide ocean surface data for use by an atmospheric
general circulation model).

Parallel coupled models incur a high computational
cost from running numerous compute-intensive algo-
rithms to integrate the equations of evolution for each
subsystem of the coupled system. In terms of the climate
system model as an example, atmosphere and ocean gen-
eral circulation models are among the most computation-
ally demanding applications in computational science.

The software engineering of a parallel coupled model
requires solutions to many challenging problems in the
implementation of a large system comprising many mutu-
ally interacting and separately developed parts. In this
paper, we focus on the data interactions between the
models, and consider issues regarding build system and
language interoperability beyond the scope of our discus-
sion. Data exchanged among the models typically reside
on differing spatial meshes, requiring interpolation
between the source and target components’ respective
grids. The models may also differ in how they discretize
time, requiring some scheme to either interpolate or aver-

The International Journal of High Performance Computing Applications,
Volume 19, No. 3, Summer 2005, pp. 277–292
DOI: 10.1177/1094342005056115
© 2005 Sage Publications

278 COMPUTING APPLICATIONS

age/accumulate data for translation between the source
and target components’ time meshes.

The use of distributed-memory parallel programming
in each component has led to a parallel coupling prob-
lem: the challenge of connecting models that not only
have different internal data structures but may each have
different decompositions of those data structures each on
different sets of processors.

Despite these obstacles, parallel coupled models have
been created and used successfully (Boville and Gent,
1998; Bettge et al., 2001; Jacob et al., 2001). Below, we
discuss briefly typical solutions employed in coupled
model development.

In the past, parallel coupled model developers, such as
those mentioned above, have surmounted the parallel
coupling problem by implementing ad hoc application-
specific solutions. Like language interoperability, the par-
allel coupling problem is a software barrier amenable to a
generic software solution. Parallel coupling at a minimum
poses a challenge in parallel data transfer between
components, the so-called M-by-N (or M × N) problem
(Bertrand et al., 2005). A second, often-encountered
requirement to implement parallel coupling is the need
for distributed intergrid interpolation algorithms. We
describe here a general solution to these and other prob-
lems in the form of a software library with data types and
methods for the most commonly encountered problems in
building parallel coupled models: the Model Coupling
Toolkit (MCT).

In Section 2 we discuss the parallel coupling problem,
both in the general case and the specific case of the Com-
munity Climate System Model (CCSM). In Section 3, we
describe MCT and explain how its kernels support paral-
lel multiphysics coupling. A companion paper (Jacob et al.,
2005) gives details on the parallel data transfer capabili-
ties in MCT. In Section 4, we discuss the MCT program-
ming model and present pseudo-code to illustrate its usage.
A companion paper (Craig et al., 2005) describes in detail
how MCT was employed to create a parallel coupling
infrastructure for CCSM. In Section 5, we present perform-
ance results. In Section 6, we present our conclusions and
chart a possible future course for MCT development.

2 Parallel Coupling Problem

Versions of the CCSM through version 2 (Kiehl and
Gent, 2004) had a coupler with only shared-memory par-
allelism. Data were exchanged with this coupler by sin-
gle message passing interface (MPI) messages between
the coupler and the root process of the parallel compo-
nent models. To accommodate the future development of
CCSM, which envisions both increasing horizontal reso-
lution and adding more physics parametrizations, a paral-
lel coupler was needed.

The challenges posed in building a parallel coupler for
CCSM led to a general consideration of the software
needs of parallel coupled models, which in turn led to the
creation of the MCT. This general description of the
problem is summarized in Section 2.1 and will be
explored further in a future paper. The specific chal-
lenges of CCSM are described in Section 2.2.

2.1 GENERAL PROBLEM OF PARALLEL
COUPLING

A parallel coupled model is a collection of N compo-
nent models, or components,1 each of which may employ
distributed-memory parallelism. Each component Ci
(where i = 1, …, N) resides on Pi processing elements.
Each model may in principle have its own distinct discre-
tization of space and time and, possibly, multiple mesh
schemes. Each model shares an interface with one or
more of the other N – 1 models and requires input field
data from and/or supplies output field data to these other
models. We define the parallel coupling problem as the
transmission and transformation of the various distrib-
uted data between the component models comprising a
parallel coupled system.

The parallel coupling problem has two major facets:
coupled system architecture and parallel data processing
required to implement model interaction.

The architectural aspects of the problem fall into two
broad categories, and originate either in scientific require-
ments or software implementation choices.

The coupled model architectural aspects derived from
scientific requirements are as follows. (1) Connectivity:
the set of all model–model interactions determined by the
physics and solution algorithms of the coupled system.
(2) Domain overlap: the simulation space across which
two or more models must exchange either driving or
boundary condition data, which may be as simple as sub-
sets of physical meshes, or as complex as interactions
across spectral space or between Eulerian and Lagrang-
ian models. (3) Coupling cycle: the period over which all
models in the system have exchanged data at least once.
(4) Coupling frequency: the temporal exchange rate for a
given model pair. (5) Tightness: the ratio of the effort
(e.g. wall-clock time) by a component spent executing
model–model interactions versus integrating its own
equations of evolution.

The coupled model architectural aspects describing
software implementation choices are as follows. (1) Com-
ponent scheduling: the order of execution for the individ-
ual models in the coupled system, which can be sequential
(Figure 1(a)), concurrent (Figures 1(b) and 1(c)), or a com-
bination thereof (e.g. Figure 1(d)). (2) Resource alloca-
tion: the number of processors and threads allocated to
each component in the system. (3) Number of executa-

279MODEL COUPLING TOOLKIT

bles: the number of executable images in the coupled
system, either single (Figures 1(a), 1(b), and 1(d)) or mul-
tiple (Figure 1(c)) executables. (4) Coupling mechanism:
the way models exchange information, either directly or
through an intermediate entity.

In a coupled model, the data exchanged by two com-
ponents Ci and Cj reside on their overlap domain Ωij, and
in principle each component will have its own discretiza-
tion of Ωij. Thus, the parallel data processing challenge in
coupled model development comprises the description of
each component’s distributed mesh and field data on Ωij,
its transfer between the processor pools and/or decompo-
sitions on which Ci and Cj reside, and its transformation
for use by the other component.

The data description problem for component interac-
tion comprises four elements: (1) each component’s spatial
discretization of the overlap domain; (2) decompositions
of the discretizations over the processor pools on which
they reside; (3) lists of fields each component either sends
or receives and how these fields are bound to their respec-
tive distributed discretized domains; (4) time sampling of
field data. The coupled model developer is confronted
with a choice for each of these four issues: either work
with the native representations used by each component,
or impose standard descriptors on which data representa-
tions used by the components must be converted.

The data transfer problem involves three basic opera-
tions: handshaking, message packing and unpacking, and

Fig. 1 Basic types of communicator and component layouts for parallel coupled models: (a) sequential coupling,
(b) concurrent coupling with a single executable, (c) concurrent coupling with multiple executables, (d) combination
of concurrent and sequential coupling. The horizontal axis corresponds to system resources (e.g. MPI processes),
the vertical axis time, and directed arrows denote caller/callee relationships.

280 COMPUTING APPLICATIONS

communication. Handshaking is the process of creating
communications schedulers from the sending and receiv-
ing components’ domain decompositions. The message
packing and unpacking process is part of the transfer
mechanism and must be interoperable with the coupled
system’s common field data storage mechanism. Com-
munication is the means of moving the needed data from
one model to another.

The data transformation problem comprises two major
elements: direct transformation of fields between the
source and target components’ spatiotemporal meshes,
and variable transformation, which includes computation
of a needed set of physical quantities for the target com-
ponent based on a different set of physical quantities from
the source component. Direct transformation is the straight-
forward interpolation in space and/or time between the
source and target meshes and is most likely amenable to
automation. Variable transformation is problem-specific
and thus is best handled by parallel coupled model imple-
menters.

2.2 PARALLEL COUPLING IN CCSM

CCSM contained specific examples of the constraints
and considerations summarized in the previous section.
We will summarize the aspects of the parallel coupling
problem raised by CCSM. A more complete discussion is
presented in Craig et al. (2005).

CCSM imposed no requirements for internal data struc-
tures on its components, leaving the separate develop-
ment groups of the atmosphere and ocean models to make
their own choices. As a result, the models that make up
CCSM have very different internal parallel data structures,
often using Fortran90 derived types and nested derived
types instead of arrays; the interface to the parallel cou-
pler must be able to handle these disparate data types.

Most of the other architecture decisions were imposed:
the new coupler had to duplicate the architecture of its
predecessor, including a central coupler, and communi-
cate with multiple MPI/OpenMP parallel executables.

The scientific requirements of the simulation deter-
mine the coupling cycle and frequency and seldom
change. In CCSM, the ocean model and coupler commu-
nicate once per simulated day, while communications
between the atmosphere and coupler, land and coupler,
and sea ice and coupler occur once per simulated hour.
Each model blocks while waiting for data from the cou-
pler, thereby keeping the entire system synchronous in
time within the cycle of once per day.

Careful consideration of the data dependences between
the models allows some overlap of communication with
computation so that some of the models are integrating
simultaneously in the course of one coupling cycle (com-
ponent scheduling is concurrent execution).

The coupling frequency, cycle, and component sched-
uling in CCSM are considered part of the science of the
coupled system, and thus are hard-coded in the model.
This eliminated any requirement for the new coupler or
MCT to provide methods for selecting arbitrary coupling
frequencies for any model–coupler pair. Nevertheless,
there is some flexibility in choosing the length of the fast
frequency—the hourly coupling between the atmosphere,
land, and sea ice—in cpl6. Also, MCT does provide data
types for time interpolation.

CCSM contained other requirements that the MCT
software had to take into account. First, CCSM was
already a widely used model with a flexible and proven
architecture; the addition of distributed memory parallel-
ism in the coupler should not alter this system. Secondly,
since the language of choice for all physical models in
CCSM is Fortran90, the new coupler software had to
have a Fortran interface. Thirdly, the new coupler had to
retain the portability of the model. CCSM currently runs
on a wide variety of high performance platforms, from
commodity and microprocessor-based machines such as
the IBM p690, SGI Altix, and Linux clusters to vector
architectures such as the Cray X1 and the Earth Simula-
tor. CCSM has achieved this portability both by coding
within the Fortran90 standard and by limiting its external
package dependences to only MPI and the NetCDF
library. Fourthly, CCSM is free under an open-source
style license; hence, new software added to CCSM must
also have no restrictions. Fifthly, the new coupler had to
allow continuation of the CCSM development philoso-
phy where each component can be developed and used as
a standalone executable by the subdiscipline developing
the model. The requirements for CCSM’s new coupler
are described in more detail in Craig et al. (2005).

3 Model Coupling Toolkit

The important aspects of the parallel coupling problem
outlined in the preceding section motivate a set of
requirements for a software package to support the needs
of developers of parallel coupled models. We have con-
sidered these requirements in creating a software package
called the MCT, which can reduce dramatically the devel-
oper effort required to construct message-passing parallel
coupled models.

Before we describe in detail the elements of MCT, we
discuss the main design decisions we made regarding
implementation language, parallelism paradigm, and the
reason we built a toolkit rather than a framework. Many
of our decisions were motivated by the requirements for a
parallel coupler for the CCSM described in Section 2.2.
The choices we have made are intended to balance the
interests of supporting the widest possible variety of appli-
cations with a fairly small and robust code base capable of

281MODEL COUPLING TOOLKIT

achieving high performance on commodity microproces-
sor-based platforms and vector computers. Where possi-
ble, we have labored to provide developers using MCT
maximum flexibility to make appropriate architectural
choices for their applications.

We chose to implement MCT in Fortran90 because
Fortran (meaning f77 and its successors) remains the
most widely used programming language in scientific
computing and is used in CCSM. We have adhered
strictly to the Fortran90 standard because, at present, it is
universally supported in commercially available compil-
ers, whereas full support for the Fortran95 standard is less
common and support for the emerging Fortran2003
standard is nearly nonexistent. Fortran90 has allowed us
to implement MCT in a quasi-object-oriented fashion
because it supports or allows emulation of object-oriented
features such as encapsulation, data hiding, inheritance,
and polymorphism (Decyk et al., 1996, 1997). Through-
out our discussion of MCT, we will use these object-ori-
ented terms, along with the terms classes and methods in
this context.

The parallelization mechanism we have chosen to sup-
port in MCT is message passing using MPI, specifically
version 1 of this standard (MPI Forum, 1994). We chose
MPI-1 because it is the most widely used approach for
implementing parallelism in high performance computing
and because most parallel platforms offer a vendor imple-
mentation of MPI as part of the overall environment.

We chose to build a toolkit and library in order to
allow a maximum of flexibility to users with a minimum
of modification to existing source code, a design philoso-

phy also used by CCSM. Calling frameworks such as the
Earth System Modeling Framework (ESMF; Hill et al.,
2004) and the CCA (see http://cca-forum.org/specifica-
tion/) require their users to make substantial structural
modifications to their legacy codes. In the case of CCA,
one must write wrapper code to create components from
each of the system’s components, and at present CCA
does not offer the variety of ready-to-use components
required to solve the parallel coupling problem. ESMF is
still under development and, in addition to the similar
requirements imposed by CCA on potential users, it is
unable to support parallel coupling of multiple executa-
ble models such as CCSM.

The MCT consists of nine classes that support parallel
coupling. Three of these classes support data description,
three support data transfer, and three support data trans-
formation. Figure 2 illustrates MCT’s class hierarchy.
MCT provides a library of routines that manipulate these
objects to perform parallel data transfer and transforma-
tion.

3.1 UTILITY LAYER

The MCT is built on top of a utility package called Mes-
sage Passing Environment Utilities (MPEU). MPEU was
developed by the National Aeronautics and Space
Administration (NASA) Data Assimilation office to sup-
port their parallel operational data assimilation system, in
particular the Physical-Space Statistical Analysis System
(Larson et al., 1998). MPEU supports Fortran90, MPI-
based parallel codes by providing module-style access to

Fig. 2 MCT class hierarchy. Downward directed arrows point from child to parent class.

282 COMPUTING APPLICATIONS

MPI, parallel support for stdout and stderr devices, par-
allel error handling and application shutdown, and paral-
lel timing facilities including load imbalance metrics.
MPEU also extends Fortran by providing some services
analogous to the C++ Standard Template Library
(Musser and Saini, 1996), including String and List data
types and a MergeSort facility.

3.2 DATA DESCRIPTION

The MCT approach to data description is based on the
desire to represent a wide variety of meshes and domain
decompositions with a minimal set of classes. MCT imple-
ments separate classes to encapsulate the domain decom-
position, field data storage, and mesh descriptions. This
choice allows reuse of the domain decomposition descrip-
tor with multiple instantiations of the storage object and
with the mesh description. MCT linearizes multidimen-
sional meshes and field arrays, which simplified signifi-
cantly the implementation of MCT’s data model by
allowing a one-dimensional representation of all data
exchanged in parallel coupling.

3.2.1 Domain Decomposition Parallel domain decom-
position in MCT is a combination of linearization (Ran-
ganathan et al., 1996; Edjlali et al., 1997) and explicit
strategies. Linearization is mapping from an array ele-
ment’s multiple indices to a single unique index. We
employ linearization to yield a single unique index (a glo-
bal ID number) referencing each element in a global
array. The explicit part of the decomposition strategy arises
from examination of how the local storage of the linear-
ized array corresponds to the list of global ID numbers for
the elements, compressing this index list into segments of
runs of consecutive ID numbers. In our domain decompo-
sition strategy, we relax the requirement of other schemes
that each element in the distributed array must reside on
one and only one processor. Relaxing this requirement
allows masking of elements and support for halo points.
A point is masked if it resides on no processor. Masking
is particularly useful because it allows for compact repre-
sentation of points relevant only to coupling in situations
where a component may organize data for an irregularly
shaped overlap domain by embedding it in a larger regu-
lar multidimensional mesh. A point is haloed if it resides
on more than one processor. MCT supports parallel trans-
fer of data into a decomposition with halo points. It does
not support transfer out of a haloed decomposition. MCT’s
linearized-explicit approach applies to arbitrary decom-
positions of arrays of any dimensionality.

This linearized-explicit decomposition strategy is
embodied by MCT’s GlobalSegMap class. The Global-
SegMap contains a global directory of segments of con-
secutive global ID numbers and the MPI process on

which each resides. It also contains the component ID
number for which this decomposition applies. This class
has numerous initialization methods supporting the many
fashions in which it is used in MCT, including initializa-
tion from index data residing only on the component’s
root process, distributed index data spread across the the
component’s processor pool, and index data replicated
across the processor pool. Also provided are methods for
global-to-local and local-to-global index translation, as
well as query functions to determine total number of grid
points stored globally, locally, or on a particular proces-
sor, and look-up of process ID on which a particular grid
point is stored.

3.2.2 Field Data Representation The parallel cou-
pling problem can be viewed as a collection of pointwise
operations involving multiple data fields. That is, values
of multiple fields at grid point locations within the over-
lap domain are sent and received, interpolated, and other-
wise transformed. MCT has a single field storage data
object, called an attribute vector, which is implemented by
the AttrVect data type. This data type is a fundamental
type in MCT, forming a basis for other MCT data types
that encapsulate physical mesh description (the General-
Grid), time accumulation/averaging buffers (the Accumu-
lator), and grid transformation data (the SparseMatrix
and SparseMatrixPlus) (Figure 2).

The AttrVect stores real and integer field data in a
pointwise fashion within two two-dimensional arrays.
The major index in both arrays is the attribute index, and
the minor one the location index. This storage order
places field data at a given location adjacent to each other
in memory and increases the likelihood they will reside
on the same cache line, a feature critical to maximizing
on-processor performance on commodity microproces-
sor-based platforms. This storage order is not modified
for vector platforms, which are accommodated by a mod-
est amount of additional code and compiler directives in
some of the manipulation methods for this class. Attributes
are referenced and accessed by using user-defined char-
acter tokens. This approach has a number of desirable
characteristics. It is flexible because the list of fields
stored in the AttrVect can be set at run-time. It allows for
easy extensibility of application code because the parallel
coupled model developer need only add a new field to a
given AttrVect by adding an additional token to the list
of tokens supplied to its initialization call. Access to
attributes based on tokens means that AttrVect can be
indexed. This quality makes application source code eas-
ier to read (because the tokens can be abbreviations of
the physical field names), eliminates the possibility of
errors from mistaken user-implemented indexing of field
data, and enables automatic cross-indexing of fields
shared by two distinct AttrVects.

283MODEL COUPLING TOOLKIT

The AttrVect has initialization, destruction, query,
and manipulation methods. The initialization methods
create data storage space in the AttrVect based on the
number of integer and real attributes determined by lists
of tokens. The numerous query methods return the
number of data points (or length), the numbers of integer
and real attributes, the data buffer index of a given real or
integer attribute, and lists of real and integer attribute
tokens. Manipulation methods for the AttrVect include
zeroing its attributes, exporting (importing) a given
attribute to (from) a one-dimensional array, and copying
one or more attributes from one AttrVect to another.
There are methods for sorting and permuting AttrVect
entries by using a MergeSort scheme keyed by one or
more the attributes of the AttrVect. MCT also provides
an attribute cross-indexing method for mapping attributes
stored in one AttrVect onto another. This cross-indexing
method is used widely in the MCT’s data transformation
facilities.

MCT’s view of parallel coupling involves commu-
nication of data stored in AttrVect format. Thus, the
AttrVect has a wide variety of communications methods,
including point-to-point send and receive, and collec-
tive communications such as broadcast and gather and
scatter using the GlobalSegMap. The MCT also pro-
vides global reduction methods analogous to MPI_All-
Reduce().

3.2.3 Physical Mesh Representation MCT’s linear-
ized description of physical meshes requires a literal list-
ing of each mesh point’s coordinates and geometric
attributes. This is encapsulated in the GeneralGrid class.
The GeneralGrid may be employed to store coordinate
grids of arbitrary dimension, as well as unstructured
grids.

The GeneralGrid stores real and integer grid point
attributes internally in AttrVect form and inherits its
query, access, and manipulation methods. Grid attributes
stored are, at a minimum, coordinates for each grid point
and one integer attribute, the global grid point number,
which is a unique identifier for each physical grid loca-
tion under MCT’s linearization scheme. Examples of real
non-coordinate attributes that can be stored in the Gen-
eralGrid include grid cell length, cross-sectional area,
and volume elements and projections of local directional
unit vectors onto Euclidian unit vectors. Commonly used
integer attributes that can be stored in the GeneralGrid
include alternative indexing schemes and indices for
defining spatial regions. The GeneralGrid allows stor-
age of real and integer grid-masking information as
attributes. An integer mask can be used to exclude over-
lap domain grid points at which a component is not gen-
erating data (e.g. points on an ocean grid that correspond
to large continental land masses). A real mask can be

employed to indicate which fraction of a mesh cell is
occupied by the component (e.g. fraction of an ocean cell
occupied by sea ice).

The GeneralGrid is used for storage of length, area,
and volume element sizes in MCT’s spatial integration
and averaging facilities, described in Section 3.4.2, and is
also used as a source of mask data in MCT’s merging
facility, described in Section 3.4.4.

3.3 DATA TRANSFER

The MCT solution to the M × N problem has three
stages: registration of components, handshaking of paral-
lel data connections between components, and execution
of the transfer. In MCT, three classes support M × N
transfers in parallel coupled models: a component regis-
try (MCTWorld), communications schedulers for one-way
parallel data transfers (the Router), and two-way data
redistributions (the Rearranger).

A detailed discussion of MCT’s solution to the data
transfer problem is provided in Jacob et al. (2005) and is
summarized here.

For a given grid decomposed over M and N processors,
a GlobalSegMap can be constructed for each decompo-
sition. Given these two GlobalSegMaps, one can build a
communication table that lists, for a set of grid points in
one GlobalSegMap, the corresponding locations in the
other GlobalSegMap. In MCT, this table is stored in a
Router data type. For fixed grids, the Router is initial-
ized once at startup. The process of exchanging Global-
SegMaps and building the Router table is MCT’s hand-
shaking between two parallel models.

MCT provides a two-sided message passing model
patterned after MPI. Instead of simple arrays and MPI
processes ranks, the main arguments are AttrVects and
Routers. These routines, called MCT_Send and MCT_
Recv, transmit field data from the appropriate points of
all of the data in the supplied AttrVect to the processors
listed in the Router. In order to lower latency costs, all
the data for a given source and destination processor pair
are sent/received in a single message. MCT also provides
non-blocking versions of its M × N communication
routines.

The Router and MCT_Send()/MCT_Recv() routines
are for transferring data between models on disjoint sets
of processors. The problem of redistributing data within a
single pool of processors can, in principle, require each
processor in the pool to both send and receive data. An
example of this type of operation is the redistribution
of data required for parallel data interpolation (see Sec-
tion 3.4.1). MCT solves this problem by providing the
Rearranger class to encapsulate the communications
schedule for such operations, and the Rearrange() method
for performing the redistribution.

284 COMPUTING APPLICATIONS

3.4 DATA TRANSFORMATION

In Section 2.1, we identified the data transformation prob-
lem as consisting mostly of interpolation between differ-
ent resolution grids or averaging in time to compensate
for different time-steps. Other transformations include
spatially averaging outputs from two or more models to
form the input for another (merging) and forming the glo-
bal integral of a quantity. MCT provides classes and
methods for all of these needs.

3.4.1 Interpolation A vital function in parallel cou-
pling is transformation of data from one spatial mesh to
another. Often a field value at a given location on a target
grid is computed via a transformation that is a linear com-
bination of field values on the source mesh using interpo-
lation weights. When combined with MCT’s linearization
of multidimensional grid spaces, these transformations
may be implemented as matrix–vector multiplication, and
a field x residing on the source component’s mesh is
transformed to a field y on the target component’s mesh
by using an interpolation matrix T:

y = Tx. (1)

This approach appears in climate system model coupling
software, most notably in CCSM (Bryan et al., 1996;
Craig et al., 2005), the Ocean Atmosphere Sea Ice Soil
(OASIS) model’s flux coupler (Valcke et al., 2004), and
the Spherical Coordinate Regridding and Interpolation
Package (SCRIP; Jones, 1999). When one considers the
typical stencil for these interpolation schemes, the result
is an extremely sparse matrix–vector multiply, and this is
the approach supported by MCT. MCT provides two
types of infrastructure to aid this process: a basic data
object for storage of interpolation matrix elements, and
an object that encapsulates the complete set of computa-
tion and communication operations inherent in parallel
sparse matrix–vector multiplication.

In MCT, elements of an interpolation matrix are stored
by using the SparseMatrix class, which provides storage
of non-zero matrix elements in coordinate (COO) format.
Vector platforms are supported by an alternate internal
storage scheme within the SparseMatrix that supports
both compressed sparse row (CSR) and compressed
sparse column (CSC) formats.

Methods for this class provide support for loading and
unloading of matrix elements, counting of non-zero ele-
ments and determining sparsity, and sorting elements
based on row and column indices. This element-sorting
functionality is provided to improve performance of the
matrix–vector multiply operation on commodity micro-
processor-based platforms that rely on cache optimiza-
tion.

For global address spaces (uniprocessor or shared-
memory parallel), storage of matrix elements is sufficient
to encapsulate the matrix–vector multiplication process.
If one wishes to perform distributed-memory parallel
matrix–vector multiplication, however, one must con-
sider communication.

Three message passing parallel strategies exist for
computing (1). The first two decompose the problem
according to the domain decomposition of y or x and
are described by Jacob et al. (2005). The third method
employs a user-defined decomposition of the elements of
T, which can be used to correct load imbalances in the
compute part of the calculation, for example, decomposi-
tion of (1) using graph partitioning. In this scheme, the
decomposition of the elements of T determines two inter-
mediate distributed vectors x and y , which allow an
embarrassingly parallel calculation y = Tx . Communi-
cations occur first to assemble x from x and, after the
computation, to reduce the partial sums in y to the final
result y.

The entire parallel matrix–vector multiplication process
is encapsulated in MCT’s SparseMatrixPlus class,
which contains both storage of distributed non-zero matrix
elements in SparseMatrix format and instances of Rear-
ranger communications schedulers needed to complete
the parallel multiplication process (Figure 2).

The matrix–vector multiplication routines in MCT
implement the solution of (1) by representing T in either
SparseMatrix or SparseMatrixPlus form and the vec-
tors x and y in AttrVect form, allowing pointwise inter-
polation of multiple data fields and automatic matching
of attributes stored in y with their corresponding
attributes in x. Vector platforms are supported by an
additional matrix–vector multiplication function tuned to
work with the CSC and CSR element tables stored in the
SparseMatrix.

3.4.2 Spatial Integrals and Averages Conserving flu-
xes and maintaining constancy of spatial integrals and
averages across the overlap domain are often desired in
parallel coupled models. Interpolation between two dif-
ferent spatial discretizations of the overlap domain can,
in principle, alter these results. MCT has routines to
compute spatial integrals and averages. These functions
allow the user to compute with ease global integrals and
averages to test for and enforce conservation, as well as
global diagnostics.

In MCT, the discrete versions of the spatial integral I
and average of a field (x) over domain Ωij are imple-
mented as

(2)

′ ′
′ ′

′
′

Φ Φ

I Φn∆Ωn
n 1=

N

∑=

285MODEL COUPLING TOOLKIT

and

(3)

where N is the number of physical locations, n is the
value of the field at location xn, and ∆Ωn is the spatial
weight (length element, cross-sectional area element,
volume element, etc.) at location xn. MCT functions for
computing these integrals take field data packaged in
AttrVect form and thus are capable of computing the
same spatial integral for numerous fields simultaneously.

MCT functions for spatial integration and averaging
also support masked integrals and averages. MCT recog-
nizes both integer and real masks, and allows multiple
masks to be used simultaneously. An integer mask M is a
vector of integers (one corresponding to each physical
location) with each element having value either zero or
one. Integer masks are used to include or exclude data
from averages or integrals. Masked integrals and aver-
ages are represented in the MCT by

(4)

and

(5)

In equations (4) and (5), there are J(K) integer (real)
masks, with M j

n (Fk
n) representing the value of the jth

integer (kth real) mask at grid location xn.
MCT also provides paired integral and paired average

facilities that allow simultaneous computation of the
quantities defined in equations (4) and (5) on both the
source and target discretizations to minimize global sum
latency costs.

3.4.3 Time Synchronization of Data In addition to the
spatial interpolation of field data, coupled models often
also require temporal transformation of data between
source and target components’ time meshes. Strategies
for temporal transformation use either instantaneous or
accumulated field values. If the time part of the parallel
coupling problem is solved by exchanging instantaneous

values, one or more instantiations of MCT’s AttrVect
class are sufficient to construct a solution. Coupling that
uses accumulated data for time transformation requires
accumulation registers for time summation or averaging
of field data and the means to accumulate instantaneous
field data values into these registers. MCT provides accu-
mulation registers in its Accumulator class and routines
for time accumulation of AttrVect field data into these
registers.

The Accumulator stores real and integer field attributes
internally in AttrVect form and inherits its query, access,
and manipulation methods (Figure 2). In addition to
accumulated field data, the Accumulator stores the length
of the accumulation cycle, which is defined in terms of
the number of time-steps over which accumulation
occurs, the number of time-steps completed in the accu-
mulation process, and the specific accumulation action.
Currently, two options exist: time averaging and time
summation. MCT provides a library routine accumu-
late(), which takes an AttrVect and accumulates any of
its attributes that match the attributes of the Accumula-
tor. This process is handled automatically by MCT’s
attribute cross-indexing facility. Currently, the Accumu-
lator is designed to work with fixed time-step sizes,
but this restriction still allows it to support many appli-
cations.

3.4.4 Merging Data from Multiple Components
The need to merge field data from multiple components
arises when a component’s overlap domains with two or
more other components intersect and the source compo-
nents are providing one or more identical fields on the
intersection domain. The merge occurs once the shared
fields are interpolated onto the same discretization of the
intersection domain. The merge is a weighted average of
the field values at each mesh point on this domain.

MCT offers a Merge facility in the form of library
routines that allow merging of data from up to four
components for use by a fifth component. These rou-
tines work on the assumption that data is represented in
AttrVect form and that each of these input arguments and
the resulting merged AttrVect share the same domain
decomposition, making the Merge operation embarrass-
ingly parallel. Attributes of the input AttrVects are cross-
indexed with those of the merge result AttrVect and are
merged automatically.

MCT supports use of integer and real masks to weight
data for the merge operation. To see this, consider the
example of a merge of one field from two components for
use by a third. Let the vectors a and b represent this field
from components A and B that have been interpolated
onto the physical grid of another component C. The
merge operation combines the data from A and B, result-
ing in a vector c, which represents the merged data on the

Φ
Φn∆Ωn

n 1=

N

∑

∆Ωn
n 1=

N

∑
--------------------------,=

Φ
Φ

I Mn
j

j 1=

J

∏
n 1=

N

∑= Fn
kΦn∆Ωn

k 1=

K

∏

Φ

Mn
j

j 1=

J

∏

n 1=

N

∑ Fn
k

k 1=

K

∏

Φn∆Ωn

Mi
j

j 1=

J

∏

i 1=

N

∑ Fi
k

k 1=

K

∏

∆Ωn

--=

286 COMPUTING APPLICATIONS

grid of component C. This merge process is an element-
by-element masked weighted average:

. (6)

In equation (6), data from component A have J integer
masks (Mj, j = 1, …, J) and K real masks (Fk, k = 1, …,
K), while data from component B have P integer masks
(Np, p = 1, …, P) and Q real masks (Gq, q = 1, …, Q).
These masks are optional and can be provided to the
merge facility either in array form or as attributes in an
MCT GeneralGrid.

4 Programming Model

The MCT programming model is based on its Fortran
API and has three elements: access to MCT data types
and routines through Fortran module use, declaration of
variables of the class data types defined in Section 3, and
invocation of MCT library routines to accomplish paral-
lel data transfer and transformation. In this approach, the
user writes the top-level control program(s) for the appli-
cation, and any individual subroutines that are used to
implement the components of the parallel coupled model.
In this section, we provide examples of how some of the
class data types and routines defined in Section 3 are
used.

Initialization of an MCT-based parallel coupled model
occurs in two stages. The first stage is the initialization of
MPI and the subsequent partitioning of MPI_COMM_
WORLD into the set of communicators for each distinct
processor pool. This communicator partitioning can be
performed either through user-supplied calls to MPI_
COMM_SPLIT() or through use of a communicator par-
titioning tool such as the multiprogram handshaking
(MPH) utility (He and Ding, 2005). The next stage is the
establishment of which component IDs are bound to the
various processor pools. Examples of the various types of
parallel coupling configurations MCT supports can be
found in Figure 1. MCTWorld_init() is called to create
the MCTWorld component registry

 call MCTWorld_init(nComponents,
 WorldComm, MyComm, CompID)

The supplied arguments are the total number of compo-
nents in the parallel coupled model (nComponents),
the global communicator for the overall model (World-

Comm), the communicator for the pool on which a given
processor resides (MyComm), and the component ID
number(s) that execute on a given processor (CompID).
For the configurations shown in Figures 1(b) and (c), and
processors on comm1 in Figure 1(d), there is one compo-
nent per processor pool and the value of CompID is a
scalar. The sequential configurations shown in Figure
1(a) and on comm2 in Figure 1(d) have multiple compo-
nents executing on a given processor, and the value of
CompID is an array.

After the MCTWorld has been initialized, the user
can create parallel coupling connections between com-
ponents. Data exchanged in coupling are described by
declaring variables of MCT’s descriptor data types: Global-
SegMap, GeneralGrid, and AttrVect. For example, con-
sider the case of a model that has one incoming and one
outgoing data connection, with data supplied on the same
physical grid and decompositions, but with different field
storage data structures

 type(GlobalSegMap) :: MyDecomp
 type(GeneralGrid) :: MyGrid
 type(AttrVect) :: InputAV, OutputAV

The user must describe the discretization of the overlap
domain and its domain decomposition. MCT’s linearized
view of data and domain decomposition requires the user
to create an element-numbering scheme for multidimen-
sional arrays describing grid and field data. This number-
ing scheme maps multiple indices to a single global ID
index for each point in the domain. The scheme is then
used to relate data in a multidimensional field array to a
one-dimensional array suitable for description as an
AttrVect and to map points from the corresponding mul-
tidimensional spatial grid to a GeneralGrid. Domain
decomposition is then a set of segments of runs of con-
secutive global ID numbers. Each segment has a global
starting index, a length, and the processor ID where it
resides. These segment data are used to create the Glo-
balSegMap

 call GlobalSegMap_init(MyDecomp, starts,
 lengths, root, & MyComm, MyCompID)

In this call, MyDecomp is the GlobalSegMap cre-
ated, starts and lengths are arrays containing local seg-
ment start and length values, root is the root for the
communicator MyComm on which the decomposition
exists, and MyCompID is the MCT component ID for
this model. The call is a collective operation, and the
result is a domain decomposition descriptor contain-
ing all the information needed to locate a given element
and to perform global-to-local and local-to-global index
translation.

ci

Mi
j

j 1=

J

∏ Fi
kai

k 1=

K

∏ Ni
p

p 1=

P

∏ Gi
qbi

q 1=

Q

∏+

Mi
j

j 1=

J

∏ Fi
k

k 1=

K

∏ Ni
p

p 1=

P

∏ Gi
q

q 1=

Q

∏+

---=

287MODEL COUPLING TOOLKIT

Physical meshes are described by supplying the
dimensionality of the mesh, coordinate names, grid point
coordinate values, and associated weights such as length
elements, cell cross-sectional areas, and cell volumes.
For example, a GeneralGrid capable of describing
Euclidean 3-space can be created as follows

 GeneralGrid_init(MyGrid, 'x:y:z', &
 WeightChars='dx:dy:dz:Axy:Axz:Ayz:V'
 & LocalLength)

In this call, the tokens referencing individual coordinates
x, y, and z are supplied in the second argument as a list,
and the cell length, area, and volume elements are refer-
enced by tokens given as a list in the third argument. The
number of grid points residing on the local processor is
defined by the argument LocalLength. This call creates
a GeneralGrid (the argument MyGrid) that has three
dimensions, and will allocate sufficient space to store
grid point coordinates and grid cell weights. The coordi-
nate and weight information is then loaded into MyGrid
by the user.

Field data are stored as attributes in an AttrVect whose
length is the same as the argument LocalLength sup-
plied above in the creation of MyGrid. For example, sup-
pose we wish to store two integer fields and three real
fields in the AttrVect OutputAV

 call AttrVect_init(OutputAV, 'if1:if2',
 'rf1:rf2:rf3', & LocalLength)

In this call, the second and third arguments are lists of
tokens used to identify integer and real attributes, respec-
tively. The result of this operation is the AttrVect Out-
putAV, which is capable of storing two integer and three
real attributes for LocalLength points. The actual field
data are then moved into OutputAV by the user.

Once all the data description structures are initialized,
one can perform parallel data transfer and transforma-
tion.

Parallel data transfer between concurrently executing
components is described by using the Router data type.
A Router is created by a call by each of the communicat-
ing components to Router_init()

 call Router_init(RemoteCompID,
 MyDecomp, MyComm, Route)

The first argument in this call is the MCT ID for the
remote component participating in the data transfer.
MyDecomp is a GlobalSegMap describing the local
domain decomposition across the communicator My-
Comm, and the result is the Router object Route. Each
of the pair of communicating components creates its own

Router used to schedule the send (receive) operations for
the transfer.

Once a Router has been constructed by each of the
two components participating in an M × N transfer, data
are exchanged through calls to MCT’s parallel intercom-
ponent communications routines as shown below. For the
source component residing on M processors, MCT_Send()
is called

 call MCT_Send(Model1_AttributeVector,
 Model1_Router)

The target component residing on N processors calls
MCT_Recv()

 call MCT_Recv(Model2_AttributeVector,
 Model2_Router)

In each of these calls, the first argument is the AttrVect
in which field data to be sent or received are stored, and
the second argument is a Router that schedules the send
or receive operations and the points on the domain for
which data are being communicated.

5 Performance

The performance-sensitive parts of the parallel cou-
pling process are data transfer and transformation. Par-
allel data transfer is a message passing parallel process
in which communications are the dominant cost. Data
transformation algorithms by contrast have varying sen-
sitivities to communications costs. MCT’s Accumulate
and Merge operations are embarrassingly parallel, and
their performance is sensitive only to load imbalances
resulting from disparities in the number of grid points
assigned to each processor and to single-processor per-
formance issues such as cache usage. The spatial inte-
gral and average routines have the same sensitivity to
load balance as the accumulation and merge operations
and are sensitive to the performance of the implementa-
tion of the MPI_AllReduce() used to perform the global
sum. MCT’s parallel interpolation routines are a combi-
nation of computation and communication and, as such,
are the most interesting from a performance point of
view.

An analysis of the performance of MCT’s Router ini-
tialization, parallel data transfer, and parallel interpola-
tion facilities can be found in Jacob et al. (2005). This
analysis has shown that MCT’s parallel communication
and interpolation routines scale well up to processor pool
sizes likely to be used by parallel coupled models. Craig
et al. (2005) provide information on the performance of
the MCT-based parallel data transfer and interpolation
schemes in CCSM3.

288 COMPUTING APPLICATIONS

Here, we present results for two other measures of
MCT’s performance as parallel coupling infrastructure:
scaling of MCT’s parallel interpolation facility to larger
processor pools for a very large problem size, and overall
model throughput for CCSM at a typical resolution.

Performance results presented in this section were
obtained with four different platforms: an IBM p690
(Bluesky) located at the National Center for Atmospheric
Research, an HP Alpha Cluster (Lemieux) located at the
Pittsburgh Supercomputing Center, a Linux cluster (Jazz)
located at Argonne National Laboratory, and the Earth
Simulator. Bluesky is an IBM p690 with 1600 processors
and an IBM Colony switch. Processors on Bluesky are
1.3 GHz Power4 processors, each of which has 2 GB of
memory. Processors are grouped into shared-memory
nodes, which can have either 8 or 32 processors, called 8-
way and 32-way, respectively. Lemieux is an HP Alpha

Cluster with 750 HP/Compaq Alphaserver ES45 nodes
that are connected by a Quadrics switch. Each node has
four 1 GHz processors and 4 GB of shared memory. Jazz
is a Linux cluster comprising 350 nodes connected by a
Myrinet 2000 switch. Each node has one 2.4 GHz Intel
Pentium Xeon processor and either 1 GB or 2 GB of
memory. The Earth Simulator is a cluster of 640 nodes
connected by a full crossbar switch. Each node has eight
500 MHz NEC SX-6 vector processors and 16 GB of
shared memory. For all performance studies, we used the
vendor Fortran compiler and MPI implementation. On
Jazz, we used the Intel Fortran compiler and MPICH.

Figure 3 shows the performance for a very high-
resolution version of the MCT atmosphere-to-ocean
interpolation benchmark. We present only this bench-
mark because it is representative of the data motion costs
involved in both atmosphere-to-ocean and ocean-to-

Fig. 3 Timings of the MCT atmosphere-to-ocean interpolation benchmark on a variety of platforms.

289MODEL COUPLING TOOLKIT

atmosphere interpolation. A more detailed discussion of
differences between these benchmarks is presented in
Jacob et al. (2005). The atmosphere data for this case
reside on the CAM Gaussian T340 grid, and the ocean
grid is the POP 0.1º grid. This combination of resolu-
tions may be used in future climate models. A set of 12
fields is interpolated hourly for ten model days (240
calls to the MCT interpolation routine).

Across all platforms tested, this benchmark shows
good scaling to a processor pool size larger than what
would normally be used for a centralized coupler in a cli-
mate model.

To application scientists and engineers, the ideal metric
for assessing overhead imposed by a coupling mechanism
is the amount of time components are forced to be idle
while awaiting data from the coupler. In a concurrently
scheduled model such as CCSM, it is difficult to measure

this quantity or distinguish it from idling of a given com-
ponent due to a sequential data dependency with another
non-coupler component. Performance studies of CCSM
indicate that the MCT-based CPL6 does not impose
measurable overhead of this type. A possible explanation
for this can be found by comparing scalability of the
components’ throughput, i.e. the amount of simulation
achieved per unit of wall-clock time. Figure 4 shows
throughput expressed in model years per wall-clock day
on the Earth Simulator for a set of component models
either identical or similar to those in CCSM 3.0. The
atmosphere model results are for CAM 2.02 with T85
horizontal resolution with 26 vertical layers. The ocean
results are for POP 1.4.3 with a displaced pole grid with
resolution of 1º in the longitudinal direction and finer var-
iable latitude resolution that is approximately 0.3º at the
equator. The land model is version 2.1 of the Community

Fig. 4 Throughput of CCSM on the Earth Simulator.

290 COMPUTING APPLICATIONS

Land Model with T85 resolution. The sea ice model is
version 3.1 the Los Alamos CICE model (as opposed to
CCSM’s CSIM sea ice model) and uses the same horizon-
tal grid as POP for these measurements. Note that the sys-
tem’s MCT-based CPL6 coupler has throughput that
scales dramatically better than the system’s other compo-
nent models, demonstrating the efficiency of MCT’s serv-
ices in this overall coupling mechanism.

6 Conclusions and Future Work

Parallel coupled models are now the state of the art in
computational science and engineering. These models
present numerous software engineering and algorithmic
challenges, and the advent of distributed-memory paral-
lelism has created a new challenge: the parallel coupling
problem. We have described many facets of this problem
and the requirements they impose on parallel-coupled-
model developers.

We have described a new software package that aids
coupled model development: MCT, version 2.0. MCT
offers a Fortran-based object model and a collection of
library routines that dramatically reduce the effort
required to couple separately developed message-pass-
ing-parallel component models into a single parallel cou-
pled model. The MCT object model offers conceptual
ease of use in creating coupling code. MCT’s library rou-
tines automate the most complex parts of the coupling
process. This combination allows parallel coupled model
developers to concentrate attention on the high-level issues
in coupled model development, namely, what to couple,
when to couple it, and what scientific issues to consider.
We have demonstrated how MCT may be employed to
accomplish fairly complex coupling operations with rela-
tively little effort, with a reduced level of additional intro-
duced source code, and with great flexibility, while still
ensuring high performance.

MCT is currently used in production by two major
applications to couple geophysical codes: the CCSM flux
coupler and the WRF coupling API. The CCSM coupler
has been described extensively in a companion paper
(Craig et al., 2005), and is part of version 3.0 of CCSM.
An MCT-based version of the WRF coupling API exists
and can be downloaded from the MCT website. This API
has been used to create a wide variety of parallel cou-
plings that support sequential and concurrent scheduling,
multiple executables, and computational grid paradigms
(Dan Schaffer, private communication).

The version of MCT described in this paper reflects our
goal of addressing the specific requirements of CCSM
with the resources we had at our disposal. Future develop-
ment of MCT will address its current limitations: a For-
tran-based interface, a one-dimensional data model, and a
purely distributed-memory parallelism paradigm.

Work is under way to export MCT’s capabilities to
other programming languages. We are using the Babel
language (Dahlgren et al., 2004) interoperability tool to
create a limited set of prototype bindings for the C++ and
Python programming languages. This work will be
extended to provide access to MCT’s classes and a core
set of coupling services that will eventually be available
to these and other programming languages.

The one-dimensional data model has great advantages
in terms of universality but does impose on MCT users
some effort in defining linearization schemes to describe
multidimensional data in an MCT context. To address
this issue, we will first offer facilities to map multidimen-
sional data onto MCT’s linear model and will then include
additional classes for domain decomposition, data stor-
age, and data transfer to offer users an easier-to-use data
model.

The parallelism paradigm used in MCT will be expanded
to support hybrid parallelism, specifically a combination
of MPI for distributed-memory parallelism with OpenMP
for shared-memory parallelism. This will have a direct
effect on improving memory copies into and out of
AttrVects and the compute-intensive services in MCT,
specifically, the data transformation operations of inter-
polation, time averaging and accumulation, and MCT’s
Merge facility. The enhancement will improve MCT’s
scalability for data transformation operations and will
provide users greater flexibility for placing MCT trans-
formation operations in the coupled system and using all
available computational resources.

ACKNOWLEDGMENTS

We thank the many people who have offered advice
throughout the design and development stages of MCT,
specifically Anthony Craig, Brian Kauffman, Mariana
Vertenstein, Tom Bettge, and John Michalakes of the
National Center for Atmospheric Research, and Ian
Foster of Argonne National Laboratory. We gratefully
acknowledge source code contributions from Jing Guo of
the NASA Global Modeling and Assimilation office,
who designed MPEU and the original version of the
AttrVect class; and Jace Mogill and Celeste Cory of Cray
Incorporated, who improved dramatically the perform-
ance of MCT’s parallel data transfer handshaking facil-
ity. MCT’s port to the Earth Simulator and prototype
vectorized interpolation facility were developed by
Clifford Chen of Fujitsu America, Yoshi Yoshikatsu of
Japan’s Central Research Institute of Electrical Power
Industry (CRIEPI), and Junichiro Ueno, Hidemi Komatsu,
and Shin-ichi Ichikawa of the Computational Science
and Engineering Center of Fujitsu, Limited, Japan. We
thank Yoshi Yoshikatsu for MCT timings and CCSM
throughput measurements on the Earth Simulator. We

291MODEL COUPLING TOOLKIT

thank two anonymous referees whose helpful suggestions
have improved this paper.

This work was supported by the U.S. Department of
Energy (DOE) under the Accelerated Climate Prediction
Initiative Avant Garde project and the Climate Change
Prediction Program, which is part of the DOE Scientific
Discovery through Advanced Computing (SciDAC) ini-
tiative under contract number W-31-109-ENG-38.

AUTHOR BIOGRAPHIES

Jay Larson is a software engineer in the Mathematics
and Computer Science division at Argonne National Lab-
oratory and is a senior fellow in the Computation Institute
at the University of Chicago. He has published in the fields
of nonlinear dynamics, plasma physics, climate, weather
forecasting, and high performance computing. In recent
years his work has focused primarily on the development
of high performance software infrastructure for the earth
system modeling community, most notably as co-lead devel-
oper of the MCT. He received a Ph.D. in plasma physics
from the College of William and Mary in Virginia.

Robert Jacob is a computational scientist in the Mathe-
matics and Computer Science division at Argonne
National Laboratory and a fellow in the Computation
Institute at the University of Chicago. He has been greatly
involved in the development and application of climate
models. He is the lead developer of the Fast Ocean
Atmosphere Model and co-lead developer of the MCT.
His current interests include long-term climate variabil-
ity, the role of the ocean in climate change, and high per-
formance computing applications to scientific problems.
He received a Ph.D. in atmospheric science from the Uni-
versity of Wisconsin-Madison.

Everest Ong is a software developer in the Mathemat-
ics and Computer Science Division at Argonne National
Laboratory. Everest is a co-developer of the MCT and
assisted in coding, verification and performance analysis
of the CCSM coupler software. He is also involved with
building software components for the CCA. His interests
also include paleoclimate and statistical climate analysis.
Everest received a B.Sc. degree in geophysical sciences
from the University of Chicago.

NOTE
1 Our use of the word component is from the point of view of

scientists who develop computer models. Its usage here is
related to, but not identical to, the usage of the term in compo-
nent-based software engineering paradigms such as CORBA
(http://www.omg.org/technology/documents/formal/components.
htm) or Common Component Architecture (CCA; see http://
cca-forum.org/specification/).

References

Baum, J. D., Luo, H., Mestreau, E. L., Sharov, D., Loehner, R.,
Pelessone, D., and Charman, C. 2001. Recent develop-
ments of a coupled CFD/CSD methodology. Proceedings
of the International Conference on Computational Sci-
ence, San Francisco, CA, May, Lecture Notes in Compu-
ter Science, Vol. 2073, Springer-Verlag, Berlin, pp. 1087–
1097.

Bertrand, F., Bramley, R., Bernholdt, D. E., Kohl, J. A., Suss-
man, A., Larson, J. W., and Damevski, K. B. 2005. Data
redistribution and remote method invocation in parallel
component architectures. Proceedings of the International
Parallel Distributed Processes Symposium, Denver, CO.

Bettge, T., Craig, A., James, R., Wayland, V., and Strand, G.
2001. The DOE Parallel Climate Model (PCM): the com-
putational highway and backroads. Proceedings of the
International Conference on Computational Science
(ICCS) 2001, San Francisco, CA, May, Lecture Notes in
Computer Science, Vol. 2073, Springer-Verlag, Berlin,
pp. 148–156.

Boville, B. A. and Gent, P. R. 1998. The NCAR Climate System
Model, Version One. Journal of Climate 11:1115–1130.

Bryan, F. O., Kauffman, B. G., Large, W. G., and Gent, P. R.
1996. The NCAR CSM ux coupler. NCAR Technical
Note 424, NCAR, Boulder, CO.

Craig, A. P., Kaufmann, B., Jacob, R., Bettge, T., Larson, J.,
Ong, E., Ding, C., and He, H. 2005. cpl6: the new extensi-
ble high performance parallel coupler for the Community
Climate System Model. International Journal of High
Performance Computing Applications 19(3).

Dahlgren, T., Epperly, T., and Kumfert, G. 2004. Babel User’s
Guide (version 0.9.0 ed). CASC, Lawrence Livermore
National Laboratory.

Decyk, V. K., Norton, C. D., and Syzmanski, B. K. 1996. Intro-
duction to object-oriented concepts Using Fortran90. See
http://www.cs.rpi.edu/~szymansk/OOF90/
F90_Objects.html.

Decyk, V. K., Norton, C. D., and Syzmanski, B. K. 1997.
Expressing object-oriented concepts in Fortran90. ACM
Fortran Forum 16(1):13–18.

Edjlali, G., Sussman, A., and Saltz, J. 1997. Interoperability of
data-parallel run-time Libraries. International Parallel
Processing Symposium, Geneva, Switzerland.

He, Y. and Ding, C. 2005. Coupling multicomponent models by
MPH on distributed memory computer architectures.
International Journal of High Performance Computing
Applications 19(3).

Heath, M. T. and Dick, W. A. 1998. Virtual rocketry: rocket
science meets computer science. IEEE Computational
Science and Engineering 5(1):16–26.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., da Silva, A., and
the ESMF Joint Specification Team. 2004. The architec-
ture of the Earth System Modeling Framework. Comput-
ing in Science and Engineering 6:18–28.

Jacob, R., Schafer, C., Foster, I., Tobis, M., and Anderson, J.
2001. Computational design and performance of the fast
ocean atmosphere model. Proceedings of the Interna-
tional Conference on Computational Science, San Fran-

292 COMPUTING APPLICATIONS

cisco, CA, May, Lecture Notes in Computer Science, Vol.
2073, Springer-Verlag, Berlin, pp. 175–184.

Jacob, R., Larson, J., and Ong, E. 2005. M × N communication
and parallel interpolation in CCSM3 using the Model
Coupling Tookit. International Journal of High Perform-
ance Computing Applications 19(3).

Jones, P. W. 1999. First- and second-order conservative remap-
ping schemes for grids in spherical coordinates. Monthly
Weather Review 127:2204–2210.

Kiehl, J. and Gent, P. R. 2004. The Community Climate System
Model, Version Two. Journal of Climate 17:3666–3682.

Larson, J. W., Guo, J., Gaspari, G., da Silva, A., and Lyster, P.
M. 1998. Documentation of the Physical-Space Statistical
Analysis System (PSAS) Part III: the software implemen-
tation. DAO Office Note 98-05, NASA/Goddard Space
Flight Center, Greenbelt, MD.

Lefantzi, S. and Ray, J. 2003. A component-based scientific
toolkit for reacting flows. Proceedings of the 2nd MIT
Conference on Computational Fluid and Solid Mechanics,
Cambridge, MA, June 17–20, Vol. 2, pp. 1401–1405.

MPI Forum. 1994. MPI: a message passing interface standard.
International Journal of Supercomputer Applications and
High Performance Computing 8(3/4):159–416.

Musser, D. R. and Saini, A. 1996. STL Tutorial and Reference
Guide: C++ Programming with the Standard Template
Library, Addison-Wesley, Reading, MA.

Ranganathan, M., Acharya, A., Edjlali, G., Sussman, A., and
Saltz, J. 1996. Run-time coupling of data-parallel pro-
grams. Proceedings of the International Conference on
Supercomputing, Philadelphia, PA.

Toth, G. et al. 2004. A physics-based software framework for
Sun–Earth connection modeling. Multiscale Coupling of
Sun–Earth Processes, Proceedings of the Conference on
the Sun–Earth Connection, Kona, HI, A. T. Y. Lui, Y.
Kamide, and G. Consolini, editors, Elsevier, Amsterdam,
pp. 383–397.

Valcke, S., Caubel, A., Vogelsang, R., and Declat, D. 2004.
OASIS3: Ocean Atmosphere Sea Ice Soil User’s Guide.
Technical Report TR/CMGC/04/68, CERFACS, Tou-
louse, France.

