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Abstract— The development of cooperative vehicle safety
(CVS) applications, such as collision warnings, turning assis-
tants, and speed advisories, etc., has received great attention in
the past few years. Accurate vehicular localization is essential
to enable these applications. In this study, motivated by the
proliferation of the Global Positioning System (GPS) devices,
and the increasing sophistication of wireless communication
technologies in vehicular networks, we propose a distributed
location estimate algorithm to improve the positioning accu-
racy via cooperative inter-vehicle distance measurement. In
particular, we compute the inter-vehicle distance based on
raw GPS pseudorange measurements, instead of depending
on traditional radio-based ranging techniques, which usually
either suffer from high hardware cost or have inadequate
positioning accuracy. In addition, we improve the estimation of
the vehicles’ locations only based on the inaccurate GPS fixes,
without using any anchors with known exact locations. The
algorithm is decentralized, which enhances its practicability
in highly dynamic vehicular networks. We have developed a
simulation model to evaluate the performance of the proposed
algorithm, and the results demonstrate that the algorithm can
significantly improve the positioning accuracy.

I. INTRODUCTION

With recent advances in wireless communication technolo-
gies in vehicular networks, the cooperative vehicle safety
(CVS) applications are expected to offer fundamental break-
throughs in enhancing the road safety. Accurate vehicle
positioning is vital to enabling many safety-critical ap-
plications, such as cooperative collision warnings, turning
assistants, and speed advisories, to name but a few. In
these applications, the positioning has to be accurate enough
such that the vehicles could be differentiated at the lane
level. However, current commercially available GPS devices,
which are widely used in ground vehicles for positioning
and navigation, typically report errors on the order of 10
meters ([1], [2]). Thus, it is difficult to recover the lane level
relationship among vehicles within a vicinity region.

Much effort has been devoted to increasing the positioning
accuracy in vehicular networks. Leveraging reference points
(i.e. anchors or base stations) with known exact positions is
one of the most prevalent solutions to correct the positioning
error. Differential GPS (DGPS) and assisted GPS (A-GPS)
are two of the well-known techniques relying on ground-
based reference points to improve the GPS accuracy. Many
localization systems in vehicular networks have employed
similar concepts [3]. R. W. Ouyang et al. [4] utilized the
time of arrival (TOA) measurement taken from terrestrial ref-

erence stations to improve the initial GPS fix accuracy. Three
algorithms, including a geometric approach, a weighted least
squares based approach and a closed-form approach, are pro-
posed to enhance the positioning performance under different
driving conditions. Inspired by the concept of DGPS, E.K
Lee et al. [5] proposed a mobile version of DGPS system,
which exploits the radio-frequency identification (RFID)
technique in vehicle positioning. In the proposed system,
when a vehicle obtains a known precise position from an
RFID tag installed along the road via its RFID reader, this
vehicle would act as a moving reference point temporarily by
computing the GPS errors, and then sharing the errors with
its neighbors to help them correct their GPS coordinates.
Although most of the localization systems based on reference
points have been demonstrated effective, they require the
support of particular hardwares or large-scale infrastructures,
while some of them are not yet globally available.

Currently, GPS becomes a mature and widely applied
localization system. The proliferation of GPS makes it the de
facto solution for vehicle navigation and localization, though
it still suffers from some issues such as accuracy, reliability,
and robustness to varying degrees. Meanwhile, the increasing
sophistication of wireless communication technologies in
vehicular networks, such as the dedicated short range com-
munications (DSRC), encourages the development of coop-
erative applications [6]. Motivated by the above observations,
in this work, we are dedicated to improving the positioning
accuracy based on GPS pseudorange measurements in a
cooperative vehicular network.

The main contributions of this work are summarized as
follows. First, existing solutions which utilize inter-vehicle
distances in improving the positioning accuracy ([7], [8], [9],
[10]), in one way or another, rely on the radio-based ranging
technologies, such as Time of Arrival (ToA) [4], Time Differ-
ence of Arrival (TDoA) [11], Angle-of-arrival (AOA) [12],
and Received Signal Strength (RSS) [13]. Typically, these
technologies either require particular ranging sensors causing
a high hardware cost, or suffer from inadequate ranging
accuracy [14]. In contrast, the proposed algorithm is designed
to compute inter-vehicle distances with high accuracy only
by the acquisition of GPS information without using ranging
sensors. Second, the proposed algorithm estimates the vehi-
cle location solely based on inaccurate GPS measurements
without the assumption of any reference points. Last, in
view of the highly dynamic nature in vehicular networks,
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the proposed algorithm is operated in a distributed fashion
to make it a potentially practical solution. Note that this study
focuses on improving the positioning accuracy in open areas
with reasonably good GPS signal (i.e. at least four satellites
available for localization), such as highways, suburban areas,
and rural areas, etc. Nevertheless, in other environments,
solutions for compensating GPS outages and overcoming
GPS limitations can be referred to ([7], [8], [9], [15]).

The rest of this paper is organized as follows. Section II
reviews the inter-vehicle distance detection technique and
formulates the research problem. Section III proposes a
distributed location estimate algorithm. Section IV develops
the simulation model and gives the performance evaluation.
Last, we conclude this study and outline the further work in
Section V.

II. PRELIMINARY

A. GPS pseudorange based distance measurement

Many studies on cooperative vehicular localization assume
the availability of the distance between two neighboring vehi-
cles to improve the positioning accuracy. Typical techniques
assumed to obtain the inter-vehicle distance include ToA,
TDoA, AOA, and RSS, which are the radio-based rang-
ing techniques proposed in cellular networks. In vehicular
networks, however, these techniques can hardly achieve the
ranging accuracy required by safety-critical applications [14].
In order to improve the accuracy of inter-vehicle distance
measurement, we have proposed an algorithm based on the
sharing of GPS pseudorange information [16]. In this section,
we recapitulate the key ideas of the algorithm, which forms
the basis of this study.

In the GPS system, the distance from a vehicle to each
satellite is derived from an estimated time of transmission,
and this distance is called the pseudorange. Several sources
contribute to the errors in the pseudorange measurement. The
pseudorange (PRi

a) between GPS receiver a to satellite i can
be decomposed into [17]:

PRi
a = Ri

a + ta + xi + ε i
a (1)

where Ri
a is the true distance between satellite i and receiver

a; ta is the error caused by receiver a’s clock bias; xi is
the common noise related to satellite i that are shared by
each GPS receiver within a vicinity region, including satellite
clock bias, atmospheric delay, and errors in the broadcasted
ephemeris; ε i

a is the non-common noise specific to receiver a
and satellite i , including the multipath and code acquisition
noises. By taking the difference between the pseudoranges
of the two receivers a and b to the same satellite i , the
common noise due to satellite i can be effectively removed:

Si
ab = PRi

a −PRi
b

= (Ri
a −Ri

b)+(ta − tb)+(ε i
a − ε i

b)

= ∆Ri
ab +(ta − tb)+(ε i

a − ε i
b) (2)

where Si
ab is the single difference of pseudorange measure-

ments, and ∆Ri
ab is the difference between the true ranges

from receiver a and b to satellite i . As the true ranges
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Fig. 1. Pseudorange double difference

from satellite i to receivers a and b are much larger than the
distance between a and b , the two vectors pointing from i
to a and b are nearly parallel to each other. As illustrated in
Figure 1, ∆Ri

ab can thus be approximated by:

∆Ri
ab = e⃗i · r⃗ab (3)

where e⃗i is the unit vector pointing from receiver a (or b) to
satellite i, and r⃗ab is the distance vector between the receivers
a and b. When double difference is used, the clock bias of
the receivers a and b can be further removed.

Di j
ab = Si

ab −S j
ab

= [∆Ri
ab −∆R j

ab]+ [(ε i
a − ε i

b)− (ε j
a − ε j

b)]

= [⃗ei − e⃗ j] · r⃗ab +[(ε i
a − ε i

b)− (ε j
a − ε j

b)] (4)

Given a set of satellites {0,1, ...,n} shared by the receivers
a and b, Eq.4 can be reorganized into:

Dab = H⃗rab + ε (5)

where Dab is the column vector of pseudorange double
differences with respect to the satellites 0 and i (1 ≤
i ≤ n), and Dab = [D10

ab D20
ab · · · Dn0

ab]
T . Accordingly, H is

the column vector of the difference between two unit
vectors, and H = [(⃗e1 − e⃗0) (⃗e2 − e⃗0) · · · (⃗en − e⃗0)]T . ε
is the column vector of aggregated non-common noises,
and ε = [

(
(ε1

a − ε1
b )− (ε0

a − ε0
b )
)
...
(
(εn

a − εn
b )− (ε0

a − ε0
b )
)
]T .

Assume ε is zero mean and equal variance, r⃗ab can be
approximately solved by the linear least squares estimator:

r⃗ab = (HT H)−1HT Dab (6)

In order to further improve the accuracy of the computed
distance r⃗ab, we have taken the Carrier to Noise Ratio (CNR)
of raw pseudorange measurements into account for noise
mitigation, and proposed an algorithm called weighted least
squares double difference (WLS-DD). The final form of the
weight matrix W is represented by:

W = diag
(

(ϕ 1
a )

2 · (ϕ 1
b )

2

(ϕ 1
a )

2 +(ϕ 1
b )

2 , · · · ,
(ϕ n

a )
2 · (ϕ n

b )
2

(ϕ n
a )

2 +(ϕ n
b )

2

)
(7)

where diag(·) denotes a diagonal matrix, and ϕ i
a is the CNR

value of the received signal from satellite i to receiver a.
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The detailed designing rationale of the weight matrix W can
be referred to [16]. Finally, the distance between a and b is
computed by:

r⃗ab = (HT WH)−1HT WDab (8)

We have demonstrated that the WLS-DD significantly
increases the accuracy of the distance measurement via an
extensive field testing. On the basis of the accurate distance
measurement, we formulate the research problem of this
study as follows.

B. Problem statement

The set of vehicles is denoted by V = {v1,v2, ...,v|V |},
where |V | is the total number of vehicles. The true location
of vehicle vi (1 ≤ i ≤ |V |) is represented by the vector vi. v j
is considered as the neighbor of vi if the two vehicles are
within their communication range. The set of vi’s neighbors
is denoted by Ni (Ni ⊂ V ). For ∀v j ∈ Ni, the true distance
between vi and v j is denoted by di j (di j =

∥∥vi −v j
∥∥), while

the computed distance (by WLS-DD) between vi and v j is
denoted by d̃i j. Denote the original GPS fix of vi as ṽi, which
is typically subject to the positioning error on the order of 10
meters ([1], [2]). Note that the accuracy of the inter-vehicle
distance computed by WLS-DD is much higher than that
directly obtained from the original GPS fixes of the two
neighboring vehicles, which is

∥∥ṽi − ṽ j
∥∥.

The overall objective of this work is to improve the accu-
racy of vehicular localization by leveraging the original GPS
fixes and the computed inter-vehicle distances. Specifically,
given a set of vehicles V with their original GPS fixes
ṽ = {ṽ1, ṽ2, ..., ṽ|V |}, and the computed distance d̃i j between
any two neighboring vehicles vi and v j (vi ∈V and v j ∈ Ni),
the algorithm is committed to computing a set of estimated
locations v̂ = {v̂1, v̂2, ..., v̂|V |}, so that the estimated location
v̂i can approximate to the true location vi. In brief, the

problem is to minimize the value of
|V |
∑

i=1
∥v̂i −vi∥, which is

the overall error of the estimated locations. It is worth noting
that, we aim to improve the positioning accuracy solely
based on the inaccurate raw GPS measurements without the
assumption of any particular equipments or infrastructures
(i.e. ranging sensors for distance measurement, or anchors
for error correction). The primary notations used in this work
are summarized in Table I.

III. A DISTRIBUTED LOCATION ESTIMATE ALGORITHM

In this section, we propose a distributed location estimate
algorithm (DLEA) to improve the localization accuracy in
a cooperative vehicular network. The detailed procedures of
DLEA along with its designing rationale are presented below.

A. Tentative location estimate

A prerequisite to enable the cooperative localization is
that, for any vehicle vi (vi ∈V ), there is at least one neighbor-
ing vehicle v j (v j ∈V ), namely, Ni ̸= /0 for ∀vi ∈V . With this
prerequisite, each vehicle vi is able to estimate the location
based on the information (i.e., computed distances, and

TABLE I
SUMMARY OF NOTATIONS

Notations Descriptions Notes
V total set of vehicles V = {v1,v2, ...,v|V |}
Ni neighbor set of vi Ni ⊂V

V k subset of vehicles with V k = Nk +{vk}
the pivot vk and V k ⊆V

vi true location of vi

di j true distance between di j =
∥∥vi −v j

∥∥
vi and v j

ṽi original GPS fix of vi

d̃i j computed distance between computed by WLS-DD

vi and v j

δi GPS error of vi δi = vi − ṽi

v̂k
i tentative estimated location

of vi in subset V k

v̂i final estimated location of vi

V̂k set of tentative estimated

locations computed by vk

wi weight of the pivot vi

original GPS fixes) received from its neighbors. To facilitate
the implementation of the distributed location estimate, we
define the subset of vehicles as follows.

Definition 1: subset of vehicles Given a vehicle vk
(vk ∈ V ), it is considered as a pivot of a subset V k, when
V k is comprised of vk and all of its neighbors {v j|v j ∈ Nk},
namely, V k = Nk +{vk}.

Note that each vehicle vk will act as a pivot and construct
a corresponding subset V k. In the following, we transform
the tentative location estimate into a constrained non-linear
optimization problem. In this way, each pivot vehicle vk
will compute a set of tentative estimated locations, which is
represented by V̂k = {v̂k

i |vi ∈ V k}, where v̂k
i is the tentative

estimated location for vi (vi ∈V k).
Given a vehicle vi (vi ∈ V k) with its original GPS fix ṽi,

the GPS error δi can be represented by δi = vi − ṽi, where
vi is the true location of vi. Since the GPS error is caused
by many independent sources, such as satellite clock bias,
atmospheric delay, acquisition noises , and multipath, etc., it
is commonly to assume that the error δ follows the Gaussian
distribution ([7], [15]), namely, δ ∼ N(µ ,σ2), where µ is
the mean, and σ2 is the variance. Denote the probability

density function as φ(δ ), then φ(δ ) = 1√
2πσ ·e−

(δ−µ)2

2σ2 . Given
the φ(δ ), the value of the error (vi − ṽi) is most likely to
distribute around the point where the highest probability
density is achieved. Therefore, in order to maximize the
possibility that the tentative estimated location (v̂k

i ) would
approximate to the true location (vi), it is expected to
maximize the function of φ(v̂k

i − ṽi). Besides, the tentative
estimated locations should also satisfy the distance constraint
between any two neighboring vehicles, which is represented
by:

∥∥∥v̂k
j − v̂k

k

∥∥∥= d̃ jk, for ∀v j ∈ Nk, where d̃ jk is the computed
distance between the pivot vk and its neighbor v j. In practice,
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the road space constraint (e.g. boundary coordinates), if
applicable, can be also included to enhance the positioning
accuracy. To sum up, the set of tentative estimated locations
V̂k computed by the pivot vk can be derived from:

V̂k = argmax
V̂k

∑
vi∈V k

φ(v̂k
i − ṽi) (9)

subject to that∥∥∥v̂k
j − v̂k

k

∥∥∥= d̃ jk for ∀v j ∈ Nk, and

v̂k
i ∈ S for ∀vi ∈V k.

where
V k is the subset with the pivot vehicle vk;
v̂k

i is the tentative estimated location for vi computed by vk;
ṽi is the original GPS fix of vi;
d̃ jk is the computed distance between v j and vk;
Nk is the neighbor set of vk;
S represents the road space constraint.

B. An example

We illustrate the computing details of for the tentative
estimated locations by the following example. As shown in
Figure 2, given the road space S , the total set of vehicles
is V = {v1,v2,v3,v4,v5,v6}. The edge with double arrows
represents the two vehicles are within their communication
range. In other words, they can share the GPS pseudorange
measurement with each other and compute the inter-vehicle
distance. Taken v1 as an example, the neighbor set of v1 is
represented by N1 = {v2,v3,v4,v5}, and the subset of vehicles
with pivot v1 is V 1 = {v1,v2,v3,v4,v5}. The set of tentative
estimated locations V̂1 = {v̂1

1, v̂
1
2, v̂

1
3, v̂

1
4, v̂

1
5} is computed by:

V̂1 = argmax
V̂1

(
φ(v̂1

1 − ṽ1)+φ(v̂1
2 − ṽ2)...+φ(v̂1

5 − ṽ5)
)

(10)

Subject to that∥∥v̂1
2 − v̂1

1
∥∥= d̃21,

∥∥v̂1
3 − v̂1

1
∥∥= d̃31,

∥∥v̂1
4 − v̂1

1
∥∥= d̃41,∥∥v̂1

5 − v̂1
1
∥∥= d̃51, and v̂1

i ∈ S for ∀vi ∈V 1.

To solve the above constrained non-linear optimiza-
tion problem, for clear exposition, we consider in a two-
dimension space. Nevertheless, note that it is straightforward
to extend the solution into a three-dimension space. In an x-y
coordinate, the tentative estimated location v̂k

i , the GPS fix

ṽi, and the error δi can be expanded to: v̂k
i (v̂

k
ix , v̂

k
iy), ṽi(ṽix , ṽiy),

and δi(δix ,δiy), respectively. Accordingly, the objective func-
tion is decomposed into φ(v̂k

ix − ṽix) ·φ(v̂k
iy − ṽiy). Given the

mean value µ(µx,µy), and the standard deviation σ(σx,σy),
we have:

φ(v̂k
ix − ṽix) =

1√
2πσx

· e
−

(v̂k
ix
−ṽix−µx)2

2σ2x and

φ(v̂k
iy − ṽiy) =

1√
2πσy

· e
−

(v̂k
iy
−ṽiy−µy)2

2σ2y (11)

The set of tentative estimated locations is computed by:

V̂k = argmax
V̂k

∑
vi∈V k

φ(v̂k
ix − ṽix) ·φ(v̂k

iy − ṽiy) (12)

According to Eq.11, let

M = φ(v̂k
ix − ṽix) ·φ(v̂k

iy − ṽiy)

=
1√

2πσx
· e

−
(v̂k

ix
−ṽix−µx)2

2σ2x · 1√
2πσy

· e
−

(v̂k
iy
−ṽiy−µy)2

2σ2y

then

logM =−A+B

where

A =
(v̂k

ix − ṽix −µx)
2

2σ2
x

+
(v̂k

iy − ṽiy −µy)
2

2σ2
y

and

B = log
1√

2πσx
+ log

1√
2πσy

Since B is a constant, the objective of maximizing the value
of M is equivalent to the objective of minimizing the value
of A. Accordingly, Eq.12 can be transformed to:

V̂k = argmin
V̂k

∑
vi∈V k

(v̂k
ix − ṽix −µx)

2

2σ2
x

+
(v̂k

iy − ṽiy −µy)
2

2σ2
y

(13)

subject to that√
(v̂k

jx − v̂k
kx
)2 +(v̂k

jy − v̂k
ky
)2 = d̃ jk for ∀v j ∈ Nk, and

Sx
lb ≤ v̂k

ix ≤ Sx
ub, Sy

lb ≤ v̂k
iy ≤ Sy

ub for ∀vi ∈V k.

where Sx
lb,S

x
ub,S

y
lb, and Sy

ub represent the lower bound and the
upper bound of the x and y coordinates confined by the road
space, respectively.

C. Final location estimate

With the above method, each vehicle vk (vk ∈ V ), when
acting as a pivot, will compute in total of |V k| tentative
estimated locations, including v̂k

k (for itself) and a set {v̂k
i |vi ∈

Nk} for each of its neighbors (|V k|= |Nk|+1). This implies
that, each vehicle vk will also obtain in total of |V k| tentative
estimated locations, including v̂k

k computed by itself, and a
set {v̂i

k|vi ∈ Nk} computed by each of its neighbor vi (when
vi acting as a pivot). Intuitively, given a pivot vk, the more
vehicles are within the subset V k, the higher possibility that
the computed v̂k

i is closer to the true location of vi, as there
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are more constraints (i.e., distances between two neighboring
vehicles) are applied in position estimate. In view of this, we
define the weight of a pivot vehicle as follows.

Definition 2: weight of a pivot vehicle Given a pivot
vk with its corresponding subset V k, the weight of vk, denoted
by wk, is defined as the number of vehicles in V k, namely,
wk =

∣∣V k
∣∣.

The final estimated location v̂k is a weighted average of all
the tentative estimated locations for vk ({v̂k

k}+{v̂i
k|vi ∈ Nk}),

and the set is equivalent to {v̂s
k|vs ∈ V k}, where v̂s

k is the
tentative estimated location for vk computed by the pivot vs.
The weight of v̂s

k is defined as follows.

Definition 3: weight of a tentative estimated location
Given a tentative estimated location for vk computed by the
pivot vs (v̂s

k), the weight of v̂s
k is defined as the weight of vs

(ws) over the sum of the weight of each vi in the subset V k,
which is calculated by ws

∑
vi∈V k

wi
.

With the above definitions, the final estimated location v̂k
is a linear combination of all the tentative estimated locations
v̂s

k, which is computed by:

v̂k = ∑
vs∈V k

ws

∑
vi∈V k

wi
· v̂s

k (14)

Taken v6 shown in Figure 2 as an example, the subset V 6 =
{v4,v5,v6}. Therefore, v6 will get three tentative estimated
locations, v̂4

6, v̂5
6, and v̂6

6, which are computed by v4, v5, and
v6, respectively. Besides, the weight of each pivot vehicle is
w4 = 4, w5 = 4, and w6 = 2. So, the final estimated location
is computed by:

v̂6 =
1

w4 +w5 +w6
· (w4v̂4

6 +w5v̂5
6 +w6v̂6

6)

The main procedures of DLEA is summarized as follows.
Step 1: To compute the distance between any two neigh-

boring vehicles based on WLS-DD.

Step 2: Each vehicle vi shares its original GPS fix ṽi with
its neighbors.

Step 3: Each vehicle vi acts as a pivot and computes a set
of tentative estimated locations V̂i.

Step 4: Each vehicle vi shares the computed V̂i with its
neighbors.

Step 5: Each vehicle vi computes its final estimated
location v̂i based on all of its tentative estimated locations.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DLEA. The
framework of the simulation model is built by CSIM19 [18],
and DLEA is implemented by the C programming together
with the MATLAB. Table II shows the default parameter
settings for performance evaluation. Unless stated otherwise,
the simulations are conducted under these default settings.
Specifically, we consider in a (L×W ) m2 road space, where
the true locations of vehicles spatially form a Poisson process
with the mean arrival rate, λ , and the mean velocity, q. The

TABLE II
DEFAULT SETTINGS

Parameter Default Descriptions
L 500 (m) length of the road space
W 9 (m) width of the road space

(3 lanes x 3m)
R 150 (m) communication range
λ 50 (vehicles/min) parameter of the Poisson process
q 50 (km/h) mean velocity of vehicles
δ δ ∼ N(0,102) error of GPS fixes

(Gaussian distribution)
ε ε ∼ N(0,12) error of computed distances

(Gaussian distribution)

GPS fix error (δ ), as well as the error of the computed
inter-vehicle distances (ε), follow the Gaussian distribution.
The default communication range (R) among vehicles is
assumed to be 150 meters, which is within the reliable data
transmission range supported by the DSRC [19].

As shown in Figure 3, we evaluate the performance of
DLEA under different GPS deviation environments. The x-
axis represents the IDs of vehicles along the road. The y-axis
represents the location error of each vehicle. In particular, the
errors of GPS fixes and DLEA are depicted for comparison,
which are calculated by ∥ṽi −vi∥ and ∥v̂i −vi∥, respectively.
Clearly, compared with the GPS fixes, the estimated locations
by DLEA are much closer to the true locations of vehicles. To
give a comprehensive comparison, Table III summarizes the
average errors of GPS fixes and DLEA, which are calculated
by ∑

vi∈V
∥ṽi −vi∥/|V | and ∑

vi∈V
∥v̂i −vi∥/|V |, respectively. Ob-

served from these statistics, with an increasing value of GPS
deviation, the errors of both GPS fixes and DLEA are getting
higher. This is reasonable as DLEA estimates the locations
based on the original GPS fixes. Nevertheless, DLEA always
manages to achieve much higher accuracy than GPS fixes
across a wide range of conditions.

TABLE III
AVERAGE LOCATION ERRORS (M)

GPS Fix DLEA
Deviation=5m 6.271441 2.552837

Deviation=10m 14.119025 3.791405
Deviation=15m 20.852989 5.678821

V. CONCLUSION AND FUTURE WORK

In this work, motivated by the urgent demand of accu-
rate vehicular localization in safety-critial applications, we
proposed a distributed location estimate algorithm, DLEA,
to improve the positioning accuracy via cooperative inter-
vehicle distance measurement. The implementation of DLEA
only relies on raw GPS pseudorange measurements without
the assumption of any particular hardwares or infrastruc-
tures, which makes it a potentially inexpensive and prac-
tical solution. Besides, DLEA is operated in a distributed
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Fig. 3. Performance evaluation under different GPS deviation environments

fashion, so that it can be adaptable to the highly dynamic
vehicular network. Last, we have built the simulation model,
and implemented the algorithm for performance evaluation.
The simulation results demonstrated that the algorithm can
significantly improve the positioning accuracy.

The current solution is effective in scenarios with good
GPS signal. In our future work, we will explore the influence
of GPS signal to the positioning performance under different
environments, such that we can further refine the solution and
make it more robust in compensating and overcoming GPS
limitations.

ACKNOWLEDGMENT

This research is supported by the Singapore National
Research Foundation (NRF) through the Singapore-MIT Al-
liance for Research and Technology (SMART) Future Urban
Mobility (FM) Interdisciplinary Research Group (IRG). We
thank Prof. Emilio Frazzoli and Prof. Daniela Rus of MIT
for their support and suggestions regarding this work.

REFERENCES

[1] A. Boukerche, H. Oliveira, E. Nakamura, and A. Loureiro, “Vehicular
ad hoc networks: A new challenge for localization-based systems,”
Computer Communications, vol. 31, no. 12, pp. 2838–2849, 2008.

[2] R. Schubert, M. Schlingelhof, H. Cramer, and G. Wanielik, “Accurate
positioning for vehicular safety applications-the safespot approach,”
in Proceedings of the 65th IEEE Vehicular Technology Conference
(VTC’07-Spring). IEEE, 2007, pp. 2506–2510.

[3] J. Du and M. Barth, “Next-generation automated vehicle location sys-
tems: Positioning at the lane level,” IEEE Transactions on Intelligent
Transportation Systems, vol. 9, no. 1, pp. 48–57, 2008.

[4] R. Ouyang, A. Wong, and K. Woo, “Gps localization accuracy im-
provement by fusing terrestrial toa measurements,” in Proceedings of
IEEE International Conference on Communications (ICC’10). IEEE,
2010, pp. 1–5.

[5] E. Lee, S. Yang, S. Oh, and M. Gerla, “Rf-gps: Rfid assisted localiza-
tion in vanets,” in Proceedings of the IEEE International Conference
on Mobile Adhoc and Sensor Systems (MASS’09). IEEE, 2009, pp.
621–626.

[6] K. Liu and V. Lee, “Adaptive data dissemination for time-constrained
messages in dynamic vehicular networks,” Transportation Research
Part C: Emerging Technologies, vol. 21, no. 1, pp. 214–229, 2012.

[7] R. Parker and S. Valaee, “Vehicle localization in vehicular networks,”
in Proceedings of the 64th IEEE Vehicular Technology Conference
(VTC’06-Fall). IEEE, 2006, pp. 1–5.
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