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Abstract

Cognitive radios (CRs) can exploit vacancies in licensedjdency bands to self-organize in oppor-
tunistic spectrum networks. Such networks, hencefortarrel to as cognitive radio networks (CRNSs),
operate over a dynamic bandwidth in both time and space. ifherently leads to the partition of the
network into clusters depending on the spatial variatiothefprimary radio network (PRN) activity. In this
article, we analytically evaluate the performance of a ngsof clustering criteria designed for CRNSs,
which explicitly take into account the spatial variatioffspectrum opportunities. We jointly represent the
network topology and spectrum availability using bipartiraphs. This representation reduces the problem
of spectrum-aware cluster formation to a biclique consimacproblem. We investigate several criteria for
constructing clusters for the CRN environment, and chareet their performance under different spectrum
sensing and PR activity models. In particular, we evaluadeekpected cluster size and number of common
idle channels within each cluster, as a function of the spettand topology variability. We verify our
analytical results via extensive simulations.

Keywords: Cognitive radio networks, clustering, graph theory, kjigé graphs, bipartite graphs,
opportunistic access, open spectrum.

1. Introduction

Under a fixed spectrum allocation paradigm, frequency baralicensed for exclusive use and, in many
cases, to specific entities. For example, TV bands are usdbdddroadcast of TV signals from licensed
operators, while public safety radio bands are reservedaftio communications of state, governmental
and municipal entities. This paradigm increases the rolgst of wireless services by preventing signal
interference between different technologies [1, 2]. Hoevewmeasurements of the activity load on the
licensed spectrum have shown that a large portion of it iwilyeanderutilized [3, 4]. To this effect,
the Federal Communications Committee (FCC) has recentidee to open up part of the spectrum for
unlicensed opportunistic access [5].
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Figure 1: (a) Co-existence of a CRN with a PRN. The frequerazydb exploited by CRs vary in space depending on the ongoing
PR activity, (b) the topology of the CRN is dependent on theaPfity. CR nodes;, C cannot communicate because they do not
share a common idle channel, despite being within commtiaitaange.

Policy regulations dictate that opportunistic users muastimterfere with the transmissions of legacy
systems [5]. This “no interference” policy leads to a hiehéezal network architecture in which licensed
users, typically referred to gsimary users or primary radios (PRs), have a higher priority in accessing the
spectrum compared to unlicensed ones, commonly referradsgondary users. Cognitive radios (CRs)
are one of the most promising technologies for implementireggmandated policy regulations [6]. Using
software defined radio technology and an advanced cogrétigine, CRs are capable of sensing the idle
spectrum either independently, or cooperatively [7—9]e e spectrum is then temporarily accessed by
the CRs to form a cognitive radio network (CRN).

The unique characteristic of a CRN co-existing with a priynaxdio network (PRN) is the dynamic
nature of the spectrum availability [10]. Consider, for mxde, the co-existence of a PRN with a CRN, as
shown in Figure 1(a). PRN traffic variations lead to a spatial temporal variation of the CRN topology.
Two CR nodes within communication range are not guaranteemrimunicate, unless at least one idle
band exists at their location. This additional constrampases an inherent partition of the CRN into
clusters, depending not only on the physical proximity ofsCBut also on the spectrum availability. In
this article,we develop and study the performance of clustering criteria that explicitly take into account the
spatial variations of the spectrum opportunities.

We note that co-located CRs make correlated sensing oltiesvly sampling the transmission activity
of nearby PRs. The set of idle chanfetensed by neighboring CRs varies depending on: (a) therpityxi
of each CR to active PRs, and (b) the imperfections of theisgmsechanism due to hardware limitations
and phenomena of shadowing and fading [10]. For instandggure 1(b), we show three CRs opportunis-
tically accessing a set of four licensed channels; 8&Rupies channeld, 2} while PR, occupies channels
{3,4}. CRsA andB are within the coverage range of PRhile CRC is within the coverage range of BR
CRsA andB sense no PR activity on chann¢B 4} while C senses no PR activity on channgls2}. In
addition, B is perceiving channel 2 as idle due to multipath or fadinga#. In the CRN of Figure 1(b),
A, andC cannot directly communicate despite the fact that they atlErmwcommunication range, because
there is no overlap between their respective sets of idlaraia.

From the example of Figure 1(b), it becomes evident that gt&/ork topology jointly depends on the
physical proximity and spectrum availability. Therefot@yology management algorithms such as cluster-
ing, must take both these parameters into account. Howgeanake the observation that clustering criteria

1n this article, we use the term “channels” to refer to oritwgl frequency bands.
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designed for CRNs with dynamic spectrum, may have conftiagioals. On one hand, partitioning the net-
work to a small number of clusters (with larger cluster Sizeduces the overhead for topology management
[11]. On the other hand, grouping a large number of CRs wiskidiilar sets of idle channel, reduces the
available bandwidth for intra-cluster communication (aer number of idle channels is common among
all CRs). To capture the aforementioned trade off, we jpintlodel the physical network topology and
spectrum availability at each CR as a bipartite graph. Basethis joint representation, we partition the
CRN into clusters by constructing biclique graphs (congtbgraphs of a bipartite graph), which satisfy
various design criteria. We initially proposed the idearespnting clusters in CRNs as bicliques in [12].
The goal of the work in [12] was to locally allocate common ttohchannels for coordination purposes.
The differences between [12] and the present work are suineadan the following contributions.

Contributions. Adopting a graph-based representation of the idle spec¢twarexamine three clustering
criteria, suitable for CRNs with dynamic spectrum. Thesgga are: (a) joint maximization of theum

of common idle channels per cluster with the number of ctustembers, (b) joint maximization of the
product of common idle channels per cluster times the number of @lusembers, and (c) maximization
of the number of cluster members under a constraint on thébauwf common idle channels. We show
that our clustering criteria can be combined with clustprigorithms proposed for ad hoc networks, in
order to perform spectrum-aware distributed clusteringCRNs. Such clustering, not only allows for
enhanced intra-cluster communication due to the avaitialoif multiple common frequency bands, but also
inherently implements cooperative spectrum sensing. &ar elustering criterion, we analytically evaluate
the clustering performance in terms of the feasible clgstire expected cluster size and the number of
common idle channels per cluster. In our derivations, wesiclem two PR activity models; a semi-Markov
ON/OFF model and a Poisson traffic model. However, othefidraiodels can be incorporated to our
analytic results. Furthermore, we consider the clustepimgess under both perfect and imperfect channel
state information. Note that our theoretical evaluatiota#the estimation of the feasible bicliques that
can be constructed from bipartite graphs with a pre-spégifiebabilistic structure. Our derivations can be
applied to any problem that benefits from a mapping to a hielieepresentation, and is subject to similar
probabilistic models.

Paper organization. The remaining of the paper is organized as follows. In Se@iave state our system
model. In Section 3, we develop a graph model for the jointasgntation of the physical topology and
the idle spectrum availability. Using this model, clustare mapped to biclique graphs. Spectrum-aware
clustering criteria based on the graph representationusitels are investigated in Section 4. Section 5
discusses algorithms for distributed cluster formatiod araintenance. In Section 6 we analytically eval-
uate the performance of the proposed clustering critenid validate our results via extensive simulations.
Related work is presented in Section 7. Finally, in Sectiowdpresent our conclusions.

2. System Model Assumptions

For clarity purposes, we first present the notation thatléllsed in the rest of this article.

2.1. Notation
M Set of channels licensed to PRNSs.

Ci: Setofidle channels at CR
N;: Setof one-hop neighbors of GR
N : Random variable expressing the number of idle channelseiisystem.
p: Probability that a channel is idle under the semi-Markaw#g model.
pm: Probability of mis-detecting the state of an occupied dean
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ps : Probability of false alarm in sensing an idle channel.

R: PR communication range.

r .  CR communication range.

A Arrival rate for a Poisson-distributed arrival process.

u . Departure rate for an exponentially distributed serviaepss.

G(A,B,E) . Bipartite graphg with sets of verticesA, 8, and set of edges.
Q(X,Y) : Biclique graph with sets of vertices Y.

Z; . Number of bicliques of “sizeZ?.

{s: Sum of the vertices of a bicliqués = |X| + |Y|.
tp . Product of vertices of a bicliqué, = |X]|Y].

{c . Cardinality of one side of a bicliqué; = |X]|.

cink): (-

2.2. Primary Radio Network Model

PRNs are licensed to use a fixed spectrum, which can be ditédedet of orthogonal frequency bands
(channels), denoted byt = {1,2,...,m}. We assume that all channels are of the same quality in terms of
capacity and propagation characteristicBR users have priority in accessing any channeViin without
experiencing any performance degradation due to tranEmgsgy unlicensed users [5].

2.2.1. PRN Activity Models

The proposed clustering criteria and mechanisms do notnhdege any particular PRN activity model.
However, in order to provide an analytical evaluation of thestering performance, we consider two PRN
activity models that are widely adopted in CRN analysis.

Semi-Markov model. In this model, PRN traffic on a given channed M is modeled after a semi-Markov
ON-OFF process. The state of channalternates between busy (ON) and idle (OFF) periods. Thgthen
of each period is assumed to be an independent random afa@hiwing some distribution. Moreover,
the state of a channels independent of the state of other channels. This assomistirue when the set of
channelsM is licensed to independently operating PRs (e.g., champalsated by different TV stations).
Semi-Markov ON-OFF models have been experimentally verifiie a range of PRN scenarios [13, 14].
The semi-Markov renewal process modeling the PRN activitglannel is shown in Figure 2. Without
loss of generality, we assume a geometric distribution ernlehgth of the ON and OFF periods (holding
times at each state of the Markov process) with parametensd p;, respectively. Such assumptions have
been extensively adopted in theoretical analyses of tHenpeance of CRNs (e.g., [15-17]). In this case,
the stationary probability that chanrigs in idle state can be easily computed to be

e = _ Gi 3
G + Pi

Let N denote the random variable expressing the number efcldhnnels in the system. Due to the inde-
pendent channel assumption, the probability mass funtioi) for N is given by

PiN=n] = > [ [a%] [@-=[). 1)

lcM : |l|=n i€l jel

2CRs may operate over a diverse set of frequency bands withetit capacity and propagation characteristics. Forlgityp
we assume that there is no preference over the channel citaper
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Figure 2: (a) The semi-Markov PR activity model for channgb) PR activity at channelsandi + 1 modeled as an ON/OFF
process.

Assuming that all channels have the same traffic charatitsrig.e.,xl%® = p, Vi € M), (1) is simplified to
a binomial distribution

PN =K = (o]~ P @

Poisson model. The second PR activity model aims at capturing the trafficaittaristics of PRNs operating
under the management of a single entity (for example, alaelhetwork). In this case, PRN traffic is
modeled after a Poisson process with arrival raend exponentially distributed service time with mean
1 [18, 19]. Such assumptions have been verified for networkerevthe number of users is significantly
larger than the number of available channels (as in cellddworks) [18—20]. This model suggests that
PRN activity forms arM/M/c/0 queuing system, where= m denotes the number of channels licensed to
the PRN. The stationary probability afchannels being idlenf — n channels being occupied) is given by
theErlang loss formula [21]:

pmn

(m-n)!

PrIN=n] = — pi,n=0,1,...,m, 3)
i=0 T

wherep = 4. In fact, (3) holds true when the channel holding time follosvs/ general distributio®
(M/G/clc queuing model) [21]. The computation of (3) can begified using recursion or well known
approximations that do not require the calculation of faats of high order [22].

2.3. CRN Modél

We assume a decentralized network architecture in whichseR®rganize into a network, without the
assistance of a fixed infrastructure. Moreover, no int@ads assumed between the PRNs and the CRN.
To prevent interference with the PRs, CRs obtain channtd stbormation in the following two ways: (a)
by connecting to a database [5] and, (b) by sensing for idig@uency bands using methods such as energy
detectors, cyclostationary feature extraction, and gilghals [6-9].

Using any of the two methods, each GRnaintains its own set of channalk = {i1, i2,...,ic,}, left
idle by the PRN. Herei, refers to thej'" element ofCx. When channel state information is obtained via a
database, it is assumed to be perfect. On the other hand,@Reperform their own sensing, channel state
information is subject to events of mis-detection and fallem, due to phenomena of multipath and/or
shadowing of PR signals [7—9]. To model the imperfectionshefspectrum sensing process, we assume
that the state of an occupied channel is falsely estimatédmis-detection probabilityy,. Moreover, the
state of an idle channel is falsely estimated (due to, fomgpta, the presence of a large noise component)
with false alarm probability p;. Given the fast decorrelation of the received signal wittcend frequency
[23], the events of false alarm and mis-detection are assumbe independent for each CR and for each
channel. Several methods are available for computing &/pedues ofpy, and ps [24—26].
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Figure 3: Topology architectures modeling the co-existarfdche CRN with PRNs. The numbers in parenthesis on top ¢f B&:
indicate the channel(s) occupied by that PR. The list of PRIseé CR area indicate the PRs sensed by CRs in that area.gdest ty
topologies, the set of PRs sensed by each CR is identicatyperll topologies, neighboring CRs possibly sense diffieiPRs.

2.4. CRN Topology Models

Two types of network topologies are considered for the dstence of the CRN with PRNSs. lype-|
topologies, the coverage range of PRs denote® kg significantly larger than the communication range
of the CRs, denoted by Thus, neighboring CRs (within one hop of each other) arbiwihe range of the
same set of PRs. This scenario arises when the PRs are pbbasfustations such as TV transmitters, with
coverage range that spans tens of kilometers [Stype-1l topologies, the range of the PRs is comparable
to that of the CRs. Therefore, neighboring CRs make cogelaensing observations, without necessarily
being in the range of the same set of PRs. This scenario avise:s the PRs are wireless microphones or
cellular towers with limited range [5]. The two types of netk topologies are depicted in Figure 3.

The two topological models impose different spatial vasiatconditions on the set of idle channels
at neighboring CRs. For type-I topologies and perfect chhatate information, CRs have identical sets
of idle channels since they are within the communicatiorgeaof the same set of PRs. For instance, in
Figure 3(a), all CRs within the deployment area sense theitgodf PR1—PR4. Hence, for this scenario,
the variation of the idle spectrum is only temporal. For tjpmpologies, neighboring CRs are subjected
to activity from possibly different sets of PRs. As an examph the topology of Figure 3(b), CRsandB
have correlated but not identical sets of idle channels.n@&lab occupied by PRis marked occupied by
CRA, but idle by CRB, sinceB is not within the range of PR

To analytically evaluate the proposed clustering critenia are interested in modeling the similarity
between the sets of idle channels of neighboring CRs. Censicchannel occupied by a PR«. The
probability thati is sensed idle by a CR is dependent upon the distandg betweenx andy. For a
uniform (random) deployment of PRs and CRs within an aredzefA, and ignoring any border effects,
this probability is equal to [27]:

nR?

Pridy > Rl = 1- . (4)

Equation (4), expresses the probability that €R out of the coverage rande of PR x. We denote this
probability by py. We are also interested in computing the probability thatRazCneighbor of with CR
y (dy; < r), makes a correlated observation on the state of chani@r this, we compute the probability
that two CRs sense occupied charirtel be idle, under the constraint that these two CRs are neighbVe



Figure 4: (a) A CRN of six nodes. The channel availability &ach CR is as followsCa = {1,2,3,4,5,6,7,10}, Cg =
{1,2,3,4,5,7}, Cc = {1,2,3,4,6,8}, Cpb = {1,2,5,10}, Ce = {3,6,7,8,10}, andCr = {1,2,5,6,8}, (b) the bipartite graph
constructed by nodA. The two sides of the bipartition arix = AU Na andBa = Ca, representing the correlation between the
channel availability for the neighbors 8f (c) the bipartite graph constructed by ndde

denote this probability by.

The value ofp, is fixed under a known deployment distribution and fixed valoER andr. We derive the
exact value ofp; for a random CR and PR deployment in Appendix A. The valugs,adind p. model the
correlation between sensing observations of neighboriRg. GVhile more elaborate models are possible
(different node distributions, sensing models, etc.)s #imple model allows us to decouple our analysis
from further assumptions regarding the relative locatibesveen the CRs and the PRs. Note that these
assumptions are made to facilitate the theoretical arsabfdhe performance of the clustering algorithms.
Our decentralized clustering mechanidogs not depend on the validity of such assumptions and can adapt

its operation to any set of conditions and topological architectures.

3. Graph-Based Representation of Idle Spectrum

In this section, we jointly model the network topology and ttlle spectrum availability as a bipartite
graph. This model is used as the basis for constructing ispeeware clusters. The reasoning behind our
model is the co-dependence of the CRN topology on: (a) theraamitation range of the CR devices, and
(b) the overlap between the set of idle channels of neighgdfiRs. Both these parameters can be jointly
represented by an undirected bipartite grgiftd U B, ). A graphG(V, &) is called bipartite if the set of
verticesV can be partitioned into two disjoint se#® and 8 with AU B = V, such that all edges i&
connect vertices fronA to 8.

For the purpose of clustering, each CR can construct its éew of the topology/spectrum availability
based on the information received from its one-hop neighbloet N; denote the set of one-hop neighbors
of a CR nodd. Assume that CR collects the sets of idle channels from all CRSNn This information
can be made available via a cooperative diversity mechafris@i. Then, it can construct a bipartite graph
Gi(A; U Bi, &), which jointly represents the similarity between the set&dtd channels of its neighbors
and his own set. In grap@i, A; =i UN; andB; = Ci. An edge &, y) exists between a vertexe A; and a
vertexy € B; if and only ify € Cy, i.e., y is common to botlg; andCy.

As an example, in Figure 4(a), we show the topology for a CR wix nodes, along with the sets
of idle channels for each node. Figure 4(b), shows the liipagtaph constructed by CR. The set of
verticesAp, corresponds to the one-hop neighbor@gflus the node itselfNa = {A, B,C, D, E, F}, while
the set of verticeBa corresponds to the set of idle chann€ls = {1,2,3,4,5,7,10}. In Figure 4(c), we
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Figure 5: Bicliques constructed by CRsaandD of figure 4(a), representing possible CR clusters and seirofwon idle channels.

present the bipartite grapghip constructed by CR nodB, for the topology of Figure 4(a). We note that
Ga # Gp despite the fact that CR noddsandD are one-hop neighbors. This holds true because, in general,
Na # Np and, under imperfect channel state information, it is etgubthatCa # Cp.

3.1. Modeling Clusters as Biclique Graphs

The purpose of our clustering is to group neighboring nodigls similar sets of idle channels. This
criterion improves the bandwidth availability for intrhister communications. Nodes within a cluster
have more idle channels in common for communication. Thip@ity is desirable since in cluster-based
architectures, the majority of communications occurs ketwcluster members. Moreover, such clustering
inherently implements cooperative spectrum sensinggsimtividual sensing observations are combined
to a consensus regarding spectrum availability [7, 8, 28teNhowever, that pairwise communications
between cluster members are not restricted to common clsar@ies can use any pairwise shared frequency
band to engage in pairwise communications.

To meet our goal, we create clusters where &sgftCR nodes has a s¥tof idle channels in common.
We model such clusters afterbiclique graph Q(X, Y, E). Biclique graphs are special cases of bipartite
graphs where all vertices of one side of the bipartition amnected to all vertices of the other side (i.e.,
they are complete subgraphs of a bipartite graph). In pdatica graphQ(X,Y, E) is called biclique if
V¥x € X, andVy € Y there exists an edge betweeandy, i.e.,E = {(x,y) | YX € X,Vy € Y}. The edge seE
can be completely determined ByY and hence, is usually omitted from the biclique notation.

Using the bipartite graph representation, clusters cawimedd by finding bicliques that satisfy desired
performance criteria. A cluster representedQ@X, Y), has a sizé¢X| with |Y| channels common to all CRs
in X. As an example, figures 5(a) and 5(b), show two possible hbiegonstructed from the bipartite graph
of figure 4(b). The biclique of figure 5(a) represents theteliisg of CR nodegA, B, C} with channels
{1, 2, 3,4} common to all CRs within the cluster. The biclique of figurb)aepresents the clustering of CR
nodes{A, B, D, F} with channelql, 2, 5} common to all four CRs. Figure 5(c), shows a biclique corstrd
based on the bipartite graph of @R(figure 4(c)). We observe that the “quality” of the clustensoucted
by D is lower compared to that constructed Aysince the cluster dd has fewer members, and fewer idle
channels in common.

4. Clustering Criteria Based on Bicliques

Based on the mapping of clusters to bicliqgue graphs, we exathiee clustering criteria for determining
the “quality” of a cluster. These criteria are mapped todhrstances of the biclique construction problem



[29, 30]: (a) the maximum node biclique (MNB) problem, (b& timaximum edge biclique (MEB) problem,
and (c) the maximum one-sided edge cardinality biclique QBIEproblem.

The goal of our clustering criteria is to create spectrunaaclusters which adapt to the heterogeneity
of the channel availability. When neighboring CRs have kigbrrelated sets of idle channels, clusters are
decided primarily by the physical topology, but when the sétidle channels are heterogeneous, a balance
is achieved between the cluster size and the set of commeghdinnels within each cluster.

4.1. The Maximum Node Biclique (MNB) Criterion

Under the MNB criterion, the goal is to construct a clusteterehthe sum of the number of cluster
members with the number of common idle channels is maximiZde MNB problem can be stated as
follows [31].

Cluster construction under the MNB criterio@onsider bipartite grapGa(Aa U Ba, Ea), constructed by
CRA, whereA = NaUAandBa = Ca. Let fs = |Xal +|Yal be the sum of vertices of a bicliquga(Xa, Ya)
extracted fromga. Find bicliqueQ,(Xa, Ya) such thaQj (Xa, Ya) = argy max(s.

The maximization ofs leads, in most cases, to a balance betw¥ghand|Ya|. Moreover, it provides a
self-tuning mechanism for dynamically adjusting the adustembership to the heterogeneity of the sensing
observations of the CRs. This is illustrated as follows.hH tets of idle channels;, i € Aa are highly
correlated, edges from vertices iy, will be connected to the same set of verticesBin In this case Q*
corresponds to the bicligue which tends to maximisg. That is, because neighboring CRs have almost
the same sets of idle channels, the “best” cluster is theerlusth the largest size. On the other hand, when
the sets of idle channels have low correlation (due to sestesenel effects or heterogeneity in the set of
PRs heard at each CR), constructing a large size clustes tea small set of common idle channels. In
this case, selecting only the neighboring CRs with simias ®f idle channels is likely to increage This
is true when the rate of increase |Wfh| (due to the elimination of low overlapping sets) is largarthhe
rate of decrease of the cluster sjXg)|.

The MNB problem can be solved in polynomial time by a mappmghe maximum independent set
problem [31, 32]. In our context, we are interested in theydital evaluation of the existence of bicliques
with a particular size and structure in termgXfand|Y].

4.2. The Maximum Edge Biclique (MEB) Criterion

Under the MEB clustering criterion, the goal is to constraciuster where the product of the number
of cluster members with the number of common idle channetsasimized. The MEB problem can be
stated as follows [32, 33].

Cluster construction under the MEB criterioBonsider bipartite grapa(Aa U Ba, Ea), constructed by
CRA, whereAl = NaU Aand8Ba = Ca. Let £, = [XallYal be the number of edges of a biclig@a(Xa, Ya)
extracted fromga. Find bicliqueQj(Xa, Ya) such thaQy (Xa, Ya) = argg maxtp.

The MEB criterion exhibits a higher sensitivity to changasXa| and |Ya| compared to the MNB
criterion, and thus, clusters of small size or low avaiiabibf common idle channels are avoided. This
can be illustrated by the example of figure 6(a), which is atiife graph representation of the spectrum
availability for a set of CR4A,B,C, D, E, F,G}. The maximum size biclique constructed by the MNB
criterion is shown in Figure 6(b). In this bicligug = 8, with seven CRs forming a cluster with one idle
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Figure 6: (a) A realization of a bipartite graph for notig(b) the maximum node biclique, and (c) the maximum edgeduiel

channel (channel 1). Figure 6(c) shows the maximum sizégbielconstructed by the MEB criterion. In
this biclique, CRYA, B, C, D} are clustered, having three idle channels in common.

In this example, the MEB criterion leads to more balancedtehing in terms of the two parameters
of interest; the cluster size and the number of common idéhls. This is because the multiplication
operation is more sensitive to change$@or Y| compared to the addition operation. For bivariate function
fi1(x,y) = x +y, the partial derivatives with respect ioandy are equal to 1, which means that any unit
change ofx ory can only changéd; by one unit. On the other hand, fé#(x, y) = Xy, the partial derivatives
with respect tax andy are equal toy and x, respectively. Therefore, a unit changexadr y will change f;
byy > 1 orx > 1, respectively. The balance property ©frelative tof; can be shown if a simple trade off
relationship betweer andy is assumed where 4 x,y < nandx = n—y. In this model, a unit of change
in one variable causes a unit of change in the other variatulesize versa. For this simple trade off model,
f, is maximum for any combination of y making a cluster withX| = n— 1 and|Y| = 1 of equal quality to
a cluster withX| = |Y| = §, On the other handf, is maximized only wherx =y = 2.

While the MEB criterion is expected to produce better qualitisters compared to the MNB criterion,
finding the maximum edge biclique is known to be an NP-coregebblem [33]. Several heuristic methods
have been proposed that provide desired approximatiors [BBese methods can be employed at the
individual CRs to deriveQ* givenG. In our analysis, we are interested in evaluating the passitdliques
obtained under the PR activity and topological models asslim

4.3. The Maximum One-sided Edge Cardinality Biclique (MECB) Criterion

Under the MECB criterion, the goal is to construct clustdrmaximum cluster size under a constraint
on the number of common idle channels (or vise versa). The BIp®@blem can be stated as follows.

Cluster construction under the MECB criteridbonsider bipartite grapGa(Aa U Ba, Ea), constructed by
CRA, whereA = NaU AandBa = Ca. Let £ = |Xa| be the size of a bicliqu®a(Xa, Ya) extracted from
Ga. Find bicliqgue Q,(Xa, Ya) such thatQj(Xa, Ya) = argy maxde, and|Yal > vo, whereyg is a positive
integer with 1< yo < m, expressing a desired threshold.

The consideration of this constrained maximization pnoblms at creating clusters with some mini-
mum guaranteed performance. By selecting a threshold waiube number of common idle channels, a
minimum bandwidth availability is guaranteed within evetyster, provided that sufficient idle channels
exist. Once this minimum requirement is satisfied, we mazénthe cluster size in order to reduce the
number of clusters in the CRN. For instance, for the bigagiaph of figure 6(a), setting a thresheld> 2
on the number of common idle channels of any cluster, we gteeahat the biclique of figure 6(b) is not
a valid cluster. A similar formulation can be derived whea thuster size is constrained to p&| > vo,
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and the goal is to maximiz¥a|. The problem of finding the maximum one-sided edge cardinhlitlique
is known to be NP-complete [29], but greedy and probalzlistiboptimal solutions are known [34].

5. Distributed Clustering based on the Bipartite Graph Representation

In this section, we present a distributed clustering athorithat can be used in conjunction with the
MNB, MEB and MECB clustering criteria. Note that our goal isto develop new coordination mech-
anisms for distributed clustering. A large body of literatis already available in the context of ad hoc
networks (e.g., [35—38]). Our goal is to illustrate the picd application of our problem formulation and
solution for the purpose of forming spectrum-aware clgsteiCRNSs.

5.1. Clustering based on the Distributed Clustering Algorithm

Basagni et al. proposed the Distributed Clustering Algoni{DCA) for partitioning an ad hoc network
into clusters [35]. In DCA, every node is assigned a weighidsitive real-valued number), indicating its
suitability in serving as a clusterhead (CH). The goal of DiSAo assign nodes to neighboring CHs with
the highest weight. The DCA algorithm has been shown to agevafter the exchange of a small number
of broadcast messages [35].

The DCA algorithm can be modified to take into account our spet-aware clustering criteria. In our
context, we select the maximum biclique size in terms of stinodes (s), sum of edges(f) or maximum
cardinality ¢.) to represent the weight of each node. Note that this wegylat mumerical value that is
contingent on the formation of a given cluster (bicliquedl ot an individual node parameter (such as the
node’s residual energy). Therefore, the performance mathiertised by a node is materialized only if the
corresponding cluster is formed. The steps of the propoistdbdited clustering mechanism based on DCA
are as follows.

Step 1. Every CRi broadcasts its set of idle channéls
Step 2: Every CRi constructs a bipartite gragh(A; U B;, &) based onV;, Ci, and the setg;j, | € N,
received from its neighbors.

Step 3: Every CRi computes the maximum size biclig@ (X, Y;), according to one of the three clustering
criteria (MNB, MEB or MECB). The size of the maximum bicligbecomes the weight; of CRi.

Step 4: Every CRi broadcasts$w;, X, Yi}.

Step 5. If wi > wj, V] € Nj, CRi declares itself as a CHs by broadcastirgt(i) message. If two or more
neighboring CRs have the same weight, priority is given &G for which the ratic%l' is closest to
one. Further ties are resolved by considering the CR withothest ID.

Step 6: A CRi that has not declared itself as CH, joins the e Nj with the highest announced weight
for whichi € X;. CRi broadcasts goin(i, CH(j)) message.

Step 7: If a CRi has not heard a CH announcement from any of its neighbosntide waits until all
neighboring nodeg € N; with w; > w;, i > j andi € X; announce a decision; either they have
joined a cluster or declare themselves as CHs. If all neighbmodes broadcagbin messages, CR
i declares itself as a CH. Else it joins the cluster of the r@ging CH with the highest weight.

An example of the application of the DCA-based algorithm @ample network topology is shown in
Figure 7. In Step 1, nodes exchange their idle channelels Step 2, every CRindividually constructs
bipartite graphgi(A; U B;, &) and in Step 3, it computes the maximum size bicli@j€X;, Y;), based on its
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CR | w Xi Y ||CR | w X Y
A |15 |{4,B,C,D,H}{1.25}|| G |12 | {D,E, F,G} [{2,7.,9}
B |12 | {4, B,E,H} {125} H | 8 {A,B,H, I} | {24}
Cc |9 {A,C,D} {125}/ I |15 |{H LK L, M}{{2,48}
D |12 | {4,C,E,F} {127} K | 9 {4, C,E,F} [{2,4,8}
E |12 | {D,EF,G} |{129} L | 9 | {D,E F,G} {2,438}
F |9 {E,F,G} {129} M | 8 {E,F,G} | {24
(a) CRN clustering. (b) Table I.

Figure 7: Application of the DCA-based clustering algarnitlccording to the MNB clustering criterion. Using netwookology
and idle channel availability information, CRs announa@\reights, cluster membership and common idle channelsisete in
Table I. The DCA-based algorithm yields three clusters. 8RS | act as CHs.

view of the topology and spectrum state. In Step 4, each CRumes \{;, X;, ;). The list of broadcasts
for the topology of Figure 7(a) are shown in Table | of Figu(e)7Based on the broadcasts of Step 4, CRs
A andl have the highest weight among their neighbevg € w, = 15) and, therefore, declare themselves
as CHs by broadcasting messa@d4$(A) andCH(l), respectively. CR8, C, andD join the cluster ofA,
because\ is the neighboring CH with the highest weight aBdC, D € Xa. CR H is included in bothXp, X,
with wa = w;. Becaus éﬁl' = % = 1.67, CRH joins the cluster whose CH has the lowest ID. Therefbre,
joins the cluster oA. CRsM, L, K join the cluster ol. Finally, CRE declares itself as a CH because it has
the highest weight among all CRs Mg that have not yet joined a cluster and no&esndD have already
broadcastedoin messages. CRs andG join the cluster ofg, becauset is the neighboring CH with the
highest weight. The resulting clusters af&, F, G} with common channel§, 7, 9}, {A, B,C, D, H} with
common channelfl, 2, 5} and{l, K, L, M} with common channelg, 4, 8}.

Communication overhead analysis: Because the clustering algorithm presented in this seidibased on
DCA, it achieves the same communication efficiency and agerece properties of DCA, as detailed in [35,
39]. The message complexity is in the ordeiQthcrn), wherencgry denotes the CRN size. In particular,
in order to complete the clustering process, each node isreshjto transmitexactly three messages as
follows.

¢ In Step 1, each CR broadcasts one message for communidatset of idle channels to all its one-
hop neighbors.

¢ In Step 4, each CR broadcasts one message for announcingitjte and the corresponding biclique
that it individually computed.

e In Steps 5, 6, or 7, each CR broadcasts one message for dgdtaglf as a CH, or joining a cluster
of another neighboring CH.

Adding the cost of all steps yields an overhead g for the entire CRN. Note that the broadcast
of the set of idle channel in Step 1 is a requirement of any emifve sensing mechanism [7, 8, 28], and
hence it may not be accounted as overhead of our clustegogithim.

Note that other clustering methods can be employed to eitilir clustering criteria. As an example, in
[12], we proposed a distributed coordination method thatesaise of the MEB criterion, called spectrum-
opportunity clustering (SOC). As opposed to DCA, SOC is atelufirst algorithm that leads to the creation
of clusters before CHs are elected. The first four steps of &@Qdentical to the steps of the DCA-based
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algorithm. This is necessary in order for each CR to obtainidie channel sets of its one-hop neighbors,
and individually construct the bicliqgue of maximum size@cling to the MNB, MEB or MECB criterion.

5.2. Re-clustering due to Temporal Variation of Spectrum Availability

The proposed clustering criteria are based on a snapshlo¢ gpectrum state which is reflected in the
sets of idle channel§;. These sets vary with time due to the dynamics of PR activity #me-varying
phenomena of shadowing and fading [10]. Therefore, clsstarated based on one snapshot of the spec-
trum, are likely to be outdated in the course of time. To aotdar the temporal variation of spectrum
availability, a re-clustering operation is needed. Thetiency of the re-clustering varies depending on the
dynamics of PR activity. For example, when the PRs are T\ostst the FCC mandates that information
on PR activity is updated every few hours [5]. On the otherdh@amhighly dynamic environments the fre-
guency of re-clustering can lead to excessive communitatierhead and clustering instability. To address
this problem, we propose an algorithm that applies clusgen a periodic and an on-demand manner. The
periodic re-clustering is applied network wide to update ¢lustering based on long term weight changes.
The algorithm for the re-clustering is a clean slate appticaof the DCA-based clustering algorithm for
CRNs, as presented in the previous subsection. The on-dereasiustering is meant for local rearrange-
ment of CRs into clusters due to temporary changes in chavadhbility. The steps of the on-demand
re-clustering algorithm are as follows.

Step 1. Every CRi broadcasts its set of idle channéls
Step 2: Every CHj updategw;, X;, Y;} for its clusterj.
Step 3: If |Yj| < yo, CRs of clusterj change their state to “undecided.”

Step 4: A CRi in “undecided” state computdsy;, X, Y;}, by considering only neighboring CRs that are
not currently clustered.

Step 5: If w; is larger than the weights of all neighboring CHs, CRroadcastgwi, X;, Y;}. Else it waits
until all “undecided” CRs with lower ID announce their deois

Step 6: “Undecided” CRs with the highest weight compared to neigimgpCHs and other undecided CRs,
announce themselves as CHs.

Step 7. A CRi in “undecided” state that has not announced itself as a Gidigss to join the CH with the
maximum weight, assuming thi;| > o afteri joins the cluster of.

Step 8: A CH j confirms the join request of a GRonly if [Yj| > yq if i is allowed to join clustey. In this
case, CHj broadcasts granted(i, CH(j)) message. Elsgbroadcasts deny(i, CH(j)) message.

Step 9: CRi echoesj’s decision only if the request is accepted. Else, it prosegith the CH of the next
highest weight.

Step 10: If an “undecided” CRi has not heard a CH announcement from any of its neighbossntde
waits until all “undecided” nodes witly; > w; andi € Xj, announce their decision. If all neighboring
nodes broadcagbin or granted messages, CRieclares itself as a CH. Else it joins the cluster of the
neighboring CH with the highest weight.

Step 11: If a cluster with|Y| > yo cannot be formed, “undecided” CRs remain in this state umtte
channels are freed.

An example of the application of the on-demand re-clusgeailgorithm for the network of Figure 7(a) is
as follows. Assume that = 2 and that the set of idle channels for cluster of &Has changed t¥a = {2},
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because the set of idle channelstbhas changed t6y = {2, 4, 8}. In Step 1, CHA will obtain the new
sets of idle channels from its cluster nodes. It then annesiice new values fdwa, Xa, Ya}. Because
IYal < 2, CRs{A, B,C, D, H} update their state to “undecided”, while the clusters of GHand| remain
intact. Every undecided CR computgg, X, Y;}. CR A computes a new cluster witka = {A, B,C, D},
Ya = {1,2,5} andwp = 12 CRsB andD compute weights lower than the weight Bfwhile CRC com-
putesXc = {A,C, D}, Yc = {1, 2,5} andwc = 9. Finally, CRH hearsw, = 15 form|. Out of the undecided
CRs, onlyA, C announce their weights, since they did not hear a CH with bdrigveight. Based on the
weight announcements, CBsandD decide to join CRA sincewa = We, % = % butA > E. CRC also
decides to joiMA. CR H sends a join request toBecauseY,| > 2 afterH joins the cluster of, the request
of H is accepted. After the on-demand re-clustering the newearsigre{E, F, G} with common channels
{2,7,9}, {A, B, C, D} with common channelfl, 2, 5}, and{H, |, K, L, M} with common channel&, 4, 8}.

Communication overhead analysis: Our re-clustering algorithm aims at reducing the commuitoa
overhead associated with maintaining clusters up-to-ddtte the spectrum availability. This is achieved
by incorporating the following strategies. First, the casifion of a cluster is maintained as long as a
minimum number of idle channels remains common to all ctustembers. Hence, frequent re-clustering
is avoided at the expense of sub-optimal clusters in ternsctifjue size (due to the temporal variation
of the spectrum). The network-wide periodic re-clustefiagonfigures the network to optimal clusters for
longer term changes. Second, when a cluster does not memiritmeum requirements in terms of common
idle channels, re-clustering is performed locally for themipers of that cluster. In the example of Figure
7, only the members of clustéx had to be re-assigned. Moreover, “undecided” CRs are atldwgoin
neighboring clusters, only if they are not forcing the néighng cluster to a re-clustering. That is, the share
sufficient idle channels with the cluster they join. Thisigagprevents a cascading effect of re-clustering
operations, thus limiting the communication overhead aldyduntil new clusters are formed.

The exact overhead of the re-clustering algorithm is toppland PRN activity dependent. For a single
cluster of sizeX| whose members need to be re-clustered, we analyze the nofmiessages that need to
be exchanged. Assume that every cluster member in “undécidate is a neighbor af other CHs. Note
that based on DCA [39], no two CHs can be neighbors and, hencé (simple geometric constructions
can show that a node cannot have more than 5 independenboesyjh The re-clustering communication
overhead is as follows.

e In Step 1, each CR broadcasts its set of idle chadm@sounting for a total gfX| messages.

e In Step 2, every neighboring CH announces its weight andgbielstructure, accounting fgrmes-
sages.

e In Steps 5 and 6, the worst case scenario in terms of overlsaadlized when none of the “unde-
cided” CRs becomes a CH.

e In Step 7, an “undecided” CR can request to join u tpre-existing clusters, yielding a message
overhead up t@|X| messages.

¢ In Step 8, each of theg neighboring CHs replies in up & join requests, totaling|X| messages.

e In Step 10, “undecided” CRs that did not join any neighbonimg-existing cluster announce them-
selves as CH or join the cluster of another “undecided” CBigyig up to|X| messages.

3Broadcasting of the set of idle channels is a periodic famctequired by the spectrum sensing process [7-9, 28, 40].
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Figure 8: (a) A bipartite graph for a topology of type-I ungerfect channel state information. All CRs are connecteithécset

of idle channelq1, 2, 3}, (b) a bipartite graph for a topology of type-1l under petfelsannel state information. The dashed lines
indicate CRs that are out of range from PRs that are activegivea channel, (c) a bipartite graph for topologies of typmder
imperfect channel state information. Events of false aland mis-detection prevent the correct estimation of thecblastate
(missing solid lines to idle channels indicate events cfdallarm, and dashed lines indicate mis-detection of oedughannels),
(d) a bipartite graph for topologies of type-Il under immatfchannel state information. A combination of the bipargiraphs in
(b) and (c).

Adding the number of messages transmitted at each stepsyaetshmmunication overhead which is
upper bounded by (2 2¢)|X| + ¢ < 12X| + 5 messages.

6. Performance Evaluation

In this section, we analytically compute the performancéhefproposed clustering criteria. We are
focusing on determining the quality of clusters that arestautted under the graph-based representation of
the network topology and spectrum availability. We valkdatr theoretical results by performing extensive
simulations.

6.1. Bipartite Graph Models

We first analyze the impact of the topology and channel stdternation models on the bipartite graph
structure. This structure is employed in the analyticallat#on of the clustering performance.

Perfect Channel State Information. Consider the bipartite grapiix«(Ax U By, Ex) constructed by a CR
x under perfect channel state information. g, any vertexi € Cy corresponding to an idle channel
is connected tall vertices inAy. Hence, edges corresponding to idle channels appear ipgmafusize
(INX +1).

For type-I topologies, no other edges exisdp Figure 8(a) shows the structure of a bipartite graph
constructed byA, for the CRN of Figure 4(a), when channglls 2, 3} are assumed to be idle The vertices
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corresponding to channels, 2, 3} are connected to all vertices jfiy. For type-Il topologies, the structure

of Gx depends on the positions of the PRs relative toX@Rd its one-hop neighbors. Based on the model in
Section 2, a PR is within a range wfvith probability py (see eq. (4)). Therefore, an edge between a vertex
i corresponding to an occupied channel arekists with probabilityp,. Moreover, for the same vertéx

an edge exists betweerand a CRy € Ny, if y is not in the range of the PR occupyingAccording to
equation (5), this event occurs with probabilfiy. Figure 8(b) shows a bipartite graph constructed for type-
Il topologies, under perfect channel state informationteNbat a subset of vertices @ are connected

to all vertices inA U Na. These vertices correspond to the idle channels. Additiedgks exist between
AU N and occupied channels.

Imperfect Channel State Information. When sensing information is not obtained from a databases, CR
are subject to imperfect channel sensing. In this case dfeseof the bipartite graph jointly depend on the
PR activity and the probabilities of mis-detection anddadéarm. Let's consider topologies of type-I. For
a bipartite graplGy, if a channeli is idle, the corresponding vertex is connected to a vejtexAy with
probability (1- pf). Furthermore, a verteixcorresponding to an occupied channé connected to a vertex
J € Ay, with probability pm. This is because all CRs sense the same set of PRs. In Fig)rev8(show one
realization of a bipartite graph constructed under the nf@oe sensing model for type-| topologies. Edges
connecting CRs to idle channels independently exist witlhability (1- ps), while edges corresponding
to occupied channels independently exist with probabpity

For type-I1l topologies, edges connecting CRs to idle chisnmdst with the same probability as in the
type-1 case (a.k.a., @ps)). On the other hand, for occupied channels, the position cd¢tiee PRs relative
to x must be considered. An edge between an occupied chaandk exists the following probability.

Pr[(i, X) = 1] = Pr[dy < R,i mis-detected/ dyy > R, i no false alarm] (6a)
= Pr[dy, < R,i mis-detected} Pr[dy, > R,i no false alarm] (6b)
= Pr[dy, < R]Pr[i mis-detected} Pr[dy, > R]Pr[i no false alarm] (6¢)
= (1= pw)Pm + Pw(L - p1). (6d)

In equation (6a), we considered the probability that R within range of the PR that is active on
channeli buti is mis-detected, or that is out of range from the active PR and the state of chaniel
correctly estimated. Equation (6b) follows from the fadttth, < Randd,, > Rare mutually exclusive
events. Equations (6¢) and (6d) follow by the assumptionttiemevents of mis-detection and false alarm
are assumed independent of the distance betweenly. Note that the perfect channel state model can be
considered as a special case of the imperfect one. The plipbabedge existence for occupied channels
under the perfect channel state model can be obtained frapbyGsettingpm = ps = 0.

Similarly, one can show that an edge connects the vertexesonding to occupied channieto a
neighborj € Ny with probability (1- pc) pm+ pc(1—ps). In Figure 8(d), we show one realization of a bipartite
graph constructed under the imperfect sensing model, fm-tytopologies. In this example, channels
{1,2,3} are not occupied by PRs. Edges from verti¢e2, 3} are independently connected to vertices in
the other side of the bipartition with probability {1p;). Channelg4 — 10} are assumed to be occupied by
PRs. Edges from verticdd — 10} are connected to vertekwith probability (1- pw)pm + pw(1 — pt), and
all other nodes with probability (£ pc)pm + pc(1 — ps).

6.2. Evaluation Metrics

In this section, we define the metrics used in our performawveduation. Our goal is to evaluate the
existence of clusters of different “quality” (biclique sjzunder the different sensing, topology, and activity
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models.
Let Z, denote thenumber of bicliques of “size”¢. The variableZ, is defined as,

Z = Z lx,v)» (7)

XCA, YCB, sizeQ(X,Y))=¢, IX||Y[=1

where the indicator function vy is defined as,

| |1, ifsize@Q(XY)) = ¢
*Y) =30, otherwise.

In (7), we consider all possible values [off and|Y| that yield a bicliqgue of a sizé. By definition, the
expected number of bicliques E/ of size? is,

E[z] = E

lxv)
XCA, YCB, sizeQ(X,Y))=¢, [X||Y=1

Ellxv]
XCA, YCB, sizeQX.Y))=C, X, )Y[>1

Pr[l(x’y) = 1] . (8)
XCA, YCB, sizeQ(X,Y))=¢, |X|,|Y[>1

The expectation oZ, is used to analytically evaluate the probability of exiseem biclique of siz&. We
employ the Chebyshev inequality to derive a relationshigvben the probability of existence of a biclique
of size¢, and the first and second statistical moment&.,0for s > 0, the Chebyshev inequality states,

PriZ; - E[Z/]| = § < Var(Z/]/. 9
For E[Z/] > 1, settings = E[Z,] — 1 yields,

Priz; > 1] > Pr[1<Z, <2E[Z]-1]
= Pr[-s+E[Z] < Z; < s+ E[Z/]]
= PrZ, - E[Z]| <
= 1-PrZ;-E[Z]l >
> 1-Var[z]/(E[Z] - 1)~ (10)

For values of VaiZ,]/(E[Z/] — 1) < 1, the Chebyshev inequality yields a lower bound on the praibabf
existence of bicliques of size This yields the biclique sizes that are likely to occur, gitke PR activity,
sensing and topological models.

We also evaluate the probability of obtaining bicliqued gwtisfy desired constraints ¢x and|Y|. As
an example, the average number of bicliques of &jzeéth |X| > x and|Y| > y is defined as,

E[Ze1IXI= X [YI>y] = > Prlixy) = 1]. (11)
XCA, YCB, sizeQ(X.Y))=t, IX|I2x|YI2y,|Y|=t—X, |X]|
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Similarly, we bound

_ VarlZe [ X[z x Y2 Y]
(E[Ze 11X = %, [Y] > y] — 12’

PriZe>1[ X2 x Y 2y] > 1 (12)

for E[Z, | IX| = %, [Y| >y] > 1. We now analytically evaluate the clustering performancehef MNB,
MEB, and MECB clustering criteria.

6.3. The MNB Criterion.

Under the MNB criterion, the cluster quality is charactedzy the sunts = |X| + |Y|. In this section,
we analytically evaluate the expected number of clustdddidhes) with a particular valués, for each of
the PR activity and channel state information models.

Proposition 1. The expected number E[Z, ] of clusters with value {5 = |X| + | Y| is given by,

min{m,{s—1} min{i,ls—1} min{fs—1—a,m-i}

E[Z.] = Z Pr[N = i] Z Z C(n, £s— a — B)C(i, @)C(M— i, AT (Ls, . B).

i=max{1,{s—n} a=0  B=max0,ls—n—-a}

Recall, that C(n, k) = (E) Here, the probability Hts(a, ) of the appearance of a biclique of size ¢ depends
on the PR activity and channel state information models.

1, (),
P, (i,
(1= p)e e p™ (i),

_ pe)Es—a-Bla((] — _ V(- _ i
(1-pr) (2= pw)pm + Pw(L = 1)) ((1 = pe)pm + Pe(L = pr)] L (iv),
for (i) perfect channel state information, type-I topologies, (ii) perfect channel state information, type-ll

topologies, (iii) imperfect channel state information, type-l topologies, and (iv) imperfect channd state
information, type-11 topologies, respectively.

(¢, ., B) =
)ﬁ(fs—a—ﬁ—l)

Proof. The proof of proposition 1 is provided in Appendix B. O

In proposition 1, the value dﬂts(é’s, a, B) for case (iv), represents the most general scenario. Fm (
all other cases can be derived by setting parameters to@mmtmvalues. Settings = pm=pc = pw =0
yields case (i), settinggs = pm = 0 yields case (ii), and setting. = pw = O, yields case (iii). From
proposition 1, we can also evaluateZg] for any desired PR activity model. For instance, when the PR
activity follows the binomial model in (2),

min{m,{s—1} minfi,ls—1} min{fs—1—a,m-i}

Elz]= ), cmipa-p™ > > Cts—a-p)Chi,a)C(m-i, B)I(¢s a. B).

i=max1,{s—n} a=0  p=max0,fs—n-a}
For the Poisson model in (3),

min{m,£s—1} (P"F_i)l min{i,fs—1} min{¢s—1-a,m-i}
m—i)! . .
ElZ]= )] s > > Cnts— = B)C(i,@)C(m— i, BT (¢s, @, B).
i=max{1,fs—n} Zj=o J_| a=0  pB=max0,ls—n-a}
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Under perfect channel state information and for type-| logies, the bipartite graph representing the
network topology and spectrum availability obtains a senfoirm that can be further exploited to analyt-
ically evaluate the probability distribution of the larjesize biclique, the distribution of the cluster size
|X|, and the distribution of the number of common idle chanf¥glsThese are expressed in the following
lemmas.

Lemmal. Let £« beadiscrete random variable expressing the value of £ for a cluster which maximizes
{s. Under perfect channd state information and for topologies of type-l, Lmax ~ N, i.€., Lmax iSidentically
distributed to the number of idle channels in the system.

Proof. Consider a bipartite grap&(A U B, &) constructed under perfect channel state information, and
for type-I topologies. The grapg is itself a biclique, because vertices corresponding ® détlannels are
connected to all vertices corresponding to CRs and no otlggrseare present in the bipartite graph. In fact,
G is the bicliqgue of maximum size, since it contains all veasiofG. The maximum size can be expressed
as a random variablénax, Which depends on the number of idle channels and obtaingethksealues from

the alphabetO,n+ 1, n+2,...,n+m}. Lmax = 0 when no idle channels exigF thas no edges). This occurs
with probability Pr[N= 0]. If i > 0, then Lmnax = n+ i with probability Pr[N = i]. Combining both cases
yields,

PrIN=0], ¢s=0

PrlLmax = ls] = i i i
[ max S] {Pr[N:|]’ fs:n+|,1S|Sms

which is the probability mass function of. N O

Lemma 2. Under perfect channd state information, and for type-l topologies, the cluster size |X| of the
cluster with maximum value of ¢5 follows a Bernoulli distribution with parameter 1 — Pr[N = 0], i.e,,

Pr[N = =
PrX| = ] = r 0], x=0

1-Pr[N=0], x=m
Lemma 3. Under perfect channd state information and for type-1 topologies, the number of common idle
channels|Y|, inthe cluster with maximumvalue of £ isidentically distributed to the number of idle channels,
i.e, Y| ~N.

The proofs of Lemmas 2, 3 follow in a straightforward manment the properties of the bipartite graph
under perfect channel state information. Note that Lemnaa®i23 illustrate the versatility of our clustering
criteria in adjusting to the PR activity and sensing coodis. They state that when at least one channel
is idle, the MNB criterion yields a cluster of maximum sizgual to the neighborhood size of each CR.
This is because under perfect channel state informatidbiGRé have identical sets of idle channels and
hence, spectrum availability is not factoring into clustegmberships. Instead, the clusters are decided by
topological criteria, similarly to ad hoc networks with fikepectrum. On the other hand, when the sets
of idle channels vary from CR to CR, the cluster size is adfigb allow for higher overlap in the set of
common idle channels within each cluster.

Evaluating the probability distributions fafmax, |X|, |Y], under imperfect channel state information in-
volves complex summation formulas. Instead, we use the dlaakd Chebyshev inequalities, as defined
in section 6.2 to characterize the probability of existefmrebicliques of a given size. Here, based on the
computation of EZ,] on proposition 1, the respective probability Brf> 1] is bounded by this inequality.
Note that the Chebyshev bound requires the computationeofdhiance oZ,.. Due to the complexity of
the calculations, a numerical computation of the variang@éferred. This is feasible because the expected
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neighborhood sizehl; and number of available channéle(| are anticipated to be relatively small (in the
order of tens of nodes and channels).

6.4. The MEB Criterion

Under the MEB criterion, the cluster quality is charactedidy the product, = |X| + [Y|. Similarly to
the case of the MNB criterion, we analytically evaluate thpeeted number of clusters (bicliques) with a
particular value/p, for each of the PR activity and channel state information eted

Proposition 2. The expected number E[ng] of clusters with value ¢, = |X]|Y], under perfect channel state
information and for type-l topologies is given by,

min{m,¢p} min{i,¢p) !
3 . p .o
E[Z,] = § Pr[N = i] E C(n, T)C(I,J),
i=max(1,[ 1) j:maxll,r%”1},%‘)62+

where Z* denotes the set of positive integers.

The proof of proposition 2 is provided in Appendix C. The stepthe proof are similar to the proof of
proposition 1. While the objective of the MEB criterion @ifs from the objective of the MNB criterion, the
clustering performance of both criteria is expected to leesdime under perfect channel state information.
That is, the probability distribution K| and|Y| for clusters constructed under the MEB criterion is given
by Lemmas 2, 3. This is because under a perfect channel sfateniation model, the bipartite graph
constructed by CRs forms a biclique of maximum sum of vestaed of maximum product of edges
(concurrent maximization gfX| and|Y| maximizes both|¥K| + |Y]) and|X]|]Y]). Hence, the MNB, MEB
criteria yield thesame clusters.

Proposition 3. The expected number E [ng] of clusters with value £, = [X||Y| is given by:

min{m(p} iomei
Elz,]= > Pr[N:i]ZZC(n, af—_fﬁ)c(i,a)c(m—i’,B)Htp(gp’a’aﬂ),
i—0 2=0 =0

with [[—m <a+p<{lpand CfT”ﬂ € 7Z*. Here the probability Htp(fp, a, B) of the appearance of a biclique of
size ¢, depends on the type:

tp
R
al)| Blp

IIp(e.B) = Y (1 - pr)™ pa”, (ii),
(- P (@~ ppm puL— P (@~ ppm = e o) 7 i,

for (i) perfect channel state information, type-1l topologies, (ii) imperfect channdl state information, type-I
topologies, and (iii) imperfect channel state information, type-I1 topologies, respectively.

The proof is similar to the proof of proposition 1 and hensepmitted. From propositions 2 and 3,
the probability of constructing a cluster with a particwalue of ¢, is derived based on the Chebyshev
inequality.
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6.5. The MECB Criterion

Under the MECB criterion, the cluster quality is charaated by the size. = |X| (¢c = |Y]) of the
cluster, under a constraifit| > o (IX| = vo), on the common set of idle channels (cluster size). In this
section, we analytically evaluate the expected numberusitets (bicliques) with a particular valdg for
each of the PR activity and channel state information models

Perfect channel state information, Type-l topologies. When perfect channel state information is avail-
able, HZ,_] is expressed by the following proposition.

Proposition 4. The expected number of clusters of size £ = |X| with |Y| > o, for topologies of type-l is
given by,

m
E[Z;] =C(n.t) Y PrIN =i].
I=Y0
Proof. It follows immediately by noting that when perfect channeaks information is available, the bipar-
tite graph constructed by any CR is a bicligue. Wh4re yo channels are idle, the corresponding vertices
in Y are connected to all vertices ¥a Hence, there are a total 6{n, ;) distinct bicliques of sizé.. That
is, there ar&C(n, £c) possible clusters with siz&. O

Other scenarios. For all other combination of channel state information asgbtogy models, §Z, | is
expressed by the following proposition:

Proposition 5. The expected number of clusters of size ¢ = |X|, with |Y| > yg is given by,

m-i

E(Z]=) PrIN=i1> > C(&)C(, a)C(m—i,B)TIE(le, @, ).
i=0

a=0B=max0,yo—a-i}

Here the probability HtC (¢, a, B) of the appearance of a biclique of size ¢ depends on the type:

&lrfé(fc—l)’ (I),
ML (e, @, B) = 4 (1 - pr)*epme, (i), -
(2= Pw)Prn+ Pu(L = P)) (L = PP+ peld = p)) 2, (i,

for (i) perfect channel state information, type-Il topologies, (ii) perfect channd state information, type-I
topologies, and (iii) imperfect channel state information, type-11 topologies, respectively.

Proof. The proof is similar to the proof of proposition 1, and hersemitted. O

6.6. Performance Evaluation via Smulations

In this section, we verify the validity of our theoreticabtdts and study the performance of the proposed
clustering criteria via simulations. In our simulationiggtwe considered a CRN co-existing with a PRN
which was licensed to use a setraf= 10 frequency bands. The licensed bands were occupied by PRs
according to the binomial model in (2) (similar results canderived for the Poisson PR activity model in
(3)). For type-I topologies, we considered a single-hop €Rmborhood of size = 10, affected by the PR
activity of 10 PRs. In each simulation run, a set of channels eccupied by PRs leading to the construction
of a bipartite graph. Using this bipartite graph, the setasgible cluster formations were computed for
each clustering criterion. The experiments were repeddd@D times for each set of parameters, in order
to evaluate the average performance.
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Figure 9: EF.], E[Z,], and EE,] as a function of (afs, (b) £, and (c){; whenn = m = 10 under a binomial PR activity model,
and for various values of the probability of channel occuyam For figures (a), (b), and (c), perfect channel state infoionas
assumed. For figures (d), (e) and (f), the probability of andlehbeing occupied by a PR is setge= 0.3. Imperfect channel state
information is assumed. The probability of false alarm igdixop; = 0.1, while the probability of mis-detection is varied.

6.7. Expected Number of Clusters of Sze Z,.

We first evaluated the expected number of bicliques of &igénhere? is defined according to the MNB,
MEB or MECB criteria. For each realization of a bipartite ginagenerated under a fixed set of parameters
(p, pms Pf), we counted the number gbssible distinct bicliques of siz&¢. We then averaged over 10,000
bipartite graph realizations with the same parameters antpared the outcome with the values obtained
theoretically from propositions 1, 2, 3, and 4.

Figures 9(a), 9(b), and 9(c) showZ]], E[Z,,], and EF, ], as a function of, £, and{., respectively,
when perfect channel state information is assumed. Thédsyisusshown in logarithmic scale due to the
wide range of values obtained forZ&[], E[Z,,], and Ef,]. We observe that the values obtained from the
simulations agree with the theoretical ones. Moreovestehs of better quality (largefk, ¢ and{;) are
possible with the increase of the probability of a channéldadle, expressed by. Note in figure 9(b) that
not all values off, are possible, becaugg is a product of two integers. In fact ay which is an odd
prime larger than mgr, m} is not feasible. In additiort,,’s with factors larger than mam, m} are also not
feasible. The number of factor decompositions of a pasicty, affects the number of possible bicliques
that can be constructed (more factor decompositions gdessiteans morgX|, |Y| combinations that yield a
particulartp). This fact explains the “sawtooth” behavior ofZz]].

In figures 9(d), 9(e) and 9(f), we show &[], E[Z ], and EF,], under the imperfect channel state
information. In this set of experiments, we set the prolitghdf a channel to be idle tgp = 0.3, the
probability of false alarm tg; = 0.1 and varied the probability of mis-detectiqm,. From figures 9(d)
and 9(e), we observe that the MNB and MEB criteria are inggasio events of mis-detection. This is
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Figure 10: Probability of existence for a biclique of sizef, and{. based on simulation, and based on the Chebyshev inequality.

because, these events occur independently on every chaamh&r every CR. Hence, for typical values of
Pm it is highly unlikely that the same channel is mis-detectadseveral CRs, an event that would impact
the cluster construction. On the other hand, for the MEC®Gadn, high values opy, increase the number
of possible clusters of small size, since it is possible @Rs forming such clusters, mis-detect the same
set of channels. However, for clusters of larger size, meigction events have practically no impact.

From figures 9(a)-9(f), we can derive the cluster with biaticgizer* for which E[Z,<] = 1. The valuef*
denotes the maximum biclique size which can be construciddnfixed parameters,(m, p, ps, pm), and,
on average, appears once for every instance of PR activite thie an expected value of&{] = 1, does
not guarantee that a cluster with biclique sfZewill be obtained with a high probability. This probability
is evaluated in the following section.

6.8. Probability of Existence of a Cluster of size ¢

In this section, we evaluate the probability of existenca afuster of a sizé. We compare the val-
ues obtained via simulations to those computed by the Chelyimequality, as expressed in (10). The
computation of the Chebyshev inequality is limited to valfer which Ef,] > 1, and Varz({E[Z{]) 1. 1n
figures 10(a)-(c), we show the probability that at least doster of sizef exists, for values op = 0.5 and
p = 0.8, under perfect channel state information. This probabitlignoted as Pz}, > 1], is plotted as a
function of the siz¢, for each of the three clustering criteria. In particularufigg10(a) corresponds to the
MNB criterion, figure 10(b) corresponds to the MEB criteriamd figure 10(c) corresponds to the MECB
criterion. For the MNB criterion, the Chebyshev bound pdes a good approximation of ¢ > 1], for
small values of’s, but becomes loose with the increase/of Similar behavior is observed for the case of
the MEB criterion. Nonetheless, the theoretical bound ¢ZPr 1], allows the estimation of the cluster
sizes in terms of before the network deployment, when the PR activity mod&h@wvn. For the case of
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Figure 11: Comparison of the MNB, MEB and MECB clusteringamia under perfect and imperfect channel state informatio

the MECB criterion, we observe that the Chebyshev bound stéthin a 10% margin from the actual value
of Pr[Z,, > 1], thus providing a more accurate prediction of the possihlstel sizes. Note that Rif, > 1]

is almost constant fop = 0.8 since at leasyy = 3 channels are idle to all neighboring CRs with almost
certainty.

Figures 10(d)-(f) show PZ, > 1], as a function of for the three clustering criteria under imperfect
channel state information. For this set of experiments falee alarm probability and the mis-detection
probability where set tg; = 0.1 andp, = 0.2, respectively. No significant change is observed for the
MNB and the MEB criteria, which almost yield identical vatuas in figures 10(a) and 10(c). However,
under the MECB criterion, we observe that probability of stomcting small clusters (up to 4 nodes), with
at leastyp > 5 channels in common increases wher= 0.5, compared to the values shown in 10(c).
This is because the events of mis-detection contributeapditeived set of idle channels, causing several
neighboring CRs to surpass the threshgjdor forming a cluster. The effect of channel state mis-d&iac
tapers off for larger values d@f, since mis-detection events occur independently on eachr@ron each
channel.

6.9. Clustering Performance

In this section, we evaluate the performance of the clugjealgorithm presented in Section 5. We
deployed a network of 100 CRs within a 1kshKm area, which coexisted with a set of 10 PRs. A total of 10
channels were licensed to the PRs. The PR activity followedinomial model in (2). PRs were assigned
a communication range of 250m, while the communication easfigthe CRs varied to allow for different
values on the probabilitieg., pn. We applied the DCA-based clustering algorithm and contbdne
MNB, MEB and MECB criteria in terms of the expected clustaesand the expected number of common
idle channels per cluster. Our simulations were repeatedd® network realizations to ensure statistical
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validity.

In figure 11(a), we compare the average cluster siz¥|E&nd the average number of idle common
channels BY|) for the MNB, MEB and MECB criteria, under perfect channeitstinformation, and as a
function of the PR activity parametgr The communication range of CRs was set to 150m. We observe
that the MNB and MEB criteria yield identical performancehigis because when the spectrum opportu-
nities are perfectly known and the range of the CRs is alnti#sitical to that of PRs, the bipartite graphs
constructed by CRs are almost bicliques. Thus both the MNBMIBB criteria yield the same clusters.

We also observe a graceful trade off betweeXEand E(Y]), as a function of the PR activity (expressed
by p). When PR activity is high and idle channels are sparse, lister size|X| is reduced in order to
maintain an acceptable number of common idle channelswéhch cluster. On the other hand, when PR
activity is low, a larger cluster size is favored. This traafeis also captured in the standard deviation of
E(X]) and E(Y]) as a function op, which is shown in figure 11(b). When the PR activity is hidte spatial
variation of the idle channel becomes large. In turn, thésl$eto a large value far(|X|) to accommodate
for the lack of idle channels at different localities. On titeer hand, when the PR activity is low (most
channels are idle), clusters are primarily decided basatiephysical topology. Hence, for high values of
p, E(X|) ando(|X]) converge to their average values in the absence of any RiRyact

On the other hand, the trade off betweetXB(and E(Y]) is managed differently by the MECB criterion.
The latter favors clusters of maximum size as long as thestiold yq is satisfied ¢y was set to 3 in
our experiments). From figure 11(a), we observe that the MEf@Brion yields higher values d(|X])
compared to the MNB and MEB criteria, for the same valugpoMoreover, E[Y|) is kept above the
thresholdyg. Finally, the MECB criterion yields smaller values for bat{iX|) ando(Y|), because it does
not try to balance betwegK| and|Y|, but maximizeX| while |Y| > yo.

However, the MECB criterion is not always successful in tartding a valid cluster, due to low idle
channel availability (failed attempts are excluded from ginaphs in 11(a), and 11(b)). In figure 11(c), we
show the fraction of clusters that the MECB criterion is aioleonstruct, when individual CRs attempt to
perform clustering based on their bipartite graphs. We tiwdé for small values op, only a fraction of
nodes are able to form clusters wjfj > yq. For cases where a cluster satisfying the threskgldannot
be formed, the value afy must be lowered to produce a valid clustering.

We also conducted the same set of experiments by considarsigaller CR communication range
(r = 50), a false alarm probability iz = 0.1 and a mis-detection probability @f, = 0.2. All this factors
increase the dissimilarity between the channel lists ajmsbring CRs, thus testing the adaptability of our
clustering algorithm to the spacial variation of PR acdjivitn figures 11(d), 11(e), and 11(f), we show
E(X]), E(YD, o(IX]), o(]Y]), and the fraction of clusters successfully constructedhieyMECB criterion
as a function of the PR activitg. From figures 11(d), 11(e), we can reason that the MNB ooitefavors
the creation of clusters of larger size at the expense of demmumber of common idle channels. The
standard deviation-(|X|) becomes very small gsincreases, while-(|Y|) maintains a high value. The MEB
criterion results in a better balance betw@drand|Y|. For the same value ¢f, the MEB criterion constructs
clusters of smaller size compared to the MNB criterion, bithwarger number of common idle channels.
In addition, both standard deviationg|X|) ando(]Y|) maintain a small value for ever, illustrating the
stability of the clusters constructed. The MECB criteri@rfprms similar to the MEB criterion. From this
set of experiments, we can conclude that the MEB and MECBr@itire less sensitive to the heterogeneity
of the idle channel lists of neighboring CRs, leading to afable management of the trade off betweégn
and|Y].
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7. Related Work

Clustering algorithms for CRNs have been proposed in theéegbmf facilitating basic network op-
erations such as control channel establishment [11, 1242J1 MAC protocol implementation [11, 41],
spectrum management [43, 44], and cooperative spectrusinged0]. Clustering is an essential architec-
tural element for reducing the CRN management operationatoaiging a collection of smaller CR groups.

Zhao et. al. proposed a distributed coordination protooolopportunistically sharing the dynamic
spectrum [11]. In this protocol, CRs self-organize intoug® (clusters) based on the similarity between
their lists of idle channels. CRs are grouped in the sameezlas long as they share at least one common
idle channel, and a multi-hop route exists between all CRé®fsame cluster. CRs at the boundary of
clusters may belong to multiple clusters, and serve as gg®efor inter-cluster coordination. The main
objective of the method in [11] is to minimize the number afsters in the entire network, in order to reduce
the overhead associated with topology management and Qfdisation. To address the dynamic nature
of spectrum availability, CRs “swiftly” migrate to an idldnannel, if the currently used one is occupied by
a PR. Given that the minimum number of common idle chann&g/atl per cluster is one, clusters sharing
only one channel are possible. For such clusters, reclngtean become a frequent operation in the light
of high PR activity.

Chen et. al. proposed the CogMesh architecture for addgesisé problem of control channel assign-
mentin CRNs [41]. In CogMesh, the CRN is partitioned intastdus based on the local channel availability.
The distributed cluster formation algorithm is based onitiiteal assignment of few nodes as clusterheads
(CHSs), responsible for creating clusters. The rest of thdeagoin adjacent CHs with which they share the
largest number of common idle channels. To adapt to PR ggtlusters are split to smaller ones if no
common idle channel is available at any given point. At arlatage clusters may merge if channel avail-
ability permits it. Baddour et. al. proposed a clusterimgpathm for CRNs based on affinity propagation
[42]. As in the case of [41], several CRs are declared to beCtis, with nearby nodes joining clusters
based on the similarity of their idle channel lists with tbad the CH. The convergence of the algorithm to
the same cluster memberships was proved to occur in a delieedr manner.

Asterjadhi et al. proposed the Combo algorithm for panitig a CRNs into mutually disjoint clusters
based on the local spectrum availability [45]. The distifeature of this clustering algorithm is the fact
that clusters can span up to k-hops (as opposed to one-hsigrslicreated by the mechanisms in [11, 12,
41]). The mechanism in [45] relies on the election of a CH nbdsed on a weighted priority key which
consolidates connectivity with local spectrum opportiesit Simulation results showed that the Combo
algorithm maintains a large number of common idle channélsimeach cluster while keeping the number
of CRs composing each cluster large.

In [12], we proposed a distributed clustering algorithm Bdn$OC, which addressed the problem of
dynamic control channel assignment in CRNs. The goal of lilitering was to ensure a sufficient number
of common idle channels for the establishment and maintanaha broadcast control channel within each
cluster. In SOC, clusters are formed based on the joint septation of the network topology and idle
spectrum as a bipartite graph. The same mapping is used asshefor our present work. We showed
that clusters can be mapped to biclique graphs (completgraphbs of bipartite graphs) in which one side
of the bipartition represents the cluster membership,enthié other side represents the set of common idle
channels within the cluster. In addition, we showed that kghanging individual sensing observations
of the idle spectrum, CRs were guaranteed to converge toatine sluster memberships in a distributed
manner. Compared to [12], our goal is to analytically evilduhe performance of different clustering
criteria which rely on the biclique construction. Given a &®Rivity model and a spectrum sensing model,
we investigate the problem of determining the existenceludters (bicliques) of different sizes and the
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expectation on the cluster size and number of common idlereia per cluster.

The problem of clustering has been extensively studied encintext of wireless ad hoc networks
under a fixed spectrum paradigm (e.g., [35, 36, 46—49]). t&lligy methods for ad hoc networks can be
classified to CH-first and cluster-first. In CH-first methodsset of nodes are initially selected as CHs,
based on a metric (or combination of metrics) of intereshgconnectivity degree, remaining energy, id,
etc. The rest of the nodes attach to a CHs to form the finalastsistn cluster-first methods, the clusters
are collaboratively formed before a CH can be elected widlaich cluster. Interested reader is referred to
[46—48] and the references therein for clustering methodsgsed for wireless ad hoc networks.

8. Conclusions

We addressed the problem of managing the spatial variafi@pactrum opportunities in CRNs, by
proposing spectrum-aware clustering criteria. Theser@itwere based on the joint representation of the
physical topology and spectrum availability as bipartitapips. We mapped the problem of constructing
spectrum-aware clusters to the problem of constructinggoies of maximum size from the bipartite graphs.
Three clustering criteria were proposed based on threarioes of the biclique construction problem. We
further showed how our clustering criteria can be combinétl distributed coordination mechanisms for
forming clusters in CRNs. For each criterion, we analyljcaValuated the expected clustering performance
under various models of PR activity and channel state infibion. Our evaluations show that the proposed
criteria, lead to a balance between the size of the constiudiusters and the number of common idle
channels within each cluster. This is a desirable featuretisuring moderate overhead for the topology
management of the CRN and the availability of sufficient edth for intra-cluster communication.
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Appendix A. Computation of p;in (5)

The value ofp; expresses the probability of a GRensing a channebccupied by a PR as idle, given
that a neighboring CR, also sensesas idle. This probability is a measure of the correlatiomieein the
sensing observations of neighboring nodes. Probakilifg given by:

Pride > Rldy > Rz <1] = 1—Prd < Ry > R 0y < 1] A1)
Prldy; < R dyy > Rldy, <]
) Pridy > R (A-2)

The numerator of (A.2) is computed based on Figure A.12. Heeeare interested in the event that
CRy is outside the rangR of PR x while CR z is within the range ok, under the constraint thgtz are
one-hop neighbors. The probability of such an event dependhe size of the intersection area between
a disk of radiusR and a disk of radius, when the centers of these disks are located at a disthpepart.
This area, denoted b is given by [27, 50]

R%—r2 - d2 RP-r?+d2) 1 (d3, — R2 —r2)2
2l Xy -1 w| 1 _ Gy
Ain = r°cos [ ordy )+ R? cos [—ZRdxy ] SR — (A.3)

The numerator of (A.2) becomes

R+r
Prldy, < R dy > Ridy, <r] = L . Priz e Ain(é), [dxy = £]Pr{dyy = £]dé (A.4)
_ (T ARG 2% de. (A.5)

&R nr2 ﬁ
In (A.5), we consider all values af,, = ¢ for whichR < dy, < R+ r so that the disks of radiuR
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Figure A.12: CRy and CRz are one-hop neighbors. The event of €Being within the range of PR, while CRy being outside
the range ok.

andr intersect, and then compute the probability thathich is constrained to be within a radiugrom
y is located within the areaj,. In this scenario, a channebccupied by PRk is sensed idle by CR but
occupied byz. Substituting (A.5) to (A.2) yields the desired probalilialue.

Appendix B. Proof of Proposition 1

Proof. From the definition of EZ, ] it follows that,

ElZ,] = > Prilxv] (B.1a)
XCAYCB, | X|+|Y|=Cs,| X],|Y=1
=y > Prllxy) | N =i]Pr[N =] (B.1b)
i>0 XCA,YCB,|X|+|Y|=Cs,|X],]Y|>1
min{m,£s—1} minfi,fs—1} min{fs—1-a,m-i}
= > PIN=i] > > Cnts-a-pChi,a)C(m-i,p)
i=0 a=0  pB=max0,ls—n-a}
x Pr[(¢s — @ — B)B false est.] (B.1c)

In (B.1b), we condition upon the probability that the numbérdle channelsN is equal to a fixed value

i, and sum over all possible valuesiolLet D C B denote the set of vertices corresponding toitidde
channels. The vertices i are connected to all vertices iA (idle channels are perfectly sensed). In
addition, vertices from the remaining S8t D are independently connected to verticeXindue to false
channel estimation. Whem vertices from® andg vertices from8B\D connect to the sam&{— a — B)
vertices ofA, we obtain a biclique of sizés. The ¢s — a — 8)B edges which appear on the bipartite graph
due to false channel estimation exist with probability & o — B)B false est.]= Hts(a, B). Here, the
probability IT (e, B) of the appearance of a clique of sizedepends on the PR activity and channel state
information models:

1 (i),
e, i),

t —
5(ls, @, B) = (1 - pp)sa-BaplsaPB iy

(L~ )= P((1 ~ p)pm + P~ pr)) (L~ PIpm + pe(t — pr)])
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for (i) perfect channel state information, type-I topoksgi(ii) perfect channel state information, type-Ii
topologies, (iii) imperfect channel state informationpéyl topologies, and (iv) imperfect channel state
information, type-Il topologies, respectively. Summingepall possible combinations afa, 8, we obtain
the expected number of bicliques of sizewhich completes the proof. O

Note that in the case (i) of proposition 1, Whﬁfg(fs, a,B) = 1, by using Vandermode’s identity the
expected number of bicliques of sizgsimplifies:

min{m,£s—1}
ElZ]= ), PIN=i](C(n+i, ) - C(n ) - C(i, £s)) (B.2)
i=max{1,{s—n}

Appendix C. Proof of Proposition 2

Proof.
Elz,| 2 Prilxy] (C.1a)

XCANYCBIXIYI=Cp

=) > Prilcyy | N =i] =i]Pr{N = ] (C.1b)
i>0 XCA,YCB,|X|Y|=C,

min{m,£p) min{i,¢p} ?

= > PrN=i] > c(n. TP)C(i, j). (C.1¢)

i=max1[ 21} jemax 1 21}, Pezr

In (C.1b), we condition upon the probability that the numdigdie channelsdN is equal to a fixed value
i, and sum over all possible valuesioThe vertices o3 corresponding to theidle channels are connected
to all vertices ofA due to the perfect sensing assumption. In (C.1c), we enuenaligpossible bicliques
with [Y| = jand|X| = % under the constraints4 j <iand 1< f—f < n. These constraints can be combined

to max1, [f—rf]} < j < minfi, £,}. Note that not all values gfare possible sinc& must be a positive integer.
Summing over all possible values bfveighted over the probability Pr[N- i] yields (C.1c). Here, the
number of idle channelsis limited by the maximum number of channets Moreover,i can be at most,
if we are to construct a biclique of sizg. Finally, at leasf %1 vertices from8B must be connected to all
vertices in#A, for a biclique of sizef, to be feasible. Combining all constraints foyields the summation
limits shown in (C.1c), which completes the proof. O
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