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Abstract

Cognitive radios (CRs) can exploit vacancies in licensed frequency bands to self-organize in oppor-
tunistic spectrum networks. Such networks, henceforth referred to as cognitive radio networks (CRNs),
operate over a dynamic bandwidth in both time and space. Thisinherently leads to the partition of the
network into clusters depending on the spatial variation ofthe primary radio network (PRN) activity. In this
article, we analytically evaluate the performance of a new class of clustering criteria designed for CRNs,
which explicitly take into account the spatial variations of spectrum opportunities. We jointly represent the
network topology and spectrum availability using bipartite graphs. This representation reduces the problem
of spectrum-aware cluster formation to a biclique construction problem. We investigate several criteria for
constructing clusters for the CRN environment, and characterize their performance under different spectrum
sensing and PR activity models. In particular, we evaluate the expected cluster size and number of common
idle channels within each cluster, as a function of the spectrum and topology variability. We verify our
analytical results via extensive simulations.

Keywords: Cognitive radio networks, clustering, graph theory, biclique graphs, bipartite graphs,
opportunistic access, open spectrum.

1. Introduction

Under a fixed spectrum allocation paradigm, frequency bandsare licensed for exclusive use and, in many
cases, to specific entities. For example, TV bands are used for the broadcast of TV signals from licensed
operators, while public safety radio bands are reserved forradio communications of state, governmental
and municipal entities. This paradigm increases the robustness of wireless services by preventing signal
interference between different technologies [1, 2]. However, measurements of the activity load on the
licensed spectrum have shown that a large portion of it is heavily underutilized [3, 4]. To this effect,
the Federal Communications Committee (FCC) has recently decided to open up part of the spectrum for
unlicensed opportunistic access [5].
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Figure 1: (a) Co-existence of a CRN with a PRN. The frequency bands exploited by CRs vary in space depending on the ongoing
PR activity, (b) the topology of the CRN is dependent on the PRactivity. CR nodesA, C cannot communicate because they do not
share a common idle channel, despite being within communication range.

Policy regulations dictate that opportunistic users must not interfere with the transmissions of legacy
systems [5]. This “no interference” policy leads to a hierarchical network architecture in which licensed
users, typically referred to asprimary users or primary radios (PRs), have a higher priority in accessing the
spectrum compared to unlicensed ones, commonly referred toassecondary users. Cognitive radios (CRs)
are one of the most promising technologies for implementingthe mandated policy regulations [6]. Using
software defined radio technology and an advanced cognitionengine, CRs are capable of sensing the idle
spectrum either independently, or cooperatively [7–9]. The idle spectrum is then temporarily accessed by
the CRs to form a cognitive radio network (CRN).

The unique characteristic of a CRN co-existing with a primary radio network (PRN) is the dynamic
nature of the spectrum availability [10]. Consider, for example, the co-existence of a PRN with a CRN, as
shown in Figure 1(a). PRN traffic variations lead to a spatialand temporal variation of the CRN topology.
Two CR nodes within communication range are not guaranteed to communicate, unless at least one idle
band exists at their location. This additional constraint imposes an inherent partition of the CRN into
clusters, depending not only on the physical proximity of CRs, but also on the spectrum availability. In
this article,we develop and study the performance of clustering criteria that explicitly take into account the
spatial variations of the spectrum opportunities.

We note that co-located CRs make correlated sensing observations by sampling the transmission activity
of nearby PRs. The set of idle channels1 sensed by neighboring CRs varies depending on: (a) the proximity
of each CR to active PRs, and (b) the imperfections of the sensing mechanism due to hardware limitations
and phenomena of shadowing and fading [10]. For instance, inFigure 1(b), we show three CRs opportunis-
tically accessing a set of four licensed channels. PR1 occupies channels{1, 2} while PR2 occupies channels
{3, 4}. CRsA andB are within the coverage range of PR1 while CRC is within the coverage range of PR2.
CRsA andB sense no PR activity on channels{3, 4} while C senses no PR activity on channels{1, 2}. In
addition,B is perceiving channel 2 as idle due to multipath or fading effects. In the CRN of Figure 1(b),
A, andC cannot directly communicate despite the fact that they are within communication range, because
there is no overlap between their respective sets of idle channels.

From the example of Figure 1(b), it becomes evident that the network topology jointly depends on the
physical proximity and spectrum availability. Therefore,topology management algorithms such as cluster-
ing, must take both these parameters into account. However,we make the observation that clustering criteria

1In this article, we use the term “channels” to refer to orthogonal frequency bands.
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designed for CRNs with dynamic spectrum, may have conflicting goals. On one hand, partitioning the net-
work to a small number of clusters (with larger cluster sizes) reduces the overhead for topology management
[11]. On the other hand, grouping a large number of CRs with dissimilar sets of idle channel, reduces the
available bandwidth for intra-cluster communication (a smaller number of idle channels is common among
all CRs). To capture the aforementioned trade off, we jointly model the physical network topology and
spectrum availability at each CR as a bipartite graph. Basedon this joint representation, we partition the
CRN into clusters by constructing biclique graphs (complete subgraphs of a bipartite graph), which satisfy
various design criteria. We initially proposed the idea representing clusters in CRNs as bicliques in [12].
The goal of the work in [12] was to locally allocate common control channels for coordination purposes.
The differences between [12] and the present work are summarized in the following contributions.

Contributions. Adopting a graph-based representation of the idle spectrum, we examine three clustering
criteria, suitable for CRNs with dynamic spectrum. These criteria are: (a) joint maximization of thesum
of common idle channels per cluster with the number of cluster members, (b) joint maximization of the
product of common idle channels per cluster times the number of cluster members, and (c) maximization
of the number of cluster members under a constraint on the number of common idle channels. We show
that our clustering criteria can be combined with clustering algorithms proposed for ad hoc networks, in
order to perform spectrum-aware distributed clustering inCRNs. Such clustering, not only allows for
enhanced intra-cluster communication due to the availability of multiple common frequency bands, but also
inherently implements cooperative spectrum sensing. For each clustering criterion, we analytically evaluate
the clustering performance in terms of the feasible clusters, the expected cluster size and the number of
common idle channels per cluster. In our derivations, we consider two PR activity models; a semi-Markov
ON/OFF model and a Poisson traffic model. However, other traffic models can be incorporated to our
analytic results. Furthermore, we consider the clusteringprocess under both perfect and imperfect channel
state information. Note that our theoretical evaluation entails the estimation of the feasible bicliques that
can be constructed from bipartite graphs with a pre-specified probabilistic structure. Our derivations can be
applied to any problem that benefits from a mapping to a biclique representation, and is subject to similar
probabilistic models.

Paper organization. The remaining of the paper is organized as follows. In Section 2, we state our system
model. In Section 3, we develop a graph model for the joint representation of the physical topology and
the idle spectrum availability. Using this model, clustersare mapped to biclique graphs. Spectrum-aware
clustering criteria based on the graph representation of clusters are investigated in Section 4. Section 5
discusses algorithms for distributed cluster formation and maintenance. In Section 6 we analytically eval-
uate the performance of the proposed clustering criteria, and validate our results via extensive simulations.
Related work is presented in Section 7. Finally, in Section 8, we present our conclusions.

2. System Model Assumptions

For clarity purposes, we first present the notation that willbe used in the rest of this article.

2.1. Notation
M : Set of channels licensed to PRNs.
Ci : Set of idle channels at CRi.
Ni : Set of one-hop neighbors of CRi.
N : Random variable expressing the number of idle channels inthe system.
p : Probability that a channel is idle under the semi-Markov activity model.

pm : Probability of mis-detecting the state of an occupied channel.
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p f : Probability of false alarm in sensing an idle channel.
R : PR communication range.
r : CR communication range.
λ : Arrival rate for a Poisson-distributed arrival process.
µ : Departure rate for an exponentially distributed service process.

G(A,B,E) : Bipartite graphG with sets of verticesA,B, and set of edgesE.
Q(X, Y) : Biclique graph with sets of verticesX, Y.

Zℓ : Number of bicliques of “size”ℓ.
ℓs : Sum of the vertices of a biclique,ℓs = |X| + |Y |.
ℓp : Product of vertices of a biclique,ℓp = |X||Y |.
ℓc : Cardinality of one side of a biclique,ℓc = |X|.

C(n, k) :
(

n
k

)

.

2.2. Primary Radio Network Model

PRNs are licensed to use a fixed spectrum, which can be dividedto a set of orthogonal frequency bands
(channels), denoted byM = {1, 2, . . . ,m}.We assume that all channels are of the same quality in terms of
capacity and propagation characteristics2. PR users have priority in accessing any channel inM , without
experiencing any performance degradation due to transmissions by unlicensed users [5].

2.2.1. PRN Activity Models
The proposed clustering criteria and mechanisms do not depend on any particular PRN activity model.

However, in order to provide an analytical evaluation of theclustering performance, we consider two PRN
activity models that are widely adopted in CRN analysis.

Semi-Markov model. In this model, PRN traffic on a given channeli ∈ M is modeled after a semi-Markov
ON-OFF process. The state of channeli alternates between busy (ON) and idle (OFF) periods. The length
of each period is assumed to be an independent random variable following some distribution. Moreover,
the state of a channeli is independent of the state of other channels. This assumption is true when the set of
channelsM is licensed to independently operating PRs (e.g., channelsoperated by different TV stations).
Semi-Markov ON-OFF models have been experimentally verified for a range of PRN scenarios [13, 14].
The semi-Markov renewal process modeling the PRN activity on channeli is shown in Figure 2. Without
loss of generality, we assume a geometric distribution on the length of the ON and OFF periods (holding
times at each state of the Markov process) with parametersqi and pi, respectively. Such assumptions have
been extensively adopted in theoretical analyses of the performance of CRNs (e.g., [15–17]). In this case,
the stationary probability that channeli is in idle state can be easily computed to be

πidle
i =

qi

qi + pi
.

Let N denote the random variable expressing the number of idle channels in the system. Due to the inde-
pendent channel assumption, the probability mass function(pmf) for N is given by

Pr[N = n] =
∑

I⊂M : |I|=n

∏

i∈I

πidle
i

∏

j<I

(1− πidle
j ). (1)

2CRs may operate over a diverse set of frequency bands with different capacity and propagation characteristics. For simplicity,
we assume that there is no preference over the channel of operation.
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Figure 2: (a) The semi-Markov PR activity model for channeli, (b) PR activity at channelsi and i + 1 modeled as an ON/OFF
process.

Assuming that all channels have the same traffic characteristics (i.e.,πidle
i = p,∀i ∈ M), (1) is simplified to

a binomial distribution

Pr[N = k] =

(

m
k

)

pk(1− p)m−k. (2)

Poisson model. The second PR activity model aims at capturing the traffic characteristics of PRNs operating
under the management of a single entity (for example, a cellular network). In this case, PRN traffic is
modeled after a Poisson process with arrival rateλ and exponentially distributed service time with mean
µ [18, 19]. Such assumptions have been verified for networks where the number of users is significantly
larger than the number of available channels (as in cellularnetworks) [18–20]. This model suggests that
PRN activity forms anM/M/c/0 queuing system, wherec = m denotes the number of channels licensed to
the PRN. The stationary probability ofn channels being idle (m − n channels being occupied) is given by
theErlang loss formula [21]:

Pr[N = n] =

ρm−n

(m−n)!
∑m

i=0
ρi

i!

, n = 0, 1, . . . ,m, (3)

whereρ = λ
µ
. In fact, (3) holds true when the channel holding time followsany general distributionG

(M/G/c/c queuing model) [21]. The computation of (3) can be simplified using recursion or well known
approximations that do not require the calculation of factorials of high order [22].

2.3. CRN Model

We assume a decentralized network architecture in which CRsself-organize into a network, without the
assistance of a fixed infrastructure. Moreover, no interaction is assumed between the PRNs and the CRN.
To prevent interference with the PRs, CRs obtain channel state information in the following two ways: (a)
by connecting to a database [5] and, (b) by sensing for idle frequency bands using methods such as energy
detectors, cyclostationary feature extraction, and pilotsignals [6–9].

Using any of the two methods, each CRx maintains its own set of channelsCx = {i1, i2, . . . , i|Cx |}, left
idle by the PRN. Here,i j refers to thejth element ofCx. When channel state information is obtained via a
database, it is assumed to be perfect. On the other hand, whenCRs perform their own sensing, channel state
information is subject to events of mis-detection and falsealarm, due to phenomena of multipath and/or
shadowing of PR signals [7–9]. To model the imperfections ofthe spectrum sensing process, we assume
that the state of an occupied channel is falsely estimated with mis-detection probabilitypm. Moreover, the
state of an idle channel is falsely estimated (due to, for example, the presence of a large noise component)
with false alarm probability p f .Given the fast decorrelation of the received signal with space and frequency
[23], the events of false alarm and mis-detection are assumed to be independent for each CR and for each
channel. Several methods are available for computing typical values ofpm andp f [24–26].
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(a) Topology of type-I (b) Topology of type-II

Figure 3: Topology architectures modeling the co-existence of the CRN with PRNs. The numbers in parenthesis on top of each PR
indicate the channel(s) occupied by that PR. The list of PRs in the CR area indicate the PRs sensed by CRs in that area. For type-I
topologies, the set of PRs sensed by each CR is identical. Fortype-II topologies, neighboring CRs possibly sense different PRs.

2.4. CRN Topology Models

Two types of network topologies are considered for the co-existence of the CRN with PRNs. Intype-I
topologies, the coverage range of PRs denoted byR, is significantly larger than the communication range
of the CRs, denoted byr. Thus, neighboring CRs (within one hop of each other) are within the range of the
same set of PRs. This scenario arises when the PRs are powerful base stations such as TV transmitters, with
coverage range that spans tens of kilometers [5]. Intype-II topologies, the range of the PRs is comparable
to that of the CRs. Therefore, neighboring CRs make correlated sensing observations, without necessarily
being in the range of the same set of PRs. This scenario ariseswhen the PRs are wireless microphones or
cellular towers with limited range [5]. The two types of network topologies are depicted in Figure 3.

The two topological models impose different spatial variation conditions on the set of idle channels
at neighboring CRs. For type-I topologies and perfect channel state information, CRs have identical sets
of idle channels since they are within the communication range of the same set of PRs. For instance, in
Figure 3(a), all CRs within the deployment area sense the activity of PR1−PR4. Hence, for this scenario,
the variation of the idle spectrum is only temporal. For type-II topologies, neighboring CRs are subjected
to activity from possibly different sets of PRs. As an example, in the topology of Figure 3(b), CRsA andB
have correlated but not identical sets of idle channels. Channel 5 occupied by PR4 is marked occupied by
CR A, but idle by CRB, sinceB is not within the range of PR4.

To analytically evaluate the proposed clustering criteria, we are interested in modeling the similarity
between the sets of idle channels of neighboring CRs. Consider a channeli occupied by a PRx. The
probability thati is sensed idle by a CRy is dependent upon the distancedxy betweenx and y. For a
uniform (random) deployment of PRs and CRs within an area of size A, and ignoring any border effects,
this probability is equal to [27]:

Pr[dxy > R] = 1−
πR2

A
. (4)

Equation (4), expresses the probability that CRy is out of the coverage rangeR of PR x. We denote this
probability by pw. We are also interested in computing the probability that a CR z, neighbor of with CR
y (dyz ≤ r), makes a correlated observation on the state of channeli. For this, we compute the probability
that two CRs sense occupied channeli to be idle, under the constraint that these two CRs are neighbors. We
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Figure 4: (a) A CRN of six nodes. The channel availability foreach CR is as follows:CA = {1,2,3, 4,5, 6,7, 10}, CB =

{1,2,3, 4,5, 7}, CC = {1,2,3, 4,6, 8}, CD = {1,2, 5,10}, CE = {3,6,7, 8,10}, andCF = {1,2,5, 6,8}, (b) the bipartite graph
constructed by nodeA. The two sides of the bipartition areAA = A ∪ NA andBA = CA, representing the correlation between the
channel availability for the neighbors ofA, (c) the bipartite graph constructed by nodeD.

denote this probability bypc.

pc = Pr[dxz > R | dxy > R, dyz ≤ r] = (1− Pr[dxz ≤ R | dxy > R, dyz ≤ r]). (5)

The value ofpc is fixed under a known deployment distribution and fixed values of R andr.We derive the
exact value ofpc for a random CR and PR deployment in Appendix A. The values ofpw andpc model the
correlation between sensing observations of neighboring CRs. While more elaborate models are possible
(different node distributions, sensing models, etc.), this simple model allows us to decouple our analysis
from further assumptions regarding the relative locationsbetween the CRs and the PRs. Note that these
assumptions are made to facilitate the theoretical analysis of the performance of the clustering algorithms.
Our decentralized clustering mechanismdoes not depend on the validity of such assumptions and can adapt
its operation to any set of conditions and topological architectures.

3. Graph-Based Representation of Idle Spectrum

In this section, we jointly model the network topology and the idle spectrum availability as a bipartite
graph. This model is used as the basis for constructing spectrum-aware clusters. The reasoning behind our
model is the co-dependence of the CRN topology on: (a) the communication range of the CR devices, and
(b) the overlap between the set of idle channels of neighboring CRs. Both these parameters can be jointly
represented by an undirected bipartite graphG(A ∪ B,E). A graphG(V,E) is called bipartite if the set of
verticesV can be partitioned into two disjoint setsA andB with A ∪ B = V, such that all edges inE
connect vertices fromA toB.

For the purpose of clustering, each CR can construct its own view of the topology/spectrum availability
based on the information received from its one-hop neighbors. LetNi denote the set of one-hop neighbors
of a CR nodei. Assume that CRi collects the sets of idle channels from all CRs inNi. This information
can be made available via a cooperative diversity mechanism[7–9]. Then, it can construct a bipartite graph
Gi(Ai ∪ Bi,Ei), which jointly represents the similarity between the sets ofidle channels of its neighbors
and his own set. In graphGi,Ai = i ∪ Ni andBi = Ci. An edge (x, y) exists between a vertexx ∈ Ai and a
vertexy ∈ Bi if and only if y ∈ Cx, i.e., y is common to bothCi andCx.

As an example, in Figure 4(a), we show the topology for a CRN with six nodes, along with the sets
of idle channels for each node. Figure 4(b), shows the bipartite graph constructed by CRA. The set of
verticesAA, corresponds to the one-hop neighbors ofA plus the node itself,NA = {A, B,C,D, E, F}, while
the set of verticesBA corresponds to the set of idle channelsCA = {1, 2, 3, 4, 5, 7, 10}. In Figure 4(c), we
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Figure 5: Bicliques constructed by CRsA andD of figure 4(a), representing possible CR clusters and set of common idle channels.

present the bipartite graphGD constructed by CR nodeD, for the topology of Figure 4(a). We note that
GA , GD despite the fact that CR nodesA andD are one-hop neighbors. This holds true because, in general,
NA , ND and, under imperfect channel state information, it is expected thatCA , CD.

3.1. Modeling Clusters as Biclique Graphs

The purpose of our clustering is to group neighboring nodes with similar sets of idle channels. This
criterion improves the bandwidth availability for intra-cluster communications. Nodes within a cluster
have more idle channels in common for communication. This property is desirable since in cluster-based
architectures, the majority of communications occurs between cluster members. Moreover, such clustering
inherently implements cooperative spectrum sensing, since individual sensing observations are combined
to a consensus regarding spectrum availability [7, 8, 28]. Note, however, that pairwise communications
between cluster members are not restricted to common channels. CRs can use any pairwise shared frequency
band to engage in pairwise communications.

To meet our goal, we create clusters where a setX of CR nodes has a setY of idle channels in common.
We model such clusters after abiclique graph Q(X, Y, E). Biclique graphs are special cases of bipartite
graphs where all vertices of one side of the bipartition are connected to all vertices of the other side (i.e.,
they are complete subgraphs of a bipartite graph). In particular, a graphQ(X, Y, E) is called biclique if
∀x ∈ X, and∀y ∈ Y there exists an edge betweenx andy, i.e., E = {(x, y) | ∀x ∈ X,∀y ∈ Y}. The edge setE
can be completely determined byX, Y and hence, is usually omitted from the biclique notation.

Using the bipartite graph representation, clusters can be formed by finding bicliques that satisfy desired
performance criteria. A cluster represented byQ(X, Y), has a size|X| with |Y | channels common to all CRs
in X. As an example, figures 5(a) and 5(b), show two possible bicliques constructed from the bipartite graph
of figure 4(b). The biclique of figure 5(a) represents the clustering of CR nodes{A, B,C} with channels
{1, 2, 3, 4} common to all CRs within the cluster. The biclique of figure 5(b) represents the clustering of CR
nodes{A, B,D, F}with channels{1, 2, 5} common to all four CRs. Figure 5(c), shows a biclique constructed
based on the bipartite graph of CRD (figure 4(c)). We observe that the “quality” of the cluster constructed
by D is lower compared to that constructed byA, since the cluster ofD has fewer members, and fewer idle
channels in common.

4. Clustering Criteria Based on Bicliques

Based on the mapping of clusters to biclique graphs, we examine three clustering criteria for determining
the “quality” of a cluster. These criteria are mapped to three instances of the biclique construction problem
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[29, 30]: (a) the maximum node biclique (MNB) problem, (b) the maximum edge biclique (MEB) problem,
and (c) the maximum one-sided edge cardinality biclique (MECB) problem.

The goal of our clustering criteria is to create spectrum-aware clusters which adapt to the heterogeneity
of the channel availability. When neighboring CRs have highly correlated sets of idle channels, clusters are
decided primarily by the physical topology, but when the sets of idle channels are heterogeneous, a balance
is achieved between the cluster size and the set of common idle channels within each cluster.

4.1. The Maximum Node Biclique (MNB) Criterion

Under the MNB criterion, the goal is to construct a cluster where the sum of the number of cluster
members with the number of common idle channels is maximized. The MNB problem can be stated as
follows [31].

Cluster construction under the MNB criterion:Consider bipartite graphGA(AA ∪ BA,EA), constructed by
CR A, whereA = NA ∪A andBA = CA. Let ℓs = |XA|+ |YA| be the sum of vertices of a bicliqueQA(XA, YA)
extracted fromGA. Find bicliqueQ∗A(XA, YA) such thatQ∗A(XA, YA) = argQ maxℓs.

The maximization ofℓs leads, in most cases, to a balance between|XA| and|YA|. Moreover, it provides a
self-tuning mechanism for dynamically adjusting the cluster membership to the heterogeneity of the sensing
observations of the CRs. This is illustrated as follows. If the sets of idle channelsCi, i ∈ AA are highly
correlated, edges from vertices inAA will be connected to the same set of vertices inBA. In this case,Q∗

corresponds to the biclique which tends to maximize|XA|. That is, because neighboring CRs have almost
the same sets of idle channels, the “best” cluster is the cluster with the largest size. On the other hand, when
the sets of idle channels have low correlation (due to severechannel effects or heterogeneity in the set of
PRs heard at each CR), constructing a large size cluster leads to a small set of common idle channels. In
this case, selecting only the neighboring CRs with similar sets of idle channels is likely to increaseℓs. This
is true when the rate of increase of|YA| (due to the elimination of low overlapping sets) is larger than the
rate of decrease of the cluster size|XA|.

The MNB problem can be solved in polynomial time by a mapping to the maximum independent set
problem [31, 32]. In our context, we are interested in the analytical evaluation of the existence of bicliques
with a particular size and structure in terms of|X| and|Y |.

4.2. The Maximum Edge Biclique (MEB) Criterion

Under the MEB clustering criterion, the goal is to constructa cluster where the product of the number
of cluster members with the number of common idle channels ismaximized. The MEB problem can be
stated as follows [32, 33].

Cluster construction under the MEB criterion:Consider bipartite graphGA(AA ∪ BA,EA), constructed by
CR A, whereA = NA ∪ A andBA = CA. Let ℓp = |XA||YA| be the number of edges of a bicliqueQA(XA, YA)
extracted fromGA. Find bicliqueQ∗A(XA, YA) such thatQ∗A(XA, YA) = argQ maxℓp.

The MEB criterion exhibits a higher sensitivity to changes in |XA| and |YA| compared to the MNB
criterion, and thus, clusters of small size or low availability of common idle channels are avoided. This
can be illustrated by the example of figure 6(a), which is a bipartite graph representation of the spectrum
availability for a set of CRs{A, B,C,D, E, F,G}. The maximum size biclique constructed by the MNB
criterion is shown in Figure 6(b). In this bicliqueℓs = 8, with seven CRs forming a cluster with one idle
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Figure 6: (a) A realization of a bipartite graph for nodeA, (b) the maximum node biclique, and (c) the maximum edge biclique.

channel (channel 1). Figure 6(c) shows the maximum size biclique constructed by the MEB criterion. In
this biclique, CRs{A, B,C,D} are clustered, having three idle channels in common.

In this example, the MEB criterion leads to more balanced clustering in terms of the two parameters
of interest; the cluster size and the number of common idle channels. This is because the multiplication
operation is more sensitive to changes of|X| or |Y | compared to the addition operation. For bivariate function
f1(x, y) = x + y, the partial derivatives with respect tox andy are equal to 1, which means that any unit
change ofx or y can only changef1 by one unit. On the other hand, forf2(x, y) = xy, the partial derivatives
with respect tox andy are equal toy andx, respectively. Therefore, a unit change ofx or y will change f2
by y ≥ 1 or x ≥ 1, respectively. The balance property off2 relative to f1 can be shown if a simple trade off
relationship betweenx andy is assumed where 1≤ x, y ≤ n andx = n − y. In this model, a unit of change
in one variable causes a unit of change in the other variable and vice versa. For this simple trade off model,
f1 is maximum for any combination ofx, y making a cluster with|X| = n − 1 and|Y | = 1 of equal quality to
a cluster with|X| = |Y | = n

2, On the other hand,f2 is maximized only whenx = y = n
2.

While the MEB criterion is expected to produce better quality clusters compared to the MNB criterion,
finding the maximum edge biclique is known to be an NP-complete problem [33]. Several heuristic methods
have been proposed that provide desired approximations [32]. These methods can be employed at the
individual CRs to deriveQ∗ givenG. In our analysis, we are interested in evaluating the possible bicliques
obtained under the PR activity and topological models assumed.

4.3. The Maximum One-sided Edge Cardinality Biclique (MECB) Criterion

Under the MECB criterion, the goal is to construct clusters of maximum cluster size under a constraint
on the number of common idle channels (or vise versa). The MECB problem can be stated as follows.

Cluster construction under the MECB criterion:Consider bipartite graphGA(AA ∪BA,EA), constructed by
CR A, whereA = NA ∪ A andBA = CA. Let ℓc = |XA| be the size of a bicliqueQA(XA, YA) extracted from
GA. Find bicliqueQ∗A(XA, YA) such thatQ∗A(XA, YA) = argQ maxℓc, and |YA| ≥ γ0, whereγ0 is a positive
integer with 1≤ γ0 ≤ m, expressing a desired threshold.

The consideration of this constrained maximization problem aims at creating clusters with some mini-
mum guaranteed performance. By selecting a threshold valueon the number of common idle channels, a
minimum bandwidth availability is guaranteed within everycluster, provided that sufficient idle channels
exist. Once this minimum requirement is satisfied, we maximize the cluster size in order to reduce the
number of clusters in the CRN. For instance, for the bipartite graph of figure 6(a), setting a thresholdγ0 ≥ 2
on the number of common idle channels of any cluster, we guarantee that the biclique of figure 6(b) is not
a valid cluster. A similar formulation can be derived when the cluster size is constrained to be|XA| ≥ γ0,
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and the goal is to maximize|YA|. The problem of finding the maximum one-sided edge cardinality biclique
is known to be NP-complete [29], but greedy and probabilistic suboptimal solutions are known [34].

5. Distributed Clustering based on the Bipartite Graph Representation

In this section, we present a distributed clustering algorithm that can be used in conjunction with the
MNB, MEB and MECB clustering criteria. Note that our goal is not to develop new coordination mech-
anisms for distributed clustering. A large body of literature is already available in the context of ad hoc
networks (e.g., [35–38]). Our goal is to illustrate the practical application of our problem formulation and
solution for the purpose of forming spectrum-aware clusters in CRNs.

5.1. Clustering based on the Distributed Clustering Algorithm

Basagni et al. proposed the Distributed Clustering Algorithm (DCA) for partitioning an ad hoc network
into clusters [35]. In DCA, every node is assigned a weight (apositive real-valued number), indicating its
suitability in serving as a clusterhead (CH). The goal of DCAis to assign nodes to neighboring CHs with
the highest weight. The DCA algorithm has been shown to converge after the exchange of a small number
of broadcast messages [35].

The DCA algorithm can be modified to take into account our spectrum-aware clustering criteria. In our
context, we select the maximum biclique size in terms of sum of nodes (ℓs), sum of edges (ℓp) or maximum
cardinality (ℓc) to represent the weight of each node. Note that this weight is a numerical value that is
contingent on the formation of a given cluster (biclique) and not an individual node parameter (such as the
node’s residual energy). Therefore, the performance metric advertised by a node is materialized only if the
corresponding cluster is formed. The steps of the proposed distributed clustering mechanism based on DCA
are as follows.

Step 1: Every CRi broadcasts its set of idle channelsCi.

Step 2: Every CRi constructs a bipartite graphGi(Ai ∪ Bi,Ei) based onNi, Ci, and the setsC j, j ∈ Ni

received from its neighbors.

Step 3: Every CRi computes the maximum size bicliqueQ∗i (Xi, Yi), according to one of the three clustering
criteria (MNB, MEB or MECB). The size of the maximum bicliquebecomes the weightwi of CR i.

Step 4: Every CRi broadcasts{wi, Xi, Yi}.

Step 5: If wi > w j, ∀ j ∈ Ni, CRi declares itself as a CHs by broadcasting aCH(i) message. If two or more
neighboring CRs have the same weight, priority is given to the CR for which the ratio|X|

|Y | is closest to
one. Further ties are resolved by considering the CR with thelowest ID.

Step 6: A CR i that has not declared itself as CH, joins the CHj, j ∈ Ni with the highest announced weight
for which i ∈ X j. CR i broadcasts ajoin(i,CH( j)) message.

Step 7: If a CR i has not heard a CH announcement from any of its neighbors, this node waits until all
neighboring nodesj ∈ Ni with w j ≥ wi, i > j and i ∈ X j announce a decision; either they have
joined a cluster or declare themselves as CHs. If all neighboring nodes broadcastjoin messages, CR
i declares itself as a CH. Else it joins the cluster of the neighboring CH with the highest weight.

An example of the application of the DCA-based algorithm on asample network topology is shown in
Figure 7. In Step 1, nodes exchange their idle channel setsCi. In Step 2, every CRi individually constructs
bipartite graphGi(Ai∪Bi,Ei) and in Step 3, it computes the maximum size bicliqueQ∗i (Xi, Yi), based on its
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Figure 7: Application of the DCA-based clustering algorithm according to the MNB clustering criterion. Using network topology
and idle channel availability information, CRs announce the weights, cluster membership and common idle channels setsshown in
Table I. The DCA-based algorithm yields three clusters. CRsA, E, I act as CHs.

view of the topology and spectrum state. In Step 4, each CR announces (wi, Xi, Yi). The list of broadcasts
for the topology of Figure 7(a) are shown in Table I of Figure 7(b). Based on the broadcasts of Step 4, CRs
A andI have the highest weight among their neighbors (wA = wI = 15) and, therefore, declare themselves
as CHs by broadcasting messagesCH(A) andCH(I), respectively. CRsB, C, andD join the cluster ofA,
becauseA is the neighboring CH with the highest weight andB,C,D ∈ XA. CR H is included in bothXA, XI

with wA = wI . Because|XA|

|YA|
=
|XI |

|YI |
= 1.67, CRH joins the cluster whose CH has the lowest ID. Therefore,H

joins the cluster ofA. CRsM, L, K join the cluster ofI. Finally, CRE declares itself as a CH because it has
the highest weight among all CRs inNE that have not yet joined a cluster and nodesB andD have already
broadcastedjoin messages. CRsF andG join the cluster ofE, becauseE is the neighboring CH with the
highest weight. The resulting clusters are:{E, F,G} with common channels{2, 7, 9}, {A, B,C,D,H} with
common channels{1, 2, 5} and{I,K, L,M} with common channels{2, 4, 8}.

Communication overhead analysis: Because the clustering algorithm presented in this sectionis based on
DCA, it achieves the same communication efficiency and convergence properties of DCA, as detailed in [35,
39]. The message complexity is in the order ofO(nCRN), wherenCRN denotes the CRN size. In particular,
in order to complete the clustering process, each node is required to transmitexactly three messages as
follows.

• In Step 1, each CR broadcasts one message for communicating its set of idle channels to all its one-
hop neighbors.

• In Step 4, each CR broadcasts one message for announcing the weight and the corresponding biclique
that it individually computed.

• In Steps 5, 6, or 7, each CR broadcasts one message for declaring itself as a CH, or joining a cluster
of another neighboring CH.

Adding the cost of all steps yields an overhead of 3nCRN for the entire CRN. Note that the broadcast
of the set of idle channel in Step 1 is a requirement of any cooperative sensing mechanism [7, 8, 28], and
hence it may not be accounted as overhead of our clustering algorithm.

Note that other clustering methods can be employed to utilize our clustering criteria. As an example, in
[12], we proposed a distributed coordination method that makes use of the MEB criterion, called spectrum-
opportunity clustering (SOC). As opposed to DCA, SOC is a cluster-first algorithm that leads to the creation
of clusters before CHs are elected. The first four steps of SOCare identical to the steps of the DCA-based
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algorithm. This is necessary in order for each CR to obtain the idle channel sets of its one-hop neighbors,
and individually construct the biclique of maximum size according to the MNB, MEB or MECB criterion.

5.2. Re-clustering due to Temporal Variation of Spectrum Availability

The proposed clustering criteria are based on a snapshot of the spectrum state which is reflected in the
sets of idle channelsCi. These sets vary with time due to the dynamics of PR activity and time-varying
phenomena of shadowing and fading [10]. Therefore, clusters created based on one snapshot of the spec-
trum, are likely to be outdated in the course of time. To account for the temporal variation of spectrum
availability, a re-clustering operation is needed. The frequency of the re-clustering varies depending on the
dynamics of PR activity. For example, when the PRs are TV stations, the FCC mandates that information
on PR activity is updated every few hours [5]. On the other hand, in highly dynamic environments the fre-
quency of re-clustering can lead to excessive communication overhead and clustering instability. To address
this problem, we propose an algorithm that applies clustering in a periodic and an on-demand manner. The
periodic re-clustering is applied network wide to update the clustering based on long term weight changes.
The algorithm for the re-clustering is a clean slate application of the DCA-based clustering algorithm for
CRNs, as presented in the previous subsection. The on-demand re-clustering is meant for local rearrange-
ment of CRs into clusters due to temporary changes in channelavailability. The steps of the on-demand
re-clustering algorithm are as follows.

Step 1: Every CRi broadcasts its set of idle channelsCi.

Step 2: Every CH j updates{w j, X j, Y j} for its cluster j.

Step 3: If |Y j| < γ0, CRs of clusterj change their state to “undecided.”

Step 4: A CR i in “undecided” state computes{wi, Xi, Yi}, by considering only neighboring CRs that are
not currently clustered.

Step 5: If wi is larger than the weights of all neighboring CHs, CRi broadcasts{wi, Xi, Yi}. Else it waits
until all “undecided” CRs with lower ID announce their decision.

Step 6: “Undecided” CRs with the highest weight compared to neighboring CHs and other undecided CRs,
announce themselves as CHs.

Step 7: A CR i in “undecided” state that has not announced itself as a CH, requests to join the CH with the
maximum weight, assuming that|Y j| > γ0 after i joins the cluster ofj.

Step 8: A CH j confirms the join request of a CRi, only if |Y j| > γ0 if i is allowed to join clusterj. In this
case, CHj broadcasts agranted(i,CH( j)) message. Elsej broadcasts adeny(i,CH( j)) message.

Step 9: CR i echoesj’s decision only if the request is accepted. Else, it proceeds with the CH of the next
highest weight.

Step 10: If an “undecided” CRi has not heard a CH announcement from any of its neighbors, this node
waits until all “undecided” nodes withwi > w j andi ∈ X j, announce their decision. If all neighboring
nodes broadcastjoin or granted messages, CRi declares itself as a CH. Else it joins the cluster of the
neighboring CH with the highest weight.

Step 11: If a cluster with |Y | ≥ γ0 cannot be formed, “undecided” CRs remain in this state untilmore
channels are freed.

An example of the application of the on-demand re-clustering algorithm for the network of Figure 7(a) is
as follows. Assume thatγ = 2 and that the set of idle channels for cluster of CHA has changed toYA = {2},
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because the set of idle channels ofH has changed toCH = {2, 4, 8}. In Step 1, CHA will obtain the new
sets of idle channels from its cluster nodes. It then announces the new values for{wA, XA, YA}. Because
|YA| < 2, CRs{A, B,C,D,H} update their state to “undecided”, while the clusters of CHsE and I remain
intact. Every undecided CR computes{wi, Xi, Yi}. CR A computes a new cluster withXA = {A, B,C,D},
YA = {1, 2, 5} andwA = 12. CRsB andD compute weights lower than the weight ofE while CRC com-
putesXC = {A,C,D}, YC = {1, 2, 5} andwC = 9. Finally, CRH hearswI = 15 form I. Out of the undecided
CRs, onlyA,C announce their weights, since they did not hear a CH with a higher weight. Based on the
weight announcements, CRsB andD decide to join CRA sincewA = wE ,

|XA|

|YA|
=
|XE |

|YE |
, but A > E. CRC also

decides to joinA. CR H sends a join request toI. Because|YI | > 2 afterH joins the cluster ofI, the request
of H is accepted. After the on-demand re-clustering the new clusters are{E, F,G} with common channels
{2, 7, 9}, {A, B,C,D} with common channels{1, 2, 5}, and{H, I,K, L,M} with common channels{2, 4, 8}.

Communication overhead analysis: Our re-clustering algorithm aims at reducing the communication
overhead associated with maintaining clusters up-to-datewith the spectrum availability. This is achieved
by incorporating the following strategies. First, the composition of a cluster is maintained as long as a
minimum number of idle channels remains common to all cluster members. Hence, frequent re-clustering
is avoided at the expense of sub-optimal clusters in terms ofbiclique size (due to the temporal variation
of the spectrum). The network-wide periodic re-clusteringreconfigures the network to optimal clusters for
longer term changes. Second, when a cluster does not meet theminimum requirements in terms of common
idle channels, re-clustering is performed locally for the members of that cluster. In the example of Figure
7, only the members of clusterA had to be re-assigned. Moreover, “undecided” CRs are allowed to join
neighboring clusters, only if they are not forcing the neighboring cluster to a re-clustering. That is, the share
sufficient idle channels with the cluster they join. This design prevents a cascading effect of re-clustering
operations, thus limiting the communication overhead and delay until new clusters are formed.

The exact overhead of the re-clustering algorithm is topology and PRN activity dependent. For a single
cluster of size|X| whose members need to be re-clustered, we analyze the numberof messages that need to
be exchanged. Assume that every cluster member in “undecided” state is a neighbor ofφ other CHs. Note
that based on DCA [39], no two CHs can be neighbors and, henceφ < 6 (simple geometric constructions
can show that a node cannot have more than 5 independent neighbors). The re-clustering communication
overhead is as follows.

• In Step 1, each CR broadcasts its set of idle channels3 accounting for a total of|X| messages.

• In Step 2, every neighboring CH announces its weight and biclique structure, accounting forφ mes-
sages.

• In Steps 5 and 6, the worst case scenario in terms of overhead is realized when none of the “unde-
cided” CRs becomes a CH.

• In Step 7, an “undecided” CR can request to join up toφ pre-existing clusters, yielding a message
overhead up toφ|X| messages.

• In Step 8, each of theφ neighboring CHs replies in up to|X| join requests, totalingφ|X| messages.

• In Step 10, “undecided” CRs that did not join any neighboringpre-existing cluster announce them-
selves as CH or join the cluster of another “undecided” CR, yielding up to|X| messages.

3Broadcasting of the set of idle channels is a periodic function required by the spectrum sensing process [7–9, 28, 40].
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Figure 8: (a) A bipartite graph for a topology of type-I underperfect channel state information. All CRs are connected tothe set
of idle channels{1,2,3}, (b) a bipartite graph for a topology of type-II under perfect channel state information. The dashed lines
indicate CRs that are out of range from PRs that are active on agiven channel, (c) a bipartite graph for topologies of type-I under
imperfect channel state information. Events of false alarmand mis-detection prevent the correct estimation of the channel state
(missing solid lines to idle channels indicate events of false alarm, and dashed lines indicate mis-detection of occupied channels),
(d) a bipartite graph for topologies of type-II under imperfect channel state information. A combination of the bipartite graphs in
(b) and (c).

Adding the number of messages transmitted at each step yields a communication overhead which is
upper bounded by (2+ 2φ)|X| + φ ≤ 12|X| + 5 messages.

6. Performance Evaluation

In this section, we analytically compute the performance ofthe proposed clustering criteria. We are
focusing on determining the quality of clusters that are constructed under the graph-based representation of
the network topology and spectrum availability. We validate our theoretical results by performing extensive
simulations.

6.1. Bipartite Graph Models

We first analyze the impact of the topology and channel state information models on the bipartite graph
structure. This structure is employed in the analytical evaluation of the clustering performance.

Perfect Channel State Information. Consider the bipartite graphGx(Ax ∪ Bx,Ex) constructed by a CR
x under perfect channel state information. ForGx, any vertexi ∈ Cx corresponding to an idle channel
is connected toall vertices inAx. Hence, edges corresponding to idle channels appear in groups of size
(|Nx| + 1).

For type-I topologies, no other edges exist inGx. Figure 8(a) shows the structure of a bipartite graph
constructed byA, for the CRN of Figure 4(a), when channels{1, 2, 3} are assumed to be idle The vertices
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corresponding to channels{1, 2, 3} are connected to all vertices inAx. For type-II topologies, the structure
of Gx depends on the positions of the PRs relative to CRx and its one-hop neighbors. Based on the model in
Section 2, a PR is within a range ofx with probability pw (see eq. (4)). Therefore, an edge between a vertex
i corresponding to an occupied channel andx exists with probabilitypw. Moreover, for the same vertexi,
an edge exists betweeni and a CRy ∈ Nx, if y is not in the range of the PR occupyingi. According to
equation (5), this event occurs with probabilitypc. Figure 8(b) shows a bipartite graph constructed for type-
II topologies, under perfect channel state information. Note that a subset of vertices inCA are connected
to all vertices inA ∪ NA. These vertices correspond to the idle channels. Additionaledges exist between
A ∪NA and occupied channels.

Imperfect Channel State Information. When sensing information is not obtained from a database, CRs
are subject to imperfect channel sensing. In this case, the edges of the bipartite graph jointly depend on the
PR activity and the probabilities of mis-detection and false alarm. Let’s consider topologies of type-I. For
a bipartite graphGx, if a channeli is idle, the corresponding vertex is connected to a vertexj ∈ Ax with
probability (1− p f ). Furthermore, a vertexi corresponding to an occupied channeli, is connected to a vertex
j ∈ Ax, with probability pm. This is because all CRs sense the same set of PRs. In Figure 8(c), we show one
realization of a bipartite graph constructed under the imperfect sensing model for type-I topologies. Edges
connecting CRs to idle channels independently exist with probability (1− p f ), while edges corresponding
to occupied channels independently exist with probabilitypm.

For type-II topologies, edges connecting CRs to idle channels exist with the same probability as in the
type-I case (a.k.a., (1− p f )).On the other hand, for occupied channels, the position of theactive PRs relative
to x must be considered. An edge between an occupied channeli andx exists the following probability.

Pr[(i, x) = 1] = Pr[dxy ≤ R, i mis-detected∨ dxy > R, i no false alarm] (6a)

= Pr[dxy ≤ R, i mis-detected]+ Pr[dxy > R, i no false alarm] (6b)

= Pr[dxy ≤ R]Pr[i mis-detected]+ Pr[dxy > R]Pr[i no false alarm] (6c)

= (1− pw)pm + pw(1− p f ). (6d)

In equation (6a), we considered the probability that CRx is within range of the PR that is active on
channeli but i is mis-detected, or thatx is out of range from the active PR and the state of channeli is
correctly estimated. Equation (6b) follows from the fact that dxy ≤ R anddxy > R are mutually exclusive
events. Equations (6c) and (6d) follow by the assumption that the events of mis-detection and false alarm
are assumed independent of the distance betweenx andy. Note that the perfect channel state model can be
considered as a special case of the imperfect one. The probability of edge existence for occupied channels
under the perfect channel state model can be obtained from (6d) by settingpm = p f = 0.

Similarly, one can show that an edge connects the vertex corresponding to occupied channeli to a
neighborj ∈ Nx with probability (1−pc)pm+pc(1−p f ). In Figure 8(d), we show one realization of a bipartite
graph constructed under the imperfect sensing model, for type-II topologies. In this example, channels
{1, 2, 3} are not occupied by PRs. Edges from vertices{1, 2, 3} are independently connected to vertices in
the other side of the bipartition with probability (1− p f ). Channels{4− 10} are assumed to be occupied by
PRs. Edges from vertices{4− 10} are connected to vertexA with probability (1− pw)pm + pw(1− p f ), and
all other nodes with probability (1− pc)pm + pc(1− p f ).

6.2. Evaluation Metrics

In this section, we define the metrics used in our performanceevaluation. Our goal is to evaluate the
existence of clusters of different “quality” (biclique size) under the different sensing, topology, and activity
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models.
Let Zℓ denote thenumber of bicliques of “size”ℓ. The variableZℓ is defined as,

Zℓ =
∑

X⊆A, Y⊆B, size(Q(X,Y))=ℓ, |X|,|Y |≥1

I(X,Y), (7)

where the indicator function I(X,Y) is defined as,

I(X,Y) =















1, if size(Q(X, Y)) = ℓ

0, otherwise.

In (7), we consider all possible values of|X| and |Y | that yield a biclique of a sizeℓ. By definition, the
expected number of bicliques E [Zℓ] of sizeℓ is,

E [Zℓ] = E



















∑

X⊆A, Y⊆B, size(Q(X,Y))=ℓ, |X|,|Y |≥1

I(X,Y)



















=

∑

X⊆A, Y⊆B, size(Q(X,Y))=ℓ, |X|,|Y |≥1

E[I(X,Y)]

=

∑

X⊆A, Y⊆B, size(Q(X,Y))=ℓ, |X|,|Y |≥1

Pr
[

I(X,Y) = 1
]

. (8)

The expectation ofZℓ is used to analytically evaluate the probability of existence a biclique of sizeℓ. We
employ the Chebyshev inequality to derive a relationship between the probability of existence of a biclique
of sizeℓ, and the first and second statistical moments ofZℓ. For s > 0, the Chebyshev inequality states,

Pr[|Zℓ − E[Zℓ]| ≥ s] ≤ Var[Zℓ]/s
2. (9)

For E[Zℓ] > 1, settings = E[Zℓ] − 1 yields,

Pr[Zℓ ≥ 1] ≥ Pr[1≤ Zℓ ≤ 2E[Zℓ] − 1]

= Pr[−s + E[Zℓ] ≤ Zℓ ≤ s + E[Zℓ]]

= Pr[|Zℓ − E[Zℓ]| ≤ s]

= 1− Pr[|Zℓ − E[Zℓ]| ≥ s]

≥ 1− Var[Zℓ]/(E[Zℓ] − 1)2. (10)

For values of Var[Zℓ]/(E[Zℓ] −1)2 ≤ 1, the Chebyshev inequality yields a lower bound on the probability of
existence of bicliques of sizeℓ. This yields the biclique sizes that are likely to occur, given the PR activity,
sensing and topological models.

We also evaluate the probability of obtaining bicliques that satisfy desired constraints on|X| and|Y |. As
an example, the average number of bicliques of sizeℓ, with |X| ≥ x and|Y | ≥ y is defined as,

E
[

Zℓ | |X| ≥ x, |Y | ≥ y
]

=

∑

X⊆A, Y⊆B, size(Q(X,Y))=ℓ, |X|≥x,|Y |≥y,|Y |=ℓ−x, |X|

Pr
[

I(X,Y) = 1
]

. (11)
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Similarly, we bound

Pr[Zℓ ≥ 1 | |X| ≥ x, |Y | ≥ y] ≥ 1−
Var[Zℓ | |X| ≥ x, |Y | ≥ y]

(E[Zℓ | |X| ≥ x, |Y | ≥ y] − 1)2
, (12)

for E
[

Zℓ | |X| ≥ x, |Y | ≥ y
]

> 1. We now analytically evaluate the clustering performance ofthe MNB,
MEB, and MECB clustering criteria.

6.3. The MNB Criterion.

Under the MNB criterion, the cluster quality is characterized by the sumℓs = |X| + |Y |. In this section,
we analytically evaluate the expected number of clusters (bicliques) with a particular valueℓs, for each of
the PR activity and channel state information models.

Proposition 1. The expected number E
[

Zℓs
]

of clusters with value ℓs = |X| + |Y | is given by,

E
[

Zℓs
]

=

min{m,ℓs−1}
∑

i=max{1,ℓs−n}

Pr[N = i]
min{i,ℓs−1}

∑

α=0

min{ℓs−1−α,m−i}
∑

β=max{0,ℓs−n−α}

C(n, ℓs − α − β)C(i, α)C(m − i, β)Πt
S (ℓs, α, β).

Recall, that C(n, k) =
(

n
k

)

. Here, the probability Πt
S (α, β) of the appearance of a biclique of size ℓs depends

on the PR activity and channel state information models.

Π
t
S (ℓs, α, β) =











































1, (i),

pβw pβ(ℓs−α−β−1)
c , (ii),

(1− p f )(ℓs−α−β)αp(ℓs−α−β)β
m , (iii),

(1− p f )(ℓs−α−β)α
(

(1− pw)pm + pw(1− p f )
)β(

(1− pc)pm + pc(1− p f )]
)β(ℓs−α−β−1)

, (iv),

for (i) perfect channel state information, type-I topologies, (ii) perfect channel state information, type-II
topologies, (iii) imperfect channel state information, type-I topologies, and (iv) imperfect channel state
information, type-II topologies, respectively.

Proof. The proof of proposition 1 is provided in Appendix B.

In proposition 1, the value ofΠt
S (ℓs, α, β) for case (iv), represents the most general scenario. From (iv),

all other cases can be derived by setting parameters to appropriate values. Settingp f = pm = pc = pw = 0
yields case (i), settingp f = pm = 0 yields case (ii), and settingpc = pw = 0, yields case (iii). From
proposition 1, we can also evaluate E[Zℓs ] for any desired PR activity model. For instance, when the PR
activity follows the binomial model in (2),

E
[

Zℓs
]

=

min{m,ℓs−1}
∑

i=max{1,ℓs−n}

C(m, i)pi(1− p)m−i
min{i,ℓs−1}

∑

α=0

min{ℓs−1−α,m−i}
∑

β=max{0,ℓs−n−α}

C(n, ℓs−α−β)C(i, α)C(m− i, β)Πt
S (ℓs, α, β).

For the Poisson model in (3),

E
[

Zℓs
]

=

min{m,ℓs−1}
∑

i=max{1,ℓs−n}

ρm−i

(m−i)!
∑m

j=0
ρ j

j!

min{i,ℓs−1}
∑

α=0

min{ℓs−1−α,m−i}
∑

β=max{0,ℓs−n−α}

C(n, ℓs − α − β)C(i, α)C(m − i, β)Πt
S (ℓs, α, β).
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Under perfect channel state information and for type-I topologies, the bipartite graph representing the
network topology and spectrum availability obtains a simple form that can be further exploited to analyt-
ically evaluate the probability distribution of the largest size biclique, the distribution of the cluster size
|X|, and the distribution of the number of common idle channels|Y |. These are expressed in the following
lemmas.

Lemma 1. LetLmax be a discrete random variable expressing the value of ℓs for a cluster which maximizes
ℓs. Under perfect channel state information and for topologies of type-I, Lmax ∼ N, i.e., Lmax, is identically
distributed to the number of idle channels in the system.

Proof. Consider a bipartite graphG(A ∪ B,E) constructed under perfect channel state information, and
for type-I topologies. The graphG is itself a biclique, because vertices corresponding to idle channels are
connected to all vertices corresponding to CRs and no other edges are present in the bipartite graph. In fact,
G is the biclique of maximum size, since it contains all vertices ofG. The maximum size can be expressed
as a random variableLmax, which depends on the number of idle channels and obtains discrete values from
the alphabet{0, n+1, n+2, . . . , n+m}. Lmax = 0 when no idle channels exist (G has no edges). This occurs
with probability Pr[N= 0]. If i > 0, thenLmax = n + i with probability Pr[N= i]. Combining both cases
yields,

Pr[Lmax = ℓs] =















Pr[N = 0], ℓs = 0

Pr[N = i], ℓs = n + i, 1 ≤ i ≤ m,

which is the probability mass function of N.

Lemma 2. Under perfect channel state information, and for type-I topologies, the cluster size |X| of the
cluster with maximum value of ℓs follows a Bernoulli distribution with parameter 1− Pr[N = 0], i.e.,

Pr[|X| = x] =















Pr[N = 0], x = 0

1− Pr[N = 0], x = m.

Lemma 3. Under perfect channel state information and for type-I topologies, the number of common idle
channels |Y |, in the cluster with maximum value of ℓs is identically distributed to the number of idle channels,
i.e., |Y | ∼ N.

The proofs of Lemmas 2, 3 follow in a straightforward manner from the properties of the bipartite graph
under perfect channel state information. Note that Lemmas 2and 3 illustrate the versatility of our clustering
criteria in adjusting to the PR activity and sensing conditions. They state that when at least one channel
is idle, the MNB criterion yields a cluster of maximum size, equal to the neighborhood size of each CR.
This is because under perfect channel state information, all CRs have identical sets of idle channels and
hence, spectrum availability is not factoring into clustermemberships. Instead, the clusters are decided by
topological criteria, similarly to ad hoc networks with fixed spectrum. On the other hand, when the sets
of idle channels vary from CR to CR, the cluster size is adjusted to allow for higher overlap in the set of
common idle channels within each cluster.

Evaluating the probability distributions forLmax, |X|, |Y |, under imperfect channel state information in-
volves complex summation formulas. Instead, we use the Markov and Chebyshev inequalities, as defined
in section 6.2 to characterize the probability of existencefor bicliques of a given size. Here, based on the
computation of E[Zℓ] on proposition 1, the respective probability Pr[Zℓ ≥ 1] is bounded by this inequality.
Note that the Chebyshev bound requires the computation of the variance ofZℓs . Due to the complexity of
the calculations, a numerical computation of the variance is preferred. This is feasible because the expected
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neighborhood sizesNi and number of available channels|M| are anticipated to be relatively small (in the
order of tens of nodes and channels).

6.4. The MEB Criterion

Under the MEB criterion, the cluster quality is characterized by the productℓp = |X| + |Y |. Similarly to
the case of the MNB criterion, we analytically evaluate the expected number of clusters (bicliques) with a
particular valueℓp, for each of the PR activity and channel state information models.

Proposition 2. The expected number E
[

Zℓp
]

of clusters with value ℓp = |X||Y |, under perfect channel state
information and for type-I topologies is given by,

E
[

Zℓp
]

=

min{m,ℓp}
∑

i=max{1,⌈
ℓp
n ⌉}

Pr[N = i]
min{i,ℓp}
∑

j=max{1,⌈
ℓp
n ⌉},

ℓp
j ∈Z

+

C

(

n,
ℓp

j

)

C(i, j),

where Z
+ denotes the set of positive integers.

The proof of proposition 2 is provided in Appendix C. The steps of the proof are similar to the proof of
proposition 1. While the objective of the MEB criterion differs from the objective of the MNB criterion, the
clustering performance of both criteria is expected to be the same under perfect channel state information.
That is, the probability distribution of|X| and|Y | for clusters constructed under the MEB criterion is given
by Lemmas 2, 3. This is because under a perfect channel state information model, the bipartite graph
constructed by CRs forms a biclique of maximum sum of vertices and of maximum product of edges
(concurrent maximization of|X| and |Y | maximizes both (|X| + |Y |) and |X||Y |). Hence, the MNB, MEB
criteria yield thesame clusters.

Proposition 3. The expected number E
[

Zℓp
]

of clusters with value ℓp = |X||Y | is given by:

E
[

Zℓp
]

=

min{m,ℓp}
∑

i=0

Pr[N = i]
i

∑

α=0

m−i
∑

β=0

C

(

n,
ℓp

α + β

)

C(i, α)C(m − i, β)Πt
P(ℓp, α, β),

with ⌈
ℓp
n ⌉ ≤ α + β ≤ ℓp and

ℓp
α+β
∈ Z+. Here the probability Πt

P(ℓp, α, β) of the appearance of a biclique of
size ℓp depends on the type:

Π
t
P(α, β) =











































pβw p
β

(

ℓp
α+β
−1

)

c , (i),

(1− p f )
αℓp
α+β p

βℓp
α+β

m , (ii),

(1− p f )
αℓp
α+β

(

(1− pw)pm + pw(1− p f )
)β(

(1− pc)pm + pc(1− p f )
)β

(

ℓp
α+β
−1

)

(iii),

for (i) perfect channel state information, type-II topologies, (ii) imperfect channel state information, type-I
topologies, and (iii) imperfect channel state information, type-II topologies, respectively.

The proof is similar to the proof of proposition 1 and hence, is omitted. From propositions 2 and 3,
the probability of constructing a cluster with a particularvalue ofℓp is derived based on the Chebyshev
inequality.
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6.5. The MECB Criterion
Under the MECB criterion, the cluster quality is characterized by the sizeℓc = |X| (ℓc = |Y |) of the

cluster, under a constraint|Y | ≥ γ0 (|X| ≥ γ0), on the common set of idle channels (cluster size). In this
section, we analytically evaluate the expected number of clusters (bicliques) with a particular valueℓc, for
each of the PR activity and channel state information models.

Perfect channel state information, Type-I topologies. When perfect channel state information is avail-
able, E

[

Zℓc
]

is expressed by the following proposition.

Proposition 4. The expected number of clusters of size ℓc = |X| with |Y | ≥ γ0, for topologies of type-I is
given by,

E
[

Zℓc
]

= C(n, ℓc)
m

∑

i=γ0

Pr[N = i].

Proof. It follows immediately by noting that when perfect channel state information is available, the bipar-
tite graph constructed by any CR is a biclique. When|Y | ≥ γ0 channels are idle, the corresponding vertices
in Y are connected to all vertices inX. Hence, there are a total ofC(n, ℓc) distinct bicliques of sizeℓc. That
is, there areC(n, ℓc) possible clusters with sizeℓc.

Other scenarios. For all other combination of channel state information and topology models, E
[

Zℓc
]

is
expressed by the following proposition:

Proposition 5. The expected number of clusters of size ℓc = |X|, with |Y | ≥ γ0 is given by,

E
[

Zℓs
]

=

m
∑

i=0

Pr[N = i]
m

∑

α=0

m−i
∑

β=max{0,γ0−α−i}

C(n, ℓc)C(i, α)C(m − i, β)Πt
C(ℓc, α, β).

Here the probability Πt
C(ℓc, α, β) of the appearance of a biclique of size ℓc depends on the type:

Π
t
C(ℓc, α, β) =



























pβw pβ(ℓc−1)
c , (i),

(1− p f )αℓc pβℓcm , (ii),
(

(1− pw)pm + pw(1− p f )
)β(

(1− pc)pm + pc(1− p f )
)β(ℓc−1)

, (iii),

for (i) perfect channel state information, type-II topologies, (ii) perfect channel state information, type-I
topologies, and (iii) imperfect channel state information, type-II topologies, respectively.

Proof. The proof is similar to the proof of proposition 1, and hence is omitted.

6.6. Performance Evaluation via Simulations
In this section, we verify the validity of our theoretical results and study the performance of the proposed

clustering criteria via simulations. In our simulation setup, we considered a CRN co-existing with a PRN
which was licensed to use a set ofm = 10 frequency bands. The licensed bands were occupied by PRs
according to the binomial model in (2) (similar results can be derived for the Poisson PR activity model in
(3)). For type-I topologies, we considered a single-hop CR neighborhood of sizen = 10, affected by the PR
activity of 10 PRs. In each simulation run, a set of channels was occupied by PRs leading to the construction
of a bipartite graph. Using this bipartite graph, the set of possible cluster formations were computed for
each clustering criterion. The experiments were repeated 10,000 times for each set of parameters, in order
to evaluate the average performance.
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Figure 9: E[Zℓs ], E[Zℓp ], and E[Zℓc ] as a function of (a)ℓs , (b) ℓp and (c)ℓc whenn = m = 10 under a binomial PR activity model,
and for various values of the probability of channel occupancy p. For figures (a), (b), and (c), perfect channel state information is
assumed. For figures (d), (e) and (f), the probability of a channel being occupied by a PR is set top = 0.3. Imperfect channel state
information is assumed. The probability of false alarm is fixed top f = 0.1, while the probability of mis-detection is varied.

6.7. Expected Number of Clusters of Size Zℓ.

We first evaluated the expected number of bicliques of sizeℓ, whereℓ is defined according to the MNB,
MEB or MECB criteria. For each realization of a bipartite graph generated under a fixed set of parameters
(p, pm, p f ), we counted the number ofpossible distinct bicliques of sizeℓ. We then averaged over 10,000
bipartite graph realizations with the same parameters and compared the outcome with the values obtained
theoretically from propositions 1, 2, 3, and 4.

Figures 9(a), 9(b), and 9(c) show E[Zℓs ], E[Zℓp], and E[Zℓc ], as a function ofℓs, ℓp, andℓc, respectively,
when perfect channel state information is assumed. The y-axis is shown in logarithmic scale due to the
wide range of values obtained for E[Zℓs ], E[Zℓp ], and E[Zℓc ].We observe that the values obtained from the
simulations agree with the theoretical ones. Moreover, clusters of better quality (largerℓs, ℓp andℓc) are
possible with the increase of the probability of a channel tobe idle, expressed byp. Note in figure 9(b) that
not all values ofℓp are possible, becauseℓp is a product of two integers. In fact anyℓp which is an odd
prime larger than max{n,m} is not feasible. In addition,ℓp’s with factors larger than max{n,m} are also not
feasible. The number of factor decompositions of a particular ℓp, affects the number of possible bicliques
that can be constructed (more factor decompositions possible, means more|X|, |Y | combinations that yield a
particularℓp). This fact explains the “sawtooth” behavior of E[Zℓp ].

In figures 9(d), 9(e) and 9(f), we show E[Zℓs ], E[Zℓp ], and E[Zℓc ], under the imperfect channel state
information. In this set of experiments, we set the probability of a channel to be idle top = 0.3, the
probability of false alarm top f = 0.1 and varied the probability of mis-detectionpm. From figures 9(d)
and 9(e), we observe that the MNB and MEB criteria are insensitive to events of mis-detection. This is
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Figure 10: Probability of existence for a biclique of sizeℓs, ℓp andℓc based on simulation, and based on the Chebyshev inequality.

because, these events occur independently on every channeland for every CR. Hence, for typical values of
pm it is highly unlikely that the same channel is mis-detected on several CRs, an event that would impact
the cluster construction. On the other hand, for the MECB criterion, high values ofpm, increase the number
of possible clusters of small size, since it is possible thatCRs forming such clusters, mis-detect the same
set of channels. However, for clusters of larger size, mis-detection events have practically no impact.

From figures 9(a)-9(f), we can derive the cluster with biclique sizeℓ∗ for which E[Zℓ∗] = 1. The valueℓ∗

denotes the maximum biclique size which can be constructed under fixed parameters (n, m, p, p f , pm), and,
on average, appears once for every instance of PR activity. Note the an expected value of E[Zℓ∗] = 1, does
not guarantee that a cluster with biclique sizeℓ∗ will be obtained with a high probability. This probability
is evaluated in the following section.

6.8. Probability of Existence of a Cluster of size ℓ

In this section, we evaluate the probability of existence ofa cluster of a sizeℓ. We compare the val-
ues obtained via simulations to those computed by the Chebyshev inequality, as expressed in (10). The
computation of the Chebyshev inequality is limited to values for which E[Zℓ] > 1, and Var(E[Zℓ])

(E[Zℓ]−1)2 ≤ 1. In
figures 10(a)-(c), we show the probability that at least one cluster of sizeℓ exists, for values ofp = 0.5 and
p = 0.8, under perfect channel state information. This probability, denoted as Pr[Zℓ ≥ 1], is plotted as a
function of the sizeℓ, for each of the three clustering criteria. In particular, figure 10(a) corresponds to the
MNB criterion, figure 10(b) corresponds to the MEB criterionand figure 10(c) corresponds to the MECB
criterion. For the MNB criterion, the Chebyshev bound provides a good approximation of Pr[Zℓ ≥ 1], for
small values ofℓs, but becomes loose with the increase ofℓs. Similar behavior is observed for the case of
the MEB criterion. Nonetheless, the theoretical bound of Pr[Zℓ ≥ 1], allows the estimation of the cluster
sizes in terms ofℓ before the network deployment, when the PR activity model isknown. For the case of
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(d) p f = 0.1, pm = 0.2. (e) p f = 0.1, pm = 0.2. (f) p f = 0.1, pm = 0.2.

Figure 11: Comparison of the MNB, MEB and MECB clustering criteria under perfect and imperfect channel state information.

the MECB criterion, we observe that the Chebyshev bound stays within a 10% margin from the actual value
of Pr[Zℓc ≥ 1], thus providing a more accurate prediction of the possible cluster sizes. Note that Pr[Zℓc ≥ 1]
is almost constant forp = 0.8 since at leastγ0 = 3 channels are idle to all neighboring CRs with almost
certainty.

Figures 10(d)-(f) show Pr[Zℓ ≥ 1], as a function ofℓ for the three clustering criteria under imperfect
channel state information. For this set of experiments, thefalse alarm probability and the mis-detection
probability where set top f = 0.1 and pm = 0.2, respectively. No significant change is observed for the
MNB and the MEB criteria, which almost yield identical values as in figures 10(a) and 10(c). However,
under the MECB criterion, we observe that probability of constructing small clusters (up to 4 nodes), with
at leastγ0 ≥ 5 channels in common increases whenp = 0.5, compared to the values shown in 10(c).
This is because the events of mis-detection contribute to the perceived set of idle channels, causing several
neighboring CRs to surpass the thresholdγ0 for forming a cluster. The effect of channel state mis-detection
tapers off for larger values ofℓc, since mis-detection events occur independently on each CRand on each
channel.

6.9. Clustering Performance

In this section, we evaluate the performance of the clustering algorithm presented in Section 5. We
deployed a network of 100 CRs within a 1Km×1Km area, which coexisted with a set of 10 PRs. A total of 10
channels were licensed to the PRs. The PR activity followed the binomial model in (2). PRs were assigned
a communication range of 250m, while the communication range of the CRs varied to allow for different
values on the probabilitiespc, pw. We applied the DCA-based clustering algorithm and compared the
MNB, MEB and MECB criteria in terms of the expected cluster size and the expected number of common
idle channels per cluster. Our simulations were repeated for 100 network realizations to ensure statistical
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validity.
In figure 11(a), we compare the average cluster size E(|X|) and the average number of idle common

channels E(|Y |) for the MNB, MEB and MECB criteria, under perfect channel state information, and as a
function of the PR activity parameterp. The communication range of CRs was set to 150m. We observe
that the MNB and MEB criteria yield identical performance. This is because when the spectrum opportu-
nities are perfectly known and the range of the CRs is almost identical to that of PRs, the bipartite graphs
constructed by CRs are almost bicliques. Thus both the MNB and MEB criteria yield the same clusters.

We also observe a graceful trade off between E(|X|) and E(|Y |), as a function of the PR activity (expressed
by p). When PR activity is high and idle channels are sparse, the cluster size|X| is reduced in order to
maintain an acceptable number of common idle channels within each cluster. On the other hand, when PR
activity is low, a larger cluster size is favored. This tradeoff is also captured in the standard deviation of
E(|X|) and E(|Y |) as a function ofp, which is shown in figure 11(b). When the PR activity is high, the spatial
variation of the idle channel becomes large. In turn, this leads to a large value forσ(|X|) to accommodate
for the lack of idle channels at different localities. On theother hand, when the PR activity is low (most
channels are idle), clusters are primarily decided based onthe physical topology. Hence, for high values of
p, E(|X|) andσ(|X|) converge to their average values in the absence of any PR activity.

On the other hand, the trade off between E(|X|) and E(|Y |) is managed differently by the MECB criterion.
The latter favors clusters of maximum size as long as the threshold γ0 is satisfied (γ0 was set to 3 in
our experiments). From figure 11(a), we observe that the MECBcriterion yields higher values ofE(|X|)
compared to the MNB and MEB criteria, for the same value ofp. Moreover, E(|Y |) is kept above the
thresholdγ0. Finally, the MECB criterion yields smaller values for bothσ(|X|) andσ(|Y |), because it does
not try to balance between|X| and|Y |, but maximize|X| while |Y | ≥ γ0.

However, the MECB criterion is not always successful in constructing a valid cluster, due to low idle
channel availability (failed attempts are excluded from the graphs in 11(a), and 11(b)). In figure 11(c), we
show the fraction of clusters that the MECB criterion is ableto construct, when individual CRs attempt to
perform clustering based on their bipartite graphs. We notethat for small values ofp, only a fraction of
nodes are able to form clusters with|Y | ≥ γ0. For cases where a cluster satisfying the thresholdγ0 cannot
be formed, the value ofγ0 must be lowered to produce a valid clustering.

We also conducted the same set of experiments by consideringa smaller CR communication range
(r = 50), a false alarm probability ofp f = 0.1 and a mis-detection probability ofpm = 0.2. All this factors
increase the dissimilarity between the channel lists of neighboring CRs, thus testing the adaptability of our
clustering algorithm to the spacial variation of PR activity. In figures 11(d), 11(e), and 11(f), we show
E(|X|), E(|Y |), σ(|X|), σ(|Y |), and the fraction of clusters successfully constructed bythe MECB criterion
as a function of the PR activityp. From figures 11(d), 11(e), we can reason that the MNB criterion favors
the creation of clusters of larger size at the expense of a smaller number of common idle channels. The
standard deviationσ(|X|) becomes very small asp increases, whileσ(|Y |) maintains a high value. The MEB
criterion results in a better balance between|X| and|Y |. For the same value ofp, the MEB criterion constructs
clusters of smaller size compared to the MNB criterion, but with larger number of common idle channels.
In addition, both standard deviationsσ(|X|) andσ(|Y |) maintain a small value for everyp, illustrating the
stability of the clusters constructed. The MECB criterion performs similar to the MEB criterion. From this
set of experiments, we can conclude that the MEB and MECB criteria are less sensitive to the heterogeneity
of the idle channel lists of neighboring CRs, leading to a favorable management of the trade off between|X|
and|Y |.
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7. Related Work

Clustering algorithms for CRNs have been proposed in the context of facilitating basic network op-
erations such as control channel establishment [11, 12, 41,42], MAC protocol implementation [11, 41],
spectrum management [43, 44], and cooperative spectrum sensing [40]. Clustering is an essential architec-
tural element for reducing the CRN management operation to managing a collection of smaller CR groups.

Zhao et. al. proposed a distributed coordination protocol for opportunistically sharing the dynamic
spectrum [11]. In this protocol, CRs self-organize into groups (clusters) based on the similarity between
their lists of idle channels. CRs are grouped in the same cluster as long as they share at least one common
idle channel, and a multi-hop route exists between all CRs ofthe same cluster. CRs at the boundary of
clusters may belong to multiple clusters, and serve as gateways for inter-cluster coordination. The main
objective of the method in [11] is to minimize the number of clusters in the entire network, in order to reduce
the overhead associated with topology management and CR coordination. To address the dynamic nature
of spectrum availability, CRs “swiftly” migrate to an idle channel, if the currently used one is occupied by
a PR. Given that the minimum number of common idle channels allowed per cluster is one, clusters sharing
only one channel are possible. For such clusters, reclustering can become a frequent operation in the light
of high PR activity.

Chen et. al. proposed the CogMesh architecture for addressing the problem of control channel assign-
ment in CRNs [41]. In CogMesh, the CRN is partitioned into clusters based on the local channel availability.
The distributed cluster formation algorithm is based on theinitial assignment of few nodes as clusterheads
(CHs), responsible for creating clusters. The rest of the nodes join adjacent CHs with which they share the
largest number of common idle channels. To adapt to PR activity, clusters are split to smaller ones if no
common idle channel is available at any given point. At a later stage clusters may merge if channel avail-
ability permits it. Baddour et. al. proposed a clustering algorithm for CRNs based on affinity propagation
[42]. As in the case of [41], several CRs are declared to be theCHs, with nearby nodes joining clusters
based on the similarity of their idle channel lists with those of the CH. The convergence of the algorithm to
the same cluster memberships was proved to occur in a decentralized manner.

Asterjadhi et al. proposed the Combo algorithm for partitioning a CRNs into mutually disjoint clusters
based on the local spectrum availability [45]. The distinctfeature of this clustering algorithm is the fact
that clusters can span up to k-hops (as opposed to one-hop clusters created by the mechanisms in [11, 12,
41]). The mechanism in [45] relies on the election of a CH nodebased on a weighted priority key which
consolidates connectivity with local spectrum opportunities. Simulation results showed that the Combo
algorithm maintains a large number of common idle channels within each cluster while keeping the number
of CRs composing each cluster large.

In [12], we proposed a distributed clustering algorithm named SOC, which addressed the problem of
dynamic control channel assignment in CRNs. The goal of the clustering was to ensure a sufficient number
of common idle channels for the establishment and maintenance of a broadcast control channel within each
cluster. In SOC, clusters are formed based on the joint representation of the network topology and idle
spectrum as a bipartite graph. The same mapping is used as thebasis for our present work. We showed
that clusters can be mapped to biclique graphs (complete subgraphs of bipartite graphs) in which one side
of the bipartition represents the cluster membership, while the other side represents the set of common idle
channels within the cluster. In addition, we showed that by exchanging individual sensing observations
of the idle spectrum, CRs were guaranteed to converge to the same cluster memberships in a distributed
manner. Compared to [12], our goal is to analytically evaluate the performance of different clustering
criteria which rely on the biclique construction. Given a PRactivity model and a spectrum sensing model,
we investigate the problem of determining the existence of clusters (bicliques) of different sizes and the

26



expectation on the cluster size and number of common idle channels per cluster.
The problem of clustering has been extensively studied in the context of wireless ad hoc networks

under a fixed spectrum paradigm (e.g., [35, 36, 46–49]). Clustering methods for ad hoc networks can be
classified to CH-first and cluster-first. In CH-first methods,a set of nodes are initially selected as CHs,
based on a metric (or combination of metrics) of interest such as connectivity degree, remaining energy, id,
etc. The rest of the nodes attach to a CHs to form the final clusters. In cluster-first methods, the clusters
are collaboratively formed before a CH can be elected withineach cluster. Interested reader is referred to
[46–48] and the references therein for clustering methods proposed for wireless ad hoc networks.

8. Conclusions

We addressed the problem of managing the spatial variation of spectrum opportunities in CRNs, by
proposing spectrum-aware clustering criteria. These criteria were based on the joint representation of the
physical topology and spectrum availability as bipartite graphs. We mapped the problem of constructing
spectrum-aware clusters to the problem of constructing bicliques of maximum size from the bipartite graphs.
Three clustering criteria were proposed based on three instances of the biclique construction problem. We
further showed how our clustering criteria can be combined with distributed coordination mechanisms for
forming clusters in CRNs. For each criterion, we analytically evaluated the expected clustering performance
under various models of PR activity and channel state information. Our evaluations show that the proposed
criteria, lead to a balance between the size of the constructed clusters and the number of common idle
channels within each cluster. This is a desirable feature for ensuring moderate overhead for the topology
management of the CRN and the availability of sufficient bandwidth for intra-cluster communication.

Acknowledgments
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Appendix A. Computation of pc in (5)

The value ofpc expresses the probability of a CRz sensing a channeli occupied by a PRx as idle, given
that a neighboring CRy, also sensesi as idle. This probability is a measure of the correlation between the
sensing observations of neighboring nodes. Probabilitypc is given by:

Pr[dxz > R|dxy > R, dyz ≤ r] = 1− Pr[dxz ≤ R|dxy > R, dyz ≤ r] (A.1)

= 1−
Pr[dxz ≤ R, dxy > R|dyz ≤ r]

Pr[dxy > R]
. (A.2)

The numerator of (A.2) is computed based on Figure A.12. Here, we are interested in the event that
CR y is outside the rangeR of PR x while CR z is within the range ofx, under the constraint thaty, z are
one-hop neighbors. The probability of such an event dependson the size of the intersection area between
a disk of radiusR and a disk of radiusr, when the centers of these disks are located at a distancedxy apart.
This area, denoted byAin is given by [27, 50]

Ain = r2 cos−1
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The numerator of (A.2) becomes

Pr[dxz ≤ R, dxy > R|dyz ≤ r] =
∫ R+r

ξ=R
Pr[z ∈ Ain(ξ), |dxy = ξ]Pr[dxy = ξ]dξ (A.4)

=

∫ R+r

ξ=R

Ain(ξ)
πr2

2ξ
R2

dξ. (A.5)

In (A.5), we consider all values ofdxy = ξ for which R < dxy < R + r so that the disks of radiusR
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Figure A.12: CRy and CRz are one-hop neighbors. The event of CRz being within the range of PRx, while CRy being outside
the range ofx.

andr intersect, and then compute the probability thatz which is constrained to be within a radiusr from
y is located within the areaAin. In this scenario, a channeli occupied by PRx is sensed idle by CRy but
occupied byz. Substituting (A.5) to (A.2) yields the desired probability value.

Appendix B. Proof of Proposition 1

Proof. From the definition of E
[

Zℓs
]

it follows that,

E
[

Zℓs
]

=

∑

X⊆A,Y⊆B,|X|+|Y |=ℓs,|X|,|Y |≥1

Pr
[

I(X,Y)
]

(B.1a)

=

∑

i≥0

∑

X⊆A,Y⊆B,|X|+|Y |=ℓs,|X|,|Y |≥1

Pr
[

I(X,Y) | N = i
]

Pr[N = i] (B.1b)

=

min{m,ℓs−1}
∑

i=0

Pr[N = i]
min{i,ℓs−1}

∑

α=0

min{ℓs−1−α,m−i}
∑

β=max{0,ℓs−n−α}

C(n, ℓs − α − β)C(i, α)C(m − i, β)

× Pr[(ℓs − α − β)β false est.]. (B.1c)

In (B.1b), we condition upon the probability that the numberof idle channelsN is equal to a fixed value
i, and sum over all possible values ofi. Let D ⊆ B denote the set of vertices corresponding to thei idle
channels. The vertices inD are connected to all vertices inA (idle channels are perfectly sensed). In
addition, vertices from the remaining setB\D are independently connected to vertices inX, due to false
channel estimation. Whenα vertices fromD andβ vertices fromB\D connect to the same (ℓs − α − β)
vertices ofA, we obtain a biclique of sizeℓs. The (ℓs − α − β)β edges which appear on the bipartite graph
due to false channel estimation exist with probability Pr[(ℓs − α − β)β false est.]= Πt

S (α, β). Here, the
probabilityΠt

S (α, β) of the appearance of a clique of sizeℓs depends on the PR activity and channel state
information models:
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, (iv),
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for (i) perfect channel state information, type-I topologies (ii) perfect channel state information, type-II
topologies, (iii) imperfect channel state information, type-I topologies, and (iv) imperfect channel state
information, type-II topologies, respectively. Summing over all possible combinations ofi, α, β, we obtain
the expected number of bicliques of sizeℓs, which completes the proof.

Note that in the case (i) of proposition 1, whenΠt
S (ℓs, α, β) = 1, by using Vandermode’s identity the

expected number of bicliques of sizeℓs simplifies:

E
[

Zℓs
]

=

min{m,ℓs−1}
∑

i=max{1,ℓs−n}

Pr[N = i]
(

C(n + i, ℓs) −C(n, ℓs) −C(i, ℓs)
)

. (B.2)

Appendix C. Proof of Proposition 2

Proof.

E
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Zℓp
]

,
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=
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j

)

C(i, j). (C.1c)

In (C.1b), we condition upon the probability that the numberof idle channelsN is equal to a fixed value
i, and sum over all possible values ofi. The vertices ofB corresponding to thei idle channels are connected
to all vertices ofA due to the perfect sensing assumption. In (C.1c), we enumerate all possible bicliques
with |Y | = j and|X| =

ℓp
j , under the constraints 1≤ j ≤ i and 1≤

ℓp
j ≤ n. These constraints can be combined

to max{1, ⌈
ℓp
n ⌉} ≤ j ≤ min{i, ℓp}. Note that not all values ofj are possible since

ℓp
j must be a positive integer.

Summing over all possible values ofi weighted over the probability Pr[N= i] yields (C.1c). Here, the
number of idle channelsi is limited by the maximum number of channelsm. Moreover,i can be at mostℓp
if we are to construct a biclique of sizeℓp. Finally, at least⌈

ℓp
n ⌉ vertices fromB must be connected to all

vertices inA, for a biclique of sizeℓp to be feasible. Combining all constraints fori yields the summation
limits shown in (C.1c), which completes the proof.
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