
Earliest Eligible Virtual Deadline First : A Flexibleand Accurate Mechanism for Proportional ShareResource Allocation�Ion Stoica, Hussein Abdel-WahabDepartment of Computer Science, Old Dominion UniversityNorfolk, Virginia, 23529-0162fstoica, wahabg@cs.odu.eduTR-95-22AbstractWe propose and analyze a new proportional share allocation algorithm for time shared resources.We assume that the resource is allocated in time quanta of size q. To each client, we associate aweight which determines the relative share from the resource that the client should receive. Wede�ne the notion of fairness in the context of an idealized system in which the resource is assumedto be granted in arbitrarily small intervals of time. Mainly, we show that in steady conditions ouralgorithm guarantees that the di�erence between the service time that a client should receive in theidealized system and the service time it actually receives in the real system is bounded by the size qof a time quantum. The algorithm provides support for dynamic operations, such as a client joiningor leaving the competition (for the resource), and changing a client's weight. By using an e�cientaugmented binary search tree data structure we implement these operations in O(log n), where nrepresents the number of clients competing for the resource.
�Revised January 26, 1996. 1

1 IntroductionOne of the most challenging problems in modern operating systems is to design
exible and accuratealgorithms to allocate resources among competing clients. This issue has become more important withthe emergence of new types of real-time applications such as multimedia which have well de�ned timeconstraints. In order to meet these constraints the underlying operating system should allocate resourcesin a predictable and responsive way. In addition, a general-purpose operating system should seamlesslyintegrate these new types of applications with conventional interactive and batch applications.Many schedulers have tried, and in part have succeeded, to address these requirements. Generally,these schedulers fall in two categories: proportional share [2, 26, 28, 29, 30], and real-time1 based sched-ulers [20, 21, 22]. In proportional share algorithms each client has associated a weight which determinesthe share of the resource that the client should receive. The scheduler tries to allocate the resourceamong competing clients in proportion to their share. For example, consider two clients with weights 1and 3, respectively that compete for the same resource. Then the �rst client should receive 25%, whilethe second client should receive 75% of the resource. Real-time schedulers are based on an event-drivenmodel in which a client is characterized by a set of events arriving in a certain pattern (usually periodic),and by a predicted service time and a deadline associated to each event. By imposing strict admissionpolicies, these schedulers guarantee that all events are processed before their deadlines. While in generalthe proportional share schedulers tend to be more
exible and to ensure a graceful degradation in over-load situations, real-time based schedulers tend to o�er better guarantees for applications with timelinessconstraints, such as multimedia.Although real-time based schedulers provide better support for multimedia, they cannot be easilyextended to support batch applications. The main reason is that while multimedia and interactiveapplications �t the event-driven model implicitly assumed by these schedulers, batch applications do not.For example, a video application can be modeled as a periodic process, where an event represents thearrival of a frame, its service time is the time required to process and display the frame2, and its deadlineis the time at which the next frame should arrive. Similarly, an interactive application (such as an editor)can be modeled as an aperiodic process, where an event is generated as a result of the user pressing a key,the service time is the time required to process and display the corresponding character, and the deadlineis given by the largest acceptable delay between the moment when the key is pressed and the momentwhen the character is displayed. In contrast to both multimedia and interactive applications, batchapplications are usually characterized by only one parameter, i.e., the requested service time. Moreover,in many situations it is di�cult to accurately determine this service time. The main reason is that, even forthe same application, the service time may have large variations, and these variations are hard to predict.For example, the service time required by a compiler may vary signi�cantly even for the same program,depending on how many modules are recompiled. For these reasons many general purpose schedulersthat use real-time schemes for scheduling continuous media also employ conventional algorithms (e.g.,round-robin) for scheduling batch applications. Another drawback of real-time based schedulers is that,in order to satisfy strong time constraints, they impose strict admission policies which make them fairlyrestrictive. Thus, a user can be in the situation in which he cannot run a new application, although hemight be willing to accept a degradation in performance of other applications in order to accommodate1Usually, these schedulers are based on two well-known real-time algorithms proposed and analyzed by Liu and Laylandin [18]: rate monotonic and early deadline �rst.2Depending on the desired quality this can be either the worst case, or a statistical average service time.2

the new one. Finally, in a highly dynamic environment these schedulers do not provide enough
exibility;for example, when an application terminates it is di�cult to distribute rapidly its share among the otherapplications that are still competing for the resource.In this paper we propose a new scheduler (called Earliest Eligible Virtual Deadline First { EEVDF)which, while retaining all the advantages of the proportional share schedulers, provides strong timelinessguarantees for the service time received by a client. In this way, our algorithm provides a uni�ed approachfor scheduling continuous media, interactive and batch applications. In part, the algorithm builds onideas found in previous network fair-queueing algorithms [23, 31], and general-purpose proportional shareallocation algorithms [29, 30]. As in [23, 31], and similar to [29, 30] we use the notion of virtual time totrack the work progress in an ideal
uid-
ow based system. To each client we associate a weight whichdetermines the relative share of the resource that the client should receive. The client requirements areuniformly translated in a sequence of requests for the resource. These requests are either issued explicitlyby the clients, or by the scheduler itself on behalf of the clients. In this way batch activities are treateduniformly with multimedia and interactive activities. Based on the client share and on the service timethat the client has already received, the scheduler associates to each client's request a virtual eligible timeand a virtual deadline which are the corresponding starting and �nishing times of servicing the requestin the
uid-
ow model. A request is said to be eligible if its virtual eligible time is less than or equal tothe current virtual time. The algorithm simply allocates a new time quantum to the client that has theeligible request with the earliest virtual deadline. We note that while the concept of virtual deadline isalso employed by other proportional-share algorithms [23, 31, 29, 30], the concept of eligible time is aunique feature of our algorithm (which, as we will show, plays a decisive role in improving the allocationaccuracy).While EEVDF implements a
exible and accurate low-level mechanism for proportional share resourceallocations, higher level resource abstractions are needed to specify the applications' requirements. Wenote here that many of the existing abstractions, such as tickets and currencies (developed byWaldspurgerand Weihl [28, 30]), and processor capacity reserves (proposed by Mercer, Savage and Tokuda [20]) areeasily supported by EEVDF. For example, in lottery scheduling the number of tickets held by a client couldbe directly translated into the weight associated to that client in the EEVDF algorithm. By e�cientlyimplementing dynamic operations, the EEVDF provides direct support for higher level mechanisms suchas tickets transfer and in
ation employed by lottery scheduling [28, 30]. Throughout this paper we willnot discuss further other higher level resource abstractions; instead, we will implicitly assume that one ofthe existing abstractions is implemented on top of EEVDF. Therefore, in this paper we will not addressproblems that are usually handled by this higher level (e.g., priority inversion).This paper is organized as follows. The next section discusses our assumptions, and Section 3 presentsthe basic EEVDF algorithm. Section 4 discusses the concept of fairness in dynamic systems, while Section5 presents three strategies for implementing the EEVDF algorithm. In Section 6 we give the fairnessanalysis of the algorithm. Finally, in Section 7 we give an overview of the related work, and Section 8concludes the paper.2 AssumptionsWe consider a set of clients that compete for a time shared resource (e.g., processor, communicationbandwidth). We assume that the resource is allocated in time quanta of size at most q. At the beginning3

of each time quantum a client is selected to use the resource. Once the client acquires the resource, it mayuse it either for the entire time quantum, or it may release it before the time quantum expires. Althoughsimple, this model captures the basic mechanisms traditionally used for sharing common resources, suchas processor and communication bandwidth. For example, in many preemptive operating systems (e.g.,UNIX, Windows-NT), the CPU scheduler allocates the processing time among competing processes inthe same fashion: a process uses the CPU until its time quantum expires or another process with ahigher priority becomes active, or it may voluntarily release the CPU while it is waiting for an event tooccur (e.g., an I/O operation to complete). As another example, consider a communication switch thatmultiplexes a set of incoming sessions on a packet-by-packet basis. Since usually the transmission of apacket cannot be preempted, we take a time quantum to be the time required to send a packet on theoutput link. Thus, in this case, the size q of a time quantum represents the time required to send a packetof maximum length.Further, we associate to each client a weight that determines the relative share of the resource thatit should receive. The share is computed as the ratio between the client's weight and the total sum overthe weights of all active clients. A client is said to be active while it is competing for the resource, andpassive otherwise. More formally, let wi denote the weight associated to client i, and let A(t) be the setof all clients active at time t. Then the share of client i at time t, denoted fi(t), is de�ned as:fi(t) = wiPj2A(t)wj : (1)Ideally, if the client share remains constant during a time interval [t; t+�t], then client i is entitled touse the resource for fi(t)�t time units. In general, when the client share varies over time, the servicetime that client i should receive in a perfect fair system while being active during a time interval [t0; t1]is Si(t0; t1) = Z t1t0 fi(�)d� (2)time units. The above equation corresponds to an ideal
uid-
ow system in which the resource can begranted in arbitrarily small intervals of time. In our case, this is equivalent to the situation in whichthe size of a time quantum approaches zero (q ! 0).3 Unfortunately, in many practical situations, timequanta cannot be taken arbitrarily small. One of the reasons is the overhead introduced by the schedulingalgorithm and the overhead in switching from one client to another: taking time quanta of the same orderof magnitude as these overheads could drastically reduce the resource utilization. For example, it wouldbe unacceptable for a CPU to spend more time in scheduling a new process, and context switchingbetween the processes, than doing useful computation. Another reason is that some operations cannotbe interrupted, i.e., once started they must complete in the same time quanta. For example, once acommunication switch begins to send a packet for one session, it cannot serve any other session until theentire packet is sent.Due to quantization, in a system in which the resource is allocated in discrete time quanta (as it isin ours), it is not possible for a client to always receive exactly the service time it is entitled to. Thedi�erence between the service time that a client should receive at a time t, and the service time it actuallyreceives is called service time lag. More precisely, let ti0 be a time at which client i becomes active, andlet si(ti0; t) be the service time the client receives in the interval [ti0; t] (here, we assume that client i isactive in the entire interval [ti0; t]). Then the service time lag of client i at time t is3A similar model was used by Demers et al in studying fair-queuing algorithms in communication networks [9].4

lagi(t) = Si(ti0; t)� si(ti0; t): (3)Since the service time lag determines both the throughput accuracy and the system predictability, weuse it as the main parameter in characterizing our proportional resource allocation algorithm.3 The EEVDF AlgorithmIn order to obtain access to the resource, a client must issue a request which speci�es the duration of theservice time it needs. Once a client's request is ful�lled, it may either issue a new request, or otherwise theclient becomes passive. Notice that we can alternately de�ne a client to be active while it has a pendingrequest, and to be passive otherwise. For uniformity, throughout this paper we assume that the client isthe sole initiator of the requests. However, in practice this is not necessarily true. For example, in theprocessor case, the scheduler itself could be the one to issue the requests on behalf of the client. In thiscase, the request duration (length) is either speci�ed by the client, or otherwise the scheduler assumesa \default" duration. This allows us to treat all continuous media, interactive, and batch activities in aconsistent way.For
exibility we allow requests to have any duration. If the duration of the request is larger thana time quantum, then the service time might not be allocated continuously (i.e., when a time quantumexpires, the client is preempted and the next time quantum can be allocated to another client). When aclient requests the resource for less than one time quantum, the scheduler simply preempts the client onceits time expires. Notice that a client may request the same amount of service time by generating eitherfewer longer requests, or many shorter ones. For example, a client may ask for 1 min computation time,either by issuing 60 requests with a duration of 1 sec each, or by issuing 600 requests with a duration of100 msec each. As we will show in Section 6, shorter requests guarantee better allocation accuracy, whilelonger requests decrease the system overhead. In this way a client could trade between the allocationaccuracy and the scheduling overhead.To clarify the ideas we brie
y point out the similarities and di�erences between our model and the well-known problem of scheduling periodic tasks in a real-time system [18]. A periodic task is characterizedby a �xed interval of time between two consecutive events, called period and denoted by T , and bythe maximum service time r required to process an event. Whenever an event occurs, the task simplyrequests r service time units for processing that event. A central requirement in real-time systems isthat the current event should be processed before the next event occurs. Notice that this requirementguarantees that the task receives as much as r service time units during every period T . Consequently,in this case the task receives a share f = rT of the resource. Thus, by giving the share f , the requestedservice time r and the time t at which the event occurs, the deadline of the corresponding request canbe expressed as t + rf . Similarly, in our model, by giving the time t at which a request is made andits duration r, we obtain the time d before which the client should receive the requested service time inan ideal system by solving the equation r = S(t; d). If the share f of the client does not change in theinterval [t; d), then from Eq. (2) follows that S(t; d) = f � (d� t), and further we obtain d = t+ rf , whichis identical to the expression of the request's deadline in the case of scheduling periodic tasks. As a majordi�erence between our model and a real-time system, we note that while in a real-time system a request isassumed to be generated as a result of an external event (e.g., a packet arrival, a time-out), in our model5

a request is either generated as result of an external event (when the client enters the competition), oras a result of an internal event (when the client generates a new request after the current one has beenful�lled). In this way our model provides integrated support for both event driven applications, such ascontinuous media and interactive applications, and for conventional batch-applications.By combining Eq. (1) and (2) we can express the service time that an active client i should receivein the interval [t1; t2) as Si(t1; t2) = wi Z t2t1 1Pj2A(�) wj d�: (4)Similarly to [31] and [23] we de�ne the system virtual time asV (t) = Z t0 1Pj2A(�) wj d�: (5)We note that the virtual time increases at a rate inverse proportional to the sum of the weights of allactive clients. Notice that when the competition increases the virtual time slows down, while when thecompetition decreases it accelerates. Intuitively, the
ow of the virtual time changes to \accommodate"all active clients in one virtual time unit. That is, the size of a virtual time unit is modi�ed such thatin the corresponding
uid-
ow system each active client i receives wi real-time units during one virtualtime unit. For example, consider two clients with weights w1 = 2 and w2 = 3. Then the rate at whichthe virtual time increases is 1w1+w2 = 0:2, and therefore a virtual time unit equals �ve real-time units.Thus, in each virtual time unit the two clients should receive w1 = 2, and w2 = 3 time units. Next, fromEq. (4) and (5) it follows that Si(t1; t2) = wi(V (t2) � V (t1)): (6)To better interpret the above equation it is useful to consider a much simpler model in which the numberof active clients is constant and the sum of their weights is one (Pi2Awi = 1), i.e., the share of aclient i is fi = wi. Then the service time that client i should receive during an interval [t1; t2) is simplySi(t1; t2) = wi(t2 � t1). Next, notice that by replacing the real times t1 and t2 with the correspondingvirtual times V (t1) and V (t2) we arrive at Eq. (6). Thus, Eq. (6) can be viewed as a direct generalizationof computing the service time Si(t1; t2) in a dynamic system.The basic idea behind our algorithm is simple. We associate to each request an eligible time e and adeadline d. A request of an active client becomes eligible at time e when the service time that the clientshould receive in the corresponding
uid-
ow system equals the service time that the client has alreadyreceived (in the real system) before issuing the current request. Let ti0 be the time at which client ibecomes active, and let t be the time at which it initiates a new request. Then the eligible time e of thenew request is chosen such that Si(ti0; e) = si(ti0; t). Notice that if at time t client i has received moreservice time than it was supposed to receive (i.e., its lag is negative at time t), then the client should waituntil time e before the new request becomes eligible. In this way a client that has received more servicetime than its share is \slowed down", while giving the other active clients the opportunity to \catch up".On the other hand, if at time t client i has received less service time than it was supposed to receive (i.e.,its lag is positive), then we have e < t, and therefore the new request is immediately eligible at time t.Since in either case the service time that the client has received at time e is no greater than the servicetime that the client should have received at time e it follows that the client's lag at time e (lagi(e)) isalways positive. By using Eq. (6) we can express the virtual eligible time V (e) as6

V (e) = V (ti0) + si(ti0; t)wi : (7)Next, the deadline of the request is chosen such that the service time that the client should receivebetween the eligible time e and the deadline d equals the service time of the new request, i.e., Si(e; d) = r,where r represents the length of the new request. Further, by using again Eq. (6), we derive the virtualdeadline V (d) as V (d) = V (e) + rwi : (8)Notice that although Eq. (7) and (8) give us the virtual eligible time V (e) and the virtual deadlineV (d), they do not necessarily give us the values of the real times e and d ! To see why, consider the casein which e is larger than the current time t. Then e cannot be computed exactly from Eq. (5) and (7),since we do not know how the slope of V will vary in the future. Intuitively, the situation is similar tohaving an empty reservoir in which we collect water from a spring. Although we can de�ne a mark toindicate when the reservoir is full, we cannot say exactly when this will happen since the
ow-rate of thespring may vary in the future. Therefore we will formulate our algorithm in terms of virtual eligible timesand deadlines and not of the real times. With this the Earliest Eligible Virtual Deadline First (EEVDF)algorithm can be simply stated as follows:EEVDF Algorithm. A new quantum is allocated to the client that has the eligible request with theearliest virtual deadline.The EEVDF algorithm does not assume that a client will always use all the service time it hasrequested. This is an important feature that di�erentiates it from the fair queueing algorithms used forallocating bandwidth in communication networks [9, 12, 23], which assume that the length of a packet(and therefore the service time) is known when the packet arrives. Although in communication networksthis is a realistic assumption4, for processor scheduling it is much harder (and often impossible) to predictexactly the amount of service time a client will actually use. However, as we will show in Section 6, thisdoes not compromise the fairness. Intuitively, this results from the de�nition of the virtual eligible eligibletime: whenever a client uses less service time than it has requested, the virtual eligible time of the nextrequest is pushed backwards (such that the lag to be zero). In this way EEVDF provides direct supportfor non-uniform quanta.5Since EEVDF is formulated in terms of virtual times, in the remaining of this paper we use ve andvd to denote the virtual eligible time and virtual deadline respectively, whenever the corresponding realeligible time and the deadline are not given. Let r(k) denote the length of the kth request made by client i,and let ve(k) and vd(k) denote the virtual eligible time and the virtual deadline associated to this request.If the client uses each time the entire service time it has requested, then by using Eq. (7) and (8) weobtain the following reccurence which computes both the virtual eligible time and the virtual deadline ofeach request:4Usually, these algorithms take the packet arrival time to be the time at which the last bit from the packet has beenreceived.5Notice that EEVDF also provides support for fractional quanta by simply taking the time of the request to be equalto the desired fraction of a time quantum. The di�erence between fractional and non-uniform quanta is that while in the�rst case the fraction from the time quantum (that the client will actually use) is assumed to be known in advance, in thenon-uniform quanta case this fraction is not known. 7

0 1 2 3 4 5 6 7

(0, 1)

0 0.5 1

(0.5, 1) (1, 1.5)

(1, 2)

(1.5, 2)

1.5

(2, 2.5)

2

time

virtual time

(2, 3)

client 1

client 2

time

timeFigure 1: An example of EEVDF scheduling involving two clients with equal weights w1 = w2 = 2. Allthe requests generated by client 1 have length 2, and all of the requests generated by client 2 are of length1. Client 1 becomes active at time 0 (virtual time 0), while client 2 becomes active at time 1 (virtual time0:5). The arrows represent the times when the requests are initiated (the pair associated to each arrowrepresents the virtual eligible time and the virtual deadline of the corresponding request).ve(1) = V (ti0); (9)vd(k) = ve(k) + r(k)wi ; (10)ve(k+1) = vd(k): (11)Next, let us consider the more general case in which the client does not use the entire service timeit has requested. Since a client never receives more service time than requested, we need to consideronly the case when the client uses the resource for less time than requested. Let u(k) denote the servicetime that client i actually receives during kth request. Then the only change in Eq. (9){(11), will be incomputing the eligible time of a new request. Speci�cally, Eq. (11) is replaced byve(k+1) = ve(k) + u(k)wi : (12)To clarify the ideas, let us take a simple example (see Figure 1). Consider two clients with weightsw1 = w2 = 2 that issue requests with lengths r1 = 2, and r2 = 1, respectively. We assume that thetime quantum is of unit size (q = 1) and that client 1 is the �rst one which enters competition at timet0 = 0. Thus, according to Eq. (9) and (10) the virtual eligible time for the �rst request of client 1is ve = 0, while its virtual deadline is vd = 1. Being the single client that has an outstanding eligiblerequest, client 1 receives the �rst quantum. At time t = 1, client 2 enters the competition. Since thevirtual time increases at a constant rate during the interval [0; 1) (i.e., 1w1 = 0:5), its value at time t = 1is V (1) = R 10 1w1 d� = 0:5. After the second client enters the competition the slope of the virtual timefunction becomes 1w1+w2 = 0:25. Next, let us assume that client 2 makes its �rst request before thesecond quantum is allocated. Then at t = 1 there are two pending requests: one from client 1 with thevirtual deadline 1 (which waits for another time quantum to ful�ll its request), and one from client 2which has the same virtual deadline i.e., 1. In this situation we arbitrarily break the tie in the favorof client 2, which therefore receives the second quantum upon termination. Since this quantum ful�llsthe current request of client 2, client 2 issues a new one with the virtual eligible time 1 and the virtual8

deadline 1:5. Thus, at time t = 2 the single eligible request is the one of client 1, which therefore receivesthe next quantum. Further, at t = 3 there are again two eligible requests: the one of client 2 that hasjust become eligible, and the new request issued by client 1. Since the deadline of the second client'srequest (1.5) is earlier than the one of the �rst client (2), the fourth quantum is allocated to the client 2.Further, Figure 1 shows how the next three quanta are allocated.4 Fairness in Dynamic SystemsIn this section we address the issue of fairness in dynamic systems. Throughout this paper, we assumethat a dynamic system provides support for the following three operations: client joining the competi-tion, client leaving the competition, and changing the client's weight. In an idealized
uid-
ow system,supporting dynamic operations is trivial since at any moment of time the lag of any active client is zero.Unfortunately, in a system in which the service time is allocated in discrete time quanta, this is no longertrue. In the remaining of this section we discuss how this a�ects the fairness in a dynamic system6. Weconsider the following two questions:1. What is the impact of a client with non-zero lag leaving, joining, or changing its weight on theother clients ?2. When a client with non-zero lag leaves the competition, what should be its lag when it rejoins thecompetition ?In answering the �rst question, we start with a simple example. Let us assume that a client leaves thecompetition with a negative lag, i.e., after it has received more service time than it was entitled to. Aswe will show in Section 6, during any time interval, the total service time allocated to all active clientsis equal to the service time that the clients should receive. Therefore, if a client leaves the competitionwith a negative lag, the remaining clients should have received less service time than they were entitledto. In short, a gain for one client translates into a loss for the other active clients. In this case, thequestion we need to answer is the following: How should the loss be distributed among the remainingactive clients in order to attain fairness ? We answer this question by assuming that whenever a dynamicoperation takes place, the e�ect (i.e., the resulting gain or loss) is proportionally distributed among allactive clients. In other words, each active client will inherit a gain/loss proportional to its weight. Besidesits intuitive appeal, as we will show, this policy has another advantage: it can be easily implemented bysimply updating the virtual time. We note that although this policy is similar to the one employed byWaldspurger and Weihl in their stride scheduling algorithm [29, 30], the two policies are not equivalent.The di�erence consists in the way in which the virtual time is updated when a client leaves or joins thecompetition: while in stride scheduling only the slope of the virtual time 7 is updated, in our algorithmthe value of the virtual time is updated as well (see Eq. 18, 19, 20 in this section).To better understand our reasons in considering the above policy, let us consider the following example.Suppose that three clients with zero lags become active at time t0, and at time t client 3 leaves thecompetition (see Figure 2). Further, we discuss the impact of client 3 leaving the competition on theother two clients.6These issues were also addressed by Waldspurger and Weihl in the context of their stride scheduling algorithm [30].7Instead virtual time, stride scheduling uses an equivalent concept, called global pass.9

t0
t

client 1

client 2

client 3Figure 2: The three clients become active at time t0. At time t, client 3 leaves the competition.Since the number of active clients and their shares do not change during the interval [t0; t), the slopeof the virtual time during this interval is constant and equal to 1w1+w2+w3 . Then from Eq. (3) and (6),the lag of each client at time t islagi(t) = wi t� t0w1 +w2 + w3 � si(t0; t); i = 1; 2; 3: (13)Next, we turn our attention to the clients 1 and 2 which remain active after client 3 leaves the competition.Since EEVDF is a work-conserving8 algorithm, the total service time received by all active clients duringthe interval [t0; t) is equal to t � t0. From here, the service time allocated to the �rst two clients duringthis interval can be expressed as t � t0 � s3(t0; t). Let t+ be the time immediately after client 3 leavesthe competition, where by neglecting the leaving operation overhead, we have t+ ! t.Now, what is the service time that clients 1 and 2 should have received at time t+ ? A naturaland intuitive approach would be to simply divide the entire service time received by both clients (i.e.,t� t0 � s3(t0; t)) proportional to the clients' weights, i.e.,Si(t0; t+) = (t� t0 � s3(t0; t)) wiw1 +w2 ; i = 1; 2; (14)We note that if lag3(t) 6= 0, then this result is di�erent from the service time each client should havereceived just before the departure of client 3, i.e., (t � t0) wiw1+w2+w3 (i = 1; 2; 3). This is because onceclient 3 leaves, the remaining two clients will proportionally support the eventual loss or gain in theservice time. Next, we show that in the EEVDF algorithm this is equivalent to a simple translation ofthe virtual time. By replacing s3(t0; t) from Eq. (13) into Eq. (14), we obtainSi(t0; t+) = (t� t0) wiw1 +w2 +w3 +wi lag3(t)w1 + w2 (15)= wi(V (t)� V (t0)) + wi lag3(t)w1 + w2 ; i = 1; 2:Finally, from Eq. (6) and (15) it follows thatV (t+) = V (t) + lag3(t)w1 +w2 ; i = 1; 2: (16)Thus, to maintain the fairness among the remaining clients, the virtual time should be updated accordingto the lag of the client which leaves the competition (as shown by the above equation). Since t+ isasymptotically close to t, the service time received by any client at time t+ is equal to the service timeit has received at time t (i.e., si(t0; t) = si(t0; t+)). From here, the lags of the �rst two clients at t+ canbe computed aslagi(t+) = wi(V (t+) � V (t0)) � si(t0; t+) = lagi(t) + wi lag3(t)w1 +w2 ; i = 1; 2: (17)8A scheduling algorithm is said to be work-conserving if the resource cannot be idle while there is at least one activeclient (see Section 6 for details). 10

Therefore when client 3 leaves, its lag is proportionally distributed among the remaining clients, whichis in accordance with our interpretation of fairness. By generalizing Eq. (16), we derive the followingupdating rule for the virtual time when a client j leaves the competition at time tV (t) = V (t) + lagj(t)Pi2A(t+) wi : (18)Correspondingly, when a client j joins the competition at time t, the virtual time is updated as followsV (t) = V (t)� lagj(t)Pi2A(t+) wi ; (19)where A(t+) contains all the active clients immediately after client j joins the competition, and lagj(t)represents the lag with which client j joins the competition. Although it might not be clear at this point,by updating the virtual time according to Eq. (18) and (19) we ensure that the sum over the lags of allactive clients is always zero. This can be viewed as a conservation property of the service time, i.e., anytime a client receives more service time than its share, there is at least another client that receives less.We note that if the lag of the client that leaves or joins the competition is zero, then according to Eq.(18) and (19) the virtual time does not change.9We note that changing the weight of an active client is equivalent to a leave and a rejoin operationthat take place at the same time. To be speci�c, suppose that at time t the weight of client j is changedfrom wj to w0j. Then this is equivalent to the following two operations: client j leaves the competition attime t, and rejoins it immediately (at the same time t) having weight w0j. By adding Eq. (18) and (19),we obtain V (t) = V (t) + lagj(t)(Pi2A(t) wi)� wj � lagj(t)(Pi2A(t)wi)�wj +w0j : (20)As for join and leave operations, notice that the virtual time does not change when the weight of aclient with zero lag is modi�ed. Thus, in a system in which any client is allowed to join, leave, or changeits weight only when its lag is zero, the variation of the virtual time is continuous.Now let us turn our attention to the second question. We need to decide whether a client thatbecomes passive without using its entire share could use it when it again becomes active next time, andwhether a client that leaves the competition after it has used more service time than its share should bepenalized when it rejoins the competition. To be speci�c, consider a client that leaves the competitionwith a positive lag (i.e., after it has received less service time than it was entitled to). Then the questionis whether the client should receive any compensation when it rejoins the competition. Unfortunately,there is no simple answer to this question. If we decide not to compensate, then the lost service time mayaccumulate over multiple periods of activity, and consequently, over large intervals of time the client mayreceive signi�cantly less service time than it is entitled to. On the other hand, if we decide to compensatea client for the lost service when it rejoins the competition, this might hamper other clients. To see why,consider the following example. Suppose that before time t there are two active clients 1 and 2, and attime t client 2 becomes passive with a positive lag, lag2(t) > 0. Next, assume that at a subsequent timet0 client 2 rejoins the competition, while another client 3 is active (we assume that at this time client 1is no longer active). Then client 2 will have to recover the service time that it has lost to client 1, at theexpense of client 3 ! Consequently, client 3 will indirectly lose some service time because client 2 has notused its entire service time while it was previously active, which is not fair.9However, notice that the slope of the virtual time changes.11

5 Algorithm ImplementationSince, as we have seen in the previous section, there is no clear answer on what is fair to do with the lagof a client when it rejoins the competition, in this section we present three strategies for implementingthe EEVDF algorithm. The characteristics of these strategies are dictated by the decision on whether aclient could leave, join, or change its weight when its lag is non-zero, and by the decision on whether aclient receives compensation or it is penalized when it rejoins the competition.Strategy 1. In this strategy a client may leave or join the competition at any time, and depending onits lag it is either penalized or it receives compensation when it rejoins the competition. More precisely,if the client leaves the competition at time t, and rejoins at t0, then lag(t) = lag(t0). Each time an eventoccurs (e.g., a client joining, leaving, or changing the weight of a client), the virtual time is updatedaccording to Eq. (18), (19), and (20) respectively. Finally, we note that this strategy is appropriate forsystems where it is desirable to maintain fairness over multiple periods of client activity. In Appendix Awe give an example of how this strategy might be actually implemented.Strategy 2. This strategy is similar to the previous one with the only di�erence being that the lag isnot preserved after a client leaves the competition, i.e., any client that (re)joins the competition has zerolag. This strategy is appropriate for those systems in which the events that cause the clients to becomeactive are independent. This is similar to a real-time system in which the processing time required by anevent is assumed to be independent of the processing time required by any other event.Strategy 3. In this strategy a client is allowed to leave, join, or change its weight, only when its lagis zero. Thus, in this case, there is no need to update the virtual time when a dynamic operation takesplace. On the other hand, some complexity is added in ensuring that when these events occur the lagis indeed zero. In order to ensure that all events involve only clients with zero lag, we need to updatethe slope of the virtual time at the corresponding times in the
uid-
ow system. The main problem inimplementing this strategy is to update the slope of the virtual time when a client leaves the competitionwith a positive lag.10 In this case the time at which the client should leave the competition in the
uid-
ow system is smaller than the corresponding time in the real system. A solution would be to \undo"all the modi�cations in the system that occurred between the time when the client should leave thecompetition in the
uid-
ow system and the time when it actually leaves. Unfortunately, this solution isvery expensive to implement; it requires to store the event history and, in addition, the \undo" operationmay involve a high overhead. In solving this problem, we assume that no event occurs during any timequantum. We note that this assumption is not as restrictive as it appears. For example, in the processorcase, this is a realistic assumption since, in general, the scheduling algorithm executes only between timequanta. On the other hand, in communication networks we do not need to enforce this assumption sincethe service time (i.e., transmission time) is assumed to be known, before the request is initiated. Thebasic mechanisms to implement this strategy, under the assumption that no event can occur during atime quantum is given below.First, assume that a client wants to leave the competition when its lag is negative. In this case, theidea is simply to delay the client until its lag becomes zero. This is done by issuing a dummy request of10We note that in a system in which the client always uses the entire service time it has requested, by using Eq. (9){(11)we can compute the virtual time when the client should leave in the
uid-
ow system as the virtual deadline of the client'slast request. This is the approach used by Parekh and Gallager in their Packet-by-Packet Generalized Processor Sharealgorithm [23]. 12

zero length. This approach is motivated by the fact that, in this case, the eligible time is always chosensuch that the lag is zero. Since a request cannot be processed before it becomes eligible, and since thevirtual eligible time of the dummy request is equal to its deadline (see Eq. (10)), it follows that thisrequest will be processed after its deadline. Thus, by using a request of zero length, we have reduced thecase of a client which leaves with a negative lag to the case of a client which leaves with a nonnegativelag and therefore we further consider only the later case. As we will show in Section 6, in a system inwhich the virtual time varies continuously (such as in our system), a request is guaranteed to be ful�lledno latter than a time quantum after its deadline. Thus, between the moment when the lag of the clientbecomes zero, and the moment when the request is ful�lled, no other time quanta are allocated. Sinceno event occurs during this time quantum, it will not make any di�erence whether we update the virtualtime after the time quantum expires, instead of exactly when the lag becomes zero.A second question regarding this strategy is what to do with the remaining service time when theclient leaves before its last request has been ful�lled. Here we take the simplest approach: the extratime quanta that are no longer used by the client are randomly allocated to other active clients withoutcharging them, i.e., their received service times and theirs lags are not updated. Although more complexallocation schemes might be devised, they are not necessary to achieve the goal of this strategy which isto guarantee that as long as a client competes for the resource it will receive at least its share.6 Fairness Analysis of the EEVDF AlgorithmIn this section we determine bounds for the service time lag. First we show that during any time intervalin which there is at least one active client, there is also at least one eligible pending request (Lemma2). A direct consequence of this result is that the EEVDF algorithm is work-conserving, i.e., as long asthere is at least one active client the resource cannot be idle. By using this result, in Theorem 1 we givetight bounds for the lag of any client in a steady system (see De�nitions 1 and 2 below). Finally, weshow that in the particular case when all the requests have durations no greater than a time quantum q,our algorithm achieves tight bounds which are optimal with respect to any proportional share allocationalgorithm (Lemma 5).Throughout this section we refer to any event that can change the state of the system, i.e., a clientjoining or leaving the competition, and changing the client's weight, simply as event. We introduce nowsome de�nitions to help us in our analysis.De�nition 1 A system is said to be steady if all the events occurring in that system involve only clientswith zero lag.Thus, in a steady system the lag of any client that joins, leaves, or has its weight changed, is zero.Recall that in a system in which all events involve only clients having zero lags the virtual time iscontinuous. As we will see, this is the basic property we use to determine tight bounds for the client lag.The following de�nition restricts the notion of steadiness to an interval.De�nition 2 An interval is said to be steady if all the events occurring in that interval involve onlyclients with zero lag.We note that a steady system could be alternatively de�ned as a system for which any time intervalis steady. The next lemma gives the condition for a client request to be eligible.13

Lemma 1 Consider an active client k with a positive lag at time t, i.e.,lagk(t) � 0; (21)Then client k has a pending eligible request at time t.Proof. Let r be the length of the pending request of client k at time t (recall that an active client hasalways a pending request), and let ve and vd denote the virtual eligible time and the virtual deadline ofthe request. For the sake of contradiction, assume the request is not eligible at time t, i.e.,ve > V (t) (22)Let t0 be the time when the request was initiated. Then from Eq. (7) we haveve = V (tk0) + sk(tk0 ; t0)wk : (23)Since between t0 and t the request was not eligible, it follows that the client has not received any servicetime in the interval [t0; t), and therefore sk(tk0 ; t0) = sk(tk0 ; t). By substituting sk(tk0; t0) to sk(tk0; t) in Eq.(23) and by using Eq. (3) and (6) we obtainlagk(t) = wk(V (t) � V (tk0)) � sk(tk0 ; t) (24)= wk(V (t) � V (tk0)) �wk(ve � V (tk0))= wk(V (t) � ve):Finally, from Ineq. (22) it follows that lagk(t) < 0, which contradicts the hypothesis and therefore provesthe lemma.From Lemma 1 and from the fact that any zero sum has at least a nonnegative term, we have thefollowing corollary.Corollary 1 Let A(t) be the set of all active clients at time t, such thatXi2A(t) lagi(t) = 0: (25)Then there is at least one eligible request at time t.The next lemma shows that at any time t the sum of the lags over all active clients is zero. Animmediate consequence of this result and the above corollary is that at any time t at which there is atleast one active client, there is also at least one pending eligible request in the system. Thus, in the senseof the de�nition given in [23], the EEVDF algorithm is work-conserving, i.e., as long as there are activeclients the resource is busy.Lemma 2 At any moment of time t, the sum of the lags of all active clients is zero, i.e,Xi2A(t) lagi(t) = 0: (26)14

Proof. The proof goes by induction. First, we assume that at time t = 0 there is no active client andtherefore Eq. (26) is trivially true. Next, for the induction step, we show that Eq. (26) remains trueafter each one of the following events occurs: (i) a client joins the competition, (ii) a client leaves thecompetition, (iii) a client changes its weight. Finally, we show that (iv) during any interval [t; t0) in whichnone of the above events occurs if Eq. (26) holds at time t, then it also holds at time t0.Case (i). Assume that client j joins the competition at time t with lag lagj(t). Let t� denote the timeimmediately before, and let t+ denote the time immediately after client j joins the competition, wheret+ and t� are asymptotically close to t. Next, let W (t) denote the total sum over the weights of all activeclients at time t, i.e., W (t) = Pi2A(t)wi(t), and by convenience let us take lagj(t�) = lagj(t). Sincet� ! t+ we have si(ti0; t�) = si(ti0; t+). Then from Eq. (3) we obtain:lagi(t+) = lagi(t�) + Si(ti0; t+)� Si(ti0; t�)Further, by using Eq. (6) and (19), the lag of any active client i at time t+ (including client j) islagi(t+) = lagi(t�)� lagj(t) wiW (t+) : (27)Since A(t+) = A(t�) [fjg, and since from the induction hypothesis we have Pi2A(t�) lagi(t�) = 0, byusing Eq. (27), we obtainXi2A(t+) lagi(t+) = Xi2A(t+)(lagi(t�) � lagj(t) wiW (t+)) (28)= Xi2A(t+) lagi(t�)� lagj(t)Pi2A(t+) wiW (t+)= Xi2A(t�) lagi(t�) + lagj(t�)� lagj(t) = 0:Case (ii). The proof of this case is very similar to the one of the previous case; therefore we omit it here.Case (iii). Changing the weight of a client j from wj to w0j at time t can be viewed as a sequence of twoevents: �rst, client j leaves the competition at time t; second, it joins the competition at the same timet, but with weight w0j . Thus, the proof of this case reduces to the previous two cases.Case (iv). Consider an interval [t; t0) in which no event occurs, i.e., no client leaves or joins the competitionand no weight is changed during the interval [t; t0). Next, assume thatPi2A(t) lagi(t) = 0. Then we shallprove that Pi2A(t0) lagi(t0) = 0. By using Eq. (3) and (6) we obtainXi2A(t0) lagi(t0) = Xi2A(t0)(Si(ti0; t0)� si(ti0; t0)) (29)= Xi2A(t)(Si(ti0; t)� si(ti0; t)) + Xi2A(t)(Si(t; t0) � si(t; t0))= Xi2A(t) lagi(t) + Xi2A(t)Si(t; t0)� Xi2A(t) si(t; t0)= Xi2A(t)wi(V (t0) � V (t))� Xi2A(t) si(t; t0)= (t0 � t)� Xi2A(t) si(t; t0):Next we show that the resource is busy during the entire interval [t; t0). For contradiction assume this isnot true. Let l denote the earliest time in the interval [t; t0) when the resource is idle. Similarly to Eq.(29) we have: 15

Xi2A(l) lagi(l) = (l � t)� Xi2A(t) si(t; l):Since the resource is not idle at any time between t and l, it follows that the total service time allocatedto all active clients during the interval [t; t0) (i.e., Pi2A(t) si(t; l)) is equal to l � t. Further, from theabove equation we havePi2A(l) lagi(l) = 0. But then from Lemma 1 it follows that there is at least oneeligible request at time l, and therefore the resource cannot be idle at time l, which proves our claim.Further, with a similar argument, it is easy to show thatPi2A(t0) lagi(t0) = 0 which completes the proofof this case.Since these are the only cases in which the lags of the active clients may change, the proof of thelemma follows.The following lemma gives the upper bound for the maximum delay of ful�lling a request in a steadysystem. We note that this result is similar to the one obtained by Parekh and Gallager [23] for theirGeneralized Processor Sharing algorithm, i.e., in a communication network, a packet is guaranteed notto miss its deadline by more than the time required to send a packet of maximum length.Lemma 3 In a steady system any request of any active client k is ful�lled no later than d+ q, where dis the request's deadline, and q is the size of a time quantum.Proof. Let e be the eligible time associated to the request (with deadline d) of client k. Consider thepartition of all the active clients at time d, into two sets B and C, where set B contains all the clientsthat have at least a deadline in the interval [e; d] , and set C contains all the other active clients (seeFigure 3). Let t be the latest time no greater than d at which a client in C receives a time quantum, ifany. Further we consider two cases whether such a t exists or not.Case 1 (t exists). Here we consider two sub-cases whether t 2 [e; d), or t < e. First assume that a clientin C receives a time quantum at a time t 2 [e; d). Since all the deadlines of the pending requests issuedby clients in C are larger than d, this means that at time t the pending request of client k is alreadyful�lled. Consequently, in the �rst sub-case the request of client k is ful�lled before time d.For the second sub-case, let us D denote all the active clients that have at least one eligible requestwith the deadline in the interval [t; d) (see Figure 3). Further, let D(�) denote the subset of D containingthe active clients at time � . Since a time quantum is allocated to a client in C at time t, it follows thatno other client with an earlier deadline is eligible at t. For any client j belonging to D(t), let ej be theeligible time of its pending request at time t. Since the deadlines of these requests are no greater than d(and therefore smaller than any deadline of any client in C), it follows that all these pending requests arenot eligible at time t, i.e., t < ej. Notice that besides the clients in D(t), the other clients that belongto D are those that eventually join the competition after time t. For any client j in D that joins thecompetition after time t, we take ej to be the eligible time of its �rst request.Next, for any client j belonging to D, let dj denote the largest deadline no greater than d of any ofits requests (notice that the eligible time ej and the deadline dj might not be associated to the samerequest). From Eq. (10) it easy to see that after client j receives Sj(ej; dj) time units, all its requestsin the interval [ej; dj) are ful�lled. Thus, the service time needed to ful�ll all the requests which havedeadlines in the interval [t; d) is 16

.

.

.

.

.

.

]

]

]

]

]

client

[

[

k
t

 e

B

C

d

D(t)

d + q
[

[

[

][Figure 3: The current pending request of client k has the eligible time e and deadline d. Set B containsall the active clients that have at least one request with the deadline in the interval [e; d], while set Ccontains all the other active clients. Time t represents the largest time no greater than d at which a clientfrom C receives a time quantum. Finally, set D(t) contains all the active clients at time t that have atleast one eligible request with the deadline in the interval [t; d).Xj2D Sj(ej ; dj) = Xj2D(Z djej wjPi2A(�) wi d�): (30)By decomposing the above sum over a set of disjoint intervals Jl = [al; bl) (1 � l � m) covering [t; d),such that no interval contains any eligible time or deadline of any client belonging to D, we can rewriteEq. (30) asXj2D Sj(ej ; dj) = mXl=1 (Z blal Pi2D(al) wiPi2A(al) wi d�) < mXl=1(Z blal d�) = mXl=1(bl � al) = d� t; (31)The above inequality results from the fact that D(�) is a proper subset of A(�) at least for some sub-intervals Ji (otherwise, if A(�) is identical to D(�) over the entire interval [t; d), sets C and C 0 would beempty).Assume that at time d+ q the request of client k (having the deadline d) is not ful�lled yet. Since noclient in C can be served before the request of client k is ful�lled, it follows that the service time betweent+ q and d+ q is allocated only to the clients in D. Consequently, during the entire interval [t+ q; d+ q),there are d�t service time units to be allocated to all clients in D. Next, recall that any client j belongingto D will not receive any other time quantum after its request having deadline dj is eventually ful�lled, aslong as the request of client k is not ful�lled. This is simply because the next request of client j will havea deadline greater than d. But according to Eq. (31) the service time required to ful�ll all the requestshaving the deadlines in the interval [t; d) is less than d� t, which means that at some point the resourceis idle during the interval [t + q; d+ q). But this contradicts the fact that EEVDF is work-conserving,and therefore proves this case.Case 2. (t does not exist) In this case we take t to be the time when the �rst client joins the competition.From here the proof is similar to the one for the �rst case, with the following di�erence. Since set C isempty, all the time quanta between t and d are allocated to the clients in D, and therefore, in this case,we show that in fact client k does not miss the deadline d.17

Following we give a similar result for a steady interval. Mainly, we show that for certain subintervalsof a steady interval the same bound holds. This shows that a system which allows clients with non-zerolag to join, leave, or to change their weight, will eventually reach a steady state.Lemma 4 Let I = [t1; t2) be a steady interval, and let dm be the largest deadline among all the pendingrequests of the clients with negative lags which are active at t1. Then any request of any active client kis ful�lled no later than d+ q, if d 2 [dm; t2).Proof. Similarly to the proof of Lemma 3, we consider the partition of all the active clients at time d,into two set B and C, where set B contains all the active clients that have at least a deadline in theinterval [e; d] , and set C contains all the other clients. Similarly, we let t denote the latest time in theinterval [t1; d) when a client in C receives a time quantum, if any. Further, we consider two cases whethersuch t exists or not.Case 1. (t exists) The proof proceeds similarly to the one for Case 1 in Lemma 3.Case 2. (t does not exist) In this case we consider two sub-sets of C: C� containing all clients in Cthat had negative lags at time t1, and C+ containing all the other clients in C. Since no client belongingto C� receives any time quantum before dm it follows that no pending request of any client in C� isful�lled before its deadline (recall that the deadlines of all the other clients with negative lags at t1 are� dm) and therefore all clients in C� will have nonnegative lags at time dm. On the other hand, sinceall clients in C+ had nonnegative lags at time t1, and since they do not receive any time quanta betweent1 and dm, all of them will have positive lags at dm. Thus, we haveXi2C lagi(d) > 0 (32)On the other hand, we note that if the request of client k is not ful�lled before its deadline, then noother client belonging to B will receive any other time quantum after its last request with the deadlineno greater than d is ful�lled. But then from Eq. (3) it follows that their lags as well as the lag of clientk are positive at time d, i.e., Xi2B lagi(d) � 0 (33)Further, by adding Eq. (32) and (33), we obtainXi2A(d) lagi(d) > 0 (34)which contradicts Lemma 2, and therefore completes the proof.The next theorem gives tight bounds for a client's lag in a steady system.Theorem 1 The lag of any active client k in a steady system is bounded as follows,�rmax < lagk(d) < max(rmax; q); (35)where rmax represents the maximum duration of any request issued by client k. Moreover, these boundsare asymptotically tight. 18

Proof. Let e and d be the eligible time and the deadline of a request with duration r issued by client k.Since Sk increases monotonically with a slope no greater than one (see Eq. (4)), from Eq. (3) it followsthat the lag of client k decreases as long as it receives service time, and increases otherwise. Further,since a request is not serviced before it is eligible, it is easy to see that the minimum lag is achieved whenthe client receives the entirely service time as soon as the request becomes eligible. In other words, theminimum lag occurs at time e + r, if the request is ful�lled by that time. Further, by using Eq (3) wehave lagk(e + r) = Sk(tk0; e+ r)� sk(tk0; e+ r) (36)= Sk(tk0; e) + Sk(e; e+ r)� (sk(tk0; e) + sk(e; e+ r))= lagk(e) + Sk(e; e+ r)� sk(e; e + r)From the de�nition of the eligible time (see Section 2) we have lagk(e) � 0, and thus from the aboveequation we obtainlagk(e + r) � Sk(e; e + r) � sk(e; e + r) > �sk(e; e+ r) � �r: (37)Since this is the lower bound for the client's lag during a request with duration r, and since rmax representsthe maximum duration of any request issued by client k, it follows that at a any time t while client k isactive we have lagk(t) � �rmax: (38)Similarly, the maximum lag in the interval [e; d) is obtained when the entire service time is allocatedas late as possible. Since according to Lemma 3, the request is ful�lled no later than d + q, it followsthat the latest time when client k should receive the �rst quantum is d + q � r. We consider two cases:r � q and r < q. In the �rst case d+ q � r � d, and therefore we obtain Sk(e; d+ q � r) < Sk(e; d) = r.Let t1 be the time at which the request is issued. Further, from the de�nition of the eligible time, andfrom the fact that the client is assumed that it does not receive any time quantum during the interval[t1; d+ q � r), we have for any time t while the request is pendinglagk(t) � Sk(tk0 ; d+ q � r)� sk(tk0; d+ q � r) (39)= Sk(tk0 ; e) + Sk(e; d+ q � r)� sk(tk0; t1) � sk(t1; d+ q � r)= (Sk(tk0 ; e)� sk(tk0 ; t1)) + Sk(e; d+ q � r)� sk(t1; d+ q � r)= Sk(e; d+ q � r) < r:Since the slope of Sk is always no greater than one, in the second case we have Sk(e; d + q � r) =Sk(e; d) + Sk(d; d+ q � r) < r + q � r = q, and from here we obtainlagk(t) � Sk(e; d+ q � r) < q: (40)Finally, by combining Eq. (39) and (40) we obtain lagk(t) < max(q; r). Thus, at any time t while theclient is active we have lagk(t) < max(q; rmax): (41)19

To show that the bound lagk(t) > �rmax is asymptotically tight, consider the following example. Letw1, w2 be the weights of two active clients, such that w1 � w2. Next, suppose that both clients becomeactive at time t0 and their �rst requests have the lengths rmax and r0max, respectively. We assume thatrmax and r0max are chosen such that the virtual deadline of the �rst client's request is smaller than thevirtual deadline of the second client's request, i.e., t0 + rmaxw1 < t0 + r0maxw2 . Then client 1 receives theentire service time before client 2, and thus from Eq. (3) we have lag1(rmax) = S1(t0; t0+ rmax)� rmax.Next, by using Eq. (4) we obtain S1(t0; t0 + rmax) = w1w1+w2 , which approaches zero when w1w2 !1, andconsequently lag1(rmax) approaches �rmax.To show that the bound lagk(t) < max(rmax; q) is asymptotically tight, we use the same example.However, in this case we assume that the virtual deadline of the �rst request of client 1 is earlier thanthe virtual deadline of the �rst request of client 2, such that client 1 receives its entire service time justprior to its deadline. Since the details of the proof are similar with the previous case we do not showthem here.Notice that the bounds given by Theorem 1 apply independently to each client and depend only onthe length of their requests. While shorter requests o�er a better allocation accuracy, the longer onesreduce the system overhead since for the same total service time fewer requests need to be generated.It is therefore possible to trade between the accuracy and the system overhead, depending on the clientrequirements. For example, for an intensive computation task it would be acceptable to take the lengthof the request to be in the order of seconds. On the other hand, in the case of a multimedia applicationwe need to take the length of a request no greater than several tens of milliseconds, due to the delayconstraints. Theorem 1 shows that EEVDF can accommodate clients with di�erent requirements, whileguaranteeing tight bounds for the lag of each client during a steady interval. The following corollaryfollows directly from Theorem 1.Corollary 2 Consider a steady system and a client k such that no request of client k is larger than atime quantum. Then at any time t, the lag of client k is bounded as follows:�q < lagk(t) < q: (42)Next we give a simple lemma which shows that the bounds given in Corollary 3 are optimal, i.e., theyhold for any proportional share algorithm.Lemma 5 Given any steady system with time quanta of size q and any proportional share algorithm, thelag of any client is bounded by �q and q.Proof. Consider n clients with equal weights that become active at time 0. We consider two cases: (i)each client receives exactly one time quantum out of the �rst n quanta, and (ii) there is a client k whichreceives more than a time quanta. From Eq. (3), it is easy to see that, at time q, the lag of the clientthat receives the �rst quantum is lag(q) = qn � q: (43)Similarly, the lag of the client which receives the nth time quantum is (at time n� 1, immediately beforeit receives the time quantum) lag(q(n� 1)) = q � qn: (44)20

For contradiction, assume that there is a proportional share algorithm that achieves an upper boundsmaller than q, i.e., q� �, where � is a positive real. Then by taking n > q� , from Eq. (44), it follows thatlag(q(n � 1)) > q � � which is not possible. Similarly, it can be shown that no algorithm can achieve alower bound better than -q.For the second case (ii), notice that since client j receives more than one time quanta, there must beanother client k that does not receive any time quanta in the �rst n time units. Then it is easy to seethat the lag of client j is smaller than �q after it receives the second time quantum, and the lag of clientk is larger than q after just before receiving its �rst time quantum, which completes our proof.7 Related WorkIn this section we present a compressive overview of the related work. We classify the scheduling algo-rithms as follows: time-dependent priority, real-time, fair queueing, and proportional share.7.1 Time-Dependent PriorityMany of the existing operating systems rely on the concept of priority to allocate processing time tocompeting processes [25]. In the static priority schemes, a process with higher priority has absoluteprecedence over a process with lower priority. Unfortunately, this schemes are in
exible and may leadto starvation [25]. In trying to overcome these problems, several solutions were proposed. One of thebest-known schemes is decay usage scheduling [13] which tries to ensure fairness by changing the processpriorities according to their recent CPU usage. This policy was implemented in many operating systems,such as Unix BSD [16] and System V [1]. The main drawback of this policy is that it o�ers only a crudecontrol over resource allocation during short periods of time.Recently, Fong and Squillante have proposed a new scheduling discipline called Time-Function Schedul-ing (TFS) [11]. The priority of a client in TFS is de�ned by a time-dependent function, i.e., the priorityincreases linearly with time while the client waits to be scheduled, and it is reinitialized to a prede�nedvalue whenever the client is scheduled. In TFS clients are partitioned in disjoint classes based on theircharacteristics and scheduling objectives. All clients belonging to the same class have associated the sametime-dependent function and are organized in a FCFS queue. By serving them in a round-robin fashion,the scheduler ensures that the client with the highest priority in that class is always at the front of thequeue. Thus to select the client with the highest overall priority it is enough to search among the clientswhich are at the front of their queues. In this way, the dispatch operation can be e�ciently implementedin O(log c), where c represents the total number of classes. On the other hand, the time-complexity ofupdating clients' priorities is O(c log c). TFS provides e�ective and
exible control over resource alloca-tion and it can be used to achieve general scheduling objectives such as relative per-class throughputsand low waiting time variance. Although somewhat indirectly, TFS can also archive proportional shareallocation by assigning an equal share to each client in the same class. However, the algorithm accuracydepends on the frequency at which the clients' priorities are updated. Since the updating operation israther expensive this limits the allocation accuracy that can be achieved.7.2 Real-TimeReal-time systems were speci�cally developed for critical time tasks which require strong deadline guar-antees. These tasks are characterized by a sequence of events that arrive in a certain pattern (usually21

periodic). Each event is described by its predicted service time and a deadline before which the eventshould be processed.Two of the most popular algorithms for scheduling periodic tasks, rate monotonic (RM) and earliestdeadline �rst (EDF), were proposed and analyzed by Liu and Layland in [18]. In RM, tasks are assignedpriorities in the decreasing order of their periods, i.e., the task with the smallest period has the highestpriority. While in RM the priorities are �xed, in EDF they change dynamically whenever a task initiates anew request. More precisely, the EDF algorithm assigns priorities to tasks corresponding to the deadlinesof their current requests, i.e., the task which has the request with the earliest deadline is assigned thehighest priority.We note here that in a static
uid-
ow system (in which the weights and the number of active clients donot change) the EEVDF and EDF algorithms are equivalent. To see why, consider how EEVDF behaveswhen a new request with an earlier deadline than the process that is currently executing is issued. In thiscase, as soon as the current time quantum expires, the new request is scheduled for execution. Since inan idealized
uid-
ow model the size of a time quantum is arbitrarily small, this is equivalent to schedulethe new request as soon as it arrives, which is identical to the policy employed by EDF.In order to guarantee that all tasks will meet their deadlines, both RM and EDF impose strictadmission policies. Speci�cally, Liu and Layland [18] have shown that under the EDF policy all taskswill meet their deadlines as long as the processor is not over-utilized (i.e., its utilization is � 100%).Similarly, for the RM algorithm, they have given a schedulability test with the worst case processorutilization of 69%. For a speci�ed set of tasks, this bound can be improved by using the exact analysisgiven by Lehoczky, Sha, and Ding in [17]. Unfortunately, this analysis is more expensive, which makesit less appealing for practical implementations. Besides ensuring a higher processor utilization, anotheradvantage of EDF versus RM is that, for the same set of tasks, it never generates more preemptions thanRM, which reduces the context-switching overhead. On the other hand, since it uses �xed priorities RMis simpler and slightly more e�cient to implement than EDF. Finally, another advantage of RM is thatin case of overload the tasks with higher priorities will still meet their deadlines at the expense of taskswith lower priorities, while under the EDF algorithm all tasks could miss their deadlines.Both RM and EDF were the solutions of choice used to add support for continuous media and real-time applications to the existing operating systems. For example, in designing an application platformfor distributed multimedia applications, Coulson et al [8] use the EDF algorithm for processor scheduling.Mercer, Savage, and Tokuda consider both RM and EDF algorithms in developing a
exible higher levelabstraction, called processor capacity reserves [20, 21], speci�cally designed for measuring and controllingprocessor usage in a microkernel system. In their model, each client (thread) has associated a reserveto which its computation time is charged. The scheduler uses the usage measurements for each client tocontrol and enforce its reservation.Unlike the above approaches which try to add support for real-time applications such as multimedia byextending and/or modifying the general purpose CPU schedulers in the existing operating systems, Bollelaand Je�ay [4] take a more radical approach. Their idea is to partition the processor and other sharedsystem resources into two virtual machines: one machine running a general purpose operating system,and the other one running a real-time kernel support. Speci�cally, the CPU is multiplexed between thetwo systems, each operating system running alternatively for a prede�ned time slice. While this approachachieves a high level of isolation between general purpose and real-time applications, running two di�erentoperating systems increases both the overhead and the resource requirements in the system.22

In general, real-time based schedulers do not provide an integrated solution for continuous media,interactive, and batch applications. For this reason, general purpose operating systems that use real-timebased schedulers for supporting continuous media and interactive applications, also employ more conven-tional schedulers (such as round-robin) for batch activities. Compared to proportional-share schedulers,real-time schedulers are more restrictive and less
exible. As an example, when an application terminatesit is di�cult to e�ciently redistribute its share among the applications that are still active. Finally wenote that although real-time based schedulers provide stronger timeliness guarantees, the guarantees of-fered by the EEVDF algorithm (i.e., a deadline is never missed by more than a time quantum) are goodenough to accommodate a broad range of real-time applications.Recently, Je�ay and Bennette have proposed a new abstraction for multimedia applications, calledrate-based execution (RBE) [13]. In RBE a process is characterized by three parameters: x, y, and d,where x represents the number of events that arrive during a time interval with the duration y, and drepresents the desired maximumelapsed time between the delivery of an event and the completion of thatevent. Like EEVDF, RBE does not make any assumptions about the interarrival times, and about thedistribution of the processing time during y time units. We note that specifying parameters x and y isequivalent to specifying the share that the process should receive during a time interval with the durationy. While RBE provides better control over the maximum elapsed time d (in the EEVDF this is implicitlydetermined from the client share and the request duration), the EEVDF provides more
exibility in shareallocation over time intervals of arbitrary length. Moreover, although RBE generalizes the traditionalreal-time models, it does not address the problem of supporting batch and multimedia applications in anintegrated environment.Nieh and Lam have developed a novel integrated processor scheduler that provides support for mul-timedia applications in a general purpose operating system [22]. Similarly to a request in EEVDF, theyassociate to each client aminimum execution rate which is de�ned as the desired fraction of the processingtime that the client should receive in a given interval. For continuous media and interactive applicationsthe minimum execution rates result directly from their time constraints, while for batch applications theminimum execution rates express their minimum acceptable rates of forward progress. These rates aretranslated into a series of deadlines, which are similar to the deadlines of the clients' requests in EEVDF.The scheduler attempts to meet these deadlines by using an EDF algorithm. In addition, the schedulerassigns to each activity a priority. When the system is overloaded, the scheduler tries to meet the timeconstraints for the clients with higher priorities at the expense of the clients with lower priorities.We note that both EEVDF and this scheduler rely on similar concepts (i.e., minimum execution rateand request respectively) in providing an integrated solution for scheduling continuous media, interactiveand batch applications. However since this scheduler is based on a simple EDF policy it is not clear howit behaves in a highly dynamic environment. For example, it is not clear what is the trade-o� (if any)between e�cient implementation of dynamic operations (i.e., adjusting the clients' minimum executionrates) and the degree of fairness ensured by the scheduler. While the addition of priorities makes thescheduler more
exible and e�ective in supporting a broader range of applications, this might increasethe complexity and possibly the scheduling overhead. Although in EEVDF we are not providing similarsupport for expressing clients' priorities, we note that this support can be integrated in higher levelresource abstractions such as monetary funds [26].1111In [26] we consider two classes of services: bounded and unbounded. A client receiving a bounded service is guaranteedto receive a share of the resources which is inferior and/or superior bounded.23

7.3 Fair QueuingThe EEVDF algorithm shares many common characteristics with the fair queueing algorithms whichwere originally developed for bandwidth allocation in communication networks. These algorithms usethe same notion of idealized
uid-
ow model to express the concept of fairness in a dynamic system, andthe notion of virtual time to track the work progress in the system. Since the idealized model cannotbe applied in the context of a packet-based tra�c (where a packet transmission cannot be preempted byother packets) Demers et al have introduced a new policy, called packet-by-packet fair queueing (PFQ) [9].According to this policy, the order in which the packets are served is de�ned as the order in which theywould �nish in the corresponding ideal
uid-
ow system.Parekh and Gallager [23] have analyzed the PFQ12 scheme when the input tra�c stream conformsto the leaky-bucket constraints [6]. Namely, they proved that each packet is processed within tmax timeunits from the time at which the packet would be processed in the corresponding idealized system, wheretmax is the transmission time of the largest possible packet.We note that the computation of the virtual �nishing time in PFQ is identical to the computationof the virtual deadline in EEVDF. Moreover, the PFQ policy is very similar to the one employed by theEEVDF algorithm; both select to send the packet which has the earliest virtual deadline (�nishing time)in the idealized system. The major di�erence between the two policies is that in PFQ a packet becomeseligible as soon as it arrives, while in EEVDF a packet becomes eligible only after all the previous messagesbelonging to the same session have been sent. As we will show in the following example, this di�erenceis critical in reducing the session lag from O(n) to O(1), where n is the number of active sessions (anactive session is de�ned as a session that has at least one packet to send).Let us consider a communication switch with n+1 active sessions, where session 1 has weight n, andall the other sessions have weights equal to 1. Further, for simplicity, assume that all the packets are ofequal size and the transmission of one packet takes one time unit. From Eq. (9){(11) it follows that thevirtual deadlines of the packets belonging to session 1 are: 1n , 2n , 3n , : : :, n�1n , 1. Similarly, the deadline ofthe �rst packet of any of the other sessions is 1. Then it is easy to see that, since in PFQ all the packetsare eligible at time 0, the �rst n�1 packets of session 1 will be sent without interruption during the timeinterval [0; n� 1), and therefore the total service time received by session 1 during the interval [0; n� 1)is s1(0; n� 1) = n � 1. On the other hand, from Eq. (5) and (6) it follows that the total service timethat session 1 should have received during the same interval is S1(0; n� 1) = n�12 . Finally, from Eq. (3),the lag of session 1 at time n� 1 islag1(n� 1) = S1(0; n� 1)� s1(0; n� 1) = �n � 12 ;which proves our point. We note that in EEVDF this does not happen since session 1 will have only onepacket eligible at a time. More precisely, the eligible times of the �rst n�1 packets of session 1 are: 0, 1n ,: : :, n�2n . Thus, after the �rst packet belonging to session 1 is sent, the virtual time becomes 12n . Sinceat this time the second packet of session 1 is not eligible yet, the next packet to be sent will belong toone of the other n sessions. Thus, in EEVDF the transmission of the �rst n � 1 packets of session 1 isinterleaved with transmissions of packets from the other sessions.We note that guaranteeing stronger bounds for session lags helps in reducing the bu�er requirements.As an example consider a receiver that processes the incoming packets at �xed periods of time. To bespeci�c, assume that every two time units the receiver processes an incoming packet from session 1 (see12In their work the PFQ is referred as packet-by-packet generalized processor sharing (PGPS).24

Algorithm Lottery Charge BITREV Stride PD EEVDFLag O(pm) O(nc) O(log w) O(log nc) O(1) O(1)Quantum fractional Yes Yes Yes Yes No Yesnon-uniform Yes Yes No Yes No Yesselection O(log nc) O(nc) O(log nc) O(log nc) O(log nc) O(log nc)Operation joining O(log nc) O(nc) O(log nc) O(log nc) O(nc) O(log nc)complexity leaving O(log nc) O(nc) O(log nc) O(log nc) O(nc) O(log nc)change weight O(log nc) O(nc) O(log nc) O(log nc) O(nc) O(log nc)Table 1: Comparison between EEVDF and other proportional share scheduling algorithms: Lottery,Charge-based, Bit Reversal (BITREV), Stride and PD. Legend : nc denotes the number of clients thatcompete for the resource, w denotes the client weight, and m denotes the number of time quanta allocatedfrom the moment when client enters competition.the above example). Then when using PFQ, the size of the bu�er to store the incoming packets is O(n),while when using EEVDF it is only O(1).13Recently, Golestani has proposed a new scheme called self clocked fair queueing (SCFQ) [12], thatapproximates the PFQ scheme. In this scheme he uses the notion of virtual time to measure the progressof work in the actual packet-based system, not in the idealized one. The main advantage of this newscheme is that it does not need to update the virtual time whenever an event occurs in the idealizedmodel, and therefore could be more e�ciently implemented (although it still maintains the O(logn)complexity for insertion and deletion from priority queue, where n is the number of clients). However,this does not come for free; the bounds guaranteed by this scheme for the session lags are within a factorof two from the ones guaranteed by PFQ. As an open problem, we note that it is not clear whether ourEEVDF algorithm will bene�t by using the same notion of virtual time as in SCFQ. This is because inEEVDF the eligible times are computed based on the virtual times in the idealized system, and triviallyapproximating them with the virtual times in the real system would result in a non-work conservingalgorithm, which will make the algorithm much harder to analyze, and more expensive to implement.7.4 Proportional ShareRecently, a signi�cant number of proportional share scheduling algorithms have been developed [2, 26,28, 29, 30]. In comparing these algorithms to EEVDF we consider the following criteria (see Table 1):�Lag { The di�erence between the service time the client should receive and the service time it actuallyreceives while competing for the resource, as de�ned by Eq. (3).�Quantum { Speci�es whether or not the algorithm provides support for fractional and non-uniformtime quanta.�Operation complexity { Time complexity for each of the basic dynamic operations supported by thescheduler, i.e., client selection, joining, leaving, and changing the weight of a client.Waldspurger and Weihl [28, 30] have proposed a proportional share scheduling algorithm called lotteryscheduling. In their algorithm the resource rights are encapsulated into lottery tickets. Every client hasassociated a certain number of tickets that determines the share of the resource that the client should13Here we assume that the receiver and sender do not use any
ow control mechanism.25

receive. At the beginning of every time slice a lottery is held and the client with the winning ticket isselected and granted to use the resource. Since the ticket numbers are randomly generated, this schemeensures that, on the average, a client receives a number of time slices proportional to the fraction oftickets it has. As shown in Table 1, the client lag is proportional to the square root of the number ofallocated quantam, i.e., O(pm). Compared to the other algorithms which guarantee bounds independentof the number of allocated time quanta, this result is not as good. However, the advantage of the lotteryscheduling lays in its simplicity; since there is no need to update any global state, dynamic operationsare easy and e�cient to implement. In addition, by means of tickets, lottery scheduling introduces apowerful and
exible resource abstraction for resource management.Maheshawari has proposed a new deterministic scheme called charged-based proportional schedul-ing [19]. The scheme is based on charging threads (clients) for processor usage. Threads are consideredin a round-robin order and occasionally some of them are skipped to keep their usage close to the de-sired proportion. The client lag is bounded by O(nc), where nc represents the number of active clients.Although the selection operation is fast on the average, its worst case complexity is O(nc). The timecomplexity of the other dynamic operations is also O(nc).In an attempt to improve the lottery scheduling, Stoica and Wahab have developed a new deterministicalgorithm for generating the winning numbers [26]. Although they have initially shown [26] that thealgorithm guarantees that the client lag is bounded by O(logm), where m represents the number ofallocated time quanta, more recent results have reduced this bound to O(logw), where w is the clientweight [27]. The main drawback of this algorithm is that it does not support non-uniform quanta. On theother hand, as lottery scheduling, it supports dynamic operations e�ciently, i.e., it requires only integercomparisons, additions and subtractions.Recently, Waldspurger and Weihl have proposed a new algorithm called stride scheduling [29, 30].The algorithm can be viewed as an extension and a cross-application of the network fair-queueing algo-rithms [31, 23] to the domain of processor scheduling. Stride scheduling relays on the concept of globalpass (which is similar to virtual time) to measure the work progress in the system. Each client hasassociated a stride which is inversely proportional to its weight, and a pass which measures the progressof that client. The algorithm allocates a time quantum to the client with the lowest pass. After a clientreceives a time quantum, its pass is updated to its stride (notice that this is similar to computing thevirtual deadline by Eq. (10), when the request duration is equal to a time quantum). The basic algorithmguarantees a client lag of O(nc), where nc is the number of active clients. By grouping the clients in abinary tree, and recursively applying the basic stride scheduling algorithm at each level, Waldspurger andWeihl have further reduced the client lag to O(lognc). As well as the basic algorithm, the hierarchicalstride implements all the dynamic operations in O(lognc).Baruah, Gehrke, and Plaxton have developed a powerful proportional share scheduling algorithm formultiple resources, called PD (from \pseudo-deadlines") [2]. Given m identical copies of a resource thePD algorithm guarantees that the client lag is bounded by one time quantum. In the single resourcecase, the algorithm exhibits a O(lognc) time-complexity for client selection, the same as EEVDF. Whilesolving the proportional share scheduling problem for multiple resources, PD does not provide explicitsupport for dynamic operations, and therefore their implementation would require an expensive O(nc)pre-processing phase. Moreover, the PD algorithm lacks support for fractional and non-uniform timequanta.Recently, Baruah claimed new results that address the problem of supporting dynamic operations in26

the context of �xed time quanta [3]. The new algorithm implements client leaving and joining operationsin O(nc) time for multiple resource case, and in O(lognc) time for a single resource case. Also, when aclient leaves the competition, the algorithm provides an O(logn) bound on the client lag. While theseresults improve the ones achieved by the PD algorithm, we note that for a single resource case, by usingStrategy 3, the EEVDF algorithm achieves an O(1) bound on the client lag, while providing support forboth non-uniform and fractional time quanta (see Corollary 2).8 ConclusionsWe have described a new proportional share resource allocation scheduler that provides a
exible control,and provides strong timeliness guarantees for the service time received by a client. In this way we providea uni�ed approach for scheduling multimedia, interactive, and batch applications. We achieve this byuniformly converting the application requirements regardless of their type in a sequence of requests forthe resource. Our algorithm guarantees that in steady conditions the di�erence between the servicetime that a client should receive in the idealized system and the service time it actually receives in thereal system is bounded by one time quantum. This result improves the previous known bounds forproportional share allocation of both processor [29, 30] and communication bandwidth [23] in dynamicsystems. The algorithm provides e�cient support for dynamic operations such as client joining or leavingthe competition (for the resource), and changing a client's weight. The scheduler also provides supportfor both fractional and non-uniform time quanta.However, many other problems remain open. First, we would like to investigate higher level resourceabstractions on top of EEVDF. An example, such an abstractions should provide inferior bounded ser-vice [26], i.e., a client should be able to specify a minimum fraction of the resource for which it is ableto run. This feature is important in supporting both multimedia applications that require certain rateobjectives and real-time applications that have to meet speci�ed deadlines.Second, it will be interesting to consider both hierarchical and heterogeneous scheduling schemes. Asan example, consider the case in which the clients are grouped in several classes. Then, at a higher levela proportional scheduler may be used to allocate resource shares to each class, while at a lower level,among the clients in the same class, a simple scheduler (e.g. round-robin) may be used. As a secondexample, consider the process-thread hierarchy. Here, similarly, a proportional scheduler may be used toallocated CPU time slices to each process, and in turn, the process may select a thread to run by using adi�erent policy. Ultimately, we think that this may be a valuable approach to implement
exible resourcemanagement in the new generations of operating systems [5, 10] in which the applications would be ableto implement their own algorithms for managing the shares of the resources allocated to them.We have conducted extensive simulations and we are currently in the �nal stages of implementing aprototype under FreeBSD Unix. The experimental results will be reported in a forthcoming paper.
27

9 Appendix A: Example: Implementation of Strategy 1In this appendix we give the ANSI C code for Strategy 1. For clarity of presentation we use two distinctdata structures: a client data structure (client struct) and a request data structure (req struct). How-ever, we note that since any client has associated at most one pending request, in practice it is enough touse one common data structure including all the information. For simplicity, we assume that the durationof any request issued by a client is no greater than one time quantum (i.e., QuantumSize). The clients'pending requests are stored in a tree-based data structure ReqTree (see Appendix B for details) thatsupports the following operations: insertion (insert req), deletion (delete req), and �nding the eligiblerequest with the earliest virtual deadline (get req). All these operations are implemented in O(logn),where n represents the number of pending requests. Notice that since any active client has exactly onepending request, n also represents the number of active clients.When a client joins the competition (join function), the virtual time is updated according to Eq.(19), and the client issues its �rst request. The request's virtual eligible time and the virtual deadlineare computed according to Eq. (9) and (10). Similarly, when the client leaves the competition (leavefunction), the virtual time is updated according to Eq. (18), and its request is removed from the tree.14Finally, when the weight of a client is changed (change weight), the virtual time is updated according toEq. (20).The dispatch function (EEVDF dispatch) �nds the eligible request with the earliest deadline (byinvoking get req) and allocates the resource to the corresponding client. Since the request is assumedto take at most one time quantum, when the client releases the resource the request is already ful�lled,and consequently the client's lag is updated and a new request is issued. We note that if the duration ofthe request is greater than one time quantum, there is no need to issue a new request before the currentone is ful�lled. In this case the delete req and issue req functions are called less frequently, which resultsin a lower overhead. However, as we have shown in Section 6 this comes at the expense of decreasingthe allocation accuracy. The functions used to update the virtual time (get current vt) and the client lag(update lag) are not given (their implementation based on the Eq. (3), (5), and (6) being straightforward)./* client data structure */typedef struct _client {int lag; /* client lag */void *req; /* pending request */...} client_struct;/* request data structure */typedef struct _req {time_v ve; /* virtual eligible time */time_v vd; /* virtual deadline */time_v min_vd; /* variable used in augmented data structure */client_struct *client; /* client which has issued request */struct _req *left, *right, *parent;} req_struct;/* global data */req_struct *ReqTree = NULL; /* request tree */time_v VirtualTime = 0; /* virtual time */int TotalWeight = 0; /* total weight of all active clients */14Here we assume that the client lag is updated before the leave function is called28

/* join competition */void join(client_struct *client){ /* update total weight of all active clients */TotalWeight += client->weight;/* update virtual time according to client lag */VirtualTime = get_current_vt() - client->lag/TotalWeight;/* issue request */client->req->ve = VirtualTime;client->req->vd = req->ve + QuantumSize/client->weight;insert_req(client->req);}/* leave competition */void leave(client_struct *client){ /* update total weight of all active clients */TotalWeight -= client->weight;/* update virtual time according to client lag */VirtualTime = get_current_vt() + client->lag/TotalWeight;/* delete request */delete_req(client->req);}/* change client weight */void change_weight(client_struct *client, int new_weight){ /* partial update virtual time according to client lag */VirtualTime = get_current_vt() + client->lag/(TotalWeight - client->weight);/* update total weight of all active clients */TotalWeight += new_weight - client->weight;/* update client's weight */client->weight = new_weight;/* update virtual time */VirtualTime -= client->lag/TotalWeight;}/* dispatch function */void EEVDF_dispatch(){ int used;/* get eligible request with earliest virtual deadline */req = get_req(ReqTree, get_curreent_vt());/* allocate resource to client with earliest eligible virtual deadline */used = allocate(req->client);/* update client's lag */update_lag(client, used);/* current request has been ful�lled; delete it */delete_req(ReqTree, req);/* issue new request */client->req->ve += used/client->weight;client->req->vd = client->req->ve + QuantumSize/client->weight;insert_req(client->req);} 29

10 Appendix B. Request Data StructureIn this section we propose an e�cient data structure to manage the requests initiated by active clients.The data structure is based on an augmented binary search tree and supports the following operations:insertion (insert req), deletion (delete req), and �nding the eligible request with the earliest virtual dead-line (get req). Each node in the tree stores the virtual eligible time ve, and the virtual deadline vd of therequest it represents. In addition, in min vd, each node maintains the minimum virtual deadline amongall of the nodes in its subtree (a node's subtree consists of the node itself and all its descendants). Thevirtual eligible time ve is used as a key in the binary search tree. Figure 4 depicts a simple instance ofour data structure containing 6 nodes. As an example, the information associated with the root (noden1) is: ve = 10, vd = 25, and min vd = 15 (notice that, in this case, the min vd represents the minimumvirtual deadline among all the nodes in the tree).
 8 / 15 3 / 20

 7 / 18

10 / 25

11 / 17

14 / 20

20 15 17

1715

15n
1

n

n n

n

n

2 3

4 5 6Figure 4: The pending requests are stored in an augmented binary search tree. Each node maintains twostate variables associated to the request it represents: the virtual eligible time (which is also the key inthe tree) and the virtual deadline. In addition each node maintains the minimum among all the virtualdeadlines stored in the nodes of its subtree.The remainder of this section describes the details of the three basic operations: get req, insert req,delete req.10.1 SearchingFigure 5 shows the ANSI C code of the get req function. The function accepts as input the current virtualtime vtime, and returns the eligible request with the earliest deadline. The algorithm starts at the rootand goes down the tree as follows: whenever vtime is larger than the eligible time of the current node(node), the algorithm selects the right child as the next current node, otherwise the algorithm selects theleft child. As a result (see Figure 5(a)) we obtain a path from root to one of the leaves which partitionsthe tree in two: all the nodes in the left (shaded) partition represent eligible requests, while all the nodesin the right partition represent requests that are not eligible yet. Notice that to obtain the entire set ofeligible requests, besides the nodes in the left partition, we need to consider also the eligible nodes alongthe searching path. Thus to �nd the earliest eligible request it is enough to search only along the pathand among the nodes in the left partition. 30

12

 8

6 9

vtime = 10
n

n1

n n3 4

2

(a)/* get eligible request with earliest deadline */req_struct *get_req(req_struct *root, time_v vtime){ req_struct *node = root, *st_tree = NULL, *path_req = NULL;while (node) {if (node->ve <= vtime) {/* update node with earliest deadline along path. */if ((!path_req) || (path_req->vd > node->vd))path_req = node;/* update root of subtree containing earliest deadline */if ((!st_tree) || (node->left && st_tree->min_vd > node->left->min_vd))st_tree = node->left;node = node->right;} elsenode = node->left;}/* check whether node with earliest deadline was along path */if ((!st_tree) || (st_tree->min_vd >= path_req->vd))return path_req;/* return node with earliest deadline from subtree */for (node = st_tree; node;) {/* if node found, return it */if (st_tree->min_vd == node->vd)return node;if (node->min_vd == node->left->min_vd)node = node->left;elsenode = node->right;}} (b)Figure 5: (a) The searching path in a request tree (for each node, only the virtual eligible time is shown).(b) The code for searching the node with the earliest eligible deadline.31

Next, notice that if vtime is larger than the eligible time of the current node, then the current nodeand all its left descendants are eligible (the set of left descendants consists of all nodes belonging to thesubtree of the node's left child). For example, in Figure 5(a), node n2 and all the descendants of node n3are eligible. Further, it is easy to see that all these subtrees are disjoint, and their union covers the entireleft partition. Thus, since the root of each of these subtrees maintains the smallest deadline among allits descendants in its min vd �eld, for �nding the node with the earliest deadline in the left partition itis enough to search only among the descendants of the root of the subtree with the smallest min vd.The searching algorithm updates two main variables: path req, which maintains the eligible node withthe earliest deadline on the searching path, and st tree, which maintains the root of the subtree withthe smallest min vd in the left partition. After the �nal values of these variables are computed, clearlythe eligible node with the earliest deadline is either path req, or it belongs to st tree. Thus, if the node'svirtual deadline vd is smaller than the min vd of st tree, then path req represents the request with theearliest deadline, and consequently the algorithm returns it. Otherwise, if the node with the earliestdeadline belongs to st tree, the algorithm identi�es and returns it (this task is performed by the last 10lines of the code in Figure 5(b))./* insert new request */void insert_req(req_struct *root, req_str *req){ req_struct *node = root;while (node) {/* update min vd of current node */if (node->min_vd > req->vd)node->min_vd = req->vd;if (node->ve < req->ve) {if (!node->right) {/* insert new request as right child */node->right = req;req->parent = node;return;}node = node->right;} else {if (!node->left) {/* insert new request as left child */node->left = req;req->parent = node;return;}node = node->left;}}} Figure 6: The code for insertion.10.2 InsertionThe code for inserting a new request (insert req function) is straightforward. The only di�erence from theclassical insertion algorithm for binary search trees [7] is that all the ancestors of the new node eventuallyneed to update their min vd �eld. As shown in Figure 6, this is simply done by updating (the min vd of)32

all nodes which have the min vd larger than the virtual deadline of the new node on the path from rootto the place where the node is to be inserted.10.3 DeletionAs shown in Figure 8(a), the deletion algorithm considers three cases depending on whether the nodeto be deleted is (i) a leaf, (ii) an internal node with only one child, or (iii) an internal node with twochildren. As in the case of insertion, the main di�erence from the standard algorithm (see [7]) consistsin updating the min vd �elds of the ancestors of the deleted node, when needed. For example, in the treefrom Figure 4 if node n5 is deleted, then its ancestors n2 and n1 should update their min vd �eld to 18./* update min vd �elds of all ancestors of node */void backward_update(req_struct *node, req_struct *root){ do {node->min_vd = node->vd;/* check for right child */if (node->right && node->min_vd > node->right->min_vd)node->min_vd = node->right->min_vd;/* check for left child */if (node->left && node->min_vd > node->left->min_vd)node->min_vd = node->left->min_vd;} while ((node != root) && (node = node->parent))} Figure 7: The code for the backward update function.In our algorithm this task is performed by the backward update function (see Figure 7). This functiontakes as input a node and the root of the tree the node belongs to and updates the min vd �elds ofall the nodes on the path from that node to the root (i.e., its ancestors). The function starts from thegiven node and iteratively advances to the root. At each level, it sets the min vd of the current nodeto the minimum between the node's virtual deadline and the min vd's of its children. In this way themodi�cation propagates recursively to the root. To see how this procedure works, consider the situationin which node n5 is removed from the tree in Figure 4. In this case, we invoke the backward updatefunction with the following parameters: the parent of the deleted node n2 and the root n1. Since afterthe deletion of n5, n2 remains with only one child n4, the min vd of n2 is set to the minimum betweenits virtual deadline vd and the min vd of n4, i.e., 18. Further, at the next level, the min vd of n1 is set tothe minimum between its virtual deadline and the min vd's of its children, i.e., 17.Figure 8 shows the code of the delete req function. The algorithm takes as input the root of therequest tree and the node to be deleted (node). In the �rst two cases ((i) and (ii)) the node is simplyremoved and its parent inherits its child, if any. Once this operation is accomplished, the algorithmupdates the min vds' of the node's ancestors by calling the backward update function. The case (iii) isa bit more complex (for a complete description, see [7]). First, the algorithm �nds the successor15 ofthe node to be deleted (succ) and removes it from the tree by recursively calling the delete req function.Since the successor of node is the leftmost node among its right descendants, it follows that the successor15In a binary search tree, the successor of a node n is de�ned as the node with the smallest key greater than n's key. Forexample, in Figure 4, the successor of the root is node n6, which has the key 11.33

 8

9

 10

11

15

20

 8

9

2020

6

 4

2

(i) (ii) (iii)(a)/* delete speci�ed request */req_struct *delete_req(req_struct *root, req_struct *req){ req_struct *child, *succ;if (!req->right || !req->left) { /* cases (i) and (ii) *//* get node's child, if any */child = get_child(req);/* remove node form tree */if (child)child->parent = node->parent;if (req == root)return child;if (req->parent->left == req)req->parent->left = child;elsereq->parent->right = child;/* update min vd of node's ancestors */backward_update(parent, root);} else { /* case (iii) *//* get node's successor */succ = get_succesor(req);/* delete node's successor from tree */req->right = delete_req(req->right, succ);/* swap node with its successor */swap_node(succ, req);/* update min vd of node's ancestors */backward_update(req, root);}return root;} (b)Figure 8: (a) The generic cases for deletion. (b) The code for deletion.34

can have at most one right child. Therefore the delete req function is called recursively exactly once.For e�ciency this function operates only on the tree containing node's right descendants and not on theentire tree. In this way it updates only the min vd �elds of the right descendants of node. Finally, thealgorithm replaces node with its successor, and updates the min vd �elds of all its ancestors by callingthe backward update function.From Figures 5(b) 6, and 8(b), it is easy to see that that all the algorithms spend a constant amountof time at each level of the tree (recall that in the case of delete req, although we have a recursive call,this call may occur at most once). Thus, for a tree of height h, the time complexity of get req, insert req,and delete req functions is O(h).10.4 Balanced TreesAlthough a binary search tree provides good performances on the average [7], in the worst case (when thetree degenerates) it exhibits an O(n) time complexity for insertion, deletion, and searching operations,where n represents the number of nodes of the tree. The usual solution to address this problem is to useone of the existing balanced data structures, such as red-black [7], or AVL trees [24]. The procedure tobalance the tree after an insertion or deletion is based on two types of operations: left and right rotations.Figure shows the code to update the min vd �elds for the left rotation (the code for the right rotationbeing similar). Since a rotation clearly takes constant time, and since as shown in [7] the time complexityto balance a tree with n nodes is O(lgn), the overall time complexity of get req, insert req and delete reqfunctions is also O(logn)./* left rotation */void left_rotation(req_struct *node){ /* update min vd �elds */left->min_vd = node->min_vd;node->min_vd = min(node->vd, left->right->min_vd);node->min_vd = min(node->min_vd, node->left->min_vd);/* perform rotation */...} Figure 9: The code for updating node's state for a left-rotation rotation.
35

References[1] M. J. Bach. \The Design of the Unix Operating System," Prentice-Hall, 1986.[2] S. K. Baruah, J. E. Gehrke and C. G. Plaxton, \Fast Scheduling of Periodic Tasks on Multiple Resources",Proc. of the 9th International Parallel Processing Symposium, April 1995, pp. 280{288.[3] S. K. Baruah, Personal Communications, June 1995.[4] G. Bollela and K. Je�ay, \Support for Real-Time Computing Within General Purpose Operating Systems",Proc. of the IEEE Real-Time Technology and Applications Symposium, Chicago, May 1995.[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers and C. Chambers,\Extensibility, Safety and Performance in the SPIN Operating System", SOSP-15, 1995.[6] R. L. Cruz, \A calculus for network delay. Part I: Network elements in isolation", IEEE Transaction onInformation Theory, vol. 37, pp. 114{131, 1991.[7] T. H. Cormen, C. E. Leiserson and R. L. Rivest. \Introduction to Algorithms," MIT Press, 1992.[8] G. Coulson A. Campbell, P. Robin, G. Blair, M. Papathomas and D. Hutchinson, \The Design of a QoSControlled ATM Based Communication System in Chorus", Internal Report MPG-94-05, Department ofComputer Science, Lancaster University, 1994.[9] A. Demers, S. Keshav, and S. Shenkar, \Analysis and Simulation of a Fair Queueing Algorithm", Proc. ofACM SIGCOM'89, September 1989, pp. 1{12.[10] D. R. Engler, M. Frans Kaashoek and J. O'Toole Jr, \Exokernel: An Operating System Architecture forApplication-Level Resource Management", SOSP-15, 1995.[11] L. L. Fong and M. S. Squillante, \Time-Function Scheduling: A General Approach for Controllable ResourceManagement", Working Draft, IBM T.J. Watson Research Center, New York, March 1995.[12] S. J. Golestani, \A Self-Clocked Fair Queueing Scheme for Broadband Applications", Proc. of IEEE INFO-COM'94, April 1994, pp. 636{646.[13] J. L. Hellerstein. \Achieving Service Rate Objectives with Decay Usage Scheduling," IEEE Transactions onSoftware Engineering, Vol. 19, No. 8, August 1993, pp 813-825.[14] K. Je�ay and D. Bennett, \A Rate-Based Execution Abstraction for Multimedia Computing", Proc. ofthe Fifth International Workshop on Network and Operating System Support for Digital Audio and Video,Durham, Appril 95.[15] J. Kay and P. Lauder. \A Fair Share Scheduler," Communication of the ACM, Vol. 31, No. 1, January 1988,pp 44-45.[16] S. J. Le�er, M. K. McKusick, M. J. Karels and J. S. Quarterman. \The Design and Implementation of the4.3BSD UNIX Operating System," Addison-Wesley, 1989.[17] J. P. Lehoczky, L. Sha and Y. Ding, \The Rate Monotonic Scheduling Algorithm: Exact Characterizationand Average Behaviour", Proc. of the IEEE Tenth Real-Time Systems Symposium, December 1989, pp.166{171.[18] C. L. Liu and J. W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-ment", Journal of the ACM, vol. 20, no. 1, January 1973, pp. 46{61.36

[19] U. Maheshwari, \Charged-based Proportional Scheduling", Technical Memorandum MIT/LCS/TM-529,Laboratory for CS, MIT, July 1995.[20] C. W. Mercer, S. Savage, and H. Tokuda \Processor Capacity Reserves: An Abstraction for ManagingProcessor Usage", Proc. of the Fourth Workshop on Workstation Operating Systems, October 1993[21] C. W. Mercer, S. Savage, and H. Tokuda, \Processor Capacity Reserves: Operating System Support for Mul-timedia Applications", Proc. of the IEEE International Conference on Multimedia Computing and Systems,May 1994[22] J. Nieh, M. S. Lam, \Integrated Processor Scheduling for Multimedia", Proc. of the Fifth InternationalWorkshop on Network and Operating System Support for Digital Audio and Video, Durham, N.H., April,1995.[23] A. K. Parekh and R. G. Gallager, \A Generalized Processor Sharing Approach To Flow Control in IntegratedServices Networks-The Single Node Case", Proc. of IEEE INFOCOM'92, 1992, pp. 915{924.[24] J. D. Smith, \Design and Analysis of Algorithms", PWS-KENT Publishing Company, Boston, 1989.[25] A. Silberschatz and P. B. Galvin. \Operating Systems Concepts," - fourth edition, Addison-Wesley, 1994.[26] I. Stoica, H. Abdel-Wahab, \A new approach to implement proportional share resource allocation", TechnicalReport TR-95-05, CS Dpt., ODU, April 1995.[27] I. Stoica, Work in progress, CS Dpt., ODU, 1995.[28] C. A. Waldspurger and W. E. Weihl. \Lottery Scheduling: Flexible Proportional-Share Resource Manage-ment," Proc. of the First Symposium on Operating System Design and Implementation, November 1994, pp.1{12.[29] C. A.Waldspurger and W. E. Weihl. \Stride Scheduling: Deterministic Proportional Share Resource Menage-ment," Technical Memorandum, MIT/LCS/TM-528, Laboratory for CS, MIT, July 1995.[30] C. A. Waldspurger. \Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management,"PhD Thesis, Laboratory for CS, MIT, September 1995.[31] L. Zhang, \VirtualClock: A New Tra�c Control Algorithm for Packet-Switched Networks", ACM Transac-tions on Computer Systems, vol. 9, no. 2, May 1991, pp. 101{124.
37

