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ABSTRACT  
 
This paper describes the design of a tightly coupled 
GPS/INS integration system based on nonlinear Kalman 
filtering methods. The traditional methods include 
linearization of the system around a nominal trajectory, 
and the extended Kalman filtering (EKF) method which 
linearizes the system around the previous estimate, or the 
predication, whichever is available. The recently proposed 
sigma-point Kalman filtering (SPKF) method uses a set of 
weighted samples (sigma points) to completely capture 
the first and second order moments of the prior random 
variable. In contrast to the EKF, the SPKF has a simpler  
implementation as it does not require the Jacobian 
matrices – the computation of which may lead to 
analytical or computational problems in some 
applications. 
 
This research is conducted under the Australian 
Cooperative Research Centre (CRC) for Spatial 
Information (CRC-SI) project 1.3 “Integrated Positioning 
and Geo-referencing Platform”. The project aims to 
develop a generic hardware/software platform for 
positioning and imaging sensor integration. The current 
work focuses on development of software and algorithms, 



and a field programmable gate arrays (FPGA) based 
GPS/INS data logging system.  
 
In the current development phase, a tightly coupled 
GPS/INS integration system based on a linearization 
around the INS solution has been designed and 
implemented. The system uses the GPS pseudorange and 
Doppler measurements to estimate the INS errors. This 
paper describes further developments of the integration 
filter design based on the EKF and SPKF methodologies, 
in order to compare the performance of nonlinear filtering 
approaches. Experimental results are presented and 
further planned developments are outlined. 
 
INTRODUCTION  
 
The integration of GPS and INS can overcome the defects 
of INS or GPS standalone systems, and benefits from the 
complementary characteristics of the two systems. To 
achieve the highest accuracy, multiple dual-frequency 
GPS receivers can be used in the integrated system to 
derive accurate baseline solutions from the carrier phase 
measurements [1]. However, there are many applications 
requiring a low-cost medium-precision integration system 
based on a low-cost GPS receiver and IMU, as for 
example the guidance and navigation of unmanned 
vehicles [2]. In the design of such a system, a tightly 
coupled integration approach is more sophisticated than 
the loosely coupled one [3]. For example, tight integration 
uses the GPS pseudorange/Doppler measurements 
directly, and the INS errors can be continuously corrected 
even if the number of visible GPS satellites drops to 
below four. On the other hand, a tightly coupled 
integration algorithm introduces more nonlinear 
properties into the system. For instance, a loosely coupled 
system isolates the nonlinear GPS range/range-rate 
equations to the GPS navigation calculation module. 
However, nonlinear terms arising from tight integration 
need to be carefully considered in the design of the 
integration Kalman filter. The nonlinear issues usually 
arise from the range and range-rate measurement 
equations, the discretization of the INS error model, and 
the triangular terms associated with the attitude angles. 
The nonlinear property associated with the attitude matrix 
also affects the lever arm term if the lever arm is 
expressed in the body frame system. 
 
Most state-of-the-art GPS/INS integration systems are 
designed to estimate the INS solution errors using the 
GPS measurement data. The INS error propagation 
equation is the system equation in the integrated systems. 
In tightly coupled GPS/INS integration, the GPS range 
and range-rate data are utilized and the range and range-
rate measurement equations are linearized around the INS 
solution. The standard Kalman filter is then applied to 
estimate the INS errors. This scheme has been 
demonstrated by many successful systems and their 

applications over the past two decades [3][4]. Recently 
application of nonlinear filtering methods to integrated 
navigation has been investigated in the literature [2][5]. In 
these investigations the differential equation of the INS 
mechanization or the kinematical equations of the host 
platform is chosen as the system dynamics model. This 
design unavoidably introduces nonlinearities to the 
filtering system even in a loosely coupled GPS/INS 
integration system where the GPS position/velocity 
solution is directly applied.  
 
The extended Kalman filter is the “standard” approach for 
state estimation of nonlinear systems over the past three 
decades [6]. The principal idea of the EKF is linearization 
of the system equation and/or the measurement equation 
around the previous estimate or the current prediction. 
The linearized system is then represented by the Jacobians 
of the nonlinear system/measurement functions. The 
normal Kalman filtering formulae are applied to the 
linearized system. The procedure produces the sub-
optimal estimate of the state of the system. The EKF has 
some defects, such as difficulty in implementation, 
difficult to tune, and the first order term is insufficiently 
accurate to approximate the nonlinearities of the system 
[7].    
 
The sigma-point Kalman filter was developed to 
overcome the limitation of the EKF. Distinguishing itself 
from the normal Kalman filter, the SPKF calculates the 
filtering parameters by utilization of a set of sampling-like 
points, the so-called the “sigma points” - which can be 
mapped into the state space or the measurement space 
through the nonlinear functions of the system directly, 
instead of linearization through the Jacobians. The 
parameters derived from the sigma points include the 
SPKF gain matrix, the state prediction and its covariance, 
the measurement prediction and its covariance, as well as 
the estimate covariance [7-9]. However, the EKF 
calculates the covariance matrices and the Kalman 
filtering gain matrix using the Jacobians. The EKF is the 
first order approximation of the nonlinear system and thus 
may introduce larger errors to the solution, especially if 
the system has large nonlinearities and the higher order 
terms are neglected. The SPKF approach is expected to 
give a better approximation to the nonlinear system 
because it is easier to approximate a probability 
distribution than it is to approximate an arbitrary 
nonlinear function or transformation [7].  
 
This paper develops a tightly coupled GPS/INS integrated 
system using the SPKF approach. The research is 
conducted under the CRC for Spatial Information (CRC-
SI) project 1.3 “Integrated Positioning and Geo-
referencing Platform”. The aims of the project include: 
(1) to develop a generic integrated positioning/geo-
referencing platform system based on FPGA technology, 
that can be subsequently reconfigured for optimized 



positioning and spatial data acquisition applications; and 
(2) to develop a suite of software that allows for precise, 
time-synchronized measurement logging, sensor control, 
real-time data processing, and sundry operations 
necessary to support such mapping applications. 
 
OPTIMAL ESTIMATION FOR NONLINEAR 
SYSTEMS  
 
Consider the nonlinear discrete-time system below 
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where x(k) is the state of the system at k, and z(k) is the 
measurement vector. The vectors w(k) and v(k) are the 
system noise and measurement noise respectively. 
 
Extended Kalman Filter 
 
The EKF applies the Kalman filter to nonlinear systems 
by simply linearizing all the nonlinear models so that the 
traditional linear Kalman filter equations can be applied. 
The extended Kalman filter (EKF) gives the estimate and 
the covariance [6] 
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The prediction of the state and its covariance are 
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The prediction of measurement is 
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The Kalman gain matrix is 
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where F(k+1,k) and H(k+1) are Jacobian matrices 
associated with f and h 
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Sigma Point Kalman Filter 
 
The sigma point Kalman filter, according to [7-9], can be 
summarized as follows. The sigma point Kalman filter 
updates the predication after the measurements arrive: 
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Comparing Eq. (11) with Eq. (3), one can find that the 
sigma point filter has the same prediction-correction 
structure as the normal Kalman filter. The gain matrix S 
in Eq. (11) can be referred to as the SPKF gain matrix, in 
a similar way to the Kalman filter’s gain matrix K in Eq. 
(3). The estimate covariance is 
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The SPKF gain matrix S is 
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The SPKF calculates the first and second moments of the 
priori random variables by utilization of the sigma points. 
As opposed to the particle filtering methodologies, the 
sigma points are deterministically calculated from the 
current estimate of its covariance. The sigma points can 
be mapped into the state space or the measurement space 
through the nonlinear functions of the system. The 
projection is then used for calculation of the filtering 
parameters. The Jacobians are thus no longer needed. Fig. 
1 illustrates the mapping of the SPKF versus that of the 
EKF, through the transformation of the nonlinear function 
f and its Jacobian F respectively. The dot-line ellipse 
represents the true covariance. The solid-line ellipse 
represents the calculated covariance. The SPKF approach 
estimates are expected to be closer to the true values than 
using the EKF approach.  

 
Fig 1. Illustration of projections of SPKF and EKF 
 
For a system described by an n-dimension state, the 2n+1 
sigma points will be used. The reduced sigma point 
filtering method can be found in [10]. Hereafter the 

         f(⋅) 

F 



normal 2n+1 sigma points will be used. The sigma points 
in the state space and associated weights are: 
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The sigma points of predication are then 
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The predication and its covariance are 
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The sigma points of measurements are 
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The predication of measurements and its covariance are 
 

)k1k(W)k1k(ˆ i

n2

0i
i +∑=+

=
Zz                   (21) 

T
i

i

n2

0i
izz

)]k1k(ˆ)k1k([

)]k1k(ˆ)k1k([W)k1k(

+−+⋅

+−+∑=+
=

zZ

zZP
         (22) 

T
i

i

n2

0i
ixz

)]k1k(ˆ)k1k([

)]k1k(ˆ)k1k([W)k1k(

+−+⋅

+−+∑=+
=

zZ

xXP
      (23) 

 
 
SYSTEM DESCRIPTION 
 
The hardware components of the system include the 
BEI’s Digital Quartz IMU-Navigation Processor (DQI-
NP) and the Rockwell’s MicroTracker LP GPS receiver. 
The DQI-NP has two interfaces for communication with 
external devices. The MicroTracker LP GPS receiver has 
a 9-pin interface to communicate with the DQI-NP; 
providing the DQI-NP with the 1PPS for time 
synchronization and the necessary measurements. For our 
purpose the DQI-NP is set to operate in the INS-only 
mode. The GPS raw measurements are logged to a PC 
through an additional RS232 port. All GPS data are 
converted to the RINEX format. The hardware 
configuration and connections are shown in Fig. 2. 
 

 
 
Fig. 2 Hardware components of the integrated GPS/INS 
system 
 
DQI-NP is a guidance, navigation & control (GN&C) 
product that uses the BEI Systron Donner Inertial 
Division's solid-state DQI technology [11]. It is designed 
around an Inertial Sensor Assembly (ISA) and provides 
all the basic IMU outputs including delta velocity (∆V), 
delta angular vector (∆θ). The ISA consists of six single-
axis sensors, three Quartz Rate Sensors, three Vibrating 
Quartz Accelerometers, the drive electronics, preamplifier 
circuitry for the sensor outputs, and the digital conversion 
electronics. The main specifications of DQI are listed in 
Table 1. 
 

Table 1.  System specifications of DQI [12] 

 Gyro (1σ) Accelerometer (1σ) 
Bias repeatability 10 deg/hr 1.5 mg 
In-run stability 3 deg/hr 200 µg 
Scale factor 350 ppm 350 ppm 
Random walk 0.035 

deg/sqrt(hr) 
200 µg/sqrt(Hz) 

Non-
orthogonality 

0.5 mrad 0.5 mrad 

 
 
DESIGN OF INTEGRATED KALMAN FILTER 
 
As the core of the integrated system the Kalman filter 
must be carefully designed. Because the tightly coupled 
GPS/INS integration is a nonlinear system, three filtering 
schemes are adopted in our system: (1) the linearization 
around the INS solution (hereafter referred to as the 
linearization method), (2) the EKF, and (3) the SPKF. 
Both the linearization method and the EKF designs 
linearize the system around an approximate point, the 
system state vector, whose components are usually chosen 
as the INS solution errors and the IMU sensor errors 
[1,3,4,11,12]. The SPKF does not need to linearize the 
system, and the nonlinear functions of the system are 
directly used in the algorithm for producing the sigma 



points. Therefore the SPKF-based design can choose the 
navigation state rather than the error state as the system 
state of the filter [2][5]. This paper, however, uses the 
INS error state and the sensor errors as the system state. 
Thus the three design schemes use the same system state 
vector. The 15 states of the filter are given in Table 2. The 
IMU sensor errors are the sum of all sensor errors such as 
the scale factor error, the bias and the noise. 
 

Table 2. The integration Kalman filter’s state definition 

State Definition Coordinate system 
1-3 Position error NED 
4-6 Velocity error NED 
7-9 Attitude error  NED 
10-12 Accelerometer error b-frame 
13-15 Gyro error b-frame 

 
The INS error equation is expressed in the psi-angle error 
mode[13]:  
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The sensor errors are modeled as random walk processes 
 

aa w=ε                                                 (27) 

gg w=ε                                                 (28) 

where rδ , vδ , and δψ  are the error vectors of 
position, velocity and angle respectively. aε and gε  are 
errors of the accelerometers and gyroscopes respectively. 
wa and wg are the white noises associated with 
accelerometers and gyroscopes respectively 
 
Supposing there are n visible satellites, the measurement 
equation for satellite #i can be written in following form. 
 
For the method linearizing around the INS solution: 
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where iz and iz are the range and range-rate differences 
between GPS and INS respectively.  
 
For the EKF: 
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where iy and iy are the equivalent measurements after 
the linearization. 
 
For the SPKF: 
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where iρ and iρ are the range and range-rate 
measurements. 
 
Low-cost GPS receivers use inexpensive crystal 
oscillators that drift and introduce clock biases in the 
pseudorange and frequency shift in the Doppler 
measurements. These clock terms are common errors in 
measurements from satellites, and single-differences 
between satellites can remove them. In this 
implementation, the between-satellite difference operation 
is applied to the measurements in order to remove these 
errors.   
 
The GPS receiver provides orbital data for calculating the 
position and velocity values for the GPS satellites. It also 
makes the pseudorange and Doppler measurements. The 
DQI-NP operates in the INS-only mode and provides the 
host platform’s navigational data, including position in 
LLA form (latitude, longitude, and altitude), velocity in 
ENU (east-north-up) form, and the attitude angles. Inside 
the software all navigational solutions, either from GPS or 
INS, are transformed to the NED (north-east-down) 
coordinate system.  
 
The software is implemented in C++ code. Because GPS 
and INS data are read in parallel, a mechanism for 
aligning the two data streams is necessary. For instance, 
the first time-tags of GPS and INS data can be read after 
initialization. The time-tags can be compared to decide 
which type of data will be read in the next cycle. If the 
GPS time-tag is earlier than the INS time-tag, for example 
at the present reading cycle, the next cycle must read INS 
data until the INS data ‘catches up’ with the GPS data. 



Conversely, if the GPS data is following the INS data, the 
next cycle must read GPS data until the GPS ‘catches up’ 
with the INS data. Once the difference between the GPS 
and INS time-tags falls to a small value, the two data can 
be regarded as being “aligned”. The Kalman filter 
algorithm will then be triggered.  
 
EXPERIMENTS 
 
Static tests 
 
Static tests have been performed in order to evaluate the 
system. As the SPKF is of most interest, its performance 
is highlighted. The typical setup of the devices for the 
static tests is a GPS antenna fixed on the roof of the EE 
building, at the Kensington Campus of the University of 
New South Wales. Through a coaxial cable the GPS 
signal is fed into the room where the GPS receiver and the 
DQI-NP are located. There is a distance of several metres 
between the GPS antenna and the INS. This can be treated 
as the lever arm. As the INS errors are estimated using the 
GPS data, the corrected INS solution always follows the 
GPS solution. This phenomenon is reflected in the 
position curves, e.g. as depicted in Figs 3a and 3b, in 
which the GPS-only solution (in green lines) is derived 
from the same data set being used in the integration filter.  
 
To clearly observe the efficiency of the filtering solution 
tracking the INS error, a forward correction instead of 
feedback correction is applied to the system. Figure 4a 
and 4b illustrates the INS-only position (in blue lines) 
against the GPS/INS integrated solution (in red lines). 
From Figs 4a and 4b it is evident that the INS errors grow 
rapidly without the aid of GPS, and the errors can be 
efficiently compensated for by the GPS through the 
Kalman filter. The GPS/INS integrated solution (in red 
lines) is smoother than the GPS-only solution, as shown 
in Figs 3a and 3b. Therefore the GPS/INS solution is 
better than a standalone solution either of GPS or INS.  
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Fig. 3a Latitude solutions, the SPKF vs the GPS-only 
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Fig. 3b Longitude solutions, the SPKF vs the GPS-only 
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Fig. 4a Latitude solutions, the SPKF vs the INS-only 
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Fig. 4b Longitude solutions, the SPKF vs the INS-only 
 
Three filtering designs give almost the same solution in 
terms of accuracy. This result agrees with the result in [2] 
and does not support the “expected” conclusion that the 
SPKF gives higher solution accuracy. One possible reason 
is that the nonlinearities of the range and range-rate 
measurement equations are not large enough and hence 
the SPKF's better performance is not obvious. This 
explanation of course would need to be verified by further 
theoretical analysis. As pointed out in the previous 
section, the SPKF’s biggest advantage over the EKF is 
that it does not need the Jacobian matrices. This feature 
makes for more convenient system design, mathematical 
derivation and software implementation. 



Figs 5a and 5b depict the covariance-time curves, the 
EKF (blue line) against the SPKF (red line). It shows that 
the SPKF has a fast speed of filter convergence. 
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Fig. 5a Covariances in north position, EKF vs SPKF 
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Fig. 5b Covariances in east position, EKF vs SPKF 
 
Kinematic tests 
 
In the kinematic experiments the GPS antennas and the 
INS were set up on the roof of a car, as shown in Fig. 6. 
The MicroTracker GPS receiver and a Leica system 530 
dual-frequency GPS receiver were used in the tests. The 
purpose is to determine whether a high quality GPS 
receiver can improve the performance of the system. The 
trajectory of the car in the test is plotted in Fig. 7, as 
derived from the SPKF solution.  
 

 
Fig. 6 Device installation in the kinematic test 

 
Fig. 7 Trajectory of the car in the kinematic test 
 
The comparison of the GPS-only solution with the 
GPS/INS integrated solution is depicted in Figs 8a to 8d. 
It is clear that the GPS/INS integrated solution (in red) is 
smoother than the GPS-only solution (in green) (8a and 
8b). It is particularly obvious when the car is static. In 
both position and velocity the integrated solution tracks 
the car’s maneuvers very well, as indicated in Figs 8a to 
8d. This also demonstrates that the latency caused by the 
filter is within the allowance for the required accuracy.  
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Fig. 8a Latitude solutions, SPKF vs GPS-only 
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Fig. 8b Longitude solutions, SPKF vs GPS-only 
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Fig. 8c East velocity solutions, SPKF vs GPS-only 
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Fig. 8d North velocity solutions, SPKF vs GPS-only 

 
The comparison of the SPKF solution (in red lines) and 
the INS-only solution (in blue lines) is depicted in Figs 9a 
to 9d, where the INS drift is obvious. A big discrepancy 
in initial position is obvious in Figs 9a and 9b. This is 
caused by the initial error of the INS, a position difference 
of about 10 km between the test site and the laboratory 
location. The error is estimated from the GPS data and 
can be quickly compensated for, as shown in Figs 8a and 
8b. 
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Fig. 9a Latitude solutions, SPKF vs INS-only 
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Fig. 9b Longitude solutions, SPKF vs INS-only 
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Fig. 9c East velocity solutions, SPKF vs INS-only 
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Fig. 9d North velocity solutions, SPKF vs INS-only 

 
The SPKF covariance-time curves in position and 
velocity are depicted in Figs 10a and 10b respectively. 
The red lines are the east components and the blue lines 
are the north components. Comparing the solutions in 
Figs 8a to 8d, one can find that the biggest changes occur 
during maneuvers. As the covariance is calculated from 
the sigma points, it could be influenced by the 
measurements and the GPS constellation. A further 
theoretical analysis is needed to verify this. 
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Fig. 10a Position covariance solutions of SPKF  
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Fig. 10b Velocity covariance solutions of SPKF  

 
 
CONCLUSIONS 
 
A tightly coupled GPS/INS integration system has been 
designed and implemented on the basis of nonlinear 
filtering methods. The new nonlinear filter, the sigma 
point Kalman filter (SPKF), was compared with 
traditional methods such as the linearization approach and 
the extended Kalman filter (EKF). In contrast to the EKF, 
the SPKF is easier to implement because it does not 
require the computation of Jacobian matrices. Static and 
kinematic tests have demonstrated that the SPKF can 
generate solutions of similar accuracy to those of the 
EKF. However the SPKF has a faster convergence speed. 
 
Planned further developments include theoretical analysis 
on the SPKF-based tightly coupled GPS/INS integration 
system, and migration of the design to the FPGA platform 
for real-time implementation.  
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