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Abstract— Packet Scale Rate Guarantee (PSRG) is a ser-
vice guarantee defined recently for Expedited Forwarding
(EF) service under the Differentiated Services framework.
In the original work of PSRG [1], two classes of schedulers
are proved to be PSRG servers. In addition, it is proved
that end-to-end PSRG and consequently end-to-end delay
bound are provided by a network of PSRG servers imple-
menting per-flow scheduling. Moreover, a delay bound is
presented for a network of PSRG servers implementing ag-
gregate scheduling. In this paper, we show that these re-
sults can be improved for networks of PSRG servers of these
schedulers. In particular, we show that the two classes of
schedulers belong to a common scheduler family. In ad-
dition, we prove that the end-to-end delay bounds can be
improved for networks of such schedulers. We also prove
that PSRG can be derived from delay bound and call this
PSRG-from-delay-bound property. Moreover, with this prop-
erty, we derive and discuss end-to-end PSRG for both the
per-flow scheduling network and the aggregate scheduling
network.

I. Introduction

To provide service guarantees in the Internet, the Dif-
ferentiated Services (DiffServ) framework [3] has attracted
a lot of attention in the networking community due to its
scalable and flexible design. In DiffServ, one important ser-
vice type is Expedited Forwarding (EF). Its corresponding
Per-Hop Behavior (PHB), EF PHB, was initially defined in
RFC 2598 [7]. However, a recentl work [1] has shown that
the schedulers and configuration rates on which the EF def-
inition in RFC 2598 can be implemented are very limited
and the defined EF PHB in RFC 2598 is not readily op-
erational because RFC 2598 does not admit quantitative
compliance testing. Also pointed out in [1], these limita-
tions cannot be corrected with simple incremental fixes.

Fortunately, there is an alternative definition for EF
PHB, called Packet Scale Rate Guarantee (PSRG), which
not only captures the intuitive content of RFC 2598 but
also allows quantitative compliance testing [5] [4]. The
new definition has been adopted by IETF as RFC 3246 [5].
Intuitively, PSRG can be viewed as a characterization of
how far a node differs from an ideal node. Unlike previous
works, such as Packet GPS (PGPS) [12] and Guaranteed
Rate (GR) servers [6], where the focus is on investigating
how late a node can be with respect to (w.r.t.) GPS, PSRG
goes one step further to capture how much a node is late
or early w.r.t. GPS. Formally [1]:

Definition 1: A server s is said to offer a flow packet scale
rate guarantee (PSRG) with rate Rs and error term Es, iff
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the departure time di
s of the ith packet of the flow satisfies

the following condition: For all i ≥ 0,

di
s ≤ F i

s + Es (1)

where with F 0
s = 0 and d0

s = 0, F i
s is iteratively defined by

F i
s = max[ai

s, min(di−1
s , F i−1

s )] +
li

Rs
. (2)

Here, F i
s is the target departure time for the ith packet of

the flow; ai
s is the arrival time of the packet at the server

s and li is the length of the packet.
According to the definition, PSRG has two parameters:

a rate and an error term. Particularly, the latter captures
the error of a server w.r.t. its corresponding fluid server.
Hence, a smaller implemented error term means a better
packet implementation of the idea fluid server. Since PSRG
is characterized by these two parameters, it is a must to
derive them for a defined PSRG: either a per-hop PSRG
for EF PHB or a per-domain PSRG for EF PDB (Per-
Domain Behavior). Furthermore, a smaller derived error
term implies a more accurate characterization of it.

In [1], two classes of schedulers have been studied and
proved to be PSRG servers. Also, it is proved that end-to-
end PSRG and consequently end-to-end delay bound are
provided by a per-flow scheduling network in which each
node along the path of a flow provides PSRG to it. Further-
more, a delay bound is presented for an aggregate schedul-
ing network in which each node is a PSRG server to the
EF aggregate. However, for the aggregate scheduling net-
work, it is not clear from [1] what its end-to-end PSRG is.
For ease of exposition, delay in this paper is defined as the
queueing delay part ignoring propagation delay.

The purpose of this paper is to derive delay bound and
PSRG for networks of PSRG servers that belong to the
two scheduler classes. In particular, two representative
networks, a per-flow scheduling network and an aggregate
scheduling network, are considered. We first show that the
two scheduler classes studied in [1] belong to a common
scheduler family. We next prove that the end-to-end delay
bound can be improved for both the per-flow and the aggre-
gate scheduling networks. We argue that the improvement
can be significant. We then prove a relationship between
PSRG and delay bound, which we call PSRG-from-delay-
bound property. This property states that PSRG can be
derived from delay bound. Finally, with the property, we
derive and discuss end-to-end PSRG for both the per-flow
scheduling network and the aggregate scheduling network.



II. Review of Previous Results

A. PSRG Schedulers

In [1], two classes of schedulers are studied and proved
to provide PSRG. One class is the strict priority scheduler.
It is proved that the flow at the highest priority level of a
strict priority scheduler s is given PSRG with rate Cs and
error term L/Cs where Cs is the total output rate of the
scheduler and L is the maximum packet length.

Another class of schedulers studied in [1] include a wide
family of fair queueing schedulers that are packet-based
implementations of the ideal GPS fluid scheduler. All these
schedulers have the following property:

Gi
s − E1

s ≤ di
s ≤ Gi

s + E2
s , (3)

where Gi
s represents the time the packet would departure

if the scheduler were the idea GPS fluid scheduler, and E1
s

and E2
s , called error terms, are two constants. (3) captures

how much the scheduler can be late or early w.r.t. GPS.
In [1], it is proved that if a scheduler guarantees (3), then

it is PSRG server with error term Es satisfying

Es = E1
s + E2

s . (4)

B. PSRG for a Per-Flow Scheduling Network

Also in [1], it is proved that a per-flow scheduling network
provides PSRG. Specifically, if along the path of a flow,
each node s(= 1, . . . , H) provides PSRG to the flow with
rate Rs and error term Es. Then, the network provides
an end-to-end PSRG to the flow with rate R(= mins{Rs})
and error term E determined by

E =
H∑

s=1

Es +
H−1∑

s=1

L

Rs
. (5)

Except for the strict priority scheduler, all other PSRG
servers studied in [1] belong to the class of schedulers sat-
isfying (3). Hence, applying (4) to (5), we further get

E =
H∑

s=1

E1
s +

H∑

s=1

E2
s +

H−1∑

s=1

L

Rs
, (6)

where if a scheduler s is strict priority, we can set E2
s =

L/Cs and E1
s = 0 as will be discussed in Sec. III.

C. Delay Bounds

PSRG implies rate guarantee [1] [10]. Specifically, if a
scheduler provides a flow PSRG with rate Rs and error
term Es, then it is Guaranteed Rate (GR) server to the flow
with the same rate Rs and error term Es. Consequently,
based on results for GR [6], it can be shown that for the per-
flow scheduling network, if a flow is token bucket (rf , σf )
constrained with rate rf and burstiness parameter σf be-
fore entering the network and rf ≤ R(= mins{Rs}), then

for any packet of the flow, its end-to-end delay is bounded
by

D =
σf

R
+

H∑

s=1

E1
s +

H∑

s=1

E2
s +

H−1∑

s=1

L

Rs
. (7)

For an aggregate scheduling network of arbitrary topol-
ogy where each node provides PSGR to the EF aggregate
that is formed with FIFO, an end-to-end delay bound has
been proved [8] [1]. The assumptions are 1) each EF flow
is token bucket constrained at the ingress with parame-
ters (rf , σf ); 2) each node s provides to the EF aggregate
PSRG with rate Rs and error term Es; 3) the amount of
EF traffic on any link does not exceed a certain ratio α < 1
of the configured rate Rs, i.e.

∑
f∈Fs

rf ≤ αRs where Fs

denotes the set of EF flows on the link; 4) for any link,
let βs =

∑
f∈Fs

σf/Rs and β be a bound on all βs; 5) the
route of any flow in the network traverses at most H nodes.
With these assumptions, if α < 1

H−1 , the bound is

D =
H

1 − (H − 1)α
(Es,max + β), (8)

with
Es,max = maxs{E1

s + E2
s +

L

Rs
}. (9)

D. Remarks

Based on (7) and (8), it is clear that both E1
s and E2

s

affect the obtained delay bounds. This could lead to a belief
that to provide a small delay bound, all nodes should have
both small E1

s and small E2
s . However, in the following, we

shall prove that these bounds can be improved w.r.t. (7)
and (8) if each node belongs to the two scheduler classes in
[1]. Based on the improved results, we argue that the belief
is not necessarily true. Another point worth highlighting
is that while the delay bound has been given as (8) in [1]
for the aggregate scheduling network, it is not clear what
its end-to-end PSRG is. On the other hand, from the end-
user’s point of view, a service guarantee makes more sense
end-to-end than per-hop. In this sense, it is desirable to
study the end-to-end PSRG guaranteed by the aggregate
scheduling network. Since in DiffServ networks aggregate
scheduling is adopted, this study becomes critical, even
though the end-to-end PSRG has been studied for the per-
flow scheduling network as shown by (6) [1] [9].

III. Improved Delay Bounds

We now show that the delay bounds can be improved.

A. Reference Fluid Server Model

We begin with introducing a server model. In Sec. II,
we considered a family of fair queueing schedulers that ap-
proximate GPS. Based on the same idea, we extend (3) to
characterize the approximation of a packet scheduler w.r.t.
its reference fluid scheduler. In particular, we say a packet



scheduler s approximates its reference fluid scheduler with
error terms E1

s and E2
s , iff

Ĝi
s − E1

s ≤ di
s ≤ Ĝi

s + E2
s , (10)

where Ĝi
s is the time packet i would departure if the sched-

uler were its reference fluid scheduler.
Comparing (10) with (3), it is clear that the class of fair

queueing schedulers belong to the scheduler class charac-
terized by (10). The following theorem shows a similar
result for strict priority (SP) scheduler.

Theorem 1: For the flow at the highest priority level, a
packet SP scheduler s approximates its reference fluid SP
scheduler with E1

s = 0 and E2
s = L

Cs
.

Proof: The proof includes two parts. i) When any
packet at the highest priority level, denoted as the tagged
packet, reaches the head of queue, it would be served with
rate Cs immediately if the scheduler were the reference
fluid SP. However, the tagged packet could be delayed due
to a packet in service in the packet SP. Hence, the de-
parture time of the tagged packet from the packet SP is
never earlier than it would depart from the fluid SP. So,
we have E1

s = 0. ii) For the tagged packet, the maximum
time it may wait after reaching the head of queue is L

Cs
,

which is caused by the packet in service. After the packet
in service is serviced, the packet SP scheduler will keep on
serving packets at the highest priority level starting from
the head-of-queue tagged packet till the highest priority
queue is empty. Hence, all these packets depart from the
packet SP scheduler with a maximum L

Cs
delay w.r.t. the

fluid SP scheduler. In other words, E2
s = L

Cs
.

With (10), we have the following result:
Theorem 2: If a scheduler satisfies (10) and its corre-

sponding fluid scheduler guarantees a rate Rs to the flow,
then the scheduler provides PSRG to the flow with rate Rs

and error term E1
s + E2

s .
Proof: Note that in the corresponding fluid scheduler,

Rs is the guaranteed rate to the flow. In other words, any
packet i(≥ 1) of the flow receives a service rate not less
than Rs. Hence, the departure time of packet i from the
fluid scheduler satisfies: with Ĝ0

s = 0,

Ĝi
s ≤ max{ai

s, Ĝ
i−1
s } +

li

Rs
. (11)

We now prove by induction the following result:

Ĝi
s ≤ F i

s + E1
s , (12)

with which and (10), di
s ≤ Ĝi

s + E2
s ≤ F i

s + E1
s + E2

s and
consequently the theorem follows.

For the base step i = 1, since Ĝ1
s ≤ a1

s + li

Rs
while F 1

s =

a1
s + li

Rs
, (11) holds. For the induction step, assume (12)

holds for all packets 1, . . . , i − 1. Then, for packet i, there
are two cases.

Case 1: ai
s ≥ Ĝi−1

s . For this case, we have Ĝi
s ≤ ai

s + li

Rs

from (11). Since it is easy to verify by definition that F i
s ≥

ai
s + li

Rs
, (12) holds for this case.

Case 2: ai
s < Ĝi−1

s . For this case, we have Ĝi
s ≤ Ĝi−1

s +
li

Rs
from (11). Based on the induction assumption, Ĝi−1

s ≤
F i−1

s + E1
s and hence Ĝi

s ≤ F i−1
s + E1

s + li

Rs
. In addition,

based on (10), Ĝi−1
s ≤ di−1

s + E1
s and hence Ĝi

s ≤ di−1
s +

E1
s + li

Rs
. Consequently, Ĝi

s ≤ min{di−1
s , F i−1

s }+E1
s + li

Rs
≤

F i
s + E1

s , and (12) also holds for the second case.
Similarly, we can prove that (6) and (9) are valid for the

per-flow scheduling network and the aggregate scheduling
network even though a scheduler adopts SP.

The following is the basis for deriving improved bounds.
Theorem 3: If for a flow, a scheduler satisfies (10) and

its corresponding fluid scheduler guarantees a rate Rs to
the flow, then the scheduler is a Guaranteed Rate (GR)
server [6] to the flow with rate Rs and error term E2

s .
Proof: By definition, a scheduler s is said to be a

Guaranteed Rate server to a flow with rate Rs and error
term γ, iff it guarantees that any packet j of the flow is
transmitted by time GRCj

s + γ [6], or dj
s ≤ GRCj

s + γ,
where with GRC0

s = 0, GRCj
s is iteratively defined to be

GRCj
s = max{aj

s, GRCj−1
s } +

lj

Rs
. (13)

Note that in the reference fluid system, the flow receives
service at a rate not less than Rs, and hence for any j ≥ 1,

Ĝj
s ≤ max{aj

s, Ĝ
j−1
s } +

lj

Rs
. (14)

Comparing (13) and (14), it is easy to verify that Ĝj
s ≤

GRCj
s . Hence from (10), dj

s ≤ Ĝj
s + E2

s ≤ GRCj
s + E2

s .

B. Improved Delay Bounds

Having proved The. 3, we can re-apply available results
and get improved end-to-end delay bounds.

Theorem 4: For the per-flow scheduling network, if the
flow is token bucket (rf , σf )-constrained before entering
the network, then, if rf ≤ R(= mins{Rs}), the end-to-end
delay bound becomes [6]

D =
σf

R
+

H∑

s=1

E2
s +

H−1∑

s=1

L

Rs
. (15)

Theorem 5: For the aggregate scheduling network, if α <
1

H−1 , the end-to-end delay bound is [8]

D =
H

1 − (H − 1)α
(E2

s,max + β), (16)

where
E2

s,max = maxs{E2
s}. (17)



Comparing (15) with (7) and (16) with (8), it is clear
that (15) and (16) are improved by removing all the E1

s

items from (7) and (8) respectively. Hence, (15) is smaller
and tighter than (7) and so is (16) than (8).

Note that for a scheduler satisfying (10), its E1
s term

can be much larger than its E2
s term. For example, WF2Q

is known to have both the minimum E1
s (= L

Rs
) term and

the minimum E2
s (= L

Cs
) term among various fair queueing

schedulers [2]. Suppose there are N flows equally sharing
Cs. Then, Rs = Cs

N . Clearly, for this case E1
s = N ·E2

s and
if N is large, then E1

s can be much larger than E2
s .

For the network cases, if each scheduler is WF2Q , then
(15) is smaller than (7) by

∑H
s=1 E1

s , and (16) is smaller
than (8) by H

1−(H−1)αmaxs{E1
s} (Here, from (9) to (17),

there is an additional improvement of L
Rs

. Detailed discus-
sion can be found from Lemma 4 in [8].). Hence, (15) can
be much smaller than (7) and so is (16) than (8).

In addition, since (15) and (16) are independent of E1
s , it

is reasonable to choose schedulers with small E2
s to provide

tight delay bounds. For example, WFQ, which is simpler
to implement than WF2Q and has the same E2

s value, may
be used instead of WF2Q to obtain the same delay bound.
For this, however, one may argue that it is PSRG while
not delay bound that EF aims to provide. Hence, based on
(5) and equivalently (6), to have smaller error term for an
implemented PSRG, WF2Q is preferable than WFQ since
the former has a much smaller E1

s value than the latter.
While this argument sounds convincing, the “PSRG-from-
delay-bound” property to be presented in Sec. IV shows
that the PSRG provided by a network of WFQ schedulers
can be as good as or even better than the PSRG derived
from (6) for the corresponding WF2Q network.

IV. End-to-End Packet Scale Rate Guarantee

In this section, we first introduce the definition of per-
domain PSRG, then develop a technique to study end-
to-end PSRG, and finally apply it to both the per-flow
scheduling network and aggregate scheduling network.

A. Definition of Per-Domain PSRG

While Definition 1 defines PSRG for the single node case,
it cannot be used to describe PSRG for the network case,
for which we need the definition of per-domain PSRG.

Consider the path of a flow f crossing a network domain,
which is a tandem system of servers numbered 1, . . . , H .
Along the path, the flow may aggregate with other flows.
The per-domain PSRG is defined as follows [9]:

Definition 2: A network domain is said to provide per-
domain PSRG to a flow with rate R and error term E iff

di
H ≤ F̂ i + E (18)

where F̂ i is iteratively defined by

F̂ 0 = 0, d0
H = 0

F̂ i = max[ai
1, min(di−1

H , F̂ i−1)] +
li

R
. (19)

Comparing Definition 1 and Definition 2, we can view
the latter as a generalization of the former. Particularly, if
we view the global system of the end-to-end path of the flow
as a black box, (19) is indeed the PSRG virtual finish time
function for the end-to-end system with H servers, where
ai
1 is the arrival time of packet i to the black box and di

H

is the departure time of the packet leaving the black box.

B. PSRG from Delay Bound

The following theorem presents a relationship between
PSRG and delay bound, which we call PSRG-from-delay-
bound property.

Theorem 6: For a network of arbitrary topology, if the
network provides a bounded delay Dh to an end-to-end
flow till hop h with 0 ≤ h ≤ H and D0 = 0, and from hop
h+1 to H , each node guarantees (10) to the flow, then the
network provides to the flow per-domain PSRG with rate
R = min{Rh+1, . . . , RH} and error term

E = Dh +
H∑

s=h+1

(E1
s + E2

s ) +
H−1∑

s=max{h,1}

L

Rs
, (20)

where by convention,
∑H

s=h+1 x = 0 for all h ≥ H .
Proof: The proof includes three parts. First, from

The. 2, it is known that each node h + 1 to H is PSRG
server to the flow. Hence, based on the concatenation
property of PSRG servers [1] [9], we can treat the concate-
nated system of node h + 1 to node H as a single PSRG
server with rate R = min{Rh+1, . . . , RH} and error term∑H

s=h+1(E
1
s + E2

s ) +
∑H−1

s=h+1
L
Rs

, whose PSRG virtual fin-
ish time function is defined by (19) with a replacement of
ai
1 with ai

h+1. This replacement is because the arrival time
of packet i to the concatenated system is ai

h+1.
Second, consider the sub-system comprised of node 1 to

h where the flow passes through. According to Def. 2, we
define domain PSRG virtual finish time function for it as

F̂ i
h = max[ai

1, min(di−1
h , F̂ i−1

h )] +
li

R
.

Clearly, F̂ i
h ≥ ai

1 + li

R ≥ ai
1. In addition, the sub-system

guarantees delay bound Dh to the flow. Hence,

di
h ≤ ai

1 + Dh ≤ F̂ i
h + Dh.

Then, by definition, the sub-system provides PSRG to the
flow and hence can be treated as a single PSRG server.

Finally, based on the concatenation property [1] [9] and
per-domain PSRG definition, the theorem is proved.

Before proceeding, let us re-look at The. 6, in which, h
can be 0 to H . When h = 0, The. 6 produces the same
result as (6). When h changes from 1, . . . , H , The. 6 may
generate different results. While all these results are valid,



one may choose h such that the generated result is the best
in terms of minimum error term obtained.

While it is usual to derive delay bound from PSRG, the
PSRG-from-delay-bound makes sense because of the fol-
lowing reasons. First, deriving delay bound is technically
mature. A lot of techniques, such as network calculus, can
be used. However, very few techniques can be used to de-
termine PSRG, particularly end-to-end PSRG.

Second, although (6) can be used to calculate the error
term for end-to-end PSRG, it is applicable only to per-flow
scheduling networks. For aggregate scheduling networks of
arbitrary topology, of which DiffServ is an example, to the
best of our knowledge, no technique has been developed.
On the other hand, it is desirable to extend EF from per-
hop to per-domain, since from an end-user’s point of view,
end-to-end service makes more sense. In fact, this is an
ongoing effort of DiffServ [11]. In addition, like EF PHB,
the per-domain EF service should allow quantitative com-
pliance testing. The. 6 provides a basis for such analysis.

Third, the error term determined from The. 6 can be
as good as that determined from other techniques. For
example, if σf is not too large, the error term determined
from The. 6 for the per-flow scheduling network may be
smaller than that from (6).

C. PSRG for the Per-Flow Scheduling Network

Note that Theorem 6 is very general, which is also ap-
plicable to the per-flow scheduling network. For such a
network, letting h = 0 in (20), we get the following result:

Theorem 7: For the per-flow scheduling network, if the
flow is token bucket (rf , σf )-constrained at the ingress and
rf ≤ R(= mins{Rs}), then the network provides an end-
to-end PSRG to the flow with rate R = mins{Rs} and
error term E determined by

E =
σf

R
+

H∑

s=1

E2
s +

H−1∑

s=1

L

Rs
. (21)

To compare (21) with (6), let us consider an example,
in which each node is again assumed to implement WF2Q
that has E1

s = L
Rs

. Also assume each node allocates the
same rate R to the flow. Then the difference between the
two error terms from (21) and (6) is

E(21) − E(6) =
σf − H · L

R
. (22)

From (22), we can conclude that the error term from (6)
is smaller only if σf > H · L. If, however, σf ≤ H · L, the
error term determined from (21) is better. Note that many
other well-known fair queueing schedulers such as WFQ
have the same E2

s value as WF2Q but have much larger
E1

s value than L
Rs

[2]. In consequence, E(21) − E(6) ≤ 0 or
E(21) ≤ E(6) is highly possible if H is also large. Hence,
E(21) provides another option for calculating end-to-end
PSRG for the per-flow scheduling network.

D. PSRG for the Aggregate Scheduling Network

We finally present the end-to-end PSRG for the aggre-
gate scheduling network based on Theorems 5 and 6:

Theorem 8: For the aggregate scheduling network, if α <
1

H−1 , it provides to any flow f end-to-end PSRG with rate
rf and error term E as

E =
H

1 − (H − 1)α
(E2

s,max + β), (23)

where E2
s,max = maxs{E2

s}.

V. Conclusion

This paper has made two contributions in the context
of Expedited Forwarding. First, improved delay bounds
have been derived for two representative networks: a per-
flow scheduling network and an aggregate scheduling net-
work of arbitrary topology, in which, each scheduler is
characterized by two error terms w.r.t. its correspond-
ing fluid scheduler. Second, the PSRG-from-delay-bound
property has been proved. With this property, end-to-
end PSRG has been derived for the two representative
networks. A simple comparison between the end-to-end
PSRG determined from the PSRG-from-delay-bound prop-
erty and that from the original PSRG work shows that
PSRG-from-delay-bound provides another option for de-
termining end-to-end PSRG for per-flow scheduling net-
works. The application of PSRG-from-delay-bound prop-
erty to the aggregate scheduling network has allowed to
derive end-to-end PSRG for such networks.
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