
Hardware-Based View-Independent Cell Projection

Manfred Weiler, Martin Kraus, and Thomas Ertl∗

Visualization and Interactive Systems Group, Universität Stuttgart, Germany

Abstract

We present the first, view-independent cell projection algorithm for
off-the-shelf programmable graphics hardware. Our implementa-
tion performs all computations for the projection and scan conver-
sion of a set of tetrahedra on the graphics hardware and is there-
fore compatible with many of the hardware-accelerated optimiza-
tions for polygonal graphics, e.g. OpenGL vertex arrays and dis-
play lists. Apart from our actual implementation, we discuss po-
tential improvements on future, more flexible graphics hardware
and applications to interactive volume visualization of unstructured
meshes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations, Display algo-
rithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture, Raytracing

Keywords: cell projection, pixel shading, programmable graph-
ics hardware, ray tracing, tetrahedral meshes, unstructured meshes,
volume rendering, volume visualization

1 Introduction

Without doubt there is a predominance of polygons in interactive,
three-dimensional computer graphics. But even more importantly,
the development of new mass-market graphics hardware is — apart
from very few exceptions — driven by the needs of fast polygon-
based rendering; thus, the performance gap between polygonal
graphics and alternative approaches, e.g. volume graphics, is in fact
widening despite recent progresses in volume graphics. This de-
velopment is not only a serious challenge for the volume visual-
ization community, but also offers great opportunities for technical
advances in volume rendering — provided that the potential of new
hardware features is successfully exploited for volume graphics.

Our ultimate goal are volumetric graphics primitives that are as
well supported by graphics hardware as polygonal primitives are
today. Given such primitives, rendering of complex volumes can be
performed by decomposing them into tetrahedra and scan convert
each cell in the same manner as complex surfaces are decomposed
into single triangles for rasterization by the graphics hardware. In

∗IfI, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Ger-
many. E-mail: {Manfred.Weiler | Martin.Kraus | Thomas.Ertl}
@informatik.uni-stuttgart.de .

fact, it was demonstrated in [8] that hardware-supported scan con-
version of tetrahedral primitives would dramatically accelerate un-
structured volume rendering. The primary advantage of hardware-
based rasterization of tetrahedral cells is the possibility to exploit
graphics hardware optimizations, e.g. OpenGL display lists, vertex
arrays, etc. More generally spoken, the amount of transferred data
is reduced and higher transfer rates are achieved as the main CPU
may send sets of tetrahedral primitives to the graphics board with-
out any preprocessing — at the same rate as polygonal primitives
are sent.

However, instead of proposing yet another hardware system for
volume rendering, we present a tetrahedral cell projection algorithm
that is suitable for off-the-shelf programmable graphics hardware,
in particular nVidia’s GeForce3 graphics chip. Our algorithm is
“view-independent” in the sense that the very same per-pixel op-
erations are performed independently of the viewing parameters,
which is a crucial requirement for an implementation on today’s
programmable graphics hardware. Therefore, all the computations
required for the projection and scan conversion of tetrahedral cells
are performed on the graphics board and the only remaining task of
the main CPU is to transfer the view-independent data specifying
the tetrahedra to the graphics subsystem. In the case of a small num-
ber of tetrahedra, this data may actually be buffered on the graphics
board, such that the rendering performance is not limited by the
bandwidth of the graphics bus.

Thus, our approach promises to overcome several limitations
of previously published, hardware-accelerated cell projection algo-
rithms, which are briefly reviewed in Section 2. A detailed de-
scription of our algorithm is given in Section 3 before its imple-
mentation is presented in Section 4. Due to limitations of today’s
programmable graphics hardware, we were forced to design several
workarounds, which are also described in detail as they are part of
the current implementation. Based on integration of different op-
tical models demonstrated in Section 5, we discuss the application
of our approach to volume visualization of unstructured meshes in
Section 6 and report performance results in Section 7. Future work,
in particular with respect to future graphics hardware, is discussed
in Section 8.

2 Previous Work

Cell projection is a well-known volume visualization technique for
unstructured meshes. More precisely spoken, a scalar field is visu-
alized, which is specified by scalar values at all vertices of a mesh.
Of particular interest are tetrahedral meshes, since the scalar values
may be linearly interpolated within tetrahedral cells. Usually, the
scalar field is mapped to colors and opacities by transfer functions.

Early cell projection algorithms, e.g. by Max et al. [13], did not
employ any graphics hardware but relied on a rasterization of the
cells in software. This approach is still of interest, see for example
Farias et al. [5], because of its flexibility and its suitability for par-
allelisation; however, hardware-accelerated algorithms turned out
to be considerably faster under most circumstances. In the past, al-
most all of these algorithms were based on the Projected Tetrahedra
(PT) algorithm, which was first published in [15].

The algorithm by Shirley and Tuchman exploits hardware-
accelerated triangle scan conversion by decomposing projected
tetrahedra into triangles and rasterizing these triangles. The correct
color and opacity are computed by ray integration along the view
direction according to some optical model, e.g. the volume density
model by Williams and Max [17, 12, 18]. While the volume render-
ing integral is evaluated correctly at the triangle vertices, the colors
and opacities of all remaining pixels have to be interpolated lin-
early, which causes rather strong artifacts. Moreover, the triangles
are semi-transparent; thus, they have to be rendered in the correct
visibility order, i.e. the tetrahedral mesh has to be sorted.

Therefore, subsequent research was mainly focused on the prob-
lem of efficiently sorting unstructured meshes [13, 19, 1, 20], in
particular non-convex meshes [16, 2] and cyclic meshes [9]. Con-
siderably fewer publications, e.g. Stein et al. [16] and Röttger et
al. [14], were concerned with a more accurate but still hardware-
accerelated evaluation of the volume rendering integral.

Recently, a graphics hardware architecture was proposed by Wit-
tenbrink [21] together with King et al. [8], which permits to raster-
ize and sort tetrahedral meshes in hardware. Unfortunately, this
hardware architecture was not built yet.

3 Scan Conversion of Tetrahedra

As mentioned in the introduction, a hardware-based, view-
independent scan conversion of tetrahedra would enable us to em-
ploy optimization techniques, such as OpenGL display lists or ver-
tex arrays. These cannot be used in the PT algorithm, since there
are several cases of the Shirley-Tuchman decomposition, of which
one has to be selected depending on the view parameters.

In contrast to this, our approach moves all view-dependent com-
putations to the graphics board and achieves view-independency by
a rasterization technique similar to ray casting.

3.1 View-independent Cell Projection

In order to compute one ray for each pixel covered by the projected
tetrahedron, we render its front faces with the scalar values of the
volume specified as vertex colors. Note that, although we are only
interested in the visible faces, view-dependent data is not required
since we can assure that only front faces are rasterized by employ-
ing OpenGL backface culling.

As suggested in [14], we use a texture map to accurately evalu-
ate the ray integral within the tetrahedron allowing arbitrary trans-
fer functions. The variables required as texture coordinates are the
scalar value s f at the entry point, the scalar value sb at the exit point,
and the length l of the viewing ray within the cell; see Figure 1.

l

s f sb

Figure 1: Intersecting a tetrahedral cell with a viewing ray. s f and
sb are the scalar values on the front and back face respectively; l
denotes the thickness of the cell for this ray.

As we set the vertex colors to the scalar values of the mesh, the
linear interpolation of vertex colors performed by the graphics hard-
ware provides the scalar value s f on the entry (front) face per frag-
ment. The only remaining effectively unknown parameter is the
thickness l of the cell for the viewing ray, since the third parameter
sb can be easily computed from s f and l using the gradient ~g of the

scalar field within this tetrahedron and the normalized direction ~d
of the viewing ray:

sb = s f +(~g · ~d)l . (1)

Thus, the remaining problem is to determine the correct per-
fragment thickness of the cell l, which is equivalent to the problem
of finding the distance at which a viewing ray exits the tetrahedron.

We will first describe the idea in general without considering
limitations of current graphics hardware.

3.2 Computation of Exit Points

In this section we will assume, that any per-tetrahedron data is avail-
able at each fragment, in particular the face normals and the scalar
field’s gradient. Also, the coordinates of the entry point, which cor-
responds to the fragment, have to be known. The latter can easily be
achieved by either explicitly defining the vertex positon as texture
coordinates or using automatic texture coordinate generation with
an appropriate parametrization.

The task of determining the length of the viewing ray inside
a tetrahedron is quite similar to the problem of clipping a three-
dimensional line against a convex polyhedron, which in this case is
a tetrahedron. However, we are only interested in the exit point, as
the entry point is already known. The two-dimensional analogue is
depicted in Figure 2. Let ~v be the entry point corresponding to the
fragment under consideration. The tetrahedron is bounded by four
planes with each plane normal ~ni perpendicular to face fi.

f1

f0
f2

v2

v0

v1

v

n1

d t2 t1

n2

Figure 2: Illustration of per-fragment ray casting. We show the
analogue situation in 2D. A viewing ray starting at the entry point
~v, which corresponds to the fragment of the (blue) front face, is
intersected with all faces of the cell.

We adapt the well-known idea of parametrical line clipping
against convex polyhedra as proposed amongst others by Cyrus
and Beck [3]: Test the line with every face of the polyhedron and
compute line parameters for the intersection points. Using a clas-
sification of each intersection as potentially entering or potentially
leaving, the exit point we are looking for is given by the leaving
intersection with the smallest parameter value.

As the considered ray starts on a face, we only have to take into
account the three remaining faces of the tetrahedron. We assume a
parametric definition of the viewing ray:

~r =~v+ t~d , (2)

where in the case of perspective projection ~d is the normalized
vector from the view point to the entry point corresponding to the
fragment. For orthographic projection, ~d is the normalized view
vector, which can be extracted from the camera parameters. With
ai denoting the constant term in the plane equation of face fi, the
ray parameter ti for the intersection with face fi can be computed as

ti =
(~v ·~ni)−ai

(~d ·~ni)
. (3)

The classification of intersections is slightly simpler than in the
general line clipping algorithm. The reason is indicated in Figure 3:
According to the direction of ~n1, face f1 must be classified as po-
tentially entering. However, as the ray starts at the correct entry
point, which is the maximum of all potential entry points, the ray
parameters for additional entering intersections are necessarily neg-
ative. All positive ray parameters ti > 0 are potentially leaving and
the minimum of all positive parameters corresponds to the actual
exit point. Furthermore, as the face normals and the view direction
are considered to be normalized, the minimum positive ti is also the
thickness l of the cell along the viewing ray, which is required for
ray integration.

f1

f0

f2v2

v0

v1

v

n1

d t2
t1

n2

Figure 3: Potentially entering intersections can be eliminated by
considering the sign of the corresponding ray parameter. Entering
intersections besides the actual entry point correspond to negative
ray parameters.

In the next section, we present our current implementation,
which employs a combination of vertex programs and fragment op-
erations. In Section 8, we will discuss improvements of the imple-
mentation for future hardware.

4 Implementation

Although the per-fragment computation presented in Section 3.2 is
not very complex, it cannot be performed on a per-fragment ba-
sis on current graphics hardware. For example, nVidia’s fragment
pipeline of the GeForce3 chip series, consisting of texture shaders
and register combiners [7], requires all texture lookups to take place
before any arithmetical fragment operation. Our approach, how-
ever, requires a dependent texture lookup after several per-fragment
computations. The ATI fragment shader extension allows to inter-
leave arithmetical operations with texture lookups, but the currently
available ATI Radeon R200 chip supports only eight such opera-
tions before the last texture lookup, which is insufficient for our
purposes. However, by limiting us to orthographic projection, we
can implement the same idea using mainly per-vertex operations,
which can be performed view-independently by the graphics hard-
ware using vertex programs (see [7]).

For othographic projections, the view direction is constant for
every fragment; thus, the intersection parameters ti vary linearly
for all fragments of a certain front face. We can exploit this fact
by computing the parameters only for the vertices of the front face
and rely on the graphics hardware to interpolate the ti parameters
correctly per fragment.

4.1 Per-Fragment Computations

As the ray parameters are provided as linearly interpolated vertex
attributes, the only remaining per-fragment operation is the selec-
tion of the positive minimum of the three ray parameters. We use
texture coordinates to store the three ti at each vertex since they
must not be clamped to [0,1], which is the case for color compo-
nents. There are two methods for computing the minimum: A se-
quence of “conditional set” instructions can be used if included in
the set of available fragment operations, as it is the case for the ATI
Radeon R200 graphics chip.

In our current implementation for the nVidia Geforce3 graph-
ics chip, however, we use a 3D texture map to determine the mini-
mum of the three texture coordinates (r,s, t) with 0 ≤ r,s, t ≤ 1. Un-
fortunately, when computing the ti according to Equation 3 values
greater than 1 are likely to occur. We avoid this by “normalizing”
each tetrahedron such that the greatest possible thickness is 1.

This can be achieved by storing the maximum edge length of
the tetrahedron in the homogeneous texture coordinate q. We use
the homogeneous coordinate instead of dividing the texture coordi-
nates by the maximum edge length, since the former allows a more
accurate interpolation during rasterization, as the division by the
homogeneous coordinate q is performed on the interpolated texture
coordinates.

Although ti may still be greater than 1 after the normalization,
the correct minimum is guaranteed to be less than 1; thus, values
greater than 1 may simply be clamped for the lookup using the
OpenGL CLAMP TO EDGE texture environment. Clamping can also
be employed to prevent negative values, which correspond to poten-
tially entering intersections, from being considered by overwriting
negative ray parameters by a large positive value.

Note that accurate shading depends heavily on the resolution of
the minimum texture. This is especially an issue for stretched tetra-
hedra since, due to the normalization, they use only parts of the tex-
ture along the short edges. However, large textures impose a large
memory overhead. We consider using a resolution of 1283, which
takes 4 MB for a luminance alpha texture map, a good compromise
between image quality and memory requirements.

4.2 Per-Vertex Computations

As we have stated before, our goal is the view-independent scan
conversion of tetrahedra. Therefore, the required per-vertex pro-
cessing is not performed by the CPU but with the help of pro-
grammable vertex transformation as provided by the nVidia ver-
tex program extension [7]. This extension replaces the standard
OpenGL transform and lighting calculations by a vertex program,
which may consist of a sequence of up to 128 floating-point vec-
tor instructions. The program is called for each vertex in order to
transform the provided set of vertex attributes to output attributes,
which are the input to the rasterization unit. An additional advan-
tage of vertex programs is the relatively large set of floating-point
4-component registers to operate on and a large set of constant in-
put registers to provide additional input required by the vertex pro-
gram. This functional range allows us to define view-independent
mesh primitives since all operations required for the cell projection
can be performed by the vertex program discussed in the remainder
of this section.

The crucial parts of the vertex program are the view transfor-
mation of the vertices and the computation of the ray parameters
according to Equation 3. As the formulation of both is straight for-
ward with the available set of vertex program instructions, we do
not present particular code fragments here. However, we would like
to mention that the OpenGL feedback mode serves well for testing
vertex programs.

As explained in Section 3.2, we have to compute the ray param-
eters ti of the intersection point of the ray with three faces of the
tetrahedron. Conceptually, this would require the plane equations
of all three faces as parameters for each vertex, since vertex pro-
grams cannot share any information between vertices. However,
this would increase the number of vertex attributes significantly.

Fortunately, the number of parameters can be reduced by the fol-
lowing argument. Consider the intersection of a ray with a tetrahe-
dron illustrated in Figure 4.

f1

f2

f3

f0

v3

v2
v1

v0

Figure 4: Nomenclature for tetrahedra.

Let the highlighted face f0 of the tetrahedron opposite to v0 be
the front face to be rendered. In this case the potential exit faces
are f1, f2, and f3. Thus, the ray parameters t1, t2, and t3 must
be interpolated for every fragment of f0 and therefore computed at
the vertices v1, v2, and v3. Note that for v1 we already know the
correct t2 without any computation, since v1 is part of face f2; thus,
t2 must be 0. The same applies to t3, which is also 0, as v1 is part
of f3. In fact, we have to evaluate Equation 3 only for t1; thus, we
only require the plane equation of f1 as vertex parameter for v1. In
general, we need the plane equation for fi as vertex parameter for
vi.

Defining a plane equation as vertex parameter usually requires
four float values, a normal vector with three components and a
plane offset as additional parameter. Reducing this number of pa-
rameters is a worthy goal since every additional value that has to
be transferred to the graphics adapter decreases the overall perfor-
mance or reduces the maximum number of cells of an unstructured
mesh buffered on the graphics chip. Therefore, it is worth mention-
ing that the same information can be provided using only three float
values. As the plane normal has to be a unit vector, we can deduce
the third component from the first and second using:

~n = (n0,n1,n2) = (n0,n1,
√

1−n2
0 −n2

1), for n2 > 0. (4)

Thus, we may compute the third component with the help of only
a few vertex program instructions. However, Equation 4 only holds
for positive n2. Fortunately, ~n and −~n leads to the same result of
Equation 3; thus, we can handle this problem by simply negating
the normal vector if the third component is less than 0.

Note that at each vertex only one ray parameter ti is actually
computed by the vertex program. However, all vertices of a face
must agree on the ordering in which the three required ray param-
eters ti are stored in the texture coordinates r, s, and t, such that
they are consistently interpolated during rasterization. We achieve

this by explicitly providing the index of the texture coordinate that
should be used for storing ti. An index of 0 denotes r, while s and
t are denoted by 1 and 2, respectively. Using vertex program in-
structions we have found two different ways of storing a scalar in
a certain component of an output vector. The corresponding code
fragments are given in Figure 5 and Figure 6. See [7] for a detailed
definition of vertex program syntax and semantics.

c[8] = {1, 2, 3, 0}
c[9] = {0, 1, 2, 0}
R3.x = computed ray parameter
SLT R1, v[TEX0].z, c[8];
SGE R2, v[TEX0].z, c[9];
MUL R0, R1, R2;

MUL R4, R3.x, R0;
ADD o[TEX0], R4;

Figure 5: Mapping the computed ray parameter ti to a specific com-
ponent of the texture coordinates with conditional set instructions
“set on less than” (SLT) and “set on greater equal” (SGE). The com-
ponent is specified as an index i (0 ≤ i ≤ 2) by the t-texture coor-
dinate of the vertex input attributes (v[TEX0].z). Multiplying the
output of a STL and a SGE operation with the defined constants
results in a vector with 1 at position i and 0 elsewhere. We multiply
this vector with the ray parameter and add it to the texture coordi-
nates.

c[18] = {1, 0, 0, 0}
c[19] = {0, 1, 0, 0}
c[20] = {0, 0, 1, 0}
R1.x = computed ray parameter

ARL A0.x, v[TEX0].z;
MUL R0, R1.x, c[A0.x + 18];
ADD o[TEX0], R0;

Figure 6: Mapping the computed ray parameter to a specific com-
ponent of the texture coordinates using the “address register load”
(ARL) instruction. The component is specified by the t-texture co-
ordinate of the vertex input attributes (v[TEX0].z). The ARL in-
struction maps the index i to one of the vectors c[18], c[19], and
c[20] provided as constant program attributes. We multiply this
vector with the ray parameter and add it to the texture coordinates.

4.3 Edge Artifacts

Using the ray parameters computed at the vertex positions for tex-
ture coordinates as described in the previous section leads to arti-
facts at edges of the tetrahedron as can be observed on the left-hand
side of Figure 7. Note that the thickness of the cell is mapped to
intensity in the figure. The inset shows a dark seam along the edge
representing a thickness of zero, which is obviously wrong.

The reason for these artifacts lies in the texture coordinates
shown on the right-hand side of Figure 7. When rendering face
f1 the r coordinate represents the distance to face f0. It is obvious
that this distance is negative. In other words, the intersection of the
viewing ray with face f0 is a potentially entering intersection point
and should not be considered for the exit point search. For most
fragments on face f1 this is the case, since the handling of negative
ray parameters described in Section 4.2 will guarantee that t0 does
not influence the minimum search.

v0

(t0, 0, 0)
v1

(t1, 0, 0)

v2 (0, t2, 0)

v3
(0, 0, t3)

f1f0

Figure 7: Identifying the minimum of the interpolated ray param-
eters with the thickness of the cell leads to artifacts along edges
between visible faces. They result from assuming a zero thick-
ness along the edge. In the presented visualization the thickness
is mapped to intensity, thus the artifacts show up as clearly visible
dark lines.

However, the interpolation weight for v0 is zero along the edge
from v2 to v3; therefore, we lose the classification stored in t0. Thus,
the intersection of the viewing ray with face f0 is misinterpreted
as entering point and the texture lookup for the minimal texture
coordinate erroneously returns zero. The problem could be avoided,
if a minimal interpolation weight could be specified. In this case,
we would use a small offset for the interpolation and compensate
this by biasing the texture coordinates before the lookup or by using
a small bias in our minimum texture map.

Note that erroneously classified fragments are an additional rea-
son, why our use of vertex programs is restricted to orthographic
projections. We like to point out once more that these artifacts are
solely introduced by the workaround of using per-vertex computa-
tions instead of per-fragment operations. With per-fragment opera-
tions, the classification can always be correctly evaluated resulting
in the correct cell thickness.

However, we can also avoid the defects in a per-vertex manner.
We only have to guarantee that at least one vertex on the edge has
the correct classification of the second face sharing the edge. Dur-
ing rasterization this classification affects the whole edge. We uti-
lize the counterclockwise definition of the faces to define a direction
for every edge per face. Doing so, every vertex of the face can be
considered as the start of one of the three edges. We supply the
normal of the adjacent face as vertex attribute to the start vertex
of each edge. Similarly to the handling of negative ray parameters
described in Section 4.2, the vertex program checks whether the ad-
jacent face is potentially entering and sets the corresponding texture
coordinate to a large positive value instead of 0.

Considering face f1 in the example depicted in Figure 7, v3 is
the start vertex of the edge from v3 to v2 and would set the r texture
coordinate to some large positive value. The r texture coordinate
of v2 will not be changed for rendering face f1. In face f0 vertex
v2 is the start vertex of the edge from v2 to v3 and will modify its
r component since face f1, which corresponds to the ray parameter
t1 at v1, is potentially entering for all fragments of face f0.

Using this scheme, one endpoint of the edge is still being left
“unclassified”. However, in order to compute the full classification,
each vertex of the face would need the normals of all three remain-
ing faces, which would require even more per-vertex parameters.
We deal image quality for transfer rate, since we have found this
problem to be negligible. The remaining classification mistakes oc-
cur at singular positions, thus at most one pixel per tetrahedron is
incorrectly colored and in most cases no pixel is influenced at all.

5 Optical Models and Ray Integration

Our approach of view-independent cell projection conceptually
computes one ray segment of a viewing ray through a tetrahe-
dron for each pixel. In order to determine the color and opacity
contribution, we apply pre-integrated classification for cell projec-
tion [14, 4]. We use the scalar value on the front face s f , the scalar
value on the back face sb, and the thickness l resulting from scan
converting the tetrahedron as texture coordinates for a 3D texture
map storing the values of the volume ray integral in dependency of
l, s f , and sb.

The lookup in this texture map has to be performed based on
the result of the lookup in the minimum texture described in Sec-
tion 4.1. The setup for the 3D dependent texture lookup using
the nVidia texture shader extension [7] is depicted in Figure 8.
If the optical model only requires a 2D texture lookup a simi-
lar setup can be constructed by simply replacing stage 2 by a
DOT PRODUCT TEXTURE 2D NV operation.

stage 0

TEXTURE_3D

stage 0

TEXTURE_3D

stage 1

DOT_PRODUCT_NV

stage 1

DOT_PRODUCT_NV

stage 2

DOT_PRODUCT_NV

stage 2

DOT_PRODUCT_NV

stage 3

DOT_PRODUCT_

TEXTURE_3D_NV

stage 3

DOT_PRODUCT_

TEXTURE_3D_NV

sfsb

l
RGBA

... to register combiners

w),t,t,(t 210

)s,0,0,g(w fd×

)s0,0,(0, f

0,0)0,(w,

() /w)min(tl/w,1l/w,l/w, i=

fdb slgs +×=

ff ss =

Figure 8: Texture shader setup for a 3D dependent lookup using the
minimum ray parameter from the minimum texture.

The lookup in the minimum texture is performed with the com-
puted ray parameters, which are “normalized” using the fourth tex-
ture coordinate. The scalar product in the second stage reconstructs
the scalar value on the back face with the help of the gradient in
view direction gd and the scalar on the front face s f . Note that we
employ a luminance alpha texture map as minimum texture with
the alpha channel set to 1 in order to allow for the addition of s f .
The third stage only supplies s f as a texture coordinate and the
fourth stage employs the “denormalized” ray parameter generated
by multiplying the scaled length l/w with the scaling factor w to-
gether with s f and sb to look up the color and opacity according
to each ray segment. We provide suitable texture coordinates for
the second to fourth texture shader stage via the vertex program in
order to combine all necessary parameters for the final lookup in
stage 3.

5.1 Direct Volume Rendering

With the color and opacity contribution stored in a texture map,
different shading techniques can be implemented. However, for un-
sorted cell projection only those optical models are possible, which
lead to a commutative blend function, i.e. allow the compositing in
arbitrary order. Among these models are maximum intensity pro-
jection and restrictions of the full volume density model to either
the source term or the absorption term. For all these models, the
texture lookup allows us to apply arbitrary transfer functions, which
only affect the generation of the texture map.

Figure 9: The image shows a rendering of the bluntfin dataset decomposed into 225K tetrahedra. We demonstrate our view-independent cell
projection method using emissive projection with an appropriate transfer function applied.

For maximum intensity projection, for example, a 2D texture
map contains the maximum of the transfer function in the interval
[min(s f ,sb),max(s f ,sb)] at position (s f , sb). Moreover, we have to
use a black background and the maximum blending function of the
OpenGL blend minmax extension.

A pure emissive rendering of the unstructured mesh, as demon-
strated in Figure 9, simply adds the contribution of each tetrahe-
dron. In this case a 2D texture map is sufficient, since the depen-
dency of the color contribution on the length of the ray segment is
linear and can be integrated by modulating the result of the shad-
ing lookup with the result of the minimum texture lookup. We use
the register combiners extension [7] to multiply the result of texture
stage 2 with the r coordinate of texture stage 0. The texture map
employed in stage 2 contains the integral of the transfer function
for the interval [min(s f ,sb),max(s f ,sb)] at position (s f , sb).

In contrast to the previous mentioned models, a restriction to the
absorption term of the volume density model requires a 3D texture
map containing the integral of the absorption coefficient along the
viewing ray segment.

All these optical models may be extended with intensity depth-
cuing [6] as demonstrated in Figure 11. Combining our approach
with any cell sorting algorithm (see Section 6), we can as well sim-
ulate the original PT algorithm or integrate any published improve-
ment, e.g. the appoaches of Stein et al. [16] or more recently of
Röttger et al. [14] based on texture maps.

5.2 Isosurfaces

We are also able to render multiple flat shaded opaque isosurfaces
without visibility ordering of the cells. A texture map as depicted
in Figure 10 (see also [14]) is used to extract isosurface fragments
from the rendered faces. The correct occlusion of isosurface frag-
ments can be guaranteed even without sorting the cells of the un-
structured mesh by a combination of the alpha test with the OpenGL
z-test.

The basic idea is quite obvious. Whenever the viewing ray
within a tetrahedron hits the isosurface, the inequalities s f < siso
and sb > siso or vice versa hold. In these cases the texture map
lookup results in the ambient material color of the isosurface. The
texture map sets the alpha channel to 0 whenever no isosurface is
present; thus, we can use the alpha test to render only fragments of
the isosurface. As mentioned in [14], we have to slightly modify
the texture map, effectively “thickening” the isosurfaces, in order

to avoid gaps between isosurface patches in adjacent tetrahedra.
Figure 10b shows an example for a texture map for multiple

isosurfaces. The “visibility ordering” is easy to understand: For
s f < sb we are looking along the gradient of the scalar field; thus,
isosurfaces for smaller isovalues occlude those for greater isoval-
ues and vice versa. Rendering multiple isosurfaces we can assign
different material colors for each isovalue as depicted in Figure 12.

As our approach does not provide interpolated gradients we are
limited to flat shaded isosurfaces. Therefore, the complete lighting
may be calculated by the vertex program. We can render a virtually
arbitrary number of directional lights (see Figure 13), as each light
requires two entries in the vertex program’s attribute vector — light
direction in object coordinates and diffuse light color — and three
vertex program operations.

sf

sb

1.00.5

0.5

1.0

siso

siso

sf

sb

1.00.5

0.5

1.0

(a) (b)
0

0
0

0

Figure 10: (a) A 2D texture map for rendering isosurfaces with
view-independent cell projection. Texels corresponding to isosur-
face fragments are colored with the diffuse material color of the
isosurface. The alpha channel is 0 in the absense of an isosurface.
(b) A texture map for three opaque isosurfaces.

6 Cell Projection of Tetrahedral Meshes

Apart from the projection of single tetrahedra the rendering of tetra-
hedral meshes by cell projection includes more tasks, e.g. visibility
sorting and the transfer of large amounts of tetrahedra, which will
be discussed in this section.

Today, most of the volume renderers for unstructured meshes
that are based on the projected tetrahedra algorithm cannot exploit
the peek performance of modern graphics adapters [8]. The reason

Figure 11: In both images we show the same orbital-like artificial data set consisting of 150K tetrahedra. Different optical models are
demonstrated. In the left image an isosurface is rendered, whereas for the right image a restriction of the full volume density model to the
source term is used. We can apply arbitrary transfer functions to enhance features of the dataset. Intensity depth-cuing is used to enhance
the perception of depth. Note the artifacts in the right image resulting from the limited frame buffer resolution of 8 bit.

is twofold: Firstly, due to the overhead of element sorting, current
algorithms are not able to supply ordered, decomposed PT triangles
at a sufficient rate. A second limiting factor is the data transfer
between the CPU and the graphics board, especially for PC graphics
hardware. The peek performance of the AGP bus is only achieved
if data is transferred in large blocks using burst transfer. Note that
burst transfer has a great potential for improving the performance of
volume renderers for unstructured meshes. According to [8], there
is a possible speedup of factor 20. However, PT based algorithms
produce a continous stream of triangles, which cannot be combined
to blocks without significant overhead.

The motivation for our approach of view-independent cell pro-
jection is to overcome this bottleneck of data transfer between the
CPU and the graphics board. With a view-independent description
of the unstructured mesh, we are able to build a fixed set of data in
a preprocessing step, which is reused in every frame. This allows
many optimizations, e.g. caching or pre-compilation of the data for

Figure 12: Individual material colors can be assigned to each iso-
value when rendering multiple isosurfaces.

optimized transfer. In this context, standard OpenGL provides two
mechanisms for optimization: display lists and vertex arrays [22].

The basic idea of display lists is to cache the OpenGL commands
such that the same geometry can be defined once and rendered mul-
tiple times by simply executing the display list. Optimized per-
formance can be achieved, since particular graphics hardware may
store display lists in dedicated memory or may store the data in an
optimized form that is more compatible with the graphics hardware
or software.

Vertex arrays were designed to reduce the number of OpenGL
function calls since storing all vertex related data in just a few arrays
allows the programmer to specify a lot of graphical primitives with
only one function call. Similarly to display lists, vertex arrays can
also be cached or pre-compiled for more efficient rendering. Recent
extensions, e.g. the vertex array range extension [7], might even
allow to buffer vertex related data in local graphics memory or at
least to store vertex data in a dedicated area of the client address
space in order to enable the graphics hardware to pull the vertex
data via Direct Memory Access (DMA) using burst transfer. Thus,
the OpenGL client has to pass only vertex indices or the number of
primitives to render.

Furthermore, vertex arrays allow for nonredundant processing
of shared vertices. However, our current implementation requires
individual vertex data for each face of the tetrahedra and, therefore,
cannot benefit from optimized processing of shared vertices.

According to our measurements, display lists hardly improve the
performance of our method on current PC graphics adapters based
for example on the nVidia GeForce3 or ATI Radeon R200 chip.
Therefore, our implementation employs vertex arrays. However,
this choice has a few unfavorable implications. Rendering with ver-
tex arrays allows no data per element but only per-vertex data; thus,
some data replication is needed, e.g. to provide each vertex with the
gradient of the scalar field that is constant per tetrahedron.

As switching to an interleaved vertex array does not significantly
affect the performance of our implementation, we decided to use
four arrays of vertex data: a vertex array, a color array, a normal
array, and an array of texture coordinates. For each face of each
tetrahedron we need individual vertex instances, i.e. instead of us-
ing a triangle strip of six vertices per tetrahedron, twelve vertices
are required for the four triangular faces of each cell.

The per-vertex data necessary for our approach sums up to 15
float values. The vertex position is stored in the x, y, and z compo-

Figure 13: Both images show flat shaded isosurfaces with multiple light sources using our view-independent cell projection. In the left image
an analytical dataset of about 150K tetrahedra is rendered with two isosurfaces. Although perspective projection is used artifacts are hardly
visible due to a comparatively small field-of-view. The right image shows the same method applied to a finite-element mesh (heat-sink)
consisting of 120K tetrahedra using orthographic projection.

nents of the vertex array, while the w component holds the constant
factor of the plane equation for the opposite face, which is required
for the computation of the ray parameter. Note that we can abuse
this component for our purpose, since the vertex program can over-
write the homogeneous coordinate of the vertex with 1 before per-
forming the view transformation. Two components of the opposite
face normal are stored in r and s of the texture coordinates. The
reconstruction of the third component of the normal vector is de-
scribed in Section 4.2. The t texture coordinate holds the index of
the component, the vertex will store the ray parameter in; q stores
the maximal edge length of each element required for “normaliz-
ing” texture coordinates (see Section 4.1).

We use the four color components to specify the tetrahedon’s
gradient and the scalar value of the vertex. We do not have to take
care of clamping, since all vertex data is provided as signed float
values to the vertex program. Finally, each vertex is provided with
the normal of one adjacent face in order to avoid edge artifacts (see
Section 4.3).

We render a complete unstructured mesh by a single call of
glDrawArrays. Thus, assuming that vertex data may reside in lo-
cal graphics memory, our approach ideally limits the transfer be-
tween CPU and the graphics adapter to a few bytes per frame and
the graphics chip can operate at full capacity without waiting for
data to be delivered.

However, as all elements in the vertex arrays are defined in a
fixed linear order, no visibility sorting can be applied, which lim-
its our choice of optical models. Our view-independent projection
method, though, also allows us to render in visibility order, using
the same vertex array data. Instead of a single glDrawArray call,
one call per tetrahedron may address the elements in sorted order by
just transfering two indices per cell to the graphics hardware. Note
that the sorting algorithm needs to provide only the sorted list of in-
dices. In this sense, our approach is compatible with any published
cell sorting algorithm.

7 Results

We have tested our implementation on two systems: The first was a
Linux PC with an Athlon 1200 MHz processor and 512 MB RAM.
However, the influence of the CPU is negligible since our approach

moves most of the computation to the graphics processor. As graph-
ics adapter a GeForce3 with 64 MB of local memory was used.

Table 1 shows the performance of the GeForce3 for different
datasets presented in the paper. Sphere and heat-sink denote the
datasets of Figure 13, whereas the orbital dataset is shown in Fig-
ure 11. Note that the performance is not affected by a particular
optical model or transfer function, since different optical models or
transfer functions are implemented by modifying the content of a
2D texture map only. Even the more expensive 3D texture lookup
required for the absorption only optical model performs compara-
bly which indicates that our implementation is not rasterization lim-
ited. We present the results for rendering without visibility sorting.

no. cells fps tets/sec MB/sec
Bluntfin 224 874 1.08 242 K 174
Heat-sink 121 668 2.01 244 K 175
Orbital 148 955 1.65 245 K 177
Sphere 148 955 1.65 245 K 176

Table 1: Performance of our view-independent cell projection for
different datasets using a GeForce3 graphics adapter.

The Geforce3 chip performed better than the also tested
GeForce3 Ti200 chip with the same amount of local memory. As
expected, the achieved frame rates are linear in the number of cells.
Table 1 shows that the number of tetrahedra processed per second
is almost constant.

However, the average data transfer rate of about 175 MByte/sec,
which can be computed with the product of vertices per element
(12), number of vertex attributes (15), and the size of a float
value, is significantly below the theoretical peek performance of
1000 MByte/sec of a 4×AGP connection.

This has two reasons: First, at least on the GeForce3, using our
vertex programs obviously imposes a significant overhead com-
pared to standard OpenGL transform and lighting. We were not
able to transform more than 6.4 million vertices with our quite mod-
erate vertex programs of about 30-50 instructions, depending on
the optical model. Using standard OpenGL transform and lighting
our test system achieved rates of up to 18 million vertices. Note,
that a very simple vertex program, which only consists of the view-

transformation, performs comparably.
However, the main bottleneck is not the vertex transformation

unit or the rasterization but the data transfer. For datasets of relevant
size we could not exploit the vertex array range extension, which
we have found out to be 2-3 times faster than every other approach.
This performance is due to the fact that vertex range arrays allow
the vertex data to be cached in the local memory of the graphics
adapter or in a memory area which can be accessed directly by the
graphics adapter using DMA pull. However, vertex range arrays
are currently limited to vertex data of less than 32 MB, even on
graphics adapters with 128 MB of local memory, which would have
restricted us to roughly 90K tetrahedra. Relying on ordinary vertex
arrays the bottleneck of our implementation is the bandwidth for
the main memory access. This is demonstrated by Table 2.

no. cells fps tets/sec MB/sec
Bluntfin 224 874 1.67 375 K 167
Heat-sink 121 668 3.02 367 K 163
Orbital 148 955 2.53 377 K 168
Sphere 148 955 2.53 377 K 168

Table 2: Performance of our view-independent cell projection on a
GeForce3 for different datasets using mainly short values instead
of floats as vertex data.

Here we have used short values, instead of floats for the required
per-vertex data wherever possible. Thereby we were able to reduce
the memory bandwidth requirements from 720 bytes per tetrahe-
dron to 456 bytes per-tetrahedron. It has turned out that the effect
of the more inaccurate data representation on the image quality is
negligible. The table shows almost the same data transfer rates as
Table 1 but the number of tetrahedra per second was increased cor-
respondingly to the reduction of data.

Our second test system was a Linux PC with a GeForce4 Ti with
128 MB of local memory, an Athlon XP 1800+, and 512 MB RAM.
On this graphics chip, we did not recognize a performance penalty
for vertex program rendering, due to the second vertex pipline. Ta-
ble 3 shows the performance of the system for the same datasets
with a reduced amount of per-vertex data. The framerates are about
50% higher than on the GeForce3 system. However, as our imple-
mentation is memory bandwidth limited, the speedup mainly results
from the faster memory access of the second test system rather than
the faster graphics chip.

no. cells fps tets/sec MB/sec
Bluntfin 224 874 2.13 479 K 213
Heat-sink 121 668 3.81 464 K 207
Orbital 148 955 3.23 481 K 214
Sphere 148 955 3.23 481 K 214

Table 3: Performance of our approach for different datasets using
nVidia’s GeForce4 chip.

8 Future Work

The next generation of programmable graphics chips will proba-
bly implement DirectX 9 and in particular version 2.0 of the Pix-
elShader language. According to Marshall in [11], this version will
allow up to 32 texture lookups and up to 64 arithmetic operations,
including the computation of reciprocals. Thus, we will be able to
implement our algorithm with per-fragment operations only. This
will not only remove the costly vertex program but also the restric-
tion to orthographic projections. Furthermore, we will be able to

employ texture lookups to access any mesh data, e.g. gradients of
the scalar field or face normals, and thereby dramatically reduce the
number of required vertex parameters. Moreover, this will allow us
to reuse vertices of the mesh for multiple triangles; therefore, we
will be able to project a tetrahedron by rendering a triangle strip of
four triangles, i.e. with 6 vertices instead of 12 vertices in the cur-
rent implementation. The reduced data will alleviate the memory
bottleneck leading to a significant speedup.

A more flexible fragment pipeline will also allow us to imple-
ment several interesting extensions to our algorithm, e.g. clip planes
for tetrahedra.

9 Conclusions

We have presented the first view-independent cell projection algo-
rithm suitable for commercial off-the-shelf graphics hardware. Un-
fortunately, it turned out that today’s graphics hardware is not flex-
ible enough for an optimal implementation. Nonetheless, the view-
independency allows us to exploit important optimization tech-
niques, especially OpenGL vertex arrays. Therefore, our cell pro-
jection algorithm is likely to perform significantly better than the
traditional Shirley-Tuchman projection on future graphics hard-
ware.

Moreover, our algorithm is suitable for architectures supporting
order-independent transparency as proposed by Wittenbrink [21]
and it may be employed as part of a hardware implementation of
the ray casting algorithm in unstructured meshes [10].

References

[1] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the
optimization of projective volume rendering. In R. Scanteni,
J. van Wijk, and P. Zanarini, editors, Visualization in Scientific
Computing ’95, pages 58–71. Springer-Verlag Wien, 1995.

[2] João Comba, James T. Klosowski, Nelson Max, Joseph S. B.
Mitchell, Claudio T. Silva, and Peter L. Williams. Fast poly-
hedral cell sorting for interactive rendering of unstructured
grids. Computer Graphics Forum (Proceedings of Eurograph-
ics ’99), 18(3):369–376, 1999.

[3] M. Cyrus and J. Beck. Generalized two- and three-
dimensional clipping. In Computers and Graphics 3(1), pages
23–28, 1978.

[4] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shad-
ing. In Eurographics / SIGGRAPH Workshop on Graph-
ics Hardware ’01, Annual Conference Series, pages 9–16.
Addison-Wesley Publishing Company, Inc., 2001.

[5] Ricardo Farias, Joseph S. B. Mitchell, and Claudio T. Silva.
Zsweep: An efficient and exact projection algorithm for un-
structured volume rendering. In Roger Crawfis and Danny
Cohen-Or, editors, Proceedings Volume Visualization and
Graphics Symposium 2000, pages 91–99. ACM Press, 2000.

[6] Foley, Van Dam, Feiner und Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 2 edition, 1990.

[7] Mark J. Kilgard, editor. NVIDIA OpenGL Extension Specifi-
cations. NVIDIA Corporation, 2001.

[8] Davis King, Craig M Wittenbrink, and Hans J. Wolters. An
architecture for interactive tetrahedral volume rendering. In
Klaus Mueller and Arie Kaufman, editors, Volume Graphics
2001, Proceedings of the International Workshop on Volume
Graphics 2001, pages 163–180. Springer-Verlag, 2001.

[9] Martin Kraus and Thomas Ertl. Cell-projection of cyclic
meshes. In Thomas Ertl, Kenneth Joy, and Amitabh Varshney,
editors, Proceedings IEEE Visualization 2001, pages 215–
222. ACM Press, 2001.

[10] Martin Kraus and Thomas Ertl. Implementing ray casting
in tetrahedral meshes with programmable graphics hardware.
Technical Report 1, Visualization and Interactive Systems
Group at the University of Stuttgart, 2002.

[11] Brian Marshall. Directx graphics future, 2001. Presenta-
tion at the Microsoft DirectX Meltdown 2001, available at
http://www.microsoft.com/mscorp/corpevents/meltdown2001/
presentations.asp.

[12] N. Max. Optical models for direct volume rendering. In IEEE
Transactions on Visualization and Computer Graphics 1(2),
pages 99–108, 1995.

[13] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and vol-
ume coherence for efficient visualization of 3d scalar func-
tions. ACM Computer Graphics (Proceedings of San Diego
Workshop on Volume Visualization 1990), 24(5):27–33, 1990.

[14] Stefan Röttger, Martin Kraus, and Thomas Ertl. Hardware-
accelerated volume and isosurface rendering based on cell-
projection. In Thomas Ertl, Bernd Hamann, and Amitabh
Varshney, editors, Proceedings IEEE Visualization 2000,
pages 109–116. ACM Press, 2000.

[15] Peter Shirley and Allan Tuchman. A polygonal approximation
to direct scalar volume rendering. ACM Computer Graphics
(Proceedings of San Diego Workshop on Volume Visualization
1990), 24(5):63–70, 1990.

[16] Clifford M. Stein, Barry G. Becker, and Nelson L. Max. Sort-
ing and hardware assisted rendering for volume visualization.
In Arie Kaufman and Wolfgang Krueger, editors, Proceed-
ings 1994 Symposium on Volume Visualization, pages 83–89.
ACM Press, 1994.

[17] P. L. Williams and N. Max. A volume density optical model.
In ACM Computer Graphics (1992 Workshop on Volume Vi-
sualization), pages 61–68, 1992.

[18] P. L. Williams, N. L. Max, and C. M. Stein. A high accuracy
volume renderer for unstructured data. In IEEE Transactions
on Visualization and Computer Graphics 4(1), pages 37–54,
1998.

[19] Peter L. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103–126, 1992.

[20] Craig M. Wittenbrink. Cellfast: Interactive unstructured vol-
ume rendering. In Craig M Wittenbrink, Amitabh Varsh-
ney, and Hans Hagen, editors, IEEE Visualization 1999 Late
Breaking Hot Topics, pages 21–24, 1999.

[21] Craig M. Wittenbrink. R-buffer: A pointerless a-buffer hard-
ware architecture. In Proceedings Graphics Hardware 2001,
pages 73–80. ACM Press, 2001.

[22] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL Programming Guide: The Official Guide to Learn-
ing OpenGL, Version 1.2. Addison-Wesley, third edition,
1999.

