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Abstract

A passivity-based control of Vertical Take-off and Landing (VToL) Unmanned Aerial Vehicles (UAVs) is
presented in this paper. An estimator of unmodeled dynamics and external wrench (forces plus moments)
acting on the aerial vehicle and based on the momentum of the system is employed to compensate such
disturbances effects. This arrangement allows VToL UAVs to perform hovering, tracking and aerial manip-
ulation tasks in unstructured environments. A rigorous stability proof is provided under certain assumptions.
Experiments are presented to evaluate the performance of the proposed control design.
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1. Introduction

Service robotics applications are day by day mak-
ing more use of VToL UAVs to pursue different
actions. From passive tasks like inspection [1, 2],
surveillance and monitoring [3], remote sensing and
so on, such aerial vehicles are now beginning to be
employed in active tasks like grasping [4] and ma-
nipulation [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
This change of perspective requires the UAV to op-
erate in changing and unstructured scenarios. To
this purpose, the controller has to deal with un-
known parameters (i.e., the battery charge level),
the transportation of unknown payloads, aerody-
namic effects that are usually neglected during the
control design phase, and the interaction with the
environment.
In this paper, a passivity-based control of VToL

UAVs is presented. The classical hierarchical ar-
chitecture separating the (fast) rotational and the
(slow) translational dynamics [17] is employed.
The controller ensures a closed-loop mechanical
impedance behaviour for the translational part of
the VToL UAV, while the rotational part does not
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rely upon exact cancellation of nonlinearities, con-
ferring in this way robustness to the attitude part.
The collision identification technique based on the
momentum of the system proposed in [18] has been
suitably modified in this context to play as an ex-
ternal wrench and unmodeled dynamics estimator.
The estimation is taken into account by the con-
troller to compensate forces and moments arising
from wind, aerodynamics effects not taken into ac-
count in the model, external wrench caused by a
robotic arm attached to the vehicle’s base during
aerial manipulation tasks, unknown carried pay-
loads, physical interactions, and so on. The resid-
ual errors between the estimated external wrench,
the unmodeled dynamics and the real ones are seen
as perturbations in the closed-loop system. As
long as the closed-loop system bandwidth –tunable
through the control gains on the basis of the avail-
able robotic platform and the controller sample
time– is able to cope with such time-varying resid-
ual errors, the overall performance benefits from
the proposed architecture as theoretically and ex-
perimentally evaluated.

As far as authors know, the novelty of this paper
is the combination of a passivity-based control for
VToL UAVs together with an external wrench and
unmodeled dynamics estimator, a rigorous stabil-
ity proof under certain assumptions, and the con-
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sequent experimental validation. As a result, the
aerial platform is able to perform tasks without a
precise knowledge about the dynamic parameters
and the external disturbances: this is absolutely
useful in the forthcoming aerial service robotics ap-
plications, e.g. aerial manipulation, where inter-
action with the environment is required. More-
over, with respect to the current state of the art in
which adaptive and integral actions are employed
to cope with the aforementioned problems, less pa-
rameters have to be tuned in the proposed architec-
ture, where instead the gains assume precise phys-
ical meanings.

The outline of the paper is as follows. Next
section presents the related work. The dynamic
model of a quadrotor is presented in Section 3. The
momentum-based external wrench and unmodeled
dynamics estimator is revised in Section 4. The
control is introduced in Section 5. The stability
proof of the proposed controller combined with the
compensation of the estimated terms is addressed
in Section 6. Performed experiments are described
in Section 7. Conclusion and future work are finally
provided.

2. Related work

Regarding aerial manipulation, two approaches
can be in principle thought to control an aerial ma-
nipulator (UAV with an attached robotic arm en-
dowed with a gripper). The former approach con-
siders the UAV and the robotic arm as a unique
entity, and thus the controller is designed on the
basis of such complete dynamic model [9, 10, 19].
The latter approach considers instead the UAV and
the robotic arm as two separate and independent
systems: the effects of the arm on the aerial ve-
hicle are then considered as external disturbances
and viceversa. This might be useful in case the dy-
namics of the arm is not enough to compensate the
UAV position error and/or in case the arm does
not allow torque control (i.e., servomotors) [20].
The here presented paper is oriented towards the
latter approach: it has been thus considered the
control of the single UAV subject to external dis-
turbances and time-varying parameters. Therefore,
many different approaches address problems related
to the stabilization and tracking of desired trajec-
tories with a VToL UAV. The most widely used
controller takes into account a hierarchical archi-
tecture [17, 21] highlighting a time-scale separation
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Figure 1: Quadrotor and related frames. In black, the in-
ertial frame Σi. In red, the body frame Σb. In blue, the
propellers speed and the label of each motor.

between the translational (slow time-scale) and an-
gular (fast time-scale) dynamics of the aerial vehi-
cle. Other approaches rely upon backstpping [22],
impedance [23] and optical flow [24] techniques.
However, in general, a precise knowledge of sys-
tem dynamics is required to perform a feedback
linearization of both fast and slow time-scale parts
of the system. Hence, several of the above men-
tioned controllers implement an integral action to
resist against external disturbances and cope with
unknown and time varying parameters. Recently,
adaptive controls have been employed to counteract
such disturbances [14, 25, 26, 27, 28, 29]. A nonlin-
ear force observer has been introduced in [30] to es-
timate disturbances applied to a quadrotor. A slid-
ing mode observer has been instead employed in [31]
to impose more robustness on the closed-loop sys-
tem. Since passivity-based controllers do not rely
on the exact compensation of the considered model,
they are expected to be more robust with respect to
parameters uncertainties. Port-Hamiltonian meth-
ods have been developed in [30, 32, 33], a passive
backstepping in [34], and passivity-based attitude
controls in [35, 36], in particular without angular
velocity measurement in [37, 38].

In this paper, the passivity-based control pro-
posed in [39, 40] is adapted to be suitable for a
VToL UAV system as described in Section 5. More-
over, a compensation of external wrench and un-
modeled dynamics is here introduced to further
reduce aerodynamic effects and external distur-
bances. A similar architecture has been introduced
by the authors in [41] where an impedance con-
troller is instead employed without providing a rig-
orous stability proof. Under certain assumptions,
this issue is overcome by the current paper.
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3. Modeling

The most popular configurations of VToL UAVs
employed in the above defined scenarios are the
quadrotor and the hexarotor, which are platforms
equipped with four or six propellers, respectively,
aligned in the same direction. Hence, these aerial
vehicles are underactuated mechanical systems hav-
ing six degrees of freedom but only four indepen-
dent control inputs. Without loss of generality, in
the remainder of this paper, the chosen VToL UAV
is a quadrotor.
Define a world-fixed inertia reference frame Σi

and a body-fixed reference frame Σb placed at the
UAV’s center of mass (see Fig. 1). The absolute
position of the UAV with respect to Σi is denoted by

pb =
[
x y z

]T
. Using the roll-pitch-yaw Euler

angles, ηb =
[
φ θ ψ

]T
, the attitude of the UAV

is defined by the rotation matrix Rb(ηb) ∈ SO(3),
expressing the rotation of Σb with respect to Σi,
given by [42]

Rb(ηb) =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


 ,

where s× and c× are abbreviations for sine and co-
sine, respectively.
Let ṗb and ωb denote the absolute translational

and angular velocities of the UAV, respectively,
while ṗbb and ωbb describe the absolute translational
and angular velocities of the aerial vehicle expressed
in Σb, respectively. Denoting with η̇b the time
derivative of ηb, the following equations hold [42]

ṗb = Rb(ηb)ṗ
b
b, (1a)

ωb = T b(ηb)η̇b, (1b)

ωbb = Rb(ηb)
Tωb = Q(ηb)η̇b, (1c)

where T b(ηb) is the (3 × 3) transformation matrix
between the time derivative of ηb and the corre-
spondent ωb, while Q(ηb) = Rb(ηb)

TT b(ηb) maps
the time derivative of ηb into the UAV angular ve-
locity expressed with respect to Σb. The detailed
expression of Q(ηb) is

Q(ηb) =



1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


 ,

with a singularity at θ = ±π/2.

The dynamic equations related to the UAV can
be retrieved by using the Newton-Euler formula-
tion [43]

mp̈bb = −mS(ωbb)ṗ
b
b +mRb(ηb)

Tg + f bb + f bu(·),
(2a)

Ṙ(ηb) = R(ηb)S(ωb) (2b)

Ibω̇
b
b = −S(ωbb)Ibω

b
b + τ bb + τ bu(·), (2c)

where p̈bb is the absolute translational acceleration
of the UAV expressed with respect to Σb; m is the
mass of the vehicle; Ib is the (3 × 3) constant in-
ertia matrix of the UAV expressed with respect to
Σb; ω̇

b
b is the absolute angular acceleration of the

UAV expressed with respect to Σb; S(·) denotes

the skew-symmetric matrix; g =
[
0 0 g

]T
is the

(3 × 1) gravity vector with g = 9.81m/s2; f bb and
τ bb are the (3 × 1) forces and torques input vec-

tors, respectively, expressed in Σb; f
b
u(·) and τ bu(·)

are two (3 × 1) vectors denoting unknown forces
and moments, respectively, acting on the vehicle
–aerodynamic and buoyancy effects, flapping dy-
namics [44], parametric uncertainties, imbalances
caused by batteries and/or on-board sensors, mo-
tion of a robotic arm (or moving sensors, e.g. a
laser scanner on a pan-tilt mechanism) mounted
on the aerial platform, wind gusts, interaction with
the environment, etc.– and whose dependencies on
(ṗb, p̈b,ω

b
b, ω̇

b
b,R(ηb), t), where t denotes the time

variable, have been omitted for brevity.
The detailed expressions of both the input forces

f bb and torques τ bb depend on the configuration of
the considered aerial vehicle. Most of the VToL
UAVs are underactuated systems with six degrees
of freedom and four main control inputs. Hence,
many UAVs can be characterized by three input

control torques τ bb =
[
τφ τθ τψ

]T
and one input

control force f bb =
[
0 0 u

]T
, where u denotes

the thrust perpendicular to the propellers rotation
plane. In the quadrotor case of Fig. 1, the relation-
ship between the thrust, the control torques, and
the squared propellers speed w2

i , with i = 1, . . . , 4,
is [22]

u = ρu(w
2
1 + w2

2 + w2
3 + w2

4), (3a)

τφ = lρu(w
2
2 − w2

4), (3b)

τθ = lρu(w
2
3 − w2

1), (3c)

τψ = cw2
1 − cw2

2 + cw2
3 − cw2

4, (3d)

where l is the distance between each propeller and
the center of mass of the quadrotor, ρu > 0 and
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c > 0 are the thrust and drag factors, respectively.
It is worth noticing that many aerodynamics effects
are neglected through this representation. How-
ever, in case of hovering, or at least low-speed mo-
tions, the relationships in (3) can be considered as
a valid approximation [17].

Folding (1) and the relative time derivatives into
(2), and considering the expression of f bb yield the
following dynamic model, useful for control design
purposes, expressed with respect to Σi, and repre-
senting a wide range of VToL UAVs configurations:

mp̈b = mg − uRb(ηb)i3 + fu(·), (4a)

M(ηb)η̈b = −C(ηb, η̇b)η̇b +Q(ηb)
Tτ bb + τu(·),

(4b)

where i3 =
[
0 0 1

]T
; M(ηb) = Q(ηb)

TIbQ(ηb)
is the (3×3) symmetric and positive definite inertia
matrix (provided that θ 6= ±π/2), and C(ηb, η̇b) =
QTS(Qη̇b)IbQ+QTIbQ̇ is the (3×3) Coriolis ma-
trix, in which the dependencies have been dropped
and Q̇(ηb) represents the time derivative of Q(ηb).

Mentioning that only Euclidean norms are taken
into account in the remainder of the paper, the fol-
lowing assumptions are considered.

• Assumption 1. The aerial vehicle does not
pass through the singularities. The allowable
configuration space for the yaw-pitch-roll an-
gles ηb is thus Qη = {ηb ∈ R

3|θ 6= π/2 +
kπ, k = . . . ,−1, 0, 1, . . .}.

• Assumption 2. Unknown forces fu(·) and
moments τu(·) depend only on the time vari-
able t and they are continuously differentiable
and bounded with respect to it. Therefore, the
following inequalities hold

‖fu‖ ≤ B1 <∞, (5a)

‖ḟu‖ ≤ B2 <∞, (5b)

‖f̈u‖ ≤ B3 <∞, (5c)

‖τu‖ ≤ B4 <∞, (5d)

‖τ̇u‖ ≤ B5 <∞, (5e)

‖τ̈u‖ ≤ B6 <∞, (5f)

where Bi, with i = 1, . . . , 6, are positive con-
stants.

It is also worth to recall the following property.

• Property 1. Considering the expression
in (4b), the following property holds [42]

η̇T
b

(
Ṁ(ηb)− 2C(ηb, η̇b)

)
η̇b = 0, (6)

where Ṁ(ηb) represents the time derivative
of M(ηb). If the Coriolis matrix is repre-
sented through the Christoffel symbols, then
for any arbitrary (3× 1) vector v the following
quadratic form holds

v̇T
(
Ṁ(ηb)− 2C(ηb, η̇b)

)
v̇ = 0.

3.1. Discussion about the employed assumptions

The impact of the employed assumptions, made
to simplify the control design, is deeply analysed in
the following.
Assumption 1 is restrictive only from a math-

ematical point of view. The singularity about the
pitch angle is related to the employed angular repre-
sentation and it is not a physical singularity; more-
over, notice that a pitch angle of ±π/2 does not
happen because acrobatic manoeuvres (i.e., death
loops) are not within the goals of this work, the ini-
tial conditions are chosen far from that singularity
condition and the controller will be shown to be sta-
ble. In addition, since only two points in the config-
uration space are not allowed, this case might also
be handled from a practical point of view during the
implementation of the programming code. It goes
without saying that a non minimal representation
for the rotations might be in principle employed, i.e.
unit quaternions [45, 46, 47]. The related control
laws guarantee almost global asymptotic stability 1.
In any case, both Euler angles and quaternions rep-
resentations suffer of the so-called unwinding phe-

nomenon [48] if the control laws are not properly
designed. In this paper, through the use of As-
sumption 1, the problem is related to the yaw an-
gle 2. Nevertheless, the concept about the hybrid-
dynamic path-lifting algorithm proposed in [48] can
be easily implemented as a solution for both Euler
angles and quaternions representations.

1In the unit quaternion case, the problem is that, roughly
speaking, different quaternions may represent the same phys-
ical attitude of the related rigid body [47].

2As an example, defining the yaw angle between [0, 2π]
and stabilizing the yaw around 0, it may happen that for
some values of the yaw around 0 the controller tries to make
an undesired complete rotation of the aerial vehicle.
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With reference to Assumption 2, notice that the
motivations about neglecting the dependence of the
unknown forces and moments from the aerial vehi-
cle’s angular attitude, angular velocity and trans-
lational accelerations are taken from [43]. The in-
dependence of fu and τu from p̈b and ω̇bb can be
justified since, in general, the density of the body
of the aerial platform is much more relevant than
the one of the environment fluid. The independence
from ωbb is better justified when the unknown gener-
alized forces apply near the aerial vehicle’s center of
mass and the motion reaction forces resulting from
the rotation of the aerial platform can be neglected
with respect to the ones produced by eventual lin-
ear movements. The independence from ṗb is the
most restrictive one since it is supposed that the
aerial vehicle moves very slowly and for almost all
the task it is in hovering. Such an assumption is
much more justified in aerial manipulation tasks.
However, on the one hand, such condition simpli-
fies the derivation of the control law and its stabil-
ity proof; on the other hand, during experimental
validation in Section 7, the hovering condition is
overcome and the performance of the control law
is evaluated despite the employed assumption. The
independence from the vehicle’s attitude Rb(ηb) is
valid when the aerodynamic forces do not depend
on the aerial platform orientation. This happens es-
sentially on the basis of the vehicle’s shape. In case
of VToL UAVs such assumption is thus very rea-
sonable due to the the fact that lift forces are not
so sensitive with respect to the attack angles. In
conclusion, thanks to Assumption 2, the unknown
forces and moments are only time depending and
their boundedness is not so much restrictive, but
instead properly physically justified as underlined
in [43].

4. Momentum-based estimator of external

wrench and unmodeled dynamics

The (6× 1) generalized momentum vector of the
system (4) can be defined as

q =

[
mI3 O3

O3 M(ηb)

] [
ṗb
η̇b

]
, (7)

where In and On are (n×n) identity and zero ma-
trices, respectively. From the expressions of M(ηb)
and C(ηb, η̇b) and from Property 1, it is possible
to prove that the following expression holds

Ṁ(ηb, η̇b) = C(ηb, η̇b) +C(ηb, η̇b)
T. (8)

By using (4) and (8), the time derivative of the
generalized momentum vector (7) is

q̇ =

[
−uRb(ηb)i3 + fu(t) +mg

Q(ηb)
Tτ bb + τu(t) +C(ηb, η̇b)

Tη̇b

]
. (9)

The goal of the proposed estimator is to achieve
a linear relationship between the dynamics of the
estimated external wrench, unmodeled effects and
the real ones. Hence, in the Laplace’s domain, such
relationship has the following expression

[
f̂u(s)
τ̂u(s)

]
= G(s)

[
fu(s)
τu(s)

]
, (10)

where s is the complex variable in the Laplace’s
domain, f̂u and τ̂u are the (3 × 1) vectors of the
estimated unknown forces and moments, respec-
tively, while G(s) is a (6 × 6) diagonal matrix of
transfer functions in which the i-th element, with
i = 1, . . . , 6, has the following expression

Gi(s) =
ω2
n,i

s2 + 2ζiωn,1s+ ω2
n,i

, (11)

where wn,i and ζi are the desired natural frequency
and damping of the designed estimator, respec-
tively, for the i-th component.
In order to get (11) component-wise in (10), the

expression of the estimated external wrench and un-

modeled dynamics r(t) =
[
f̂
T

u τ̂
T
u

]T
in the time

domain is defined as follows

r(t) = K1

(∫ t

o

−r(σ) +K2

(
q(σ)−

∫ t

0

(
r(σ)+

−
[

−uRb(ηb)i3 +mg

Q(ηb)
Tτ bb +C(ηb, η̇b)

Tη̇

])
dσ

)
dσ

)
, (12)

where it is assumed that 3 q(0) = r(0) = ṙ(0) =
0, while K1 = diag{K1,1,K1,2} and K2 =
diag{K2,1,K2,2} are (6×6) positive definite diago-
nal matrices, in which Ki,j , i, j = {1, 2}, is a (3×3)
positive definite diagonal matrix. Considering (4)
and (9), the dynamics of (12) is

r̈ +K1ṙ +K1K2r = K1K2

[
fu
τu

]
, (13)

that in Laplace domain is equivalent to the 6 trans-
fer functions in (10). Once the natural frequencies

3This condition means that, in the practice, the estimator
has to start before the take-off of the UAV.

5



and the damping factors in (11) have been designed,
the components of the gains K1 and K2 in (12) can
be computed as follows

k1,ik2,i = ω2
n,i

k1,i = 2ζiωn,i

where i = 1, . . . , 6, and k1,i and k2,i are the i-th
elements of K1 and K2, respectively.
Notice that, in ideal case,

ζi → 1
ωn,i → ∞ =⇒ r(t) =

[
f̂u
τ̂u

]
≈

[
fu
τu

]
,

where i = 1, . . . , 6, which means that the gains
should be taken as large as possible in the practice.
The quantities required to compute r are the

UAV orientation ηb and the related time deriva-
tive η̇b, the vehicle translational velocity ṗb, the
commanded input torques τ bb, the thrust u and the
knowledge about the UAV inertia matrix Ib and
mass m. The quantities ηb and η̇b can be retrieved
by the on-board IMU sensor, while ṗb can be es-
timated by using GPS and/or visual data [49, 50].
The thrust u and the input torques τ bb are given
by the passivity-based controller (see Section 5).
The UAV inertia Ib and mass m should be in-
stead known a-priori. Notice that no inversion of
the inertia matrix M(ηb) is required, and also no
knowledge about the absolute position pb of the
UAV is needed. Moreover, notice that, with re-
spect to [18], a second-order transfer function has
been considered to better weaken the effects of high-
frequencies noise (e.g., introduced by both the IMU
sensor and the estimation of ṗb) that overcomes the
selected bandwidth designed through the choice of
wn,i, with i = 1, . . . , 3. Notice that with small
modifications to (12), it is possible to reach a trans-
fer function in (10) of the desired order.

5. VToL UAVs passivity-based control

The time scale separation highlighted in the clas-
sical hierarchical controllers [17, 21] is traduced in a
inner-outer loop control architecture. Namely, the
inner loop is devoted to control the fast time-scale
angular part, while the outer loop tackles the slow
time-scale position tracking part. Because of the
underactuation of the system, only 4 components
can be provided by an external planner. Since pb
and ψ are flat outputs for the system (4) [51], the
planner gives as inputs to the controller the de-
sired position trajectory of the UAV, described by

the (3 × 1) vectors pd, ṗd and p̈d, and the desired
yaw trajectory, described by ψd, ψ̇d and ψ̈d. Hence,
the desired pitch and roll components are implicitly
computed on the basis of the planned UAV position
and yaw.

For the inner loop, let ηd =
[
φd θd ψd

]T
be

the (3× 1) vector of the UAV desired attitude with
η̇d and η̈d its time derivatives. Define the following
(3× 1) reference vector for the attitude velocity

η̇r = η̇d − νeη, (14)

where eη = ηb − ηd is the (3 × 1) angular track-
ing error and ν > 0 a coupling parameter. The
following passivity-based control input can be then
defined for the inner loop

τ bb =Q(ηb)
−T (M(ηb)η̈r +C(ηb, η̇b)η̇r − τ̂u

−Dovη −Koeη) , (15)

whereDo andKo are (3×3) positive definite diago-
nal gain matrices, ėη = η̇b− η̇d, η̈r = η̈d−νėη and
vη = ėη + νeη. Considering (4b), notice that no
cancellation of dynamic model terms is performed
through (15).
The outer loop has then to provide the desired

thrust and the reference values of the pitch and roll
angles. Define a (3 × 1) virtual input acceleration
vector µ devoted to the position tracking part and
that will be designed in the following. It should
be possible to retrieve the thrust and the desired
attitude angles values for the inner loop from the
virtual control input µ. For this reason, it is im-
posed that

µ = − u

m
Rb(ηd)i3 + g +

1

m
f̂u, (16)

representing the desired acceleration vector with re-
spect to Σi, in which the magnitude is the thrust u
produced by the propellers, while the orientation
is given by the desired UAV attitude. Properly
designing µ, inverting (16) it is then possible to
retrieve the desired values for the thrust and the
attitude angles that are in turn exploited as ref-
erences for the inner control loop. Therefore, let
ep = pb − pd, ėp = ṗb − ṗd, ëp = p̈b − p̈d and
ëη = η̈b− η̈d be the (3× 1) tracking errors, and let

f̃ = fu − f̂u be the estimated force error. Replac-

ing both ηb = ηd + eη and fu = f̂u + f̃ in (4a),
recalling (16), yields

p̈b = µ+
u

m
δ(ηd, eη) +

1

m
f̃ , (17)
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Figure 2: Block scheme of the proposed control architecture. In red, the corresponding equations in the paper related to each
block.

where δ(ηd, eη) =
[
δx δy δz

]T
is the following

(3× 1) interconnection vector

δ =



sφd

sψd
− sφsψ − cφcψsθ + cφd

cψd
sθd

cψsφ − cψd
sφd

+ cφd
sθdsψd

− cφsθsψ
cθdcφd

− cθcφ


 , (18)

with φ = eφ + φd, θ = eθ + θd and ψ = eψ + ψd.
The virtual control input µ can now be chosen as

µ = p̈d −
1

m
(Dpėp +Kpep) , (19)

where Dp and Kp are two (3× 3) positive definite
diagonal gain matrices.
Folding (15) and (19) into (4b) and (17), respec-

tively, yields the following closed-loop equations

mëp +Dpėp +Kpep = uδ(ηd, eη) + f̃ , (20a)

M(ηb)v̇η + (C(ηb, η̇b) +Do)vη +Koeη = τ̃ ,
(20b)

where v̇η = ëη + νėη and τ̃ = τu − τ̂u. The right
side of equation (20a) acts like an external force on
the first subsystem and depends on both the UAV
attitude error and the estimated unknown forces
error. The right side of equation (20b) is the resid-
ual of the estimated moments and acts as a dis-
turbance on the second subsystem. Thus, the ex-
pressions in (20) establish passive relationships be-
tween the reconstruction errors of generic unknown
disturbances and the tracking errors. In particular,
for equation (20b), as underlined in [52], there ex-
ists a passive mapping between τ̃ and vη, at least
in hovering case.

• Remark 1. Notice that the relationship
in (20a) is equivalent to a generalized mechan-
ical impedance reacting to the external dis-
turbance given by (uδ(ηd, eη) + f̃) with the
same mass m of the aerial vehicle, and with a
stiffness and damping that are programmable
through the choice of the gain matricesKp and
Dp, respectively.

• Remark 2. The gains that have to be tuned
in the proposed controller are namely: K1 and
K2 for the estimator; Kp and Dp for the UAV
translational part; ν, Ko and Do for the an-
gular one. A discussion about how to choose
ν is done in [53], while the physical meanings
of Kp and Dp are given in Remark 1. Ko

and Do might have similar meanings of pro-
grammable stiffness and damping of a torsional
spring. The translational part is the slowest
one due to the time-scale separation and be-
cause it depends on the attitude error. Hence,
once the desired stiffness Kp and damping Dp

have been chosen, it is possible to retrieve the
closed-loop bandwidth of the controlled sys-
tem. Then, the natural frequency and damp-
ing factor of the estimator can be tuned on the
basis of this choice. In particular, they have to
be at least larger than those designed for the
UAV translational part so as not to weaken the
closed-loop designed performance.

To recap, the proposed architecture is depicted
in the block scheme of Fig. 2. After computing the
position tracking errors ep and ėp, and knowing
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the feedforward acceleration p̈d, the virtual control
input µ can be computed as in (19). The desired
thrust u and the reference pitch and roll can be
computed by inverting (16) as follows [17]

u = m
√
µ̄2
1 + µ̄2

2 + (µ̄3 − g)2, (21a)

φd = sin−1

(
m
µ̄2 cosψd − µ̄1 sinψd

u

)
, (21b)

θd = atan2 (µ̄1 cosψd + µ̄2 sinψd, µ̄3 − g) , (21c)

where µ̄ =
[
µ̄1 µ̄2 µ̄3

]T
= µ−(1/m)f̂u, with f̂u

given by (12), while the desired yaw ψd is given by
the planner. A second-order low-pass digital filter
should be employed to reduce noise and compute
both first and second derivatives of ηd [17], so as
to get η̇d and η̈d, and hence compute in turn the
attitude tracking errors eη and ėη. The control in-
put vector τ bb is computed as in (15), in which τ̂u
is given by (12). Having both the thrust u and the
actuation torques τ bb, the squared propellers speeds
w2
i of the VToL UAV, with i = 1, . . . , 4, are com-

puted by inverting (3).

• Remark 3. Notice that in case µ̄ = µ −
(1/m)f̂u = g, equation (21b) is indeterminate.
This exact condition is very difficult to hap-
pen in the practice but it can not be a priori
excluded. From a physical point of view, such
numeric singularity means a desired accelera-
tion for the UAV equal to the gravity: this can
be achieved with a zero thrust, i.e. turning off
the propellers as it is evident from (3a). When
the propellers are turned off, any values for the
pitch and the roll are not reachable since the
control is obviously not in action. In the prac-
tice, such a particular and uncommon condi-
tion can be nonetheless easily managed from a
software point of view once the thrust is cal-
culated as in (21a). It is worth remarking that
no problems happened during the experiments,
some of which are described in Section 7.

• Remark 4. Although it is of less interest, the
passivity-based approach here proposed can be
employed also without considering the com-
pensation of external wrench and unmodeled
dynamics, i.e. neglecting the term τ̂u in (15)
and with µ̄ = µ in (21). As highlighted
in [54], the use of integral/adaptive actions,
as well as of external disturbances observers,
might in some cases worsen and not improve

the controller performance. Therefore, in the
reminder of the paper and during the experi-
ments, it will be checked under which condi-
tions the compensation of the estimated terms
improves the performance of the sole passivity-
based controller.

6. Stability proof

This section is devoted to show the stability of the
whole control scheme made up by the momentum-
based estimator of external wrench and unmodeled
dynamics, and the passivity-based controller. It is
worth mentioning that only marginal stability can
be ensured since perturbation terms on the right
sides of (20) might be nonvanishing. Moreover, it
is also shown how adding the compensation of the
estimated terms may help in reducing the asymp-
totic bounds of the closed-loop systems.

Let x1 =
[
eTp ėTp

]T
and x2 =

[
eTη ėTη

]T
be

two (6×1) vectors denoting the state of the closed-
loop system equations (20a) and (20b), respectively,
which can also be arranged in the following way

ẋ1 = α1(m,x1,Kp,Dp) + β1(u,m,ηd, eη, f̃),
(22a)

ẋ2 = α2(ν,x2,ηb, η̇b,Ko,Do) + β2(ηb, τ̃ ), (22b)

where

α1 =

[
ėp

−(1/m)Dpėp − (1/m)Kpep

]
,

α2 =

[
ėη

−M−1 (νėη + (C +Do)vη +Koeη)

]
,

β1 =

[
03

(u/m)δ + (1/m)f̃

]
,

β2 =

[
03

M−1τ̃

]
,

in which dependences have been dropped and 0n
is the (n × 1) null vector. Let define the nomi-

nal systems as the closed-loop equations (22) with-

out the perturbation terms β1(u,m,ηd, eη, f̃) and
β2(ηb, τ̃ )

ẋ1 = α1(m,x1,Kp,Dp), (23a)

ẋ2 = α2(ν,x2,ηb, η̇b,Ko,Do). (23b)

The following further assumption is considered.

• Assumption 3. The planned translational ac-
celeration norm is bounded as

p̈d ≤ ‖p̈d‖max = B7. (24)
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Two main theorems will be employed in the fol-
lowing.

Theorem 1. Consider the generic perturbed sys-

tem

ẋ = f(t,x) + g(t,x). (25)

Let x = 0 be a globally exponentially stable equilib-

rium point of the nominal system

ẋ = f(t,x). (26)

Let V (t,x) be a Lyapunov function of (26) satisfy-
ing the following inequalities

γ1‖x‖2 ≤ V (t,x) ≤ γ2‖x‖2, (27a)

∂V

∂t
+
∂V

∂x
f(x) ≤ −γ3‖x‖2, (27b)

‖∂V
∂x

‖ ≤ γ4|x‖, (27c)

where V (t,x) is defined in [0,∞)×D = {‖x‖ <∞}
and γi > 0, with i = 1, . . . , 4. Suppose the pertur-

bation term in (25) satisfies the uniform bound

‖g(t,x)‖ ≤ ∆ <∞, (28)

for all t ≥ t0. Then, for all ‖x(t0)‖ < ∞, the

solution x(t) of the perturbed system (25) satisfies

‖x(t)‖ ≤ ξe−ρ(t−t0)‖x(t0)‖, ∀t0 ≤ t < ti, (29a)

‖x(t)‖ ≤ B, ∀t ≥ ti, (29b)

for some finite time ti, where

ξ =

√
γ2
γ1
, ρ =

(1− ǫ)γ3
2γ2

, B =
∆γ4
ǫγ3

√
γ2
γ1
,

with ǫ < 1.

Proof. See [55], Lemma 5.2.

Theorem 2. Consider a generic perturbed system

like (25). Let x = 0 be a globally exponentially sta-

ble equilibrium point of the nominal system (26).
Let V (t,x) be a Lyapunov function of (26) satisfy-
ing inequalities (27). Suppose the perturbation term

in (25) satisfies the following inequality

‖g(t,x)‖ ≤ Γ1(t)‖x‖+ Γ2(t), (30)

where both Γ1(t) and Γ2(t) are nonnegative and con-

tinuous terms for all t ≥ t0. Moreover, Γ2(t) has

to be also bounded for all t ≥ t0, while Γ1(t) must

satisfy the following inequality

∫ t

t0

Γ1(t)dt ≤ b1(t− t0) + b2, (31)

for some nonnegative constants b1 and b2, with

b1 <
γ1γ3
γ2γ4

. (32)

Then, for any initial condition of the state x(t0),
the solution of the perturbed system (25) satisfies

the following bound

‖x(t)‖ ≤ b3, (33)

with

b3 = max

{
ξ
γ2
γ1

‖x(t0)‖,
ξγ4
2ργ2

b4

}
,

where

ξ = e
γ4b2
2γ1 ,

ρ =
1

2

(
γ3
γ2

− b1
γ4
γ1

)
,

b4 = sup
t≥t0

Γ2(t).

Proof. See [55], Lemma 5.7.

By exploiting the two theorems introduced
above, a two-steps procedure is employed to prove
the stability of (22). First, the stability of (22b)
is verified and the ultimate bound is found for the
solution x2(t), with t ≥ t0 and t0 ≥ 0 a generic
starting time instant. Then, the stability of (22a)
is verified considering also the interconnection with
the angular closed-loop equation (22b) given by
eη. However, before starting with these proofs, the
boundedness of the errors of the momentum-based
estimator is provided.

6.1. Boundedness of the external wrench and un-

modeled dynamics estimation errors

A bound for the error of the momentum-based es-
timator of the external wrench and unmodeled dy-
namics is provided in this subsection. The detailed
analysis is carried out for the estimated moments:
a similar procedure is valid for the estimated forces.
Since τ̃ = τu − τ̂u, the following equations hold

τ̂u = τu− τ̃ , ˙̂τu = τ̇u− ˙̃τ , ¨̂τu = τ̈u− ¨̃τ . (34)

Equation (13) can be written in the following way
for what concerns the moments’ part

¨̂τu +K1,2
˙̂τu +K1,2K2,2τ̂u = K1,2K2,2τu, (35)
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and substituting (34) into (35) yields

¨̃τ +K1,2
˙̃τ +K1,2K2,2τ̃ = τ̈u +K1,2τ̇u, (36)

which is the considered perturbed systems repre-
senting the evolution of the error estimate of the
unknown moments. The right side term in (36) de-
notes a disturbance against the convergence of the
error estimate to zero. For sole constant unknown
moments τu, the right side term in (36) vanishes,
meaning a perfect estimate. Otherwise, due to de-
lay introduced by the estimation dynamics in (13),
the error remains anyway bounded as proven by the
following corollary.

Corollary 1. The error r̃ =
[
τ̃
T

f̃
T
]T

is

bounded while estimating unknown perturbations

satisfying (5). In particular, considering xτ =[
τ̃
T ˙̃τ

T
]T

, the following ultimate bound holds

‖xτ (t)‖ ≤ ξ1e
−ρ1(t−t0)‖xτ (t0)‖, ∀t0 ≤ t < t1,

(37a)

‖xτ (t)‖ ≤ B8, ∀t ≥ t1, (37b)

for some positive constants ξ1, ρ1 and B8 defined in

the proof. Moreover, in case of constant unknown

forces fu and moments τu, the equilibrium points

xf =
[
f̃
T ˙̃

f
T
]T

= 06 and xτ = 06 are globally

exponentially stable.

Proof. See Appendix A.

From (37) it is possible to have

‖τ̃‖ ≤ B9 = max{ξ1‖xτ (t0)‖, B8}, (38)

for all t ≥ t0, which represents the ultimate bound
for the moments estimation error. Therefore, since
the proof in Appendix A is performed for the esti-
mated moments but the same procedure holds for
the estimated forces, it is possible to conclude that

‖f̃‖ ≤ B10, (39)

with B10 > 0 depending on B2 and B3 (see (5b)-
(5c)).

• Remark 5. Taking into account the proof
in Appendix A, if the unknown moments τu
are constants, the right side term in (36) van-
ishes. Hence B5 = B6 = 0 ⇒ B8 = ‖τ̃‖ = 0,
for all t ≥ t1.

6.2. Stability of the closed-loop equation (22b)

As shown by the following corollary, the closed-
loop equation (22b) is stable for bounded pertur-
bations and exponentially stable for constant un-
known moments.

Corollary 2. Under the given assumptions, con-

sidering the dynamic model of a generic VToL

UAV for the angular part (4b), the designed con-

trol law (15) and the compensation of the estimated

moments in (12), the state error x2, whose dynam-

ics is given by the closed loop system (22b), is ulti-
mately bounded as

‖x2(t)‖ ≤ ξ2e
−ρ2(t−t0)‖x2(t0)‖, ∀t0 ≤ t < t2,

(40a)

‖x2(t)‖ ≤ B11, ∀t ≥ t2, (40b)

for some positive constants ξ2, ρ2 and B11 defined

in the proof. In particular, in case of constant un-

known moments τu, the equilibrium point x2 = 06

is exponentially stable.

Proof. See Appendix B.

The following remark concludes the analysis.

• Remark 6. As underlined in Section 6.1,
when only constant unknown moments τu are
present, the norm ‖τ̃‖ goes asymptotically to
zero. Hence, B9 is zero as well as B11 for all
t ≥ t2. Therefore, the closed-loop system (22b)
becomes exponentially stable.

6.3. Stability of the closed-loop equation (22a)

As shown by the following corollary, the closed-
loop equation (22a) is stable for bounded pertur-
bations and exponentially stable for constant un-
known moments and forces.

Corollary 3. Under the given assumptions, con-

sidering the dynamic model of a generic VToL UAV

for the translational part (4a), the designed control

law (19) and the compensation of the estimated un-

known forces in (12), the state error x1, whose dy-

namics is given by the closed loop system (22a), is
ultimately bounded as

‖x1(t)‖ ≤ B17, (41)

with B17 a finite positive bound given in the proof.

In particular, in case of constant unknown forces

fu and moments τu, the equilibrium point x1 = 06

is exponentially stable.

Proof. See Appendix C.
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7. Experiments

7.1. Set-up and technical details

Experiments have been performed by using an
Asctech Pelican quadrotor. Both the controller
and the estimator have been implemented onboard
at 100 Hz on an ATOM CPU with a patched
RTAI real-time kernel UBUNTU OS. An OptiTrack
motion-capture system has been employed to track
both the position and translational velocity of the
quadrotor. A ground station made up of a personal
computer with UBUNTU OS is in charge of the
WiFi communication between the OptiTrack sys-
tem and the quadrotor as well as for the operator
telemetry.
The mass m and the inertia Ib of the vehicle that

have been considered in the controller are 1.2 kg
and diag(3.4, 3.4, 4.7)·10−3 kgm2, respectively. The
vehicle parameters in (3) are l = 0.21 m, ρu =
1.8 · 10−5 Ns2/rad2 and c = 8 · 10−7 Nms2/rad2.
Following Remark 2, the gains of the controller

have been tuned as follows: Kp = diag(25, 25, 100),
Dp = diag(10, 10, 20), for the translational part;
Ko = diag(625, 625, 225), Do = diag(50, 50, 30) for
the angular part. The factor ν has been set to 100.
Regarding the estimator, instead, the natural fre-
quency and the damping factor have been tuned to
7 rad/s and 1, respectively, for all the force and
moment components.

7.2. Case studies

Several case studies are considered in the follow-
ing. The hovering and tracking performance of the
passivity-based control are shown. It will be high-
lighted how the sole passivity-based control (see Re-
mark 4) is able to perform all the tasks with a good
accuracy, but that the compensation is crucial when
unmodelled dynamics terms and unexpected situa-
tions become relevant. A video of the presented
case studies and other different situations can be
found in the multimedia attachment4.

7.2.1. Case study A

In this first case study, the quadrotor tracks three
times a given circular trajectory with a constant
speed of 0.5 m/s. The circle is planned in the
x, y plane at a constant altitude of 1 m from the
ground by choosing three different points. The re-
sulting radius is about 0.83 m. After the take-off,

4Also available at: http://youtu.be/iHKtHF0LF-w

Figure 4: Left: quadrotor with the attached pendulum.
Right: quadrotor in front of the fan.

the quadrotor reaches the first point of the circle
and then executes the planned trajectory. At the
end, the landing operation is commanded. In the
following analysis represented in Fig. 3, the take-
off, the landing and the first-point reaching phases
are not shown.
The comparison between the norms of the posi-

tion error in the case of the passivity-based control
with and without the compensation of the exter-
nal wrench and unmodeled dynamics is depicted
in Fig. 3(a). The attitude error norms are instead
shown in Fig. 3(b). It is possible to notice how
the sole passivity-based control is able to success-
fully track the circle. The average position error
norm is about 5 cm which could be acceptable in
several practical tasks. However, the performance
is substantially improved by using the information
provided by the estimator of unknown forces and
moments: the norm of the position error decreases
to less than 2 cm. From Fig.s 3(e)-3(f) it is possible
to notice that small uncertainties are present. For
instance, the considered inertia Ib might be inaccu-
rate and the estimated force along the z axis might
be an indicator about either a missing amount in
the considered mass of the Pelican or that the com-
manded thrust is not perfectly equal to the actual
one. The commanded propellers inputs in the two
considered cases are represented in Fig.s 3(c)-3(d).

7.2.2. Case study B

In this second case study, the same circular
trajectory of the previous situation is considered.
However, an external load has been physically
added and not considered in the controller. In par-

11
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(d) Commanded propellers veloc-
ity (with compensation). Legend:
blue, propeller 1; red, propeller 2;
black, propeller 3; green, propeller
4.
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(f) Moments estimation in the
case with compensation. In blue,
the estimated moment around the
x axis; in red, the y axis; in black,
the z axis.

Figure 3: Case study A.

ticular, after the take-off, a pendulum has been at-
tached, through a hook (see Fig. 4), to the bottom
of the quadrotor and far from the vertical axis of
the vehicle of about 15 cm. The pendulum has a
mass of about 0.15 Kg and a length of 0.21 m.

The effect of the additional load is visible in
Fig.s 5(e)-5(f), where now the estimated force re-
flects the presence of the additional mass of the
pendulum. Moreover, comparing Fig. 3(f) with
Fig. 5(f) it is possible to notice the effect of the
oscillations of the pendulum during the circular
trajectory resulting in the presence of significant
unknown moments. These disturbances affect the
performance of the controller. Namely, in the sole
passivity-based control, the average position error
norm is about 9 cm (see Fig. 5(a)), while the av-
erage attitude error norm is about 10 degrees (see
Fig. 5(b)). However, in any case, such control ex-
hibits robust properties in presence of unmodelled
and unpredicted effects. The performance is in-
creased by exploiting the compensation provided by
the estimator as it possible to see in Fig.s 5(a)-5(b).
The commanded propellers inputs are represented
in Fig.s 5(c)-5(d).

7.2.3. Case study C

In this last case study, the quadrotor is subject to
an external disturbance caused by a fan (see Fig. 4).
This last is placed at about 1.1 m from the ground
and at a distance of about 20 cm from the aerial
vehicle in the x, y-plane. The quadrotor takes off
at a height of about 0.6 m, then it reaches the alti-
tude of 1.8 m passing in front of the fan. Then, it
decreases again its altitude to 0.6 m (passing again
through the wind flow generated by the fan) and
finally goes in front of the fan at 1.1 m from the
ground, simulating a persisting disturbance. Af-
ter few seconds, the landing action is commanded.
Each rectilinear path along the z axis is performed
at a constant speed of 0.5 m/s. The take-off and the
landing phases are neglected in the plots of Fig. 6.

Again, in general, by looking at Fig.s 6(a)-6(b),
it is possible to notice that the sole passivity-
based control is stable even in the presence of both
time-varying and constant disturbances: the per-
formance is poor and can be recovered exploit-
ing the compensation provided by the estimator.
Fig.s 6(e)-6(f) show the estimated forces and mo-
ments in the compensation case. It is possible to
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(d) Commanded propellers veloc-
ity (with compensation). Legend:
blue, propeller 1; red, propeller 2;
black, propeller 3; green, propeller
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(e) Forces estimation in the case
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(f) Moments estimation in the
case with compensation. In blue,
the estimated moment around the
x axis; in red, the y axis; in black,
the z axis.

Figure 5: Case study B.

notice the first passage in front of the fan at about
20 s. Notice that the estimated forces are expressed
with respect to Σi and the fan is aligned to the x
axis of the inertial frame. The second passage in
front of the fan is at about 25 s. Afterwards, the
quadrotor stays in front of the fan from the time in-
stant at 31 s until the landing command is given. At
that point, it is possible to notice that the estimated
forces are almost constant (about 0.8 N along the
x axis), while the estimated moments wave due to
small oscillations of the aerial platform caused by
small turbulent aerodynamic effects on the UAV.
This last causes also a small estimated force along
z axis. The commanded propellers inputs are rep-
resented in Fig.s 6(c)-6(d).

8. Conclusion and future work

A momentum-based estimator of external wrench
and unmodeled dynamics has been employed in
this paper to control a VToL UAV together with
a passivity-based control. The algorithm enables
to successfully perform hovering and tracking tasks
with a good accuracy. The robustness of the control

has been tested in presence of unmodelled dynamic
parameters and external disturbances. However,
even if the stability of the controller is preserved,
the performance might be poor in this last case. For
this reason, the presence of an estimator of forces
and moments becomes crucial in presence of uncer-
tainties. Compensation of such terms results in a
stable controller with good performance in several
different unexpected conditions and situations. Un-
der certain assumptions, theoretical results prove
the stability of the closed-loop systems including
the proposed estimator. Experiments have been
performed to illustrate the performance of the pro-
posed control in real tasks.

Future work will be focused on problems related
to outdoor scenarios: in particular, the effects on in-
troducing an estimated translational velocity rather
than using the one provided by a visual tracker.
Moreover, the proposed architecture will be tested
in a real aerial manipulation task.
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(d) Commanded propellers veloc-
ity (with compensation). Legend:
blue, propeller 1; red, propeller 2;
black, propeller 3; green, propeller
4.
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estimated force along the x axis;
in red, the y axis; in black, the z

axis.
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(f) Moments estimation in the
case with compensation. In blue,
the estimated moment around the
x axis; in red, the y axis; in black,
the z axis.

Figure 6: Case study C.

Acknowledgements

The research leading to these results has been
supported by the ARCAS and SHERPA collabo-
rative projects, which both have received funding
from the European Community Seventh Framework
Programme (FP7/2007-2013) under grant agree-
ments ICT-287617 and ICT-600958, respectively.
The authors are solely responsible for its content.
It does not represent the opinion of the European
Community and the Community is not responsible
for any use that might be made of the information
contained therein.

Appendix A. Proof of Corollary 1

Proof. Considering Theorem 1, the nominal system
associated to (36) is

ατ (xτ ) = ¨̃τ +K1,2
˙̃τ +K1,2K2,2τ̃ = 06. (A.1)

The origin xτ = 06 of the linear system (A.1) is
globally exponentially stable since (A.1) is a second-
order differential linear equation with K1,2 and

K2,2 positive definite matrices. Therefore, the fol-
lowing function

V1(xτ ) =
1

2
xT
τ P 1xτ , (A.2)

is a Lyapunov function for (A.1), in which P 1 is a
(6 × 6) positive definite symmetric matrix solving
the following equation

P 1A1 +AT
1 P 1 +Λ1 = O6, (A.3)

for any (6 × 6) definite positive symmetric matrix
Λ1, with A1 the linear matrix associated to (A.1),
depending on K1,2 and K2,2. Through this choice
of V1(xτ ), the bounds in (27) are verified as fol-
lows [55]

γ1 = λP1
, γ2 = λP1

, γ3 = λΛ1
, γ4 = 2λP1

, (A.4)

where λ. and λ. are the maximum and minimum
eigenvalues, respectively, of the associated matrix.
Taking into account (5e) and (5f), the bound

in (28) of the perturbation term τ̈u + K1,2τ̇u is
satisfied with

∆ = λK1,2
B5 +B6, (A.5)
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for all t ≥ t0.
Then, considering (29), for all ‖xτ (t0)‖ <∞, the

solution xτ (t) of the perturbed system (36) satis-
fies (37) for some finite time t1, depending on (A.5)
and ‖xτ (t0)‖, where

ξ1 =

√
λP1

λP1

, ρ1 =
(1− ǫ1)λΛ1

2λP1

,

with ǫ1 < 1 and

B8 =
2λP1

(λK1,2
B5 +B6)

ǫ1λΛ1

√
λP1

λP1

. (A.6)

The same procedure can be applied for the esti-
mated forces.

It is worth noticing that B8 can be decreased
trough a proper choice of the gains K1,2 and K2,2

and of the matrix Λ1.

Appendix B. Proof of Corollary 2

Proof. Theorem 1 is taken into account for the
demonstration. In order to show that x2 = 06

is a globally exponentially stable equilibrium point
of the nominal closed-loop equation (23b), the in-
equalities in (27) have to be satisfied [55]. There-
fore, consider the following candidate Lyapunov
function inspired by [53]

V2(t,x2) =
1

2
xT
2 P 2x2, (B.1)

with

P 2 =

[
Ko + 2νDo + ν2M(ηb) νM(ηb)

νM(ηb) M(ηb)

]
.

Thanks to Sylvester’s criterion, it is possible to
verify that the quadratic form in (B.1) is positive
definite and vanishes only when x2 = 06. In-
equality (27a) is then proved with γ1 = 1

2λP2
and

γ2 = 1
2λP2

. In order to verify (27b), the following
inequality holds

∂V2
∂t

+
∂V2
∂x2

α2(ν,x2,ηb, η̇b,Ko,Do) ≤ −xT
2 Λ2x2,

with

Λ2 =

[
νKo + ν2Do O3

O3 Do

]
.

It is possible to easily check that Λ2 is positive def-
inite and then (27b) is verified through γ3 = λΛ2

.

Finally, inequality (27c) is proved with γ4 = λP2
.

Taking into account (38), the uniform bound
in (28) is proved as follows

‖β2(ηb, τ̃ )‖ ≤ λM−1‖τ̃‖ ≤ λM−1B9 <∞. (B.2)

Then, considering (29), for all ‖x2(t0)‖ < ∞,
the solution x2(t) of the perturbed system (22b)
satisfies (40) for some finite amount of time t2 ≥ t1,
depending on (B.2) and ‖x2(t0)‖, where

ξ2 =

√
λP2

λP2

, ρ2 =
(1− ε2)λΛ2

λP2

,

with ε2 < 1 and

B11 =
λP2

λM−1B9

ε2λΛ2

√
λP2

λP2

. (B.3)

The following two remarks conclude the proof.

• Remark 7. As highlighted in Remark 4, it is
not ensured in principle that the compensation
of estimated generalized forces improves the
performance of the sole passivity-based con-
troller. In order to check whether the com-
pensation is convenient or not, the case where
the estimations are not employed is considered.
In such a case, the perturbation term in (22b)
appears to be

β′
2(ηb, τu) =

[
03

M(ηb)
−1τu

]
.

Corollary 2 still holds, but now inequal-
ity (B.2), which is necessary to prove hypoth-
esis (28), is modified as follows

‖β′
2(ηb)‖ ≤ λM−1‖τu‖ ≤ λM−1B4 = ∆′ <∞,

where (5d) has been taken into account. On
the one hand, in case only constant unknown
moments τu are present, estimated, and com-
pensated, ∆′ is always greater than 0, since
B4 > 0, while B9 in (B.2) is zero from Remark
6. Hence, B′

11 > B11 = 0: the bound with
the compensation is less than the case with-
out the compensation meaning that the per-
formance of the controller is improved when
a feedback of the unknown moments estima-
tion is provided in (15). On the other hand,
when time-varying unknown moments τu are
present, estimated, and compensated, B11 <
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B′
11 ⇐⇒ λM−1B9 < ∆′, meaning that com-

pensation of the estimated moments is conve-
nient in (15) when B9 < B4. This is in gen-
eral verified when τu is slow-time varying and
thanks to a proper choice of both estimator
bandwidth and matrix Λ1 in (A.3).

• Remark 8. Notice that inequality (40b)
might be used to verify that the controller
maintains the selected Euler angles in a
singularity-free zone (see Assumption 1). Nev-
ertheless, the mathematical derivation is cum-
bersome due to the complicated expression of
B11 in (B.3). Experiments performed in Sec-
tion 7 seem anyway very promising from this
point of view.

Appendix C. Proof of Corollary 3

Proof. Theorem 2 is taken into account for the
demonstration. The nominal closed-loop sys-
tem (23a) has a unique exponentially equilibrium
point x1 = 06, since (23a) is a linear system with
an associated (6× 6) state matrix A2(x1) which is
Hurwitz, since m > 0 and both Kp and Dp are
positive definite diagonal matrices. Therefore, the
following function

V3(x1) =
1

2
xT
1 P 3x1, (C.1)

is a Lyapunov function for (23a), in which P 3 is a
(6 × 6) positive definite symmetric matrix solving
the following equation

P 3A2 +AT
2 P 3 +Λ3 = O6, (C.2)

for any (6 × 6) definite positive symmetric ma-
trix Λ3. Through this choice of V3(x1), inequal-
ities (27) are verified with the following choice of
the bounds [55]

γ1 = λP3
, γ2 = λP3

, γ3 = λΛ3
, γ4 = 2λP3

. (C.3)

Taking into account (5a), (16), (19), (24), (39)

and the equation f̂u = fu− f̃ , it is possible to give
the following ultimate bound to the thrust

|u| = m‖p̈d − g − 1

m
Dpėp −

1

m
Kpep −

1

m
f̂u‖

≤ B12 +B13(‖ep‖+ ‖ėp‖)
≤ B12 +B13

√
2‖x1‖, (C.4)

where B12 = B1 + m(g + B7) + B10 and B13 =
max{λKp

, λDp
}. The ultimate bound for the term

δ(ηd, eη) in β1(u,m,ηd, eη, f̃) is

‖δ(ηd, eη)‖ ≤ B14‖eη‖, (C.5)

with B14 > 0. By recalling (18) and exploiting the
following general relationships

sin(a+ b) = sin(a) + 2 sin(b/2) cos(a+ b/2)

cos(a+ b) = cos(a)− 2 sin(b/2) sin(a+ b/2)

| sin(a)| ≤ |a|, | sin(a)| ≤ 1, | cos(a)| ≤ 1
n∏

i=1

|ai| ≤
1

2

n∑

i=1

|ai|, for |ai| ≤ 1,

inequality (C.5) can be verified providing first a
bound to |δx|, |δy| and |δz| and then consider-

ing ‖δ(ηd, eη)‖ =
√
δ2x + δ2y + δ2z . Notice that

| sin(a)| ≤ |a| and | sin(a)| ≤ 1 are employed
with arguments eΥ and eΥ + Υd, respectively,
with Υ = {φ, θ, ψ}. Hence, taking into ac-
count (39), (C.4) and (C.5), the following ultimate
bound can be written for the perturbation term
β1(u,m,ηd, eη, f̃)

‖β1‖ ≤ 1

m
(B10+B13B14

√
2‖eη‖‖x1‖+B12B14‖eη‖).

(C.6)
Comparing (30) and (C.6), it is possible to rec-
ognize that Γ1(t) = (B13B14

√
2/m)‖eη‖, while

Γ2(t) = (1/m)(B10 + B12B14‖eη‖). Notice that
both Γ1(t) and Γ2(t) are nonnegative and continu-
ous terms for all t ≥ t0. Moreover, Γ2(t) is bounded
for all t ≥ t0 since

Γ2(t) =
B10 +B12B14‖eη‖

m
≤ B10 +B12B14B15

m
,

in which (40) has been considered, with B15 =
max{ξ2‖x2(t0)‖, B11}. In order to verify (31), de-
noting with Y = (B13B14/m)

√
2, the following in-

equality holds for Γ1(t)

Y

∫ t

t0

‖eη‖dt = Y

(∫ t2

t0

‖eη‖dt+
∫ t

t2

‖eη‖dt
)

≤ Y (ξ2B16‖eη(t0)‖+B11(t− t2))

< Y (ξ2B16‖eη(t0)‖+B11(t− t0))
(C.7)

where B16 = (1/ρ2)e
ρ2t0 (e−ρ2t0 − e−ρ2t2). Hence,

inequality (31) is verified with b1 = Y B11 > 0 and
b2 = Y B16ξ2‖eη(t0)‖. Notice that b2 is always
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positive and bounded. Therefore, taking into ac-
count (31) and (C.7), fixing the desired gains Kp

and Dp, noticing the dependency from the mass of
the vehicle m and the bound B11, it is then always
possible to choose a matrix Λ3 such that inequal-
ity (32) is verified.
Then, considering (33), for any initial condition

of the state x1(t0), the solution of the closed-loop
system (22a) satisfies (41) with

B17 = max

{
ξ3
λP3

λP3

‖x1(t0)‖,
ξ3λP3

ρ3λP3

B18

}
,

where

ξ3 = e
−Y λP3

−B16ξ2‖eη(t0)‖

λP3 ,

ρ3 =
1

2

(
λΛ3

λP3

− 2Y B11
λP3

λP3

)
,

B18 = sup
t≥t0

Γ2(t).

The following remark concludes the analysis.

• Remark 9. Notice that if only constant un-
known moments τu are present, estimated, and
compensated, then B11 is zero from Remark 6.
As a consequence, b1 = 0 for all t ≥ t2. In-
equality (32) is thus verified for any value of
Λ3, Kp and Dp, while x1(t)’s bound in (41)
depends only on B10, which is due to the force
estimation process. Therefore, if only constant
unknown forces fu are present, estimated, and
compensated, then B10 = 0 thanks to a similar
consideration as in Remark 6, and x1(t) goes
asymptotically to zero. Furthermore, similar
considerations can be done as in Remark 7 to
show that compensation of estimated forces is
convenient.
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[30] B. Yüksel, C. Secchi, H. Bülthoff, A. Franchi, A non-
linear force observer for quadrotors and application to
physical interactive tasks, in: 2014 IEEE/ASME In-
ternational Conference on Advanced Intelligent Mecha-
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