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Abstract The complexity of the cardiac rhythm is dem-
onstrated to exhibit self-affine multifractal variability.
The dynamics of heartbeat interval time series was
analyzed by application of the multifractal formalism
based on the Cramér theory of large deviations. The
continuous multifractal large deviation spectrum
uncovers the nonlinear fractal properties in the dynam-
ics of heart rate and presents a useful diagnostic
framework for discrimination and classification of
patients with cardiac disease, e.g., congestive heart fail-
ure. The characteristic multifractal pattern in heart
transplant recipients or chronic heart disease highlights
the importance of neuroautonomic control mechanisms
regulating the fractal dynamics of the cardiac rhythm.

Keywords Cardiac disease - Heart rate variability -
Large deviation spectrum - Multifractals

Introduction

The beat-to-beat variation in the heart rate of humans
and other mammals is generated by a complex process
and displays inhomogeneous, nonstationary extremely
irregular temporal organization. The physiological
mechanisms of cardiac control expected to result from
both intrinsic and extrinsic factors operating at differ-
ent time scales or resolution have not been identified
clearly. A variety of mathematical methods have been
developed to characterize complex patterns in physio-
logical time series. These methods include classical
linear stochastic techniques such as the mean and
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standard deviation, as well as novel methods derived
from nonlinear systems theory including fractal
dimension, scaling coefficients and multifractal spectra.
The various ways in which these measures may be
applied to analyze physiological dynamics are briefly
reviewed with emphasis on techniques of assessment
and modeling of the multifractal properties of cardiac
time series.

In this article we will first summarize standard
methods of time series analysis pointing at the pitfalls
inherent in the application to a stream of heartbeat
interval data. Then some techniques in which concepts
from nonlinear systems dynamics have been applied will
be addressed. These include unifractal and multifractal
approaches of analysis. Finally, multifractal modeling of
cardiac time series complements this overview. However,
since an extensive allusion to methods of nonlinear time
series analysis is presented in several recent general
textbooks (Bassingthwaighte et al. 1994; Kaplan and
Glass 1995; Abarbanel 1996; Kantz and Schreiber 1997,
Mandelbrot 1999; West 1999; Bunde et al. 2002;
Doukhan et al. 2003), we will not attempt a compre-
hensive review. In addition, the choice of methods is not
exclusively based on objective criteria, rather there is a
strong bias towards methods that we have found either
conceptually interesting or useful in practical work, or
both.

Assessment of heart rate dynamics

Standard methods of time series analysis — when the
mean is meaningless

In research, quantitative analysis of physiological signals
typically starts (and often ends) with an analysis of the
mean and standard deviation. However it does not seem
to be recognized that the most commonly used linear-
stochastic statistical procedures provide an adequate
characterization of the data only if the data have some
very specific mathematical properties.
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The arguments that follow are not restricted to
heartbeat interval data, but may equally be leveled upon
many, if not all, biological time series, e.g., blood pres-
sure, single neuron firing or channel gating dynamics.
The characteristic features in observational heartbeat
interval time series of normal humans (and other species
including rodents), for the purposes of illustration, are
compiled in Fig. 1. The left panels (from top to bottom)
show an experimental RR-interval time series of a nor-
mal subject (upper), a randomly shuffled surrogate of the
original time series (middle), and a genuine random data
set rescaled to the amplitude of the fluctuations of the
original record (lower). A difference in the appearance of
the highly irregular, erratic and apparently random
behavior is readily apparent upon visual inspection. In
traditional linear statistics the measured values are
considered as one representative set taken from the
entire population having a well-defined arithmetic mean,
the sample mean, standard deviation and variance.
Hence no differences between the full-length data sets
represented in the left panels become apparent,
suggesting that the linear properties are the same.

However, the mean and standard deviation
calculated for cumulative subepochs of each data set
(increasing data length), displayed in the middle-left
panels, shows that this impression is wrong. While the
statistics for the random sets (middle and lower) rapidly
stabilize, those of the original (upper) continue to fluc-
tuate and, with increasing data length, would not con-
verge to constant values. Thus, there is a sizable amount
of uncertainty in the estimates of the sample mean and

Fig. 1 Linear statistics of Data Sets

the standard deviation, which would further increase or
decrease and never converge if more data were added to
the data stream. These findings suggest that a population
mean of the process that generates the data does not exist.
There is thus no single value that can be identified as the
“correct” value of the mean. Ultimately, as the amount
of data continues to increase the variance continues to
increase and becomes infinite.

The linear autocorrelation function (C,) for increas-
ing lag (7) is shown in the middle-right panels. Whereas
C, rapidly decays to zero for the random data sets, the
decay for the original is much delayed and follows a
power-law indicating the presence of long-time correla-
tions that are absent in the random data. The right
panels show the average mutual information I, as
function of time lag (7). The information statistic I, acts
as the nonlinear autocorrelation function telling, in a
nonlinear way, how the measurements at different times
are connected on average over all measurements. This
quantity strictly connects the set of observed measure-
ments (s,) with the same time-lagged set (s,+t) and
establishes a criterion for their mutual dependence based
on the criterion of information connection between the
two. If s, is completely independent of s, + 7, the amount
of information between the two is zero. Hence, the
average over all measurements of this information sta-
tistic for t=1,2,3,... is zero for the random data sets
whereas the amount of information gradually declines
with increasing t for the original and s, and s,+ 7 will
eventually become independent for larger 7. I, is the
well-known Shannon entropy of the signal. Stable linear
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systems generate zero information, hence selecting
information generation as the critical aspect of a non-
linear system assures that the quantities derived (see
“Nonlinear time series analysis’” and “Multifractal times
series analysis”) are a property of nonlinear dynamics
not shared by linear evolution.

Thus, it becomes evident that, irrespective of the same
linear statistics, the dynamics of the original and the
random data sets do not share any element in common.
The sluggish decay of both the autocorrelation function
and the average mutual information observed for the
original cardiac time series indicates the existence of
long-range correlations (“memory”) in the data set.
Long memory in times series is hard to detect, but has
enormous effects on statistical quantities such as stan-
dard errors and tests, and hence on the conclusions
drawn.

In traditional analysis of irregular biological time
series data, e.g., cardiac intervals, it is implicitly assumed
that the dynamics is inherently stochastic and produced
by a linear Gaussian random process that is completely
specified by its first and second moments and fully
described statistically by the mean, the variance and the
autocorrelation function. Hence, if the sample data were
indeed representative of a Gaussian distribution, linear
statistical analysis focused on the fixed interval associ-
ated with the mean would yield traditional variables
essentially independent of the interval selected for
analysis. Moreover, implicit in this assumption is the
idea that the fluctuations around the mean are uncor-
related, structureless random error with normal statistics
(normal distribution of probability density function;
in fact, much of biology and medicine is definitely
not “normal’) containing no information about the
dynamics.

However, as shown in Fig. 1, an artificial uncorre-
lated random data set with normal statistics, rescaled to
the distribution of the values of the original with the
same /inear properties but no further built-in determin-
ism, shows that the cardiac interval time series has order
and structure embedded in the fluctuations that is not
present in the uncorrelated time series. The deterministic
structure in the cardiac time series results from the fact
that future events are causally set by past events
(“memory”). This underlying complex structure in
cardiac interval variability presents a manifestation of
nonlinear control processes with many interacting com-
ponents ultimately determining the cardiac rhythm.
Hence, the present overview is concerned with nonlinear
time series analysis for the detection and quantification
of possibly complicated structures in a signal.

Here, we emphasize that many universally accepted
linear statistical measures would not adequately describe
the complex dynamical properties of heartbeat interval
time series, i.e., the correlated structure where each event
is statistically dependent on all past ones and results
from the ordering of points in time. This is essentially
what happens for nonlinear so-called fractal random
processes (FRP) and is a consequence of a property of
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fractals known as self-similarity. We will not review the
theory of fractals. Heuristically, a fractal signal produces
a self-similar graph; “zooming” (in or out) yields a
picture which is similar to the original. The signature of
self-similarity implies that: (1) the calculation of mean
heartbeat interval or mean heart rate and associated
conventional linear statistics for discrimination are
meaningless; (2) before any statistical test of dependence
is used on heartbeat interval time series, its robustness
with respect to infinite variance must be investigated;
and (3) novel dimensionless measures may be used to
replace well-known but ambiguous linear-stochastic
measures that generally encounter the commitment of a
type 2 error in the assessment of heartbeat dynamics.

Nonlinear time series analysis

Early studies have attributed the complex dynamics of
the cardiac rhythm to be the result of an autonomous
low-dimensional deterministically chaotic system but this
concept has remained enigmatic (Lefebvre et al. 1993;
Yamamoto et al. 1993; Kanters et al. 1994; Sugihara et
al. 1996; Poon and Merrill 1997). Physiological systems
are typically high-dimensional. For example, heart rate
and its variability are modified by variables other than
neuroautonomic outflow, such as respiration, arterial
blood gases, and circulating hormones. Each of these
variables in turn presents the output of dynamics coupled
through nonlinear time-delayed feedbacks. Although for
truly deterministic systems the entire system’s dynamics
may be determined from a single measured variable, the
feasibility of this approach for noisy biological time
series has not been established. It does not seem to be
recognized that conventional algorithms for calculation
of correlation dimension or Lyapunov exponents have
serious limitations in the analysis of physiological data
and a convincing demonstration of the utility for high-
dimensional systems has not been provided. Nonlinear
statistics can however be useful for describing the
dynamics of time series even though these systems may
not be chaotic in the strict mathematical sense. This can
be demonstrated when the value of the statistic changes
consistently as some physiological condition changes or
by differences between populations in distinctly different
physiological states. In many instances the justification
for a given statistic is founded on assumptions that may
not be appropriate in physiology but nonetheless proves
to have physiological significance though the assump-
tions do not hold.

Recent studies have identified scale invariance or self-
affinity in the fluctuations of cardiac rate which are
characterized as 1/f-noise (strictly, f Bnoise, with a Fou-
rier spectral density given in terms of the frequency f by
the power law /% and B=1) and quantified by a global
roughness statistic (Thurner et al. 1988; Peng et al. 1995,
1996; Ivanov et al. 1996, 1998a; Meyer at al. 1998a, 1998b;
Amaral et al. 1998). Of particular interest has been the
calculation of fractal dimension and scaling properties.
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Fractal dimension

The fractal dimension, D, which presents the most
important measure of the roughness or irregularity of a
time series is calculated from the log-log plot of the
relative dispersion, D, versus the number of systemati-
cally aggregated data points, n (Fig. 2, lower left). The

Fig. 2 Non-linear time series analysis. Upper: RR-interval time
series of healthy subject in supine posture. Fractal dimension —
lower left: Logarithm, base 2, of relative dispersion (D) versus log,
base 2, number of aggregated data points (n). The upper line is the
best fit to the data with slope —0,25(D(,1)o<n"0‘25) yielding a fractal
dimension of D=1.25 for the experimental time series. The lower
line is the average best fit for an ensemble of 10 realizations of
sequence-randomized data sets, i.e., shuffling the original time
series data points to random positions in the sequence, with slope —
0.50 (0.01) yielding a mean fractal dimension of the surrogates of
Dgurr=1.50 (0.01). The probability that the difference in the slopes
between the two lines or fractal dimensions can be explained by a
linear, additive, uncorrelated process is p < 107°. Scaling coefficients
— lower right: Log-log plot of root-mean-square fluctuations [F{,]
versus size, namely number of points (m) in window. The points of
line in the middle follow different regression slopes, f; and f»,
separated at a cross-over breakpoint (evident at higher magnifica-
tion, here indicated by upward arrow). The scaling coefficient for
short-range correlations in the experimental time series is /1 =1.03;
for the long-range correlations it is f,=1.07. The lower line of
points depicts the average of 10 realizations of sequence-random-
ized surrogate data sets representing white noise with mean slope
Psurr = 0.49 (0.02). The upper line of points depicts the average of 10
realizations of integrated sequence-randomized surrogate data sets
representing Brownian noise (integration of white noise) with mean
slope fsurr=1.50 (0.04). The differences of fg, suggest that the
scaling in the experimental time series cannot be explained by white
or Brownian noise. See text for details

relative dispersion is given by the ratio of the standard
deviation to the mean. The procedure is to form groups
from the original consisting of m consecutive data
points. The relative dispersion is calculated for each
group that is obtained as the aggregates are enlarged to
contain increasingly more points (coarse graining). The
renormalization group operation of heartbeat intervals
beyond their immediate neighborhood yields groups of
twos, then groups of threes, then groups of fours and so
on. For a simple fractal, D decreases as n increases and
yields a rectilinear line with power-law slope, b. D is
calculated from the relationship: D= 1-b. The straight-
line relationship implies that cardiac interbeat dynamics
follow an inverse power-law and exhibit scaling which
indicates the presence of long-time self-similar correla-
tions extending over hundreds of beats. The serial
dependence or “memory”” observed in cardiac time series
is a reflection of different regulatory mechanisms that,
although acting mutually independently on different
time scales, are tied together and their effects on heart
rate dynamics are interconnected by scaling. This
behavior which operates against lawlessness is essen-
tially what is called a fractal random process (FRP). In
turn, impairment of one individual component of
cardiac regulation is expected to influence the other
regulatory mechanisms by interdependence. The fractal
dimension calculated from aggregated dispersion anal-
ysis for realizations of sequence-randomized surrogates
(Dsurr), representing uncorrelated random behavior
(white noise), is also displayed in Fig. 2 (lower left). The
fractal dimension of normal cardiac interbeat time series
is 1.0>D <« 1.5, indicating that the underlying dynamics
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is different from periodic behavior (D=1.0) and differ-
ent from white noise (Dsyrr=1.5), i.e., is fractal.

Scaling coefficients

The calculation of scaling coefficients of a time series by
a technique referred to as Detrended Fluctuation Analysis
(DFA) is derived from principles of random walk theory
(Peng et al. 1995; Meyer et al. 1998a; Stiedl and Meyer
2002, 2003). In the DFA analysis the original time series,
Y;, length N, is first integrated. The integrated time
series, Y(k), is self-similar if the fluctuations at different
observations windows, F(m), scale as a power-law with
the window size, m, i.e., the number of cardiac intervals
in the window of observation. The root-mean-square
fluctuation, F(m), is calculated for all window sizes
namely time scales, m:

Fm) = [V (k) = (b)) (1)

where Y,,(k) denotes the local trend in each window. A
linear relationship in the log F(m) versus log m graph
indicates that F(m) = m”, where f (slope of the log F(m)
versus log m relationship) is the scaling exponent (or
self-similarity parameter). In the log-log plot, F(m)
typically increases upon recurrent operations with
increasing window size m yielding straight-line power-
law relationships eventually separated by a cross-over
breakpoint (Fig. 2, lower right). The different slopes, f3;
and f,, are interpreted to reflect the coefficients of dis-
tinct ranges of the beat increment: short-range and long-
range scaling, respectively. For normal cardiac time
series f; = 1.0 and S, = 1.0. A key issue in the analysis
of non-stationary physiological times series data is that
fluctuations driven by extrinsic uncorrelated stimuli can
be interpreted as a systematic ‘“‘drift” or “trend” in
relation to the frequency of the stimuli and distin-
guished from the intrinsic correlation properties of the
dynamics. These nonstationarities which do not scale
the time series are treated by removing the least-squares
linear regression trend in each window. For clarity,
scaling so interleaves the data that no procedure for
differencing can remove its effect, i.e., a fractal times
series cannot be detrended systematically. Here, the
fluctuations scale themselves and the longest and the
shortest time scales contributing to the process are tied
together so that anything that affects one time scale
affects all of them.

Nonstationarity and fractal dynamics

Physiological time series under free-running conditions
may be visualized as ““badly behaved” data originating
from nonstationarities driven by uncorrelated extrinsic
factors and/or from the intrinsic nonlinear correlated
dynamics of a fractal process. In a formal way, the
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signal generated by a fractal process is nonstationary,
i.e., it varies all over as a result of its “‘built-in” long-
range power-law properties and its moments depend on
time. A fractal-generating mechanism with fixed com-
ponents can generate a time series with moments that
vary in time. A self-similar fractal process typically
produces a time series with long-run dependence of the
fluctuations that display the kind of “drift-like”
appearance at all time scales. It can be demonstrated
that the characteristics of a genuine (computer-gener-
ated) self-similar fractal time series demonstrating non-
stationarity with ‘‘drift-like” appearance at all time
scales due to “built-in” long-range power-law correla-
tions (f;,=1.0, 1/f-noise) display similar fractal
dynamics compared to the experimental data of
humans. The situation is further complicated by the fact
that a fractal process may not be uniscaling or unifractal
and hence may not be fully described by a unique fractal
dimension or unique scaling coefficients because it may
present a time-dependent multiscaling or multifractal
process with varying dimensions and scaling properties
(see below).

On the other hand, the intrinsic dynamics of a com-
plex nonlinear system may be biased by extrinsic sour-
ces, 1.e., non-steady state physiological or environmental
conditions, that could give rise to highly nonstationary
behavior. Although strain-related variations may be
physiologically important, their correlation properties
would be expected to be related to the stimulus and
different from the long-range correlations (“‘memory’’)
generated by a dynamical system. Unlike the calculation
of fractal dimension, D, from the relative dispersion
which presumes stationarity of the data stream, the
estimation of scaling coefficients, f3, does not rely on this
assumption. A key issue of the DFA-analysis is that the
extrinsic fluctuations from uncorrelated stimuli can be
interpreted as “trends” and decomposed (by detrending
across time scales) from the intrinsic dynamics of the
system itself.

Multifractal time series analysis

Implicit in the calculation of fractal dimension and
scaling coefficients (see above) is the assumption that the
cardiac interbeat time series is fractionally homoge-
neous, i.e., unifractal or uniscaling, and can appropri-
ately be described by a single fractal dimension or
scaling coefficient. Further generalization of the analysis
beyond the property of uniscaling leads to multiscaling
or multifractals allowing the scaling exponents to depend
on time and to be chosen from an infinity of possible
distinct values. Multifractals are therefore characterized
by a plethora of scaling relations or power-laws with
correspondingly many exponents. Multifractals, origi-
nally introduced by the seminal papers of Frisch and
Parisi (1985), Halsey et al. (1986) and the work of
Mandelbrot (1999), exemplify extreme variability and
belong to the broad and unified notion of self-affine
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fractal variation. Evidence for multifractality in human
heartbeat dynamics has been suggested earlier (Meyer
et al. 1998a, 1998b) and the multifractal formalism
based on the Legendre spectrum (see below) has recently
been invoked in the analysis of the variability of heart
rate (Ivanov et al. 1999).

Multifractal spectrum

Biological signals typically: (1) exhibit significant long--
range dependence (LRD), but display short-term
correlations and scaling behavior inconsistent with strict
self-similarity; (2) the scaling behavior of moments is a
non-trivial (nonlinear) function of the moment order as
the signal is aggregated; (3) the increments in the signal
are inherently positive and hence non-Gaussian. Signals
with these properties fall naturally into the class of
multifractal processes. Hence, multifractal analysis
retrieves positive measures or distributions exhibiting
self-similarity but nonhomogeneous scaling.

The multifractal analysis of irregular but otherwise
arbitrary one-dimensional signals is first demonstrated
on a classical multifractal signal (trinomial measure,
weights: 0.1, 0.3, 0.6; Fig. 3a). The analysis yields a
multifractal spectrum [f(«)] that may be viewed as a
measure of spikiness or global characterization of the
singularity structure of the data. It provides information
as to which singularities occur in the signal and which
are dominant (Falconer 1990; Jaffard 1997; Véhel and
Vojak 1998). More precisely, f(a) is a graph where the

Fig. 3a—d Multifractality of a

abscissa represents the Holder or regularity exponent (o)
in the signal and the ordinate is the fractal co-dimension
which measures the extent by which a given singularity is
encountered (coarse-grained multifractal spectrum). The
lower the exponent «, the more irregular is the signal.

Large deviation spectrum
The large deviation spectrum [f4()] which is based on

the Cramér Theory of Large Deviations (Holley and
Waymire 1992; Véhel and Vojak 1998) is defined as:
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The function fg(«) reflects the exponentially decreas-
ing rate of N” (o) which is the number of intervals having
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exponent o up to a precision ¢ when the resolution n
approaches . The exponent o is the logarithm of some
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Fig. 4a-h Multifractality in heartbeat interval time series in health
(left panels) and cardiac disease (right panels). Successive heartbeat
intervals (ms) as a function of time (=40 min) from a healthy
subject (a) and a patient with ischemic heart disease (b), both in
supine posture. The cardiac time series exhibits wild irregular
fluctuations and nonstationary behavior in the healthy subject
which is much attenuated in cardiac disease. ¢, d The coarse grain
Holder exponents (o) distributed over the interval [0,1] reflects the
heterogeneity that is present in the cardiac time series irrespective
of the fact that the subjects were in steady-state resting supine
conditions. e, f Color coding of ¢, d. g, h The continuous large
deviation multifractal spectrum, f; (), of the Holder coefficients (o)
shows a smooth concave function supported by i t0 omax With
mode, onoqe [0.33] for the healthy subject and og0qe. [0.50] for
cardiac patient, indicated by filled circles. The extracted parame-
ters, Omode> %mins ANd dmayx, respectively, are used to quantify the
spectra for the purpose of discrimination and classification of
heartbeat interval time series of normal subjects and patients with
cardiac disease

Principle (LDP) rate function (Ellis 1985; Riedi 1995;
Véhel and Vojak 1998) which measures how frequently or
how likely the observed o deviates from the “‘expected
value” of o. More generally, the multifractal formalism,
assessing the singularity spectrum of the function fg(x),
yields information about the statistical behavior of the
probability of finding a point with a given Hélder expo-
nent in the signal under changes of resolution.

Continuous large deviation multifractal spectrum

The computation of fu(x) is based on kernel-density
estimation of the coarse grain Holder exponents of. The
estimator of fu(«) is optimized for (1) implicit depen-
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dency between precision € and resolution n, (2) spatial
adaptation of precision e, (3) stable resolution within the
range Amin < 1 < Ny, yielding a new definition (Canus
et al. 1998), the continuous large deviation multifractal
spectrum, f7 (o) (Fig. 3d). Interval discretization is line-
arly spaced between o, and o,,x wWhich are the mini-
mum and maximum values of the coarse grain Holder
exponents. fi(a) yields the large deviations from the
“most frequent” singularity exponent and thus displays
information about the occurrence of rare events such as
bursts (small o). Figure 3d reveals a rich multifractal
spectrum indicating that there is “‘burstiness’” in the
signal everywhere. Contrary to the more convenient and
generally more robust (though at the expense of severe
loss of information) Legendre spectrum (Ivanov et al.
1999), f.(2), which is based on the Legendre transfor-
mation of the Rényi exponents [z(g)] of the gth moments
of the measure and is always shaped like a N (concave
and thus continuous, and almost everywhere differen-
tiable), the continuous large deviation multifractal
spectrum, f;(a), is superior in that it does not need to be
concave and hence is more appropriate in a general
setting. It has been demonstrated, that the partition
function namely moment exponent function t(g) and
singularity spectra f(o) are mutually related functions
and f(x) is the concave hull of f,(x) (Brown et al. 1992;
Véhel and Vojak 1998). For the truly multifractal
deterministic measure (Fig. 2a) f (o) = f(o), both show-
ing close correspondence with the theoretical multifrac-
tal spectrum. The multifractal spectrum addresses the
long-range dependence particularly on large scales or
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Fig. Sa—c¢ Multifractality in health (a) and cardiac disease (b).
Group averages (SD) of the continuous large deviation multifractal
spectrum f;j(oc) versus Holder exponents () in healthy subjects and
patients with congestive heart failure. The broad shape of the
multifractal spectra exemplifies multifractal behavior in the cardiac
interbeat rhythm which is different between the healthy group and
the heart-failure group. The spectra of the cardiac-failure group
display a markedly left-sided bimodal shape and shift of oyede
towards higher values. ¢ Stratification of healthy subjects and
patients with congestive heart failure by continuous large deviation
multifractal spectrum estimation. Mode of spectrum (opode) VErsus
degree of multifractality (0tmax—0%min) based on full-length 24-h time
series records. The multifractal approach clearly discriminates
healthy from heart-failure subjects. The results demonstrate that a
single quantity, om,04e, may be used successfully for discretization of
normal subjects and patients with cardiac disease

aggregation levels as well as events such as bursts. Given
the strength of a burst with exponent ¢, the spectrum
f(2) indicates how frequently this strength o is encoun-
tered. The larger f(«) the more often is o observed.

Experimental data sets

The cardiac interval time series (length =10’ beats) of
healthy subjects [n=9, 7 males, 2 females; mean age (SD),
33.7 (4.6) years] and patients with congestive heart failure
[n=11, 9 males, 2 females; mean age (SD), 56.4
(7.2) years] were obtained by 24-h Holter monitoring. The
electrocardiographic data base was obtained using a dual-
channel ambulatory ECG recorder (Model R6, Custo
Med, Munich, Germany) provided with RAM-memory
and advanced data compression technology (sampling
rate 500 Hz, resolution 2 ms). Additional short-term
steady-state episodes (40 min) in healthy control subjects,

max —min

in patients with nonsustained ventricular tachycardia,
and in heart transplant recipients ( <2 years after trans-
plantation) were recorded by a custom-made dual-chan-
nel battery-powered miniature ECG recorder amplifier
interfaced to a PC by a fiber-optical link (sampling rate
1200 Hz, resolution = 0.8 ms).

The digitized ECG was automatically analyzed using
an adaptive QRS-template pattern-matching algorithm
to obtain a discrete cardiac time series or function,
x(t)=t;+1—t, 1.e., the time interval between successive
R-wave maxima of the ECG. Ectopic beats or outliers
were identified by fitting a third-order autoregressive
model to the interbeat interval data points using multi-
ples (3.5) of the interquartile distance as detection
threshold and corrected by linear-spline interpolation.

Cardiac dynamics in health and disease

Figure 4 shows the continuous large deviation multi-
fractal spectrum for a healthy adult human subject (left
panels) and a patient with ischemic heart disease (right
panels). The difference in the dynamics between the two
becomes readily apparent by eye, as the human eye is an
excellent pattern-recognition device. The quantitative
aspect of the difference is reflected in the coarse grain
Holder exponents (Fig. 4c, d) or its colored transfor-
mation (Fig. 4e, f) and the disparate shapes of the
multifractal spectra (Fig. 4g, h).

For all healthy subjects, the spectrum, f;(), is a
smooth concave function [group mean (SD), o04c 0.36
(0.02); otmin 0.09 (0.01); omax 0.50 (0.03)] over a broad
range of Holder exponents o (Fig. 5a). The broad range



Fig. 6a—f Circadian heart rate
dynamics. a, b Mean RR-
interval (SD) of 1-h sub-epochs
versus the time of day in a
healthy subject and a patient
with congestive heart failure.
The heartbeat interval time
series of normal subjects exhibit
a circadian rhythm with
lengthening of RR-intervals
(lower heart rate) during night-
time episodes which is almost
eliminated in chronic cardiac
failure. ¢, d Group average (SD)
of o versus f; () of 1-h sub-
epochs. The multifractal spectra
display a characteristic
difference of shape between
health and cardiac failure but
exhibit a remarkable stability
over a circadian 24-h cycle. e, f
The mode of the multifractal
spectra is lower in normal
subjects and higher in cardiac
patients but would not undergo
systematic circadian-related
changes

Fig. 7a, b Multifractality and
neuroautonomic cardiac
control. Multifractal spectra
from heart transplant recipients
(a), and patients with non-
sustained ventricular
tachycardia (b). The different
patterns of the multifractal
spectra exemplify the
importance of neuroautonomic
cardiac control in generating
the broad-range multifractal
spectrum of healthy cardiac
dynamics. Cardiac disease is
associated with a characteristic
pathological shape of the
multifractal spectrum

spectrum indicates that heart rate of healthy subjects
exhibits multifractal dynamics, i.e., the normal cardiac
rhythm displays self-affine multifractal variability. In
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contrast (Fig. 5b), the spectrum of heart rate dynamics
from patients with congestive heart failure consistently
displays a marked departure from concavity showing a
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pronounced trough on the increasing part of the spec-
trum and on,0q. 18 shifted to larger Holder exponents
[group mean (SD), onode 0.45 (0.03); omin 0.09 (0.02);
Omax 0.53 (0.04)]. The shift of the o4 to larger values
and the “removal” of low singularity strength
(0.1 £ 2 £0.4) render “smoothing” and indicate that the
cardiac time series in chronic cardiac disease is more
regular while the degree of multifractality given by the
Omax—min difference is not materially different between
the two groups. The pattern of the spectrum estimate in
cardiac patients appears to uncover a superposition of
two “‘basic” spectra reminiscent of those which are
observed by synthesis of theoretical multinomial mea-
sures, e.g., mixing or sum of two binomial measures.
This can be taken as an indication for (at least) two
different phenomena underlying perturbation of the
dynamics in a pathological condition — congestive heart
failure. Less prevalent parasympathetically mediated
cardiac control whereby the heart operates in a sympa-
thetically dominated regime signifies the pathophysiol-
ogy of advanced chronic heart disease.

The calculation of the f°(a) spectrum clearly dis-
criminates healthy subjects flrom heart-failure patients
when based on a single quantity: o,o4e. (Fig. 5¢). Fur-
ther analysis of the data base by randomly selecting
subsets of varying data lengths reveals that statistical
discrimination of healthy and diseased individuals may
be achieved on the basis of any arbitrarily selected seg-
ment of 8192 data points which corresponds to an =3-h
record.

Hoelder exponents: o

Circadian cardiac dynamics

In order to analyze the circadian stability of the f c( )
spectrum and to assess the 1mpact of extrinsic factors
such as physical activity, f°(«) was calculated for 1-h
sub-epochs of the full- lengtfl 24-h data base. While the
heart rate of a healthy subject typically shows a circadian
rhythm with shorter interbeat intervals (higher heart
rates) during day-time episodes and longer intervals
(lower heart rates) during night-time epochs (Fig. 6a),
cardiac failure patients demonstrate little, if any, circa-
dian changes (Fig. 6b). Indeed, the absence of a circadian
rhythm in the clinical setting is interpreted as evidence
for chronic heart failure. The multifractal spectrum of
the cardiac time series does not undergo appreciable
circadian changes in healthy subjects or cardiac patients
(Fig. 6¢, d) and opnodes %max and omi, remain essentially
unchanged in the course of the day (Fig. 6e, f). Thus, the
physiological mechanisms controlling the dynamics of
heart rate appear to be independent of regulatory circa-
dian factors and the form offgc(oc) is solely a function of
intrinsic factors affecting cardiac activity.

The analysis of short-term data from healthy subjects
recorded in steady-state conditions (=40 min) comparing
different postures (supine versus sitting) and the effects
of breathing frequency (spontaneous versus paced
breathing over a range of 648 breaths/min) did not
reveal any systematic changes in the f‘( ) spectrum
(data not shown). These findings along w1th the absence



of circadian changes suggest that the multifractal spec-
trum of cardiac dynamics is unlikely to result from
extrinsic factors such as physical activity, posture or
respiration. This feature of the multifractal spectrum
facilitates the comparison of cardiac dynamics across
species, e.g., humans versus mice, humans and mice
exhibiting identical spectra irrespective of the fact that
heart rate in mice is about 8 times higher than in
humans (data not shown).

Physiological mechanisms of multifractal variability

The physiological mechanisms underlying the multi-
fractal variability in the cardiac rhythm have not been
identified. Intrinsic instability, extrinsic stochastic per-
turbations and a changing environment act together to
produce the intriguing irregular patterns. In healthy
subjects, an important mechanism is the control of sinus
node activity by the autonomous nervous system. A
direct approach as to the significance of autonomic
cardiac control for the multifractal dynamics of heart
rate is facilitated by studies in recipients of a cardiac
transplant (Fig. 7). The data base of heart transplant
recipients ( <2 years after transplantation) and patients
with nonsustained ventricular tachycardia was obtained
from 40-min records. The f/(a) spectrum in heart
transplant recipients (Fig. 7a) shows a preservation of
Omode DUt cut-off of the upper-range Holder exponents
indicating break-down of multifractality strength which
is given by the o n.0min difference. Thus, the trans-
planted denervated allograft in transplant recipients
which is effectively deprived of its neuroautonomic
control is operating over a narrowed multifractal
regime. In contrast, patients with episodes of ventricular
tachycardia (Fig. 7b) demonstrate enhanced broadening
of the spectrum and a bimodal shape similar to that
observed in congestive heart failure (cf. Figs. 5b, 6d).
These findings emphasize the differential effects of the
absence (in cardiac transplantation) or degradation (in
ventricular tachycardia) of autonomous nervous system
influences on the multifractal spectrum of the cardiac
rhythm. However, the precise pathology of neuro-
cardiac control mechanisms that is uncovered by
changes in shape of the multifractal spectrum remains to
be determined.

Multifractal modeling of heartbeat interval time series

Studying real world physiological data such as heartbeat
interval fluctuations is generally restricted to the use of
time series analysis techniques aimed at deriving a
suitable quantitative statistic in order to discriminate
between physiological conditions or populations in
physiologically distinct states. Little attention has been
given to the modeling of heart rate dynamics. The
particular challenge in modeling cardiac traces resides in
the “spiky’’ and “‘bursty” behavior caused by long-range

315

dependence in the data. A multifractal wavelet model
adapted from internet traffic modeling (Riedi et al. 1999)
was used for synthesizing coarse-to-fine multiscale posi-
tive-valued data with long-range dependence. The model
is based on the Haar wavelet transform and a multiplica-
tive cascade structure. Starting from a set of training data,
the set synthesized by the multifractal wavelet model
matches the mean, standard deviation, variance, auto-
correlation function and the power spectrum of the ori-
ginal time series. Figure 8 compares the real data of a
healthy adult with the result of one realization of the
multifractal wavelet model synthesis (left panels). The
multifractal continuous large deviation spectra (right
panels) reflect the accuracy of the synthesis in terms of the
multifractal statistical measure, f;(oc). The quality of the
matching indicates that the multifractal model convinc-
ingly captures and synthesizes the dynamics across large
(global behavior) as well as small time scales (rare events,
burstiness). The results suggest that the mechanisms
interacting in the control of heart rate that operate over
time scales from seconds (the parasympathetic nervous
system) to hours (renal fluid volume) may exhibit an
inherent multiplicative structure.

Concluding remarks

The multifractal properties of heartbeat dynamics elic-
ited by control mechanisms that regulate the cardiac
rhythm may be associated with the behavior of
dynamical systems typically operating far from equilib-
rium near a critical point of phase transition (Meneveau
and Streenivasan 1987; Ivanov et al. 1998b). Multifrac-
tality or multiscaling in cardiac time series signifies the
interaction of coupled mixed-feedback systems operat-
ing over a wide range of time scales. These properties
help provide responsiveness to environmental stimuli
(elasticity) while preserving a relative insensitivity to
errors (error tolerance). From a practical point of view,
the continuous large deviation multifractal spectrum of
heartbeat interval time series is expected to provide a
useful diagnostic framework for discretization and
classification of patients with cardiac disease and may be
applied to other biological time series data.
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