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effects: a co-twin control study
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Abstract Exercise and improved nutrition offer safe,
low-cost and widely applicable approaches to potentially
reduce the burden of fractures. We conducted a cross-
sectional study of 30 monozygotic and 26 dizygotic male
twin pairs, aged 7–20 years to test the following
hypotheses: (1) Associations between bone mass and
dimensions and exercise are greater than between bone
mass and dimensions and protein or calcium intakes; (2)
exercise or nutrient intake are associated with appen-
dicular bone mass before puberty and axial bone mass
during and after puberty. Total body and posteroante-
rior (PA) lumbar spine bone mineral content (BMC) and
mid-femoral shaft dimensions were measured using dual
energy X-ray absorptometry (DEXA). Relationships
between within-pair differences in nutrient intake
(determined by weighed-food diaries) or exercise dura-
tion (determined by questionnaire) and within-pair dif-
ferences in BMC and bone dimensions were tested using
linear regression analysis. In multivariate analyses,
within-pair differences in exercise duration were associ-
ated with within-pair differences in total body, leg and
spine BMC, and cortical thickness. Every-hour-per-
week difference in exercise was associated with a 31-g
(1.2%) difference in total body BMC, a 10-g (1.4%)
difference in leg BMC, a 0.5-g difference in spine BMC
and a 0.1-mm difference in cortical thickness (p <0.01-p
<0.1). A 1-g difference in protein intake was associated

with a 0.8-g (0.4%) difference in arm BMC (p <0.05).
These relationships were present in peri-pubertal and
post-pubertal pairs but not in pre-pubertal pairs.
Exercise during growth appears to have greater skeletal
benefits than variations in protein or calcium intakes,
with the site-specific effects evident in more mature
twins.
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Introduction

Fragility fractures are a public health problem affect-
ing up to 50% of women and 20% of men [1]. Of all
the fractures in the community, at least 40–50% occur
in women without osteoporosis [2]. Drug therapy to
prevent fractures is not proven to be effective in this
moderate risk group. It is also not a feasible option
[3]. Population-based approaches such as modifying
exercise and nutrition may offer potentially safe, low-
cost and widely applicable alternatives to reduce the
burden of fractures, provided these interventions are
efficacious.

The optimal time to intervene appears to be during
growth, as the magnitude of the osteogenic effects of
exercise or calcium interventions are generally greater
in children than in adults, with the effect size of
exercise being larger than that for calcium [4–7]. For
example, mechanical loading during growth appears to
produce far greater benefits to skeletal size and mass
than exercise during adulthood, with the potential for
these benefits to be maintained into adulthood [8, 9].
Exercise of even modest intensity introduced into
school physical education curricula increases bone
mass during growth [4, 10].

Protein malnutrition, and perhaps a low dietary cal-
cium intake, reduces peak bone mass during growth,
while correction of protein malnutrition reduces bone
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loss in adults and may reduce fracture risk [11–15].
Matkovic et al. reported lower fracture rates in people
living in a community with high calcium intakes, and the
benefits appeared to be confined to a higher peak bone
size and mass achieved during growth rather than to less
bone loss during ageing [16]. Few studies have reported
the effect of protein or calcium on bone dimensions in
children, even though these two nutrients may be
important determinants of bone’s material and struc-
tural strength [17–19]. Furthermore, whether variations
in protein intake within the ‘‘normal’’ range affect bone
mass accrual is uncertain [20].

Growth velocity is higher in the limbs than spine be-
fore puberty and decelerates during the peri-pubertal
years when axial growth accelerates. Therefore, region-
specific effects of disease or lifestyle factors may be pro-
duced according to the age of exposure. For example,
anorexia nervosa of early onset reduces bone mass and
size in the axial and appendicular skeleton, while later
onset of the disease affects only the axial skeleton [21].

Given the responsiveness of the skeleton to mechan-
ical loading and nutritional factors during growth, and
the potential for long-term benefits from this childhood
exposure, modifying lifestyle factors such as weight-
bearing exercise and nutritional intake during this time
may offer safe, accessible, inexpensive and potentially
effective ways of reducing the burden of fractures in the
community.

We conducted a co-twin control study involving
young, healthy male twins to test two hypotheses. First,
the within-pair differences in weight-bearing exercise are
a better predictor of the within-pair differences in bone
mass and dimensions at loaded sites than are protein or
calcium intakes. Second, the within-pair differences in
weight-bearing exercise or nutrient intake will predict
within-pair differences in appendicular bone mass and
dimensions before puberty and axial bone mass and
dimensions during and after puberty.

Methods

Male twin pairs registered on the National Health and
Medical Research Council (NHMRC) twin registry were
invited to participate in this study conducted at the
Austin Hospital from 1997 to 2001. Data was obtained
from 30 monozygotic (MZ) and 26 dizygotic (DZ) male-
male twin pairs aged 7–20 years. Zygosity was ascer-
tained via questionnaire and confirmed from blood
samples. All pairs were tested on the same day. Written
informed consent was obtained from participants (and
their parents if the twins were under the age of 18 years).
The study was approved by the Human Research Ethics
Committee and the Radiation Safety Committee of the
Austin and Repatriation Medical Center, and the Aus-
tralian Twin Registry.

Total body and posteroanterior (PA) lumbar spine
BMC and mid-femoral shaft dimensions were measured
using dual energy X-ray absorptiometry (DPX-L, ver-

sion 1.3z, Lunar, Madison, WI, USA). The coefficient of
variation (CV) determined on five adults, each scanned
three times by the same technician, was 2–4%. Adults
are used to calculate the CV for bone density, as suc-
cessive repeated scans on children are not permitted by
the Ethics Committee. The pediatric PA spine program
and ruler function were used to obtain periosteal and
endocortical widths and cortical thickness at the mid-
femoral shaft. The interobserver CV for re-analysis of
the mid-femoral shaft scans by the same technician was
1.5%. Height and sitting height were determined using a
Holtain stadiometer. Body mass was measured using a
seca electric scale (Seca, Hamburg, Germany). Pubertal
staging was determined using a physician-assisted report
based on Tanner staging for pubic hair and genital
development [10]. Hours per week of organized weight-
bearing activity (exercise duration) were determined
using a modified parental-assisted physical activity
questionnaire [22]. Dietary intakes were assessed using
3-day weighed-food diaries, under parental supervision.
Twin pairs were randomly allocated 2 weekdays and
1 day on the weekend to complete the food diaries, with
all days of the week at various intervals throughout the
year covered within the study population. This method
of assessment is the most appropriate to obtain infor-
mation about the frequency and consistency of eating
and to calculate nutrient data, especially when investi-
gating more than one nutrient [23]. Furthermore,
agreement between 3-day diet diaries and the reference
method of 14·24 h diet records was greater than for
food frequency questionnaires [24]. All diet diaries were
cross-checked for completeness, then analyzed by a
nutritionist (S.I.B.) using FoodWorks nutrition program
(Xyris software, Australia, version 2.1).

Baseline characteristics are expressed as mean
± standard error (SE). Differences between MZ and
DZ twin pairs for absolute and percentage values for
within-pair differences were performed using unpaired
t-tests. Let Yi represent the response variable of twini
where i =1 or 2 and X1i, ..., Xqi represent the co-
variates. The difference in each dependent variable
between members of a pair was calculated as
D=Y1)Y2=a1 D1+...+aq Dq +E, where Dj =Xji )Xj

2 and E =measurement error=E1)E2. To adjust for
age-related and genetic factors that contribute to the
variation in the mean response, the pair differences
were expressed as a percentage of the pair mean, i.e.,
% D =100 ·(D/((Y1+Y2)/2)). Both D and % D were
regressed through the origin against D1, ..., Dq by
linear regression analysis. Subsequent analyses were
performed using multiple regression. Covariates
examined were within-pair differences in lean mass, fat
mass, and height [25]. Regression coefficients (± 95%
confidence intervals [CI]) are reported as an indication
of the weight or importance of each of the predictor
variables [26]. A significance level of p <0.05 was
used. However, values of p <0.1 are reported to
indicate trends in relationships. Data was analyzed
using StatView (Version 5.0, SAS Institute, USA).
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Results

Absolute and percentage within-pair differences for
anthropometry, body composition, BMC and periosteal
width were greater for DZ than MZ twin pairs (p<0.05)
(Table 1). DZ and MZ pairs did not differ in within-pair
differences in energy, macronutrient and calcium intakes
or hours per week of exercise.

Associations were detected by univariate analysis
(Table 2, panel a). In the multivariate analyses, height,
lean mass and fat mass adjusted within-pair differences
in exercise predicted differences in total body, leg and
spine BMC, and cortical thickness, accounting for 13%,
15%, 9% and 4% of the variances, respectively (Table 2,
panel b). When calcium and protein intakes were added
to the analysis, only differences in exercise predicted
total body, leg and lumbar spine BMC (Fig. 1a–c).

For every hour difference in exercise there was a 30.5-
g (15.1 g to 45.8 g, p <0.01) or 1.2% (0.1% to 2.4%,
p <0.05) difference in total body BMC, a 10.1-g (2.4 g
to 17.8 g, p <0.05) or 1.4% ()0.02% to 2.9%, p <0.1)
difference in leg BMC and a 0.5-g (0.0 g to 1.0 g,
p <0.05) difference in spine BMC (Table 2, panel c).
The relationship between exercise and BMC was ob-
served for the peri-pubertal and post-pubertal twins but
not for pre-pubertal twins (p <0.05).

Differences in exercise duration were greater in more
mature twins than they were in less mature twins
(4.1±0.5 h/week vs 2.3±0.3 h/week, p <0.01). In more
mature twins, every hour difference in exercise was as-
sociated with a 38.1-g (18.1 g to 58.1 g, p <0.01) or
1.2% (0.5% to 1.9%, p <0.01) difference in total body
BMC, 15.0-g (4.6 g to 25.4 g, p <0.01) or 1.4% (0.3%
to 2.5%, p <0.05) difference in leg BMC, and a 0.6-g
(0.2 g to 1.0 g, p <0.01) difference in spine BMC (data
not shown). Within-pair differences in exercise duration
were also associated with differences in cortical thickness
(r =0.2, p <0.1); for every hour difference in exercise
there was a 0.1-mm (0.0 mm to 0.2 mm, p <0.1) dif-
ference in cortical thickness (Table 2, panel c, Fig. 2).

In multivariate analysis, height, lean-mass and fat-
mass-adjusted, within-pair differences in protein intake
were associated with differences in arm BMC, account-
ing for 4% of the variance (Table 2, panel b). With the
inclusion of exercise duration and calcium intake in the
regression analysis, within-pair differences in protein
intake remained predictors of differences in arm BMC;
for every 1-g difference in protein intake there was a 0.8-
g (0.1 g to 1.5 g, p <0.05) or 0.4% (0.1% to 0.7%,
p <0.05) difference in arm BMC (Fig. 3, Table 2, panel
c). The relationship between protein intake and arm
BMC was present in peri-pubertal and post-pubertal
twins but not in pre-pubertal twins. In more mature

Table 1 Baseline characteristics (mean±standard error [SE]), and within-pair differences (%) for male twins aged 7–20 years

Number of pairs MZ twin pairs DZ twin pairs
30 26

Age (years) 11.5±0.4 11.1±0.4
Maturity
Pre–pre 18 15
Peri–peri / post–post 12 11

Anthropometry and body composition
- Mean±SE % difference Mean±SE % difference
Height (cm) 146.4±2.3 1.5±0.2 148.0±2.5 3.6±0.5*
Sitting height (cm) 77.4±1.1 1.9±0.4 77.7±1.2 3.3±0.6*
Leg length (cm) 69.2±1.2 2.2±0.4 70.3±1.4 4.7±0.7*
Weight (kg) 39.0±1.8 6.0±1.2 42.1±2.2 14.6±3.0*
Lean mass (kg) 29.8±1.5 3.5±0.6 31.9±1.6 10.8±1.7*
Fat mass (kg) 7.0±0.7 20.9±3.3 7.8±0.9 45.8±7.3*

Bone mineral content (g)
Total body 1,576±93 4.9±0.7 1,641±95 13.5±2.2*
Arms 167±12 9.7±1.2 182±12 18.5±3.0*
Legs 566±40 6.9±1.2 607±44 17.6±3.2*
Lumbar spine 25.9±1.9 9.0±1.8 26.7±1.8 15.8±2.3*

Bone dimensions (mm)
Cortical thickness 4.3±0.1 14.7±2.0 4.3±0.1 13.2±1.9
Periosteal diameter 16.4±0.4 5.2±0.9 16.8±0.4 11.6±2.1*
Endosteal diameter 7.9±0.2 14.7±2.0 8.2±0.3 19.1±2.1

Lifestyle
Energy (kj) 8,651±215 9.9±1.5 8,727±283 9.8±1.4
Protein (g) 75±3 13.6±1.6 77±3 14.9±2.4
Carbohydrate (g) 271±7 8.7±1.7 267±8 13.1±2.3
Fat (g) 77±3 15.6±2.5 82±4 13.3±1.7
Calcium (mg) 925±53 21.3±2.5 941±64 25.9±4.0
WB exercise (h/week) 2.7±0.3 19.5±10.0 3.3±0.5 26.0±10.9

* p <0.05, DZ pairs differ from MZ pairs
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twins, every 10-g difference in protein intake was asso-
ciated with a 14.2-g (0.0 g to 29.2 g, p <0.1) or 5.8%
(0.9% to )10.7%, p <0.05) difference in arm BMC
(data not shown). No relationships were detected be-
tween calcium intake and bone mass or dimensions in
univariate or multivariate analyses (Table 2, panels a–c).

Discussion

In this cross-sectional study of young male twins, we
report that exercise was a better predictor of BMC than

are protein or calcium intakes at weight-bearing sites;
legs and lumbar spine. Greater exercise duration was
associated with greater cortical thickness at the mid-
femoral shaft. Protein intake predicted differences in
BMC at the arms. These relationships were observed in
the peri-pubertal and post-pubertal twins but not in the
pre-pubertal male twins.

The results support the view that exercise is likely to
be a more important determinant of BMC in healthy
children than are calcium or protein intakes. Several
studies suggest benefits of exercise (up to 12% higher
BMD) are greater than calcium supplementation (up to
5%) [4, 5, 10, 27–30]. The effect of exercise was limited

Fig. 1 Within-pair differences in exercise duration plotted against
within-pair differences in bone mineral content (BMC), adjusted
for differences in size (lean, fat, height) and nutrient intake
(calcium, protein) for 56 male twin pairs aged 7–20 years. p <0.05

Fig. 2 Within-pair differences in exercise duration plotted against
cortical thickness adjusted for differences in size (lean, fat, height),
and nutrient intake (calcium, protein) for 56 male twin pairs aged
7–20 years. p <0.1

Fig. 3 Within-pair differences in protein intake plotted against
differences in arm bone mineral content (BMC) adjusted for
differences in size (lean, fat, height), calcium intake and exercise
duration for 56 male twin pairs aged 7–20 years. p <0.05
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to weight-bearing sites and was dose-dependant, with
larger differences in BMC observed with greater differ-
ences in exercise duration. A similar dose-dependent
relationship between exercise and BMD was reported in
pre-pubertal female gymnasts, where higher values for
BMD were observed with increasing number of training
hours [31].

The exercises were organized activities that fulfilled
the criteria for impact loading (weight bearing) and of
diverse strains, as the reported activities were varied,
e.g., football, soccer, basketball, tennis, marital arts, etc.
However, loading magnitude was not quantified. These
results, however, support the view that participating in
weight-bearing activities at a level that is obtainable by
normal children has skeletal benefits [32].

There was a trend towards greater cortical thickness,
with increasing exercise duration, at the mid-femoral
shaft. Bradney et al. reported enhanced cortical thick-
ening at the mid-femoral shaft in exercising pre-pubertal
boys due to endocortical contraction [10]. Using
peripheral quantitative computed tomography (pQCT),
Haapasalo et al. reported similar cortical thickness, but
greater medullary area at the proximal humerus and
radial shaft in the playing arm compared with the non-
playing arm of male tennis players. Greater cortical
thickness and similar medullary area at the mid-humerus
and distal humerus was observed [8]. Bass et al. also
reported site-specific differences in the skeletal response
to loading, with greater side-to-side differences in med-
ullary and periosteal areas at the mid-humerus, but only
periosteal expansion at the distal humerus in female
tennis players [33].

Periosteal apposition before puberty continues in
boys during puberty, while endocortical contraction
predominates in girls [34]. The surface of bone under-
going the greatest apposition may be more responsive to
exercise. However, we were not able to detect a greater
difference in cortical thickness with increasing difference
in exercise duration in pre-pubertal males. A greater
biomechanical advantage would be achieved with
periosteal apposition, as this confers greater benefits to
bone strength than the same amount of bone on the
endocortical surface [35]. Previous exercise interventions
in children have reported similar effects on BMC accrual
in both males and females. However, limited data exists
defining whether the observations resulted from greater
endocortical contraction in girls, but greater periosteal
apposition in boys.

Greater cortical thickness with increasing exercise
duration was confined to the mediolateral mid-femoral
shaft. Jones et al. observed that the relative contri-
bution of the periosteal and endocortical surfaces to
cortical thickness at the humerus in tennis players was
60:40 in the anteroposterior direction and 80:20 in the
mediolateral direction [36]. Thus, loading appears to
affect both the periosteal and endocortical surfaces.
However, the response varies along the length of bone.
The inability to identify surface-specific effects of
exercise at the mid-femoral shaft, and detection of

only a trend between exercise duration and cortical
thickness, may be due to the small number of twin
pairs that varied sufficiently in exercise duration.

The relationship between leg and spine BMC and
exercise duration was evident in the peri-pubertal and
post-pubertal twins, but not in pre-pubertal twins.
Haapasalo et al. [37] noted greater side-to-side differ-
ences in forearm BMD in tennis players of Tanner stages
III to V than those in Tanner Stages I and II, relative to
controls. We report similar observations. However, it is
possible that the greater duration of loading and the
greater within-pair differences in exercise duration in
more mature individuals contributed to this finding.
Moreover, the exercise questionnaire only provided
details of the type and duration of exercise, but not
intensity. Therefore, we were unable to determine if the
pre-pubertal and more mature twins experienced similar
load magnitudes.

Protein intakes at or above 1 g/kg body weight
were associated with differences in arm BMC. This
relationship remained when differences in energy in-
take were included in the regression model. The dele-
terious effects of protein malnutrition on bone mass
during growth are documented, with protein deficiency
being more detrimental than a low calcium intake [11–
14, 19]. Many studies report associations between
protein intake and bone mass or fracture risk [38–41],
and between calcium intake and bone mass, in children
[42–44]. No associations were detected between cal-
cium intake and BMC or bone dimensions, perhaps
because participants had adequate calcium intakes. For
example 22 of the twin pairs (39%) had calcium in-
takes above 800 mg/day. Fewer pairs (25%) had one
twin above and one twin below this level. Only one
pair had calcium intakes that varied by >800 mg/day;
however, both twins had intakes above recommended
levels. The effect of calcium supplementation on bone
mass accrual is reported, with the benefits most obvi-
ous in children with lower calcium intakes [5, 45].
However, no association between within-pair differ-
ences in calcium intake and BMC was found, even
after twins were divided into those with larger
(<250 mg/day) or smaller (>250 mg/day) within-pair
differences in calcium intake.

We were able to detect differences in BMC despite the
small number of twins with large differences in exercise
activity. However, despite the large number of twins
with larger differences in calcium, we were still unable to
detect difference in BMC. These data suggest that
exercise has potent effects on the skeleton during growth
while the effects of calcium remain unclear.

In summary, these data support the view that in
healthy children with adequate dietary intakes, exercise
has a greater osteogenic effect than calcium or protein.
Studies are needed to further understand the role of
protein and calcium intake in skeletal growth. Targeted
exercise interventions or encouraging weight-bearing
physical activity in normal healthy children should be
promoted, but the optimal type, duration and frequency
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of activity needed to benefit bone should be more
accurately defined.
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