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Summary

A number of possible mechanisms have recently been proposed for driving
the motions of the lithospheric plates, such as pushing from mid-ocean
ridges, pulling by downgoing slabs, suction toward trenches, and coupling
of the plates to flow in the mantle. We advance a new observational method
of testing these theories of the driving mechanism. Our basic approach
is to solve the inverse problem of determining the relative strength of the
plausible driving forces, given the observed motions and geometries of the
lithospheric plates. Since the inertia of the plates is negligible, each plate
must be in dynamic equilibrium, so that the sum of the torques acting on a
plate must be zero. Thus, our problem is to determine the relative sizes of
the forces that minimize the components of net torque on each plate. The
results indicate that the forces acting on the downgoing slab control the
velocity of the oceanic plates and are an order of magnitude stronger than
any other force. Namely, all the oceanic plates attached to substantial
amounts of downgoing slabs move with a ¢ terminal velocity * at which
the gravitational body force pulling the slabs downward is nearly balanced
with the resistance acting on the slab; regardless of the other features of the
trailing horizontal part of the plates. The drag on the bottom of the
plates which resist motion is stronger under the continents than under
the oceans.

Introduction

In recent years, the kinematics of continental drift and sea-floor spreading have
been successfully described by the theory of plate tectonics. According to this theory,
the Earth’s surface is covered by a small number of lithospheric plates, whose relative
motions are described in terms of the motions of rigid caps on a sphere (McKenzie
& Parker 1967; Morgan 1968; LePichon 1968). Much of the present and past
tectonic activity, such as the occurrence of earthquakes (Isacks, Oliver & Sykes 1968),
the formation of mid-oceanic ridges, ocean floors, trench-arc systems and mountain
belts, (McKenzie 1967; Dewey & Bird 1970) and the distribution of topography and
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heat flow in world oceans (Sclater & Francheteau 1970), has been shown to be a
consequence of plate motions. However, rather little is known about the driving
mechanisms of plate tectonics, although various types of forces have been suggested.

There are three observational means of testing any theory of the driving mechanism
of plate tectonics. First, does the proposed mechanism supply sufficient energy to
account for the consumption of mechanical energy accompanying plate motions,
such as the elastic energy released in earthquakes taking into account the seismic
efficiency, and the viscous dissipation of mantle drag? Second, does the mechanism
explain the observations of stress within the plates as well as at the plate boundaries?
Third, can the mechanism produce the plate motions as determined by sea-floor spread-
ing observations? In this paper, using linear inverse theory, we attempt to derive a
system of forces acting on the lithosphere that is consistent with the motions of the
plates. Our basic approach is to solve the inverse problem of determining the relative
strength of various proposed forces from the observed relative motions and geo-
metries of the lithospheric plates. We will then show that this system satisfies the
energy condition and examine the recent results on intra-plate stresses (Mendiguren
1971; Forsyth 1973; Sykes & Sbar 1973).

Forces acting on plates

The forces acting on plates can be classified into two categories: the forces acting
at the bottom surface of plates and those acting at plate boundaries. In plate tectonics,
plate boundaries are of three major types: the diverging, converging (colliding), and
shearing boundaries, corresponding to the oceanic ridge and continental rift systems,
the trench-arc and mountain belt systems, and the transform fault systems. In the
following, we first list the plausible forces acting on the plates as illustrated in Fig. 1,
and then discuss qualitatively the physical nature of these forces. The force acting at
the bottom surface of plates is due to the viscous coupling between plates and under-
lying asthenosphere. It will be called the mantle drag force and denoted Fpp in the
following. If there is an active flow in the asthenosphere, such as thermal convection,
Fye will act as a driving force (e.g. Runcorn 1962; Morgan 1972; Turcotte & Oxburgh
1972). If, on the other hand, the asthenosphere is passive with regard to the plate
motion, Fp will be resistive force as in the case of Fig. 1. Because of the possible
difference in the rheological properties of the asthenosphere under oceanic and con-
tinental plates, the drag force acting on continental plates may be different from that
acting on oceanic plates. Therefore, an additional drag force is considered for
continental plates, the continental drag, Fcp. The drag acting on continental plate
is thus expressed as Fpp+ Fep.

At the diverging boundary, plates are pushed apart by way of gravitational sliding
(Orowan 1964; Lliboutry 1969; Hales 1969; Jacoby 1970; Artyushkov 1973). This
force is called here the ridge push and denoted Fgp. At the transform fault boundary.
there should be some resistive force, which we call transform fault resistance, Fp.

The situation at converging or colliding boundaries is probably somewhat more
complicated. First, there is a negative buoyancy force acting on the downgoing slab
part of the subducted oceanic plate. This body force will pull the whole oceanic plate
toward the trench and is called slab-pull, Fgp. Since the slab is plunging into the
mesosphere, where the viscous resistance may be much higher than in the astheno-
sphere, the descending slab may meet significant resistance, the slab resistance, Fg
(see Fig. 1). At the point of interaction of the two plates, their relative motion is
resisted by a frictional force. This force, the colliding resistance, F¢y is opposite in
direction but identical in magnitude for the two plates because of the principle of
action and reaction. For the continental or overthrust plate, another force, called
suction, that pulls the plate toward the trench was proposed by Elsasser (1971).
We denote it Fgy,.
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FiG. 1. Possible forces acting on the lithospheric plates. The forces and abbrevia-

tions are defined in the text.
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We neglect forces of plate-plate interaction which act perpendicular to the direction
of relative motion, such as normal forces across transform faults. The sign of these
forces cannot be predicted without complete knowledge of the other stresses acting
on the plates and it is unlikely that large normal forces would exist without causing a
re-adjustment of the apparent relative motion.

As has been introduced above, we have a set of eight possible forces, Fpp, Fep,
Frps Frr. Fsps Fsp, Fep and Fgy. At this stage, however, the relative importance of
the forces is not clear. It seems to be possible to refute, on observational grounds, an
argument that any one of the above driving forces is the sole driving force of plate
motions. For instance, if the ridge push, Fyp, is the only driving force, why does the
Philippine Sea plate, which has no ridge on its boundary, move and why do the
intermediate earthquakes in the Benioff-Wadati zone often have tensional axis
parallel to the dip of the slab (Isacks & Molnar 1969)? Similarly, the slab pull, Fp,
cannot be the sole driving force because the plates on both sides of the mid-Atlantic
Ridge are moving apart without being attached to any significant downgoing slab.
Apparently, some combined effect of these forces is responsible for maintaining the
plate motions and it is the intent of the present paper to decipher the relative impor-
tance of these possible forces.

Qualitative discussion of the nature of the forces

Mantledrag force Fpg, Fep:

When the possible driving mechanism of continental drift was questioned decades
ago, Holmes (1928) put forward the hypothesis that mantle convection drives the
continents as passive rafts. Runcorn (1962) proposed, using a theoretical result of
Chandrasekhar (1953), that the change in the flow pattern of mantle-wide convection
due to growth of the core gave rise to the latest episode of continental drift. Holmes’
hypothesis was revived in the form of the sea-floor spreading by Hess (1962) and
Dietz (1961). Theoretical as well as laboratory investigations of the mantle convection
have been advanced to obtain more realistic models than the simple Rayleigh-Bénard
type model. For instance, the effects of high Rayleigh number-finite amplitude flow,
internal heating due both to dispersed sources and localized phase changes, variable
viscosity, and horizontal temperature gradients have been considered extensively
(e.g. Torrance & Turcotte 1971; Turcotte & Oxburgh 1972; Richter 1973a: McKenzie
& Weiss 1974).

Since the aspect ratio of the Rayleigh-Bénard type cell is always nearly one, the
cells expected to exist in the asthenosphere must have horizontal scale much smaller
than that of typical plates. Although Takeuchi & Sakata (1970) have shown that
horizontally extended cells may be possible at the critical Rayleigh number for a
mantle with viscosity variable with depth, Foster (1969) showed that the horizontal
scale of cells becomes even smaller in the high Rayleigh number range which describes
convection in the Earth. Small cells can exert only a periodic stress on the base of the
plate, which has little net contribution when integrated over the entire area of the plate.
These small cells, which may exist as a mechanism for controlling the heat flow in
occan basins away from ridges, are incapable of driving the plates (Richter 1973b).
Richter (1973a) suggested that the convection currents generated by a horizontal
temperature gradient may exert a stress effective in the original breakup of large
continental masses, but are not capable of driving the broken-up plates for a long
distance.

The advent of plate tectonics made the classical mantle convection hypothesis
even more untenable. For instance, the supposition that mid-oceanic ridges are the
site of upwelling and trenches are that of sinking of the large scale convective flow
cannot be valid, because it is now established that actively spreading, oceanic ridges
migrate and often collide with trenches (Atwater 1970; Larson & Chase 1970).
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The driving forces of plate motion 167

Although Morgan (1972) postulated that the resultant stresses caused by mantle
flows associated with ¢ hot-spots’ or ¢ plumes’ would be an important driving
mechanism, Artyushkov (1973) argued that the viscosity of the asthenosphere is
generally vastly overestimated, in particular under oceans, and that convection currents
in the mantle, even if they exist, cannot produce any significant stresses on the base of
plates.

Clearly, when a large plate moves, there must be a net mass flux in the astheno-
sphere from trench to ridge, balancing the mass transport in the moving plate. There-
fore, we must treat the plates as an integral part of the circulation. Richter (1973a)
found that in a model composed of lithosphere and asthenosphere, the major driving
force is the pull from the downgoing slab, Fsp, and the asthenosphere exerts viscous
resistive forces on the plates and slab. If the flow is Newtonian, these resistive forces
are not affected by the superposition of small convection cells on the large scale
mantle flow.

The mantle drag, Fpp, on a plate should be proportional to the area and to the
velocity of the plate relative to the asthenosphere. For the continental part of a
plate, an additional resistive term, also proportional to the velocity but with a different
coefficient of proportionality, Fep, is considered. This continental drag term allows
for the possibility of greater viscosity under the continents than under the oceans, as
suggested by surface wave studies of the low velocity zone (Knopoff 1972; Alexander
1974). Whether Fpr and Fcp, act as driving forces or resistive forces is determined
by the relative velocity between the plate and the asthenosphere. In our model, the
asthenosphere is passive and plays only the role of providing the return flow: the
velocity used is the velocity relative to the deep mantle or the ¢ absolute velocity’
and Fppand Fp resist plate motion.

Ridge push, Fpp. Mid-oceanic ridges are approximately in isostatic equilibrium,
as indicated by their essentially zero free-air gravity anomaly (Talwani, Worzel &
Ewing 1965). The elevated crust is compensated at depth by anomalously hot, low-
density mantle. The ridges may originally have formed as a passive consequence of
the plates moving apart, or the uplift and injection of hot mantle material may have
actively helped to push the plates apart (Wilson & Burke 1973). The elevation of the
ridge can be explained entirely by a passive, thermal expansion model in which hot
mantle material enters the crack left when two lithospheric plates are pulled apart
(McKenzie 1967; Sleep 1969). However, once the elevated topography is produced,
it has excess potential energy, so that the ridge tries to spread out to obtain a lower
energy state. The resulting force, Fgp, acts perpendicular to the strike of the ridge,
and has been shown to be on the order of the excess load which attains several hundred
bars (Orowan 1964; Hales 1969; Lliboutry 1969; Jacoby 1970; Artyushkov 1973).
On the other hand, normal faulting and normal-fault type earthquakes are observed
at the crest of ridges (Sykes 1967), indicating the crest is an extensional boundary
locally resisting the spreading. In addition, some energy is expended in overcoming
viscous dissipation in the rising mantle material (Lachenbuch 1973). We believe these
resisting forces are relatively minor, confined primarily to the upper few kilometres
of crust, and that the net effect is a driving force. Because the elevation of the ridge
is independent of spreading rate (Anderson, McKenzie & Sclater 1973), in our model,
Fgp is independent of velocity. As the elevation of the ridge is maintained by the
continual advection of heat in the rising mantle material, motions of the plates
generated by the ridge force may ultimately be considered to be driven by the forces
of thermal convection.

Slab pull, Fsp and slab resistance, Feg. The cold downgoing slab under trenches
has a density greater than that of the surrounding mantle (McKenzie, 1969; Minear
and Toksoz 1970) and, therefore, experiences a body force due to its negative buoyancy.
Elsasser (1969) pointed out that the lithosphere may be considered as a stress guide



168 D. Forsyth and S. Uyeda

and that the downward pull of the sinking slab, Fgp, can be transmitted to the horizontal
part of the lithosphere to drive its motion. Various authors assessed the intensity of
this force (e.g. McKenzie 1969; Lliboutry 1969; Jacoby 1970; Artyushkov 1973).
Presumably, the density contrast between the slab and the surrounding mantle,
enhanced by the elevation within the slab of the depth of phase transitions, is a function
of various factors, such as dip, length, age and rate of subduction of the slab and the
material properties of the surrounding mantle (McKenzie 1969; Minear & Toksoz
1970). Based on a model of the thermal regime of a downgoing slab, Turcotte &
Schubert (1971) suggested that Fgp, would be of the order of several kbars.

We model the forces acting on the slab as the sum of two terms, one velocity-
independent and the other directly proportional to rate of descent of the slab into the
mantle. Although Fsp is expected to depend on several factors, we identify the slab
pull as the velocity-independent term and simply assume that it is directed normal to
the strike of the trench and identical in magnitude for all the subducting slabs. Some
justification of this assumption follows. As long as the downgoing velocity of the
slab is high, say greater than 5cm/yr, the heating of the slab from the surroundings
is expected to be small down to several hundred kilometres depth (McKenzie 1969;
Minear & Tokséz 1970). Therefore, to a first approximation, the density contrast,
Ap, can be taken to be velocity independent above the depth where significant heating
occurs. Toksoz, Sleep & Smith (1973) suggest that rapid heating of the slab may occur
below about 600 km. If the slab’s leading edge reaches to some constant depth,
where it loses its integrity by stronger heating or is deflected at the  hard * bottom
of the asthenosphere (Fig. 2), then Fgp is expected to be independent of velocity and
dip of the slab. The force directed along the length of the slab should be expressed
as Fp = Ap - g-sin0 - volume of slab, whereas the volume is proportional to 1/sin 8.
Depending on the thermodynamical parameters, the post-spinel transition of olivine
(Ahrens & Syono 1967; Kumazawa et al. 1974) may also tend to limit the depth to
which the slab can reach.

When a plate sinks, the density contrast is small at shallow depth because of the
small temperature difference between the slab and the surrounding mantle. Ap will
increase with depth until the heating of the slab becomes significant and will be
enhanced greatly at a depth of about 200-300 km where the olivine-spinel transition
takes place in the slab. Turcotte & Schubert (1971) estimate that % to % of the total

high viscous heating
or

{;// hard layer

Fic. 2. Geometry of the downgoing slab. The slab descends until it loses its identity

due to rapid heating, or until it is deflected at a * hard * layer, which cannot be

penetrated casily due to either greatly increased viscosity or a chemical contrast or

phase change which inhibits convection. Rapid heating may be due to increased

viscous dissipation in the mesosphere or strongly temperature dependent
thermal conductivity.
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body force may be due to the elevation of the phase boundary. This contribution to
slab pull would not significantly increase if the rate of descent of the slab were in-
creased above the threshold of perhaps 5 cm/yr. From these considerations, it may be
inferred that the ‘centre of gravity ’ of the negative buoyancy force, Fgp, is at a
depth of about 200-300 km.

In our model, we identify the velocity-dependent force acting on the slab as the
resistance to the downgoing motion, Fgg, which is due primarily to the viscous drag.
Here, we assume it to be proportional to the viscosity of the surrounding mantle and
to the velocity of underthrusting. Since the viscosity of the mantle is relatively small
in the asthenosphere and may become orders of magnitude greater in the mesosphere
(e.g. Gordon 1965), Fsz would be largely concentrated at the lower portion of the
slab. In addition, Smith & Toksoz (1972) have shown that the force resisting motion
on the leading edge of the slab should be three to five times as important as the
viscous traction applied to the surfaces of the descending plate. Consequently, in our
idealized model, resistance is concentrated at the leading edge. Fg is directed per-
pendicular to the strike of the trench, opposing the advance of the plate into the mantle.
Any viscous drag due to the motion of the subducted plate parallel to the strike of the
trench is neglected.

Pulling from the trenches, like pushing at the ridges, is ultimately a form of thermal
convection in which the driving forces are supplied by gravity acting on the density
contrasts mnduced by the cooling of the upper mantle. In order to make a global
model feasible, we must assume that all descending plates behave in a similar manner.
We do not intend to imply that the forces discussed here completely describe every
trench, but we have chosen the simplest physical model describing a system in which
the resisting forces increase faster than the driving forces above some threshold rate
of motion.

Colliding resistance, Fcp. Resistance to the relative motion between plates is
apparently the direct cause of most shallow earthquakes. We model this resistance
as a stick-slip process (Brace & Byerlee 1966). As the plates try to move past one
another, strain energy gradually accumulates at the locked plate boundary. When the
stress reaches a certain level, slip on the fault occurs, releasing strain energy in an
earthquake. A higher strain rate does not increase the stress; it merely reduces the
length of time required to reach the level of stress required to cause slipping. Thus,
the average stress over a period of time is independent of the rate of relative motion
at the plate boundary. It is possible that some of the displacement can occur in
continuous, aseismic creep, in which the stress is dependent on velocity. However,
the observation that the rate of relative motion in most major fault zones can be
predicted by summing the seismic moment of earthquakes occurring in the zone (Brune
1968; Davies & Brune 1970), supports our assumption that slip during earthquakes
and not aseismic creep is the predominant mechanism for accommodating the relative
motions of the plates. Studies of the rupture zones of large, shallow earthquakes show
that nearly the entire length of the Aleutian arc (Sykes 1971), the Pacific coast of
Japan (Mogi 1968), and the west coast of South America (Kelleher 1972) have broken
in series of large events, suggesting that the stick-slip model may be an adequate
representation of plate—plate interaction in trenches. The recurrence time of great
earthquakes can be as little as 30 years (Sykes 1971) or as much as several hundred
years (Plafker & Rubin 1967). The recurrence time may vary on different portions
of the same plate boundary, such as the Nazca—South American boundary (Kelleher
1971). We make the simplifying assumptions that all trenches behave identically
and that the resisting force is independent of velocity and parallel to the relative
motion between the plates. As this resisting force is due to interaction between the
plates, it acts with equal strength on both plates. For example, resistance in the Peru-
Chile trench opposes the westward movement of the South American plate with the
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same strength that it opposes the eastward movement of the Nazca plate. We make
no distinction between the resisting force at trenches and the resisting force at moun-
tain fold-belts, including them both under one term, Fy, describing convergent plate
boundaries.

Transform fault resistance, Frp. The relative motion of neighbouring plates is
resisted at transform faults, as evidenced by their seismic activity. The resistive forces
directly oppose the motion of each plate and thus act parallel to the strike of most
transform faults. As long as the stick-slip model is assumed for earthquakes, the
strength of the resistive force can be considered independent of the relative velocity
of the neighbouring plates. As in the case of ridge crests, seismic activity along
transform faults is confined to a very shallow depth (Tsai 1969; Weidner & Aki 1973).
Aseismic relative motion at greater depth is considered to be due to creep, for which
the stress may be velocity dependent. However, since creep is also a temperature de-
pendent process, the heating due to viscous dissipation in a narrow shear zone will
tend to lower the stress at high strain rates. This effect may be sufficient to cause an
inverse relationship between velocity and effective stress (Schubert & Turcotte 1972),
rather than the direct relation expected in a simple viscous model. For simplicity, we
assume that the total resistive force, Frg, has the same form as the stick-slip model
of the earthquake resistance, and thus is independent of veJocity.

Although we have suggested that viscous heating may play an important role in
reducing the stress in the narrow shear zones of transform faults, we neglect its effect
on the stresses acting on the bottom of the plates and on the descending slab because
the shearing in these cases is not confined to a narrow zone. An earlier study (Schubert
& Turcotte 1972), which concluded that viscous heating may control the drag on the
bottom of the plate, required an asthenosphere with a viscosity 2 to 3 orders of
magnitude greater than that deduced from glacial rebound studies.

Suction Fgy. Elsasser (1971) suggested that the American and Eurasian plates
may be drawn towards the trenches surrounding the Pacific by a form of suction.
The plates surrounding the Atlantic are moving apart, overthrusting the plates in the
Pacific. Since the radius of the Earth most likely remains constant, the Pacific must
be growing smaller and the trenches must be migrating seaward. However, we do not
have a clear understanding of the physical nature of the suction force. Elsasser
(1971) visualizes this force as due to a continual downwarping of the oceanic plates
at trenches, creating an empty space which is continually filled by the seaward
movement of the continental plate (Fig. 3(a)). Suction in a fashion to fill the void,
however, appears to be incompatible with the notion that a trench is a colliding
boundary across which plates are pushing each other. If the seaward movement of
continental plates is due merely to the push transmitted from the other side of the
plate, the force is already taken care of by Fyp and introduction of Fgy is unnecessary.
However, there may be some mechanism to generate Fg, on the continent side of a
trench. McKenzie (1969) and Sleep & Toksdz (1971) postulate that a secondary
hydrodynamic flow is induced in the upper mantle above a sinking slab and this flow
would generate tensile stress behind island arcs (Fig. 3(b)). The driving force for the
Atlantic type plate derived by Richter (1973a) is of a similar nature. Various other
processes postulated to explain the opening of marginal seas (Hasebe, Fujii &
Uyeda 1970; Karig 1971; Matsuda & Uyeda 1971; Sclater et al. 1972; Barker 1972;
Uyeda & Miyashiro 1974) would also generate the tensile stress behind island arcs
(Fig. 3(c)). However, once the opening of a marginal sea starts, the oceanward
migration of trench-arc system becomes an inefficient means of generating suction
on the continental plate behind the marginal sea (Fig. 3(d)). In view of the uncertainty
of the nature of Fgy, in the present paper we modelled it to be velocity independent
and perpendicular to the trench, although Fg, caused by the secondary flow may be
proportional to the descent rate of the slab.
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(a)

(c)

a

Fic. 3. Possible sources of the ‘suction’ force. (a) Trench migrates seaward,

creating gap. (b) Downgoing slab induces secondary convection cell behind island

arc. (c) Upward migration and injection of hot mantle material may cause tensile

stress at the surface. (d) Once active spreading begins in the marginal sea, the
continental plate is decoupled from the trench system.

Observed plate motions

Of the forces considered above, the boundary forces acting on a plate should be
proportional to the length of ridge, trench or transform fault, and the mantle drag
should be proportional to the area of the plate. Three forces, Fpp, Fcp and Fg
depend on the velocity of the plates relative to the mantle, and Feg and Fir depend
on the direction of relative motion at boundaries. Consequently, an examination of
the observed rates of plate motions in relation to the geometries of the plates should
reveal the relative importance of the proposed forces. The following qualitative
discussion is intended to give physical insight into the expected results of the more
quantitative inversion technique.

An analysis of the driving forces based on plate motions must necessarily depend
on the number of plates and the plate boundaries. Morgan (1968) and LePichon
(1968) considered 20 and 6 plates, respectively, in their analyses of sea-floor spreading
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and continental drift, whereas Minster ef al. (1974), in their attempt to invert informa-
tion on relative motions at plate boundaries to relative plate motions, considered ten
plates, including LePichon’s six plates and Cocos, Nazca, Arabia plates and North
and South America plates separated. We include, in the present study, the 12 plates
as shown in Fig. 4, neglecting any small plates in the Middle America and Mediterran-
ean regions as well as the plates whose boundaries and motions are ill-defined, such
as the China and Somali plates of Morgan (1973). We treat South America and
North America as separate plates, because much evidence suggests to us that they
have moved independently throughout much of the history of the opening of the
Atlantic (Phillips & Forsyth 1972; LePichon & Fox 1972; LePichon & Hayes 1972;
Minster et al. 1974). The boundary between the North American plate and the
Eurasian plate is uncertain within the Asian continent due to the small relative motion
between the plates in that region. Our boundary is roughly the same as that suggested
by Churkin (1972). We used the poles and angular velocities of relative motions
between plates given by Morgan (1973). Although more up-to-date information on
relative motions is now available (Minster ef al. 1974), we feel Morgan’s relative
motions are substantially correct and subsequent refinements will not significantly
affect our analysis.

We computed the average velocity of each plate relative to the deep mantle by
integrating the velocity of each point relative to the mantle over the area of the plate,
then dividing by the area of the plate. To obtain the velocity relative to the mantle,
we assumed that the north, mid-Atlantic ridge is fixed with respect to the deep mantle.
This is the same as taking the fixed hotspot co-ordinate system of Morgan (1973).
We realize that this is a controversial assumption, but both the determination of
absolute plate motions by Solomon & Sleep (1974) and an observation discussed
later in this paper, which is entirely independent of island chains or aseismic ridges,
suggest that it may be approximately correct. In our analysis, we included the possible
uniform rotation of the global lithosphere relative to our initial co-ordinate system
and determined its magnitude. The result, seen in a later section, showed that its
magnitude is small. The average velocity of each plate thus computed is plotted versus

AREA

0 @ 5 |10
(0.3 = o <1 .|
5 gqa z wd & a= ¥oe 8
O zZu € €90 IS5 =N Z 4o o

Velocity (cm/yr)

Fi1G. 5. Total area of the plate versus average absolute velocity.
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various characteristics of each plate, listed in Table 1, i.e. the total area (Fig. 5),
continental area (Fig. 6), length of ridge boundary (Fig. 7), length of trench boundary
with subducted slab (Fig. 8) and length of transform fault boundary (Fig. 9). In
the cases of the length of boundary, plots are made for the total length and the
effective length as a fraction of the total circumference. The effective length is defined
as the length of the boundary which is capable of exerting a net driving or resisting
force. For example, two mid-ocean ridges on opposite sides of a plate exert no net
force on the plate because their effects cancel. The effective ridge length is much
reduced from total length for such plates as Africa and Antarctica, because they are
nearly surrounded by ridges.

As seen in Fig. 5, there is no obvious relation between velocity and area. Morgan
(1971) and McKenzie (1972) cited the lack of correlation between velocity and area
as evidence against ridge push or slab pull being the primary driving force and in
favour of some form of coupling to mantle convection as the mechanism. The
Nazca, Cocos and Pacific plates are moving about the same velocity. All these plates
are entirely oceanic with approximately the same ratios of length-of-ridge to length-
of-trench to length-of-transform fault. The only major difference in the three is
area. The Pacific plate has roughly 50 times the area of the Cocos plate and 10
times the Nazca plate. If the boundary forces are the major driving force and the
mantle resists motion, the drag on the bottom of the Pacific plate as it moves over the
mantle should therefore be about 50 and 10 times the drag on the Cocos and Nazca
plates, respectively. Since the amount of ridge and trench for Pacific plate is only about
7 and 3 times as great as for Nazca and Cocos, McKenzie and Morgan argued that

T Plate boundary

Fic. 10. Plate boundary geometry relative to a torque axis. All integrations are

performed clockwise around the boundary. B is the co-latitude of position, R is

the distance to the axis, and = is the angle between the strike of the boundary and
the azimuth to the pole of the torque axis.
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the Pacific plate would move much more slowly than the other two plates. However,
there are two possible explanations of the lack of dependence on area. First, as
McKenzie and Morgan favoured, the plates may be strongly coupled to the convection
currents in the mantle. Then, the velocity of plates would depend only on the velocity
of flow in the mantle beneath them, and the ridges and trenches would be merely
secondary features with unimportant influence on the movements of plates. The
other possible explanation is that the coupling between plates and mantle beneath
them is weak, so that the drag by the mantle has little effect on the velocity of oceanic
plates. In this case, the velocity of the oceanic plates are primarily determined by the
driving and resistive plate boundary forces. Transform faults are considered to
resist relative motion of neighbouring plates. However, Fig. 9 shows no explicit
relation between velocity and length-of-transform fault, indicating that resistance at
transform faults is not strong enough to be the primary control of plate motions.
Ridges may be pushing the plates, but again, Fig. 7 does not indicate any distinct
correlation between velocity and length-of-ridge. Fig. 6, essentially the same as
Fig. 10 of Minster et al. 1974, does indicate that the plates with greater continental
area have smaller velocity. This correlation may be explained either by assuming
strong coupling between plates and mantle with slower mantle flow under continents,
or by assuming that mantle drag is weak under oceanic plates but strong under
continents. Considering the pronounced difference in the low velocity zone under
oceans and continents, Knopoff (1972) and Minster ef al. (1974) favoured the latter
explanation.

The most striking correlation is found between velocity and length of trench with
subducted slab as shown in Fig. 8. The plates separate into two distinct groups:
plates which are being subducted at trenches over a significant portion of their circum-
ference, and those which are not. The Pacific, Nazca, Cocos, Indian and Philippine
plates are all connected to downgoing slabs, and are all moving at 6-9 cm/yr relative
to the mantle. The other plates are not connected to downgoing slabs and are moving
at 0 to 4cm/yr. Another more limited observation, but one not dependent on any
absolute co-ordinate system, is that the plate pairs Pacific-Cocos and Pacific-Nazca
are moving apart at rates of 12-18 cm/yr. (Herron 1972; Larson & Chase 1970),
while the plate pairs, North America-Eurasia, North America-Africa and Africa—
South America are moving apart at rates of only 2-6 cm/yr. There must be some
fundamental difference in the forces acting on these two sets of plates. The suggestion
mentioned above that continents are more strongly anchored to the deep mantle
may be a partial explanation, but we feel that the dominating factor is the presence
or absence of a downgoing slab. Strong continental drag could explain the slower
motions of the continental plates, but it does not provide an explanation for the
narrow range of velocities of the oceanic plates.

The observations outlined above suggest the following model of the driving
mechanism of plate motions. First, the body force associated with the mass excess in
the downgoing slab, Fgp, is very large. Fgp pulls the plate attached to it and the rate
of slab descent into the mantle increases until this force is nearly balanced by the
viscous resistive forces acting on the downgoing slab, Fg. The observed fairly
uniform rate of descent of 6-9 cm/year represents the point of balance which is
effectively the terminal velocity of the dense slab falling in a viscous medium. Thus,
the velocity of plates attached to downgoing slabs is primarily controlled by the
balance of forces acting on the descending slab, Fgp + Fg and is independent of the
surface geometry. The importance of Fgp and a similar model was proposed previously
by Richter (1973a). After attaining the terminal velocity, the net contribution of the
downgoing slab to the forces acting on the whole plate is probably small, due to the
near balance of the body and viscous forces.

Since plates having no downgoing slabs are also moving, we require pushing from
ridges, Fgp, and possibly suction toward trenches, Fgy to be other driving force or
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forces. These forces, plus any net pull from the downgoing slabs, are balanced by
resistive forces, such as the mantle drag Fpg, Fep, the colliding resistance, Fep and
the transform fault resistance, Fqp. All these forces, except possibly the mantle
drag under continents, are probably quite small. In the following, we intend to test
the above model more quantitatively. As indicated in the preceding discussion,
strong coupling to active flow in the asthenosphere is an alternative explanation for
the motions of the plates which cannot be eliminated. However, a number of recent
theoretical models of convection in the interior of the mantle, briefly summarized
in the earlier section on mantle drag, suggest that such a mechanism is unlikely.
This mechanism can be tested only if the rate of mantle flow can be measured.
Therefore, we disregard the active-flow model in the remainder of the paper and,
instead, examine the possibility that the system of boundary forces outlined above
can satisfy the existing geophysical constraints.

The model

The basic assumption in our approach is that every plate is in dynamical equili-
brium, i.e. the inertia or acceleration term is negligible, so that the sum of the torques
acting on a plate must be zero. Since the plates are constrained to move on the
surface of the Earth, their instantaneous motions are described as a rotation about an
axis passing through the centre of the Earth. In customary plate tectonic terminology,
the pole of rotation marks the intersection of the rotation axis with the Earth’s
surface. If a plate is not undergoing acceleration, the sum of the torques about any
axis must be zero. This condition is satisfied if the torques about each of three
orthogonal axes, such as 90°N, 0°; 0° N; 0° E; and 0° N, 90° E used in this study, are
balanced. A vector representing a torque can be resolved into three components in
this Cartesian co-ordinate system. Thus, our problem is to determine the relative sizes
of the forces that minimize the components of the net torque on each plate. Since the
torques about three axes must vanish, the equilibrium condition gives three equations
for each plate in the form that

n

T;.: Z aijxj:O (l=]:2:3) (1)
i=1

where n is the number of forces under consideration, x; is the coeflicient representing
the specific intensity of the jth force, and a;; includes the geometrical and dynamical
factors concerned, such as the length of arm from the axis of rotation, the area, the
effective length of trenches, ridges, and transform faults of plates, and the relative
velocity between plates or that relative to the mantle, depending which type of forces
is to be computed. The expressions for the torque on a plate caused by each type of
force are as follows: (suffixes RP, SP etc. have the same meaning as in Fyp, Fgp, €tc.)

Ty rp = a3y X; = § RFpdl = x; [Rcos adly (2)
Ti, sp = i3 X, = § RFgpdl = —x, [ Rcosadly (3)
T;, su = ;3 X3 = § RFgydl = —x; [ Rcosadly 4)
Ty cr = @14 X4 = $ RFgdl = x4 [ Reos(a+¢)dlc (5)
Ti 1r = @i5 X5 = § RFredl = x5 [ R cos(x+¢)dlre (6)
T;, s = @i X6 = $ RFpdl = x¢ [ RVyycos adly (7
Toop = Bjp X7 = [ [RFppdA = x; V; | [ Rsin fdA (8)
Ty, cp = @igXg = [ [RFcpdA = x3 V. | [ Rsin fd A, 9)

where dl, dA, dl, dly, dle, dlyg and dAq are the increments of the plate boundary,
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FiG. 11. Geometry of the motion of plate C relative to plate B. VFER and VPAR

describe the motion of plate C relative to the strike of the boundary. VPER is

positive for convergent motion, VPAR for right lateral motion. ¢ is measured
blockwise from the positive VPER direction.

area, ridge, trench, colliding boundary, transform fault, and continental area. R, «, o,
and f are geometrical quantities illustrated in Figs 10 and 11. R is the length of the
arm around the ith axis and expressed as

R = R,sin B (10)

where R, is the average radius of the Earth. Since R, enters into every torque in the
same way, in practice we express R as a fraction of R,. 8 is the co-latitude of the
position of the element. Forces tending to cause clockwise rotation of the plate about
the axis are taken positive and all integrations along the circumference [ of a plate
are performed in a clockwise manner when viewed from outside the Earth. In practice,
the integration is performed by numerical summation to compute a;; for each plate
as listed in Table 2. Those torques due to the forces acting perpendicular to the
boundary, i.e. Typ, Tsp, and Tgy include cos o ,where « is the angle between the strike
of the boundary and the azimuth to the pole of the torque axis (see Fig. 10), and
forces acting outward have minus signs. Fgp and Fg, are both directed toward the
trench, so expressions (3) and (4) have the same form, but they act on different plates
along a common boundary. For example, in integrating clockwise about the boundary
of the South American plate, the suction force along the Peru—Chile trench is summed
from south to north giving rise to a positive torque about the North Pole axis.
However, in integrating clockwise about the boundary of the Nazca plate, the slab
pull force along the Peru-Chile trench is summed from north to south, changing
the value of « by 7 and yielding a negative torque about the North Pole axis.

In evaluating colliding resistance, T, and resistance at transform faults, Trr,
the direction of relative motion of the plates must be considered. If plates B and C
meet at a boundary, the forces F; and Fy applied to plate B are in the direction of
motion of plate C relative to plate B. To compute the direction and to aid in the
identification of the nature of each boundary, we have resolved the relative motion
along each boundary into components perpendicular, VPER, and parallel, VPAR,
to the strike of the boundary as shown in Fig. 11. VPER is defined as positive at a
convergent plate boundary, i.e. when plate C is moving toward the interior of plate
B. VPAR is positive for right-lateral, strike-slip motion. With the angle ¢ (Fig. 11)
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defined as
¢ = tan”!(VPAR/VPER), (11)

the torque generated by resistance in the form of shallow earthquakes at convergent
plate boundaries, T, and the torques generated at transform faults, Trp, are expressed
as (5) and (6). At some boundaries where convergent motion of two plates occurs,
such as the western Aleutian and the Puerto Rican trenches, a large proportion of
strike slip motion is also involved. We have arbitrarily chosen ¢ = 60° (VPAR =
2 - VPER) as the dividing point between classifying a boundary segment as a conver-
gent boundary, /, or as a transform fault, /.

The viscous resistance to the descent of the slab, Fg, and the mantle drag on the
base of the plates, Fpr, Fcp, depend on the motion of the plate relative to the deep
mantle. Following the nature of forces given earlier, we take V}; as the component of
motion of the plate relative to the mantle which is directed perpendicular to the strike
of the trench and express the torque Ty as (7).

A simple way to integrate over the area of the plate to find the effect of drag,
Tep and Thp, is to resolve the angular rotation vector describing the motion of the
plate relative to the mantle into its three components, w;, in the direction of the
three, mutually perpendicular, torque axes. Then, if we set V, = w; R,, the torques
acting on a plate are given by (8) and (9). Integration of (9) is performed over the
continental part only.

Since there are 12 plates and the net torque on each of them is computed about
three perpendicular axes, we have a set of 36 balance equations of the form of (1),
with eight unknown parameters x;. In a matrix form the equations are expressed as

Ax =0 (12)

of which elements a;; are listed in Table 2. x is a vector or column matrix containing
the coeflicients describing the relative size of the forces. Three of the forces, Fg, Fpg
and Fp require knowledge of the motion of the plates relative to the deep mantle.
As discussed previously, the hot spot co-ordinate system which describes this motion
may be in error, causing the elements of A involving Fgg, Fpg, and Fp to be incorrectly
computed. Because the three torque axes are orthogonal, when a correction describing
the true rotation of the mantle as a whole relative to our original hotspot co-ordinate
system is added to the rotation about one of the axes, there is no effect on the terms of
A which involve rotation about the other axes. Table 3 lists the corrections to the
terms a;s, @;7 and a;g in Table 2 which would result from a change in our ‘fixed
mantle ’ co-ordinate system. In a later section, we describe a search for the mantle
co-ordinate frame in which the equilibrium condition (equation (12)) comes closest
to being exactly satisfied.

The condition that the torques on the plates must be balanced has been applied
previously by Tullis & Chapple (1973) and Solomon & Sleep (1974) in studies of the
driving forces. Tullis and Chapple found, as we do, that pulling from the sinking slab
plays a dominant role in controlling plate motions. Solomon and Sleep concluded
that the absolute velocities of the plates cannot serve to discriminate among models
for the forces driving plates cannot serve to discriminate among models for the forces
driving plates. However, the approach of Solomon and Sleep differs from ours in
that they considered only the net global torque balance rather than the balance on
each individual plate. Consequently, they could say nothing about symmetric forces
such as ridge push, colliding resistance, and transform fault resistance, which are
involved in the balance on individual plates but exert no net torque on the lithosphere
as a whole. In addition, the global balance contains very little information about the
asymmetric forces at trenches, due to the nearly symmetric arrangement of trenches
surrounding the Pacific. These limitations do not affect the plate-by-plate balance

technique.
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Method of inversion

The equilibrium condition yields an overdetermined system, in our case, 36
simultaneous equations in eight unknowns, which we wish to solve in the least-
squares sense. If the system is described in the form,

Ax = b, (13)

the matrix A gives the partial derivatives of the model, b is the data, and x are the
coefficients or vector which we wish to determine. The first step towards solution is
to normalize each column vector of A by a scalar, multiplicative factor which gives
the vector unit length. The classic, least-squares solution to the problem is then found
by a series of matrix operations. Multiplying each side of (13) by A', the transposed

matrix of A gives
& ATAx=A"bH (14)

where AT A is a square matrix which can be recognized as the correlation matrix of
the variables. The diagonal elements of AT A, or the autocorrelation coefficient of
each variable, are 1.0 because the column vectors of A were normalized. Equation
(14) would give us eight equations in eight unknowns, which can be solved to give x:

x = (ATA) ! ATb. (15)

However, our problem differs from the classic, least-squares problem in two
significant ways. First, it is usually assumed that the dependent variables, i.e. the
elements of A, are perfectly known and that all errors and noise are concentrated in
the data, b. In our case, b is perfectly known and there may be errors in A. Secondly,
in the equilibrium condition, b is identically zero, so that

AT Ax = 0. (16)

This system of equations has a non-trivial solution only if [AT A| = 0 or, in other
words, only if there is a zero eigenvalue of AT A. If there is one and only one zero
eigenvalue, then the eigenvector for that eigenvalue will be the desired solution for x.

There will be a zero eigenvalue only if there is an exact relation perfectly describing
the system, i.e. if the forces acting on every plate are perfectly described by the co-
efficients we have measured and listed in Table 2. It is realistic to assume there is some
error in our values of A: the plate boundaries are imperfectly known; there is un-
certainty in determining the relative motions of the plates; and it is an obvious over-
simplification to assume that every ridge or trench pushes or pulls in exactly the same
way. Even if our model is correct, the errors in A will lead to non-zero eigenvalues.
The difficulty is overcome by using an approximate inverse technique.

We assume that the noise in our model is uncorrelated from one variable to another,
so that only the diagonal elements of ATA are affected. With the further assumption
that the noise level is the same for each variable, AT A can be expressed in the form

ATA = (A*TA*+&2]) (17

I is the identity matrix, A*T A* is a matrix with a zero eigenvalue, and &* is a measure
of the amount of noise in the model. We set ¢* equal to the value of the smallest
eigenvalue of ATA. A*T A* is the best available approximation to the correlation
matrix of the variables in the absence of noise. The eigenvector for the smallest
eigenvalue of AT A is also the eigenvector for the zero eigenvalue of A*T A* and gives
us the desired coefficients describing the relative sizes of the driving forces.

It should be pointed out that a particular solution for x could be obtained by
arbitrarily identifying one of the variables as the dependent variable b and proceeding
as in (15). However, this procedure incorrectly implies the other variables are noise
free and yields a different solution if a different variable is chosen to be the dependent
variable. In the analogous problem with two variables, x and y, we are attempting
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to minimize the sum of the square of distances of each point from the regression line,
rather than the sum of the squares of the x or y deviations from the line. Lanczos
(1961, p. 158) has shown that the smallest possible value of the ratio |[Ax|?/|x|? is
given by the eigenvector for the absolutely smallest eigenvalue of A" A. Our problem
has been normalized to give x unit length, so picking the smallest eigenvalue does
give the least-squares solution to equation (12). In the two-variable case, this solution
is the maximum likelihood solution when the errors in each variable are of the same
order (Madansky 1959).

When several variables are considered, there may be several small members among
the set of k& eigenvalues, A;, each yielding a vector giving an approximate solution to
(12). Picking only the smallest 2 may result in neglecting some of the information
about the system contained in the other eigenvectors, and, because the noise in A
also leads to uncertainty in the exact size of each /;, we may choose the wrong x,.
One way of avoiding these problems is to generate a composite solution which is the
weighted sum of several eigenvectors. Each eigenvector is weighted according to the
estimate of the noise, 2, so that the eigenvector with the smallest eigenvalue is given
the most weight. The composite vector is

p
X,= 2 A 'x (18)
k=1

where the summation is over the p positive eigenvectors whose signal-to-noise ratio,
A71, is greater than 1.0. Because the sign of an individual eigenvector is arbitrary,
we define the sign of each eigenvector so that the sum of its terms is positive, i.e.
acting in the direction expected from our earlier physical discussions of the form of
the forces. In any individual eigenvector, there may be both positive and negative
terms.

We regard the composite solution X, as the most probable solution. The inclusion
of several eigenvectors gives information on the non-uniqueness associated with the
inverse solution. If there are two small eigenvalues, each eigenvector will yield an
equally valid solution to the equilibrium condition, and any linear combination of
the two vectors will also be a good solution. Thus, the composite solution defined by
equation (18) would be one particular member of a family of possible solutions. If
one eigenvalue is only slightly smaller than another, we certainly cannot reject the
second eigenvector as being a possible solution. Rather than pick any arbitrary
cut-off point at which we reject the second eigenvector, we include it with less weight
in our particular solution. The degree of non-uniqueness associated with the particular
solution can then be estimated by examining the relative size of the eigenvalues asso-
ciated with the vectors included in X,.

At present, no rigorous method is known for estimating the uncertainty in the
solution. We can make only a crude estimate based on the size of A or & for each
eigenvector. From repeated experiments using only subsets of the complete data set,
it appears that ,/./(m—n) is a reasonable estimate of the uncertainty in the individual
terms of each eigenvector, where m is the number of equations and » the number of
unknowns. Thus, in X, the contribution from eigenvectors with larger eigenvectors
is assigned greater error in addition to being given less weight.

Results and discussion

The correlation matrix, AT A, of the geometrical factors related to the various
forces is shown in Table 4. In this table, it is immediately noticed that the correlation
between the factor describing Fgp (essentially the length of active trench) and the
factor describing Fg (product of trench length and the rate of descent of the slab) is
much greater than any other correlations. This high correlation (0-9867) dictates
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Table 4

Correlation matrix ATA.

FRP FCR FTF FSP FSU FSR FCD FDF
s 1:0 = = . = = s s
Fon —0-817 1-0 — - - - e e
Frr —0-793 0-807 1-0 — — — — —
Fep 0:663 —0-638 —0-627 1-0 - - - s
Fov 0-405 —0-529 —0-577 —0-033 1-0 - - -
B —0-635 0+ 609 0:604 —0-987 0-049 1-0 ¥ =
Fin —0-662 0-597 0:526 —0367 —0-222 0:304 10 -
For —0-708 0-691 0:696 —0-856 —0-127 0-852 0-407 1-0

the whole system. The close correspondence between these two factors is illustrated
in Fig. 12. This high correlation coefficient results from the fact that all the plates
attached to a significant amount of downgoing slab are moving at roughly the same
velocity. Tt means that, given the geometry of the trench system of a plate, the direction
and rate of motion of the plate can be predicted, irrespective of any other geometrical
factor describing the plate.

This seems to support our view stated earlier that there is a definite terminal velocity
for descent of the slab into the mantle and the motion of the whole plate attached to
the slab is controlled by this terminal velocity. For such a situation to take place,
the forces acting on the slab must be much larger than the forces acting on the rest of
the plate.

PAC
PHIL
coc
IND
NAZ
NA
AF
SA

+ XeO @O P» D

9ig (Fer)

-B0+

FiG. 12. Relationship between the two geometrical factors describing the down-

going slab. a;, is proportional to trench length and a;¢ is proportional to the

product of the trench length and the rate of motion of the subducted slab relative

to the mantle. The three points for each plate correspond to the three independent
torque axes,
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This conclusion is supported by the great number of intermediate and deep focus
earthquakes occurring within the descending slabs compared with the number of
intra-plate events occurring within the surface plate.

We have modelled the forces acting on the slab as a gravitational body force
which is independent of velocity and a resistance to penetration into the mantle which
is proportional to velocity. This is the simplest mathematical representation of forces
that can result in terminal velocity. However, because of the limited range of velocities
of descending plate, there is little observational control over the exact velocity depen-
dence of the forces. The form of the actual forces should certainly not be as simple
as we have assumed, yet even complex theoretical models involving both the thermal
contraction of the colder slab and the elevation of phase boundaries in a plate des-
cending into a mantle with realistic rheology suggest there is a fine balance between
the gravitational body forces and the mantle resistance or support (Smith & Toksdz,
1972, Toksdz et al. 1973).

The high correlation coefficient between Fgp and Fg, indicates a close linear
relation between the two variables which is reflected in the eigenvector for the smallest
eigenvalue. Other than the large terms for slab pull and slab resistance, only drag on
the base of the continents is above the noise level in x, (Table 5). Because Ay 18
significantly smaller than the other eigenvalues, we could cut off the model here,
identifying x; as the unique solution to the equilibrium condition. However, this
solution is physically unsatisfying for two reasons. First, taking only the smallest
eigenvalue and eigenvector yields a description of the forces acting only on the plates
attached to a significant amount of slab and provides no explanation for the motion
of the continental plates. Second, since both Fgp and Fg, act on the sinking portion
of the plate, x, gives litile information about the net balance of forces on the surface
plates. By adding the other four eigenvectors with small eigenvalues to the solution in
obtaining X, (equation 18), the total imbalance of forces, |Ax|?/|x|?, is slightly
increased over that achieved using x, alone, but the net balance of forces acting on
the surface plates is improved. This method provides a non-unique, but reasonable
system of forces which contains a description of forces acting on the slower-moving
plates.

The value of &%, the smallest eigenvalue of AT A, is 0-011. The amplitude of the
noise in the elements of A is of the order of ¢, or about 10 per cent of the size of the
geometrical factors. There is no confusion in picking the smallest cigenvalue, as
the next smallest eigenvalue is more than 10 times larger, with a value of 0-120.
Table 5 gives the eigenvectors for the smallest eigenvalues, and the solution X..
Because the vectors of geometrical factors describing each force have been normalized
to unit length, the relative size of the terms of X, gives the relative importance or net
contribution of each force in achieving the balance of torques. A summary of the
forces and the interpretation of X, in terms of relative strength per unit length of
boundary or per unit area is given in Table 6. Those forces which are proportional to
velocity are expressed per unit velocity. To iilustrate the difference between relative
importance and relative strength, consider the ridge push and suction terms. Even
though Fyp is not quite as strong per unit length as Fgy, 1t is more important because of
the greater total length of ridge boundary compared to trench and because Fgpp acts
on beth neighbouring plates, instead of just the overriding plate.

The final model, X, shows that slab pull and slab resistance are an order of
magnitude more important than the other forces. However, the net pull of downgoing
slabs on the surface plates, Fgp+ Fgg, is of the same order as the rest of the terms.

In the equilibrium state, Fgp is roughly balanced by Fg, with the terminal velocity
computed to be 7-0cm/yr (= 5:65/0-82). This value is roughly coincident with the
average velocity of oceanic plates attached to a slab. Drag under the continents,
Fep+ Fpp, is approximately eight times as strong as the mantle drag under the oceanic
portion of the plates. Because the effective area is less and the absolute velocity is
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Table 6
Summary of the forces
Relative

Force Form Direction Importance, X, strength Uncertainty Units
Frp o dl 1 strike 0-075 0-36 + 0-10 km~!
Fer adl opp. rel. motion 0-040 016 + 0-09 km~—!
Fre xdl opp. rel. motion 0-063 036 + 013 km=?
Fgp adl 1 strike 0-745 6-43 + 0-19 km~?
Fsu o dl 1 strike 0-044 0-50 + 0-25 km~1
Fir o Pyl di L strike 0:652 0-89 + 0-03 km~fcm~! yr
Fep o VP dA opp. abs. motion 0-056 5-65 + @ 2-22 10~ km~2cm~!yr
For o Vy dA opp. abs. motion 0-061 0-82 + 0-30 1075 km~2em™1! yr

slower under the continents, the net importance of Fp is about the same as Fpp,
even though continental drag is the primary regulator of the velocity of plates not
attached to downgoing slabs. The magnitude of uncertainty in the terms prevents
any detailed analysis of the relative strength of the smaller terms.

Testing the model. The model summarized in Table 6 does explain the motions
of the plates. As formulated in this paper, this test is met if the torques acting on a
plate are balanced. The degree to which the dynamic equilibrium condition is satisfied
is illustrated in Fig. 13. There is a close balance between driving and resisting forces
with noise about 10 per cent of the amplitude of the signal. This figure is dominated

Resistin
s, |

o)

| |
20 40

Driving

-40 -20

-20

F1G. 13. Balance of the torques acting on plates. There are three points for each of
the twelve plates; one for each torque axis. Positive torques tend to rotate the plate
clockwise about the axis. The driving torques are the sum of the slab pull, ridge
push, and suction. Resisting torques are the sum of drag on the base of plates,
resistance to relative motion at transform faults and convergent plate boundaries,
and the resistance to the advance of the slab into the mantle. Scale is arbitrary.
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Fi1G. 14. Balance of the nct torques acting on the surface plates. Same as Fig. 13

except that slab pull and slab resistance are combined into one term included as a

driving torque. As there is uncertainty in both the resisting and driving terms, the

best estimate of the error is the perpendicular distance to the balance line. The
scale units are the same as in Fig. 13.

by the balance of slab pull and slab resistance. If only the surface portions of the
plates are considered, combining Fg, and Fg into one term, a reasonable balance is
still attained (Fig. 14), with noise about 40 per cent of the amplitude of the signal.
Taking into account the number of simplifying assumptions about the form of the
forces, we feel that the equilibrium test is adequately fulfilled.

For a model to be reasonable, it must also be consistent with other geophysical
observations, such as the energy expended in earthquakes and the state of stress
within the lithosphere. Most of what is known about intra-plate stress comes from
seismicity and source mechanisms of earthquakes. Since seismicity and source mechan-
isms of earthquakes occurring at plate boundaries are now well explained by the
kinematics of plate tectonics (e.g. Isacks er al. 1968; Kanamori 1971) we confine
ourselves to intra-plate events. There are two categories of intra-plate earthquakes:
first, the intermediate and deep earthquakes occurring in the downgoing slabs, and
second, the events occurring in the horizontal part of plates. The first thing to note
is that as pointed out previously, the much higher activity within the descending
plate shows that the slab is under greater stress than the surface plate.

The source mechanisms of earthquakes within the slab delicately depends on the
velocity of the slab (Smith & Tokséz 1972; Toksoz et al. 1973) In our model, the
nature of the intermediate events is controlled by whether the velocity of descent
exceeds the terminal velocity or not (Fig. 15). As we explained earlier, Fgp is strongest
at a depth of 200-300 km, and F is concentrated at the lower end of the slab. If the
slab velocity is less than the terminal velocity, it is expected that Fgp is smaller than
Fgp and a tensile force Fgp—Fgy acts at a relatively shallow depth to cause down-dip
tensional earthquakes (Fig. 15(a)). On the contrary, if the slab velocity exceeds the
terminal velocity, it will result in Fgp < Fg, and give rise to a compressive stress
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(c) More than larrminal velocity

/

/

)
—A ,
/ Z
/ /
b) Exactly termiral velocity {d) Average plate
/ / -
/.

FiG. 15, State of stress in the slab as a function of rate of descent of the plate into

the mantle. Heavy arrows represcnt forces acting on the lithosphere, small arrows

represent state of stress. Double arrows pointing out represent extension; pointing
in, compression.

field throughout the slab (Fig. 15(c)). When exactly at the terminal velocity (Fig.
15(b)), there will still be down-dip compression in the lower part of the slab because
the body forces are shallower than most of the resistance to penetration.

In the actual plate motion, we have seen that all the plates having significant
amount of slab are moving at close to the terminal velocity (the precise terminal
velocity for each individual slab may vary somewhat, due to factors such as varia-
tions in the thickness of the plate). Overall, the slabs exert a small net pull (Table 6)
which may help to overcome the plate-plate interaction, Fc, located at shallow
depths in the trenches. Thus, in the equilibrium state of a plate as a whole, the average
slab should be characterized by down-dip extension in the upper part, then passing
through a zone of very low stress, possibly aseismic, to down-dip compression in the
lower part (Fig. 15(d)). From studies of the focal mechanisms of earthquakes, it
appears that the stresses in the inclined seismic zones under Kermadec, Peru, Northern
Chile, and the Solomons, and also possibly under the Kuriles, Mindanao and the
Aleutians, show this complete equilibrium pattern (Isacks & Molnar 1971). In some
cases, it 1s not clear whether the aseismic zone represents a break in the plate or just a
gap in the seismicity due to low stress.

Our assumption of balance of torque and the concept of terminal velocity applies
to the entire plate. Therefore, if a plate is very large, slab at some part of its circum-
ference may be going down with velocity in excess of the terminal velocity and at
other parts with velocity less than terminal velocity, depending on the distance from
the pole of rotation of that plate. The Pacific plate is the only plate large enough
for this effect to be significant: the slabs under the Japan (Honshu), Izu-Bonin and
Tonga trenches, which are all far from the pole of rotation (Morgan 1973; Minster et
al. 1974), show down-dip, compressive earthquakes throughout the slab. Closer to
the pole, the Kermadec slab shows down-dip extension and the intermediate earth-
quakes under the Kurile trench are a mixture of compression and extension. This
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model predicts that the Aleutian seismic zone should reflect the features of a relatively
slow-moving slab and be under extension. One of the only two mechanism solutions
known for the area shows down-dip compression, but the other event, which is
extensional, is shallower than the inconsistent mechanism (Isacks & Molnar 1969).
We do not claim that our model explains the nature of every intermediate or deep
earthquake, but it is consistent with the general pattern of stresses within the des-
cending plates.

It is worth repeating that even though the forces acting on downgoing slabs
control the velocity of the oceanic plates, in the equilibrium state, the net force from
the slab is small. Consequently, the horizontal part of the plate should be under a
weak, compressive stress due to the push from the ridges which is balanced by
resistance at trenches and transform faults and by weak drag on the base of the plate.
This is consistent with the predominance of horizontal, compressive stress reported
for the rare, oceanic, intra-plate events (Mendiguren 1971; Forsyth 1973; Sykes &
Sbar 1973). Plates such as South America, which experience a push from the ridge
on one side, and suction and plate-plate collision on the other side, should be under
compression in the oceanic portion, but may show little stress in the interior of the
continent. The least understood part of our model is the nature of this suction force.
Again, our simple model is not capable of explaining all intra-plate stresses, but it is
not inconsistent with the limited number of observations now available.

The magnitude of the stresses involved is always difficult to estimate. A number of
in situ stress measurements suggest that the deviatoric stresses in surface plates may
reach a few hundred bars (Sbar & Sykes 1973), which is consistent with the scaling
of forces suggested below. However, Hanks (1971) and Watts & Talwani (1974) have
suggested that the topographic rises seaward of some trench axes may be due to
horizontal compressive stresses of kilobars. If their simple, elastic flexure model of
the formation of these rises is correct, the stresses involved are too large to have been
generated by boundary forces. However, the horizontal compressive stresses needed
may have been grossly overestimated (Watts & Talwani 1974) due to the neglect of
possible effects such as plastic fiow within the lithosphere, bending moments applied
at the trench, and uplift of the oceanic plate due to upward return flow of astheno-
spheric material.

To test whether the model can meet the energy requirements, the relative strength
of the forces must be converted to an absolute scale. We feel that ridge push is the
best understood force, so we compute its strength in order to calibrate the entire
system. McKenzie (1972) showed that the mean excess pressure AP exerted on the
lithosphere due to the elevation of the ridges above the surrounding sea floor is
approximately

AP =1g(po—pw)e (19)
where e is the elevation of the ridge above the deep sea floor and p, and py, are the
densities of lithosphere and sea water, respectively. This yields an averagestress across
the lithosphere of the order of 300 bars. Artyushkov (1973), using a more complex
model, arrived at an average value of 230 bars. The total work Wyp done by this

force in a year is
Wop = 2V APIL (20)

where 2V is the mean separation rate of all the world’s extensional boundaries of
total length L and [ is the thickness of the lithosphere. Substituting

i e =3km

Po=33gcm”
I = 80 km L = 50,000 km
and V = 2.8 cm/yr (Anderson et ¢l. 1973) gives

Wep = 8 x 10%° erg/yr.
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In our model, the push from the ridge has about the same importance as resistance
at collisional boundaries and transform faults. Thus, the annual elastic energy release
should be of the same order as the work input at the ridges. The mean annual seismic
energy release is about 6 x 10**erg/yr. Taking into account the seismic efficiency
(Wyss 1970),the total elastic energy release is roughly 6 x 10%° erg/yr, in excellent
agreement with HWgp. It must be emphasized that both figures are only order of
magnitude estimates. The additional energy dissipated under the plates by drag can
be supplied by the work done by suction and by the net pull of the slabs. Thus, the
model presented here of boundary driving forces does meet the energy requirements.

We have argued that one possible explanation for the lack of correlation of velocity

with area (Fig. 5) is weak-coupling between the lithosphere and the deeper mantle.
How low does the viscosity of the asthenosphere have to be to achieve this decoupling
and produce the small drag force computed in the model? We convert Fp to absolute
units using the absolute size of Fyp derived in the previous paragraph and the relative
strength of the forces given in Table 6. Fpg is directly proportional to absolute
velocity, with drag at 8 cm/yr roughly 5 bars. (All estimates in this section are order
of magnitude estimates only, due to the uncertainty in the relative sizes of the terms.)
If the return flow is confined between the base of an 80 km thick lithosphere and a
depth of 300 km, the viscosity of this 220 km thick, asthenospheric layer must be
about 5 x 10'? poises to produce the computed drag force. If the bottom of the layer
is raised to 200 km, the viscosity must be reduced by a factor of 3 to maintain Fpp at
the same level. With the same assumptions, the viscosity under the continents is about
eight times larger, or from 1—4x 10?° poises. These estimates are very reasonable.
Recent studies of isostatic rebound under Fennoscandia, Canada, West Siberia and
Lake Bonneville (Takeuchi & Hasegawa 1967; McConnell 1965, 1968a, b; Walcott
1970; Artyushkov 1971; Lliboutry 1971) indicate that asthenospheric viscosity under
continents is on the order of 10?° to 10*! poises. In addition, the increase in viscosity
to 1022 to 10*3 poises below the soft asthenosphere would provide the added strength
needed to resist the plunge of the downgoing slab into the deeper mantle.

Non-uniqueness. The smallest eigenvalue is an order of magnitude smaller than any
other eigenvalue, so the features described in x; are well determined, i.e. Fgp and Fgg
must be nearly equal and at least an order of magnitude larger than the other forces.
The other features of the model are non-unique. Thus, the tests described in the
preceding section based on the scaling of the forces to Fyp must be regarded as only
tests of one particular solution. These tests show that a model of boundary forces as
the driving mechanism is reasonable, but it cannot be stated with any confidence that,
for example, Fpg is larger than Fcg or that the ratio of Fgp to Feg is well known. The
relative sizes of these terms cannot be changed arbitrarily without degrading the
balance illustrated in Fig. 14, but, if the proper combination of forces is varied, the
balance conditions can be equally well satisfied. This non-uniqueness arises from the
existence of four eigenvectors with nearly the same eigenvalue or noise-level (Table 5).
If the amount of one of the eigenvectors used in obtaining X is increased at the expense
of another eigenvector with the same noise-level, the signal-to-noise ratio of the final
solution will be unaltered. Thus, with four eigenvectors with similar values of &2,
there are three degrees of freedom which can be used to vary the relative sizes of the
smaller terms in X in such a way as to satisfy pre-existing conditions on their relative
strength. If, for example, we think we know from observations of the energy released
in earthquakes that resistance to motion at boundaries where plates converge is
stronger than at transform faults, we could satisfy Fey > Fyp with a proper com-
bination of eigenvectors x, through x;. The non-uniqueness associated with this
problem does not affect our primary conclusions that a set of boundary forces can
satisfy the existing observational constraints on the driving mechanism of plate tec-
tonics and that the forces on the downgoing slabcontrol the motion of the oceanic plates.
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Additional experiments

Throughout the development of the model, we have assumed the hot spot co-
ordinate system of Morgan (1972) describes motions of the plates relative to the
mesosphere. However, our conclusions are independent of any a priori co-ordinate
frame. The absolute reference frame can be treated as an unknown and be varied to
find the system of mantle forces, Fp, Fpc, and Fgg, which minimizes the imbalance
of the torques. Because we have assumed Newtonian viscosity, the principle of
superposition applies and we can find the best co-ordinate frame by adding to the
motions of all the plates an arbitrary component of rotation about each individual
torque axis. Using the corrections listed in Table 3, we compute ¢,* as a function of
the co-ordinate frame, using the hot spot system as a starting point. The results
plotted in Fig. 16 indicate that the hot spot co-ordinate system is very close to the
best co-ordinate system in terms of satisfying the equilibrium condition.

The observation that the hot spot co-ordinate frame is a physically meaningful
system, i.e. satisfied the equilibrium condition, removes the chief reason for postulating
that plumes associated with hot spots are a primary driving mechanism of plate
tectonics (see also Solomon & Sleep 1974). In our model, they could be merely
passive indicators of the motion relative to the mantle. However, we have tried
experiments in which they were included as one of the driving forces. The plumes were
modelled as exerting a radial force outwards, extending to 500 km from the source.
Due to the radial symmetry, hot spots in the interior of plates, such as Hawaii, exert
no net driving force. Because no hot spots are recognized near trenches, only hot
spots located on or near a ridge will help drive the plates. The results show that any
hot spot driving force, Fy;s, is no more important than any of the other small forces.
In fact, there is a high correlation between F;;s and Fpp because the greater the length of
ridge boundary on a plate, the more likely the occurrence of hot spots. Consequently,
it is impossible to separate the effects of push from hot spots and push from ridges.
In our view, hot spots associated with ridges do help push the plates apart, but only
due to the added height of the islands above the elevation of normal ridge. With the
low viscosity asthenosphere under oceans, it is unlikely that any flow associated with
plumes could help drive the plates.

Two other experiments deal with alternate forms of the forces. Since the theoretical
form of the suction force is not known, we also tried models with Fg; proportional
to the rate of descent of the slab or proportional to the rate of relative motion between
the two colliding plates. As these velocities for most trenches fall in a fairly narrow
range, there is little information about the velocity dependence and the results were
similar to the velocity-independent force used in previous sections. The second
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FiG. 16. Value of the smallest eigenvalue as a function of corrections to the
*absolute ' hot spot co-ordinate frame of the deep mantle. Arrows indicate
minimum for each torque axis.
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experiment dealt with the form of slab resistance. We modelled resistance as chiefly
opposing the advance of the slab into the mantle, neglecting any resistance to the
motion of the slab parallel to the strike of the trench. If we model the resistance as
viscous drag on the top and bottom surfaces of the descending plate, so that resistance
directly opposes the motion instead of being perpendicular to the trench, &* increases
by a factor of about 3. Thus, we conclude that our original model is better, and that
resistance to the downgoing slab is concentrated at the leading edge.

In conclusion, we have derived a system of forces acting primarily at the boundaries
of plates, with the asthenosphere playing a passive role, which can produce the
observed motions of lithospheric plates. The possibility cannot be eliminated that
the surface features may be secondary and plate motion is controlled by strong coupling
to convection currents in the mantle. However, this possibility can only be proven if
some new observational method is developed which is capable of measuring mantle
flow rates. The boundary force model can be further tested. The boundary model
can be employed to predict the motions of a set of plates not previously considered,
while the coupled convection model says nothing about any other geometry. In our
model, as the geometry of the plates gradually changes due to the subduction of
ridges, etc., the forces on the plates also evolve, inducing changes in the direction and
rate of sea-floor spreading in a predictable manner. Thus, the system of boundary
forces derived in this paper can be tested by examining the history of plate motions.
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