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This paper provides an optimal filtering methodology in discretely observed continuous-
time jump-diffusion models. Although the filtering problem has received little attention, it
is useful for estimating latent states, forecasting volatility and returns, computing model
diagnostics such as likelihood ratios, and parameter estimation. Our approach combines
time-discretization schemes with Monte Carlo methods. It is quite general, applying in
nonlinear and multivariate jump-diffusion models and models with nonanalytic observa-
tion equations. We provide a detailed analysis of the filter’s performance, and analyze
four applications: disentangling jumps from stochastic volatility, forecasting volatility,
comparing models via likelihood ratios, and filtering using option prices and returns.
(JEL C11, C13, C15, C51, C52, G11, G12, G17)

This paper develops a filtering approach for learning about unobserved shocks
and states from discretely observed prices generated by continuous-time jump-
diffusion models. The optimal filtering problem, which has received little at-
tention, is the natural companion to the parameter estimation problem as filters
allow researchers to analyze and use their models for practical applications.1

Despite its usefulness, there is currently no general method for solving the
filtering problem in continuous-time models.
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1 There is now a long list of methods for estimating parameters in continuous-time models via the simulated method
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Before discussing our filtering methodology, it is important to understand
why optimal filters are so useful in practice. Filtering distributions pro-
vide estimates of latent variables that are useful for forecasting volatility or
price distributions. They also allow researchers to identify or “disentangle”
(Aı̈t-Sahalia 2004) transient from persistent shocks. Forecasts are crucial for
using continuous-time models for applications such as portfolio allocation or
option pricing, which require volatility estimates. Optimal filters are also use-
ful for model specification, as the construction of likelihood functions (and
therefore likelihood ratio statistics) requires the filtering density. Existing spec-
ification tools such as computing residuals or well-chosen moments are rather
ad hoc.2 Conditional likelihoods and the associated likelihood ratio statistics
are objective and universal metrics, as the likelihood embeds and properly
weighs all of the information in the model, in contrast to certain well-chosen
moments. Of course, optimal filters can and are used for likelihood based
parameter estimation.3

On the theoretical side, we propose an optimal filtering scheme combin-
ing popular time-discretization schemes (e.g., the Euler scheme) with particle
filtering methods (Gordon, Salmond, and Smith 1993; and Pitt and Shephard
1999). The approach is quite general, as it applies in general multivariate jump-
diffusion models and even allows for nonanalytical observations that commonly
arise in option pricing applications (see, for example, Christoffersen, Jacobs,
and Mimouni 2007). Thus, our setup encompasses all of the types of models
and data encountered in practice. The algorithm is easy to understand, sim-
ple to implement, and computationally fast, requiring only simulation from
well-known distributions. Like all Monte Carlo procedures, our framework
has the advantage that it is highly adaptable and can be tailored for specific
applications.

On the empirical side, we use the filter to understand the structure of jumps
and volatility in the context of the double-jump model of Duffie, Pan, and
Singleton (2000). This model is popular for option pricing and portfolio
allocation applications, due to its analytical tractability and its ability to gen-
erate flexible return distributions. Statistically, the model presents a significant
filtering challenge due to the complicated shock structure, as price variation
is driven by jumps in prices and persistent volatility, which itself is driven by
a jump factor. Disentangling jumps and stochastic volatility, in particular, is
important as prior research documents that jumps and diffusive components
are compensated differently (see, for example, Pan 2002 or Broadie, Chernov,
and Johannes 2007).

2 Eraker, Johannes, and Polson (2003) and Li, Wells, and Yu (2007) analyze residual plots. Other papers, such
as Andersen, Benzoni, and Lund (2001); Chernov et al. (2003); Johannes (2004); and Broadie, Chernov, and
Johannes (2007) use unconditional moments. In affine models, Bates (2001) uses normalized factor transitions
assuming volatilities are observed, and Bates (2006) uses a likelihood-based metric.

3 Christoffersen, Jacobs, and Mimouni (2007) and Golightly and Wilkinson (2006, 2008) use variants of our
particle filtering algorithms for parameter estimation in linear and nonlinear diffusion specifications.
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We first perform simulations to assess the performance of our particle filtering
algorithm. For realistic parameters, there is little discretization bias for high
frequencies such as daily. The bias is significant for lower frequencies, but is
mitigated by simulating a small number of data points between observations.
Identifying jumps is possible with daily data, but it is more difficult to do so
with less frequently sampled data. For example, we can identify about 60%
of the jumps at a daily frequency, while the remaining 40% are too small to
identify. At a weekly frequency, less than a third of the jumps are correctly
identified. Since volatility aggregates, weekly variance is roughly five times as
large as daily variance, and therefore only the largest jumps can be identified
at the weekly frequency.

Next, we use the filter for four commonly encountered applications: disentan-
gling jumps from stochastic volatility, forecasting realized volatility, comparing
models using likelihood based metrics, and filtering using both option prices
and underlying returns. The first is the relatively standard problem of disentan-
gling different shocks from the observed price movements. Not surprisingly,
volatility estimates can vary dramatically across models, especially during pe-
riods of market stress. Second, we consider volatility forecasting accuracy,
which, surprisingly, has received little attention in parametric continuous-time
stochastic volatility models. Despite these differences, the root mean squared
error of volatility forecasts across models is virtually the same. This occurs be-
cause of the different shocks and mean-reversion speeds. While the data wants
volatility to rapidly increase during periods of market stress, the large positive
jumps also require reasonably fast mean-reversion. However, in normal times,
models with jumps in volatility mean-revert too quickly. The net result is that
the models look very similar in terms of volatility forecasts.

Third, we compute sequential likelihood ratios across a pure stochastic
volatility (SV) model and models that incorporate jumps in prices (SVJ), and
also jumps in volatility (SVCJ). Full-sample likelihood ratios provide a clear
ranking of models: SVCJ and SVJ are overwhelmingly preferred to SV, and
SVCJ is preferred to SVJ, in contrast to the volatility forecasts. The sequential
likelihood ratios indicate that model differentiation occurs primarily during
market stress periods, showing the importance of accurate jump modeling for
overall model specification. Since the models we consider have simple jump
specifications (normal distributions), it would be interesting to investigate the
gains from using more flexible jump specifications such as those non-normal
or skewed jump sizes or those generated by Levy processes. The result is par-
ticularly striking as a standard metric, the accuracy of volatility forecasts, is not
able to differentiate the models, while likelihood ratios provide a clear ordering.

Finally, we use option prices and index returns to filter volatility using both
sources of information. Our filter efficiently combines the information in both
sources, even though option prices are nonanalytic functions of the current
stock price and volatility state. We consider settings with and without factor
risk premiums and quantify first how much of the volatility estimation risk
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is reduced by introducing options. If options were observed without error,
volatility could also be estimated without error, but this is not reasonable as
even at-the-money options have large bid-ask spreads. We incorporate realistic
bid-ask spreads into our filtering approach and quantify the estimation risk via
the posterior standard deviation of the filtering distribution. Even with a 10%
pricing error/bid-ask spread, estimation risk falls by as much as 40% with the
addition of option prices. This shows how informative option prices are, even
with large bid-ask spreads.

Our results also indicate that it is difficult to reconcile existing models with
the information in both returns and option prices. In the models with jumps in
prices and in volatility, volatility filtered using returns and options still tends to
be higher than volatility filtered from just returns. Factor risk premiums reduce
spot volatility, but the two sources are still not wholly consistent. This is consis-
tent with either model misspecification in the volatility process or time-varying
risk-premiums. The nature of the misspecification is consistent with a model
where the long-run mean of volatility varies over time. This model has been
suggested by Duffie, Pan, and Singleton (2000) but has not been analyzed. Time-
varying risk-premiums are also able to reconcile the issues, as spot volatility is
not required to move as much to explain option implied expectations.

1. Optimal Filtering of Jump-Diffusions

1.1 General jump-diffusion models

We assume that log-prices, Yt = log(St ), and underlying state variables, Xt ,
jointly solve:

dYt = μs (Xt ) dt + σs (Xt ) dW s
t + d

⎛⎝ N s
t∑

n=1

Zs
n

⎞⎠ , (1)

d Xt = μx (Xt ) dt + σx (Xt ) dW x
t + d

⎛⎝ N x
t∑

n=1

Z x
n

⎞⎠ , (2)

where W s
t and W x

t are potentially correlated Brownian motions, N s
t and N x

t
are point processes with predictable intensities λs(Xt−) and λx (Xt−), τs

n and
τx

n are the jump times, and Zs
n and Z x

n are the jump sizes with Fτn− conditional
distributions �s(Xτn−) and �x (Xτn−). For example, St could be an equity
index, Xt its stochastic variance, Zs

n the price jumps, and Z x
n the variance jump

sizes. As our focus is on filtering, we suppress the dependence of prices on any
parameters, except where explicitly needed.

As is common in financial applications, we assume exogenous state variables,
in the sense that the characteristics in Equation (2) are independent of prices.
We also make a number of other assumptions, for notational parsimony: we
assume that St and Xt are univariate, although our approach applies equally to
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multivariate models; we model directly log-prices and assume that the level of
the asset price does not appear on the right-hand side of Equation (1); we assume
that the jump intensities and jump size distributions are state independent,
λs(Xt−) = λs and λx (Xt−) = λx , respectively; and we assume the Brownian
motions are uncorrelated. Each of these assumptions is easy to relax.

The model in Equations (1) and (2) covers nearly all of the cases of interest
in finance, in particular, multivariate diffusions, multivariate jump-diffusions
(Duffie, Pan, and Singleton 2000) and continuous-time regime-switching mod-
els, and diffusion models in which the drift and diffusion are driven by a Markov
chain (see, for example, Dai, Singleton, and Yang 2007).4 We do not consider
infinitely active Levy processes, but our approach can be easily generalized to
this class, as noted by Barndorff-Nielson and Shephard (2004 and 2006b).

One novel feature of our approach is that we allow for the observation of
“derivative” prices whose value depends on St and/or Xt . Here, we have in
mind either bond prices or option prices. Here,

C (St , Xt ) = EQ
[
e− ∫ T

t rs ds f (ST )|St , Xt
]

(3)

is the price of a claim that pays f (St ) at time T and Q is a risk-neutral probability
measure. We require only the minimal assumption that the C can be evaluated.
Thus, we allow C to be nonanalytic, a case that arises in option pricing and
nonlinear term structure applications. In this case, derivatives may be highly
informative about state variables, and the goal of the filtering problem is to
learn about the latent states from both Yt and Ct , where Ct is the observed
market price of the option.

Derivative prices also pose an interesting challenge for filtering. Since they
are a deterministic function of the underlying prices and states, they are poten-
tially fully revealing of states, introducing a stochastic singularity. To circum-
vent this problem, we follow the literature in assuming that derivative prices are
observed with error. That is, Ct = C(St , Xt ) + εt or Ct = C(St , Xt )eεt , where
εt is normally distributed. The motivation for pricing errors could be a genuine
concern with noisy price observations, such as those generated by the large bid-
ask spreads (index option prices), interpolated prices (term structure models
with interpolated yields), or model-induced pricing errors.

Given the general class of models, we now discuss the general filtering
problem, particle filters, and our algorithms.

1.2 Optimal filters and their uses

The solution to the optimal filtering problem consists of a sequence of densities,
p(Lt |yt ), that are computed for each time period t, where yt = (y1, . . . , yt ) are

4 The following provides a partial list of applications using jump-diffusion models with potentially latent variables.
In portfolio settings, see Pan and Liu (2003); Liu, Longstaff, and Pan (2002); Das and Uppal (2004); and Aı̈t-
Sahalia, Cocho-Diaz, and Hurd (2006); in fixed income settings, see Andersen, Benzoni, and Lund (2004);
Johannes (2004); Piazzesi (2005); and Dai, Singleton, and Yang (2007); in option pricing settings, see Bates
(2001, 2006); Bakshi, Cao, and Chen (1997); Pan (2002); and Duffie, Pan, and Singleton (2000).
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the observed data and Lt are any unobserved latent variables. In our setting,
the data yt consists of price or return observations, Yt − Yt−1, and derivatives,
Ct , that are generated by discretely spaced observations of the continuous-time
model. The latent variables consist of the Markov states, Xt , jump times or jump
sizes. Before discussing our filtering approach, we briefly discuss the four main
uses of optimal filters: disentangling shocks, forecasting, specification analysis,
and parameter estimation.

First, a central question in models with multiple sources of risk is to identify
the source of the shock. In the context of jump-diffusions, Aı̈t-Sahalia (2004)
refers to this as “disentangling” jumps from stochastic volatility, understanding
whether a price change is due to a persistent shock (volatility is higher) or a
transient shock (a jump occurred). This problem is crucial in many economic
settings, as decision makers respond differently to persistent and transient
shocks. The second, and maybe most common, use of optimal filters is for
forecasting latent states or prices. Forecasts using p(Lt |yt ) are optimal in the
sense that each of its conditional moments has the lowest mean-squared error
among all potential estimators. Unlike GARCH models, forecasting exercises
are rarely done using parametric continuous-time models, most likely because
of the difficulty in computing the filtering distribution.5 The goal of this paper
is to provide such filters so as to make these exercises feasible for continuous-
time models that are commonly used in practice. Bates (2006) is one notable
exception, although his approach has the limitations that it applies only in affine
settings and is difficult to extend to multiple-dimensional settings.

Third, p(Lt |yt ) is useful for specification diagnostics. Here, it is common in
both classical and Bayesian settings to consider K non-nested models, {Mi }K

i=1.
After estimating parameters (via simulated method of moments, simulated or
approximate maximum likelihood, or Markov chain Monte Carlo (MCMC)
methods), the goal is to assess the model fit. Existing approaches in models
with latent variables tend to focus on various intuitive, but ad hoc, diagnostics
such as analyzing residuals or the fit of various moments, as mentioned earlier.
A preferable approach would be to compute likelihood ratio statistics, for both
the full sample and for each data point, as the likelihood provides a natural
metric. Likelihood ratios can be used for both nested and non-nested models,
as a measure of goodness of fit.

Likelihood computation requires the optimal filtering distribution. The full-
sample likelihood of model Mi based on yT is

L(yT |Mi ) =
T∏

t=1

p(yt |yt−1,Mi ),

5 Chernov et al. (2003) and Bates (2006) compute filtered estimates, but do not consider the accuracy of volatility
forecasts across models.
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where

p(yt |yt−1,Mi ) =
∫

p(yt |Lt ,Mi )p(Lt |yt−1,Mi )d Lt

is the likelihood of data point yt conditional on past data. This is identical to the
Bayes factor commonly used in Bayesian statistics. Continuous-time models
pose an additional problem over and above the standard filtering problem, as all
of the densities needed to compute likelihoods are not known, since transition
densities for states or observed variables are generally not known. Full-sample
likelihoods have been used as a model diagnostic tool in a number of discrete-
time models (see, for example, Kim, Shephard, and Chib 1998 or Chib, Nardari,
and Shephard 2002).

Although not reported in the literature, one can also track sequential likeli-
hood ratios. The likelihood ratio at time t,LRi, j (t), is defined recursively as

LRi, j (t) = L(yt |Mi )

L(yt |M j )
= p(yt |yt−1,Mi )

p(yt |yt−1,M j )
LRi, j (t − 1).

Unlike full-sample likelihoods, sequential likelihoods identify the exact time
periods in which models fail, in a relative sense. In particular, they allow
researchers to discriminate between abrupt failures and those that accumulate
slowly, providing a deeper understanding of how the models fit the data, unlike
full-sample likelihood ratios. Another interesting case is when LRi, j (T ) > 1,
but the differences are driven by a few influential observations. Ignoring these
observations, the fit could be poor with, for example, LRi, j (t) < 1 for most
of the sample. This insidious case would not be diagnosed using full-sample
likelihoods.

Finally, particle filters are useful for parameter estimation. In discrete-time
models, Pitt (2002) uses particle filters to estimate parameters (see Durham
and Gallant 2002 and Durham 2003 for related simulated maximum likelihood
estimation appqqroaches). Particle-based likelihoods are not smooth functions
of the parameters, but it is easy to use optimizers for nondifferentiable objective
functions or by smoothing out the discontinuities (Pitt 2002). Building on our
methodology, Christoffersen, Jacobs, and Minouni (2005) estimate models us-
ing particle filters for option pricing applications, and Golightly and Wilkinson
(2006) use time discretizations and particle filters for parameter estimation in
diffusion models.

1.3 Particle filters: General issues

The essence of the filtering problem is computing or approximating p(Lt |yt ),
as it is generally a nonlinear and nonanalytical function of the observed data.
Historically, the burdens of computing optimal filters were overwhelming, due
to the “curse of dimensionality,” since p(Lt |yt ) is a function of the entire
observed history and Lt could be multidimensional.
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Particle filters approximate p(Lt |yt ) via a discrete distribution consisting of
N support points or particles, L (i)

t , and probabilities, π
(i)
t , for i = 1, . . . , N .

Together, the approximation is a random histogram, denoted pN (Lt |yt ). The
support points change over time, differentiating this approach from determinis-
tic approximations with fixed grid points. As N increases, pN (Lt |yt ) converges
to p(Lt |yt ) under mild regularity conditions. The key to particle filters is their
adaptability, as they can be modified to handle the specific structure of a given
model. In this regard, particle filters, like other Monte Carlo procedures (e.g.,
MCMC, simulated maximum-likelihood/method of moments, and Monte Carlo
methods for numerical derivative pricing) rely on their flexibility to adapt to a
given application.

Although there are many particle filters, there are two algorithms that we
utilize: the sampling-importance resampling (SIR) algorithm and the auxiliary
particle filtering (APF) algorithm. SIR is the classic particle filtering algorithm
developed by Gordon, Salmond, and Smith (1993), but suffers from a well-
known problem that the APF, developed by Pitt and Shephard (1999), alleviates.

The main alternative to particle filtering is deterministic numerical inte-
gration (e.g., quadrature), approximating the filtering density on a discrete
grid, instead of using Monte Carlo methods as in the particle filter (see, for
example, Kitagawa 1987). These filters require transition densities for state
variables as well as likelihood functions, neither of which is generally available
in continuous-time models.6 Bates (2006) develops a novel approach using the
analytical structure of affine models, combined with functional approximations
and numerical integration. The analytical approximations must be tailored for
the specific application at hand.7

Numerical integration schemes, while feasible and accurate in univariate
settings, are generally computationally infeasible and inaccurate in higher di-
mensions, since the computing cost is exponential in the dimension of the
state. On the other hand, standard Monte Carlo methods are independent of the
state dimension, and because of this, particle filters typically are more efficient
for higher-dimensional problems. This is why the filtering literature focuses
on particle filters. The continuous-time nature of the model and complicated
shock distributions further exacerbate the dimensionality problem, as interme-
diate sample paths need to be simulated, and we also filter jump times and
sizes, in addition to persistent state variables.

1.3.1 SIR algorithm. The SIR algorithm assumes only that the conditional
likelihood, p(yt |Lt ), can be evaluated and the latent states can be simulated from

6 The analytical approximation approach of Aı̈t-Sahalia (2006) could potentially be used for numerical integration
in low-dimensional filtering problems, with extensions to jumps in Yu (2007).

7 In Bates (2006), the approximating functions are chosen to match the first two conditional moments, which
works well for latent state processes such as square-root specifications, which are close to conditionally normal.
It is not clear how the approach would be applied to more general specifications, such as those with jumps in the
state variables.
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p(Lt+1|Lt ). Both p(yt |Lt ) and p(Lt+1|Lt ) are specified by the model. In the
filtering literature, these are most easily seen from a state-space representation,
where p(yt |Lt ) specifies the distribution of the observed variables, conditional
on the latent variables, and p(Lt+1|Lt ) specifies how the states evolve over
time. Given current particles {L (i)

t }N
i=1 from pN (Lt |yt ), the algorithm is two

steps:

1. For i = 1, . . . , N , simulate L (i)
t+1 ∼ p(Lt+1|L (i)

t ).
2. For i = 1, . . . , N , compute

w
(i)
t+1 = p

(
yt+1|L (i)

t+1

)/ N∑
�=1

p
(
yt+1|L (�)

t+1

)
,

draw

z(i) ∼ Mult
(
N ; w(1)

t+1, . . . , w
(N )
t+1

)
,

and set L (i)
t+1 = Lz(i)

t+1, where Mult(N ; ·) is the multinomial distribution.

The first step, called propagation, simulates new particles from the state
transition using the old particles, L (i)

t . The second step, called resampling,
samples with replacement from the discrete distribution consisting of weights,
w

(i)
t+1, and states, L (i)

t+1. There are a number of ways to draw from a discrete
distribution. We use independent multinomial draws, although other methods
such as stratified sampling could be used. The probabilities after resampling
are π

(i)
t = 1/N . Gordon, Salmond, and Smith (1993) show that the resulting

particles are an approximate sample from pN (Lt |yt ). In importance sampling
language, p(Lt+1|Lt ) is the importance density and the weights are the ratio of
the target to importance density.

The SIR is very general, simple, and computationally fast, enabling applica-
tions with large N and/or T . As with all importance samplers, its performance
depends on the importance distribution. In most applications, SIR performs
well since next period’s states are close to this period’s states. In certain cases
involving rare events or outliers, however, it has a well-known shortcoming that
can typically easily be corrected. This occurs because Step 1 simulates states
“blindly” from p(Lt+1|Lt ), only incorporating yt+1 in Step 2.

The problem can be clearly seen in the simple setting of filtering jump times
and sizes in a time-discretization of Merton’s jump model:

yt+1 = μ + σεt+1 + Jt+1 Zt+1,

where the jump times are specified via Prob[Jt+1 = 1] = λ and Zt+1 are
the jump sizes.8 Estimates typically imply that λ is small, around 1%, and
jump sizes are large and negative. For example, assume that Zt ∼ N (−2.5, 4),

8 We thank the referee for suggesting this example.

2767



The Review of Financial Studies / v 22 n 7 2009

where the units are in percentages. Here, the filtering distribution is known for
Lt+1 = (Jt+1, Zt+1) but we consider estimating it with the SIR algorithm to
highlight the problems.

A problem known as sample impoverishment arises when SIR is confronted
with a large negative observation like the crash of 1987 (−20%). In Step 1,
since

p(Lt+1|Lt ) = Prob(Jt+1 = 1) = λ,

Jt+1 = 1 will be simulated for only 1% of the particles, regardless of the size
of the observation. For example, with 10,000 particles, only 100 jump sizes
will be simulated from Zt+1 ∼ N (−2.5, 4) . In Step 2, since p(yt+1|Jt+1, Zt+1)
has exponential tails, the weight associated with the most negative jump size,
p(yt+1|Jt+1 = 1, Zmin

t+1), will typically be much larger than the weights associ-
ated with all of the other particles.9 Step 2 will repeatedly sample the same Zt+1

value, leading to what is known as “sample impoverishment,” where the sample
from the particle distribution consists of many repeated values. This problem
is well-known and results in an inaccurate sample from pN (Lt+1|yt+1), unless
N is implausibly large.

1.3.2 APF algorithm. Pitt and Shephard’s (1999) algorithm corrects the
sample impoverishment problem by reordering the algorithm, resampling first
and propagating second, incorporating the new observation in both steps. Given
current particles, the APF consists also of two steps:

1. For i = 1, . . . , N , compute

w
(i)
t = p

(
yt+1|L (i)

t

)/ N∑
�=1

p
(
yt+1|L (�)

t

)
,

draw

z(i) ∼ Mult
(
N ; w(1)

t , . . . , w
(N )
t

)
,

and set L (i)
t = Lz(i)

t for i = 1, . . . N .
2. For i = 1, . . . , N , draw

L (i)
t+1 ∼ p

(
Lt+1|L (i)

t , yt+1
)
.

9 To see this, draw 100 samples from Zt ∼ N (−2.5, 4) and compute

wt = 1√
2πσ2

exp

(
− 1

2

(yt − Zt )2

σ2

)

for yt = −20 and σ = 1. The median ratio of largest to next largest weight is about 6000, indicating the probability
that the smallest jump size is resampled for nearly every particle is very high.
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This version of the APF also has weights π
(i)
t = 1/N . The APF has two novel

features. By first resampling based on the predictive likelihood, p(yt+1|Lt ),
only the important or high-likelihood particles (those that could have generated
next period’s observation) move forward. This is important for persistent state
variables. Second, the APF incorporates yt+1 into the propagation of Lt+1 in
Step 2, which is crucial for the outlier/rare event problem. This version of
the APF provides a direct draw (or i.i.d. sample) from pN (Lt+1|yt+1) without
using importance sampling, provided that p(yt+1|Lt ) can be evaluated and that
p(Lt+1|Lt , yt+1) can be sampled.

To see how the APF corrects the deficiencies of the SIR algorithm, consider
again Merton’s model. Since the state variables are not persistent, the first step
is not needed. The second step requires a draw from p(Zt+1, Jt+1|yt+1), which
can be expressed as

p(Zt+1, Jt+1|yt+1) = p(Zt+1|Jt+1 = 1, yt+1)p(Jt+1|yt+1),

since Zt+1 is not defined when Jt+1 = 0. The APF algorithm first simulates
jump times from p(Jt+1|yt+1), which is a Bernoulli distribution that accounts
for yt+1. For a large observation (negative or positive), p(Jt+1 = 1|yt+1) is
close to 1, implying that Jt+1 = 1 will be simulated for nearly every parti-
cle, in stark contrast to SIR. Next, for every Jt+1 = 1 particle, a jump size is
simulated from p(Zt+1|Jt+1 = 1, yt+1), which is quite different from p(Zt+1),
effectively tilting the jump size simulation toward values that could have gen-
erated yt+1. Thus, there are more Jt+1 = 1 and jump size particles simulated
that could have generated the observed yt+1. The APF clearly performs bet-
ter, in the sense that it will not suffer from sample impoverishment. A similar
modification of this example is key in our applications below with jumps in
prices.

This idealized version of the APF described above assumes that p(yt+1|Lt ) is
easy to evaluate and that p(Lt+1|Lt , yt+1) can be sampled. In most applications,
this will not be feasible. In this case, approximations to these distributions are
used and typically eliminate the problems that arise in the SIR algorithm.
Pitt and Shephard (1999) refer to these approximations as various levels of
adaption, with the algorithm outlined above being full or complete adaption.
When approximations are used, an additional reweighting step is required at
the end of the algorithm.10

10 In the standard case when approximations are used, the first-stage resampling is done using an approximation,
(̂yt+1|L (i)

t ), latent variables are drawn from p̂(Lt+1|L (i)
t , yt+1), and the probabilities π

(i)
t+1 are defined via

π
(i)
t+1 ∝

p
(

L (i)
t+1|L (i)

t

)
p
(

yt+1|L (i)
t+1

)
w

z(i)
t p̂

(
L (i)

t+1|L (i)
t , yt+1

) .
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1.4 Adapting particle filters to continuous-time models

Solving the SDEs in Equations (1)–(2) at the frequency associated with the
observed data, the observation and state equations are given by

Yt+1 = Yt +
∫ t+1

t
μs(Xv)dv +

∫ t+1

t
σs(Xv)dWv +

N s
t+1∑

n=N s
t +1

Zs
n, (4)

Xt+1 = Xt +
∫ t+1

t
μx (Xv)dv +

∫ t+1

t
σx (Xv)dW x

v +
N x

t+1∑
n=N x

t +1

Z x
n . (5)

The challenge presented by the continuous-time specification is to efficiently
approximate the conditional distributions induced by the stochastic integrals
and accumulated jumps. For now, we do not consider derivative prices, reintro-
ducing them below.

Our particle filtering algorithms use time-discretizations to simulate an ad-
ditional j = 0, . . . , M − 1 state variables between those observations via the
Euler scheme (other schemes can also be used)

yt+1 =
M−1∑
j=0

μs
t, j +

M−1∑
j=0

σs
t, j ε

s
t, j+1 +

M−1∑
j=0

Zs
t, j+1 J s

t, j+1, (6)

Xt, j+1 = Xt, j + μx
t, j + σx

t, j ε
x
t, j+1 + Z x

t, j+1 J x
t, j+1, (7)

where yt+1 = Yt+1 − Yt , Xt, j = Xt+ j/M are the intermediate simulated states

μs
t, j = μs(Xt, j )M−1, σs

t, j = σs(Xt, j )M−1/2,

μx
t, j = μx (Xt, j )M−1, σx

t, j = σx (Xt, j )M−1/2,

εs
t, j and εx

t, j are i.i.d. standard normal, and J s
t, j and J x

t, j are Bernoulli random
variables with respective intensities λs M−1 and λx M−1. The jump size dis-
tribution is unaffected by time-discretization. The simulated (or augmented)
states between observations are collected into a matrix of latent variables,

Lt+1 = L M
t+1 = (

X M
t+1, Zs,M

t+1 , Z x,M
t+1 , J s,M

t+1 , J x,M
t+1

)
,

where, e.g., X M
t+1 = (Xt , . . ., Xt, j , . . . , Xt,M−1) or J k,M

t+1 = (J k
t,1, . . . J k

t, j ,

. . . , J k
t+1) for k = s, x . Note that the states Xt are simulated up to one-

discretization interval before the next observation. We define our particle filters
over Lt+1. The distribution induced by the discretization, pM (yt+1|Lt+1), is
Gaussian.

1.4.1 A generic SIR algorithm. The following is a generic SIR algorithm,
applicable to any jump-diffusion model. Given current particles,
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1. For i = 1, . . . , N , simulate shocks from their i.i.d. distributions:11({
εs

t, j , ε
x
t, j , J s

t, j , J x
t, j , Zs

t, j , Z x
t, j

}M

j=1

)(i)
;

simulate states:

X (i)
t, j+1 = X (i)

t, j + (
μx

t, j

)(i) + (
σx

t, j

)(i)
ε

x,(i)
t, j+1 + Z x,(i)

t, j+1 J x,(i)
t, j+1;

and collect the new simulated prices and states into:

L (i)
t+1 = (

X M
t+1, Zs,M

t+1 , Z x,M
t+1 , J s,M

t+1 , J x,M
t+1

)(i)
.

2. Evaluate p(yt+1|L (i)
t+1), which is a normal density; compute

w
(i)
t+1 = p

(
yt+1|L (i)

t+1

)/ N∑
�=1

p
(
yt+1|L (�)

t+1

)
;

draw

z(i) ∼ Mult
(
N ; w(1)

t+1, . . . , w
(N )
t+1

)
;

and set L (i)
t+1 = Lz(i)

t+1.

This algorithm has three advantages. First, it is extremely easy to un-
derstand, modify, and code. Simulating shocks is straightforward and since
p(yt+1|Lt+1) is conditionally normally distributed, it is easy to calculate the
weights. Second, like most SIR algorithms, this algorithm performs well in
most settings. Third, incorporating option prices into the algorithm is straight-
forward, as the likelihood function, p(yt+1|Lt+1), is now a bivariate density over
yt+1 = (Yt+1 − Yt , Ct+1). The problem with this algorithm, like the general SIR
algorithm discussed above, is that it could suffer from sample impoverishment
during periods with large movements driven by outliers or rare events.

1.4.2 APF modifications. Unlike the SIR algorithm that uses a one-size-fits-
all approach, the APF adapts to the structure of a given model under consider-
ation. The first APF step requires an evaluation (or approximate evaluation) of
p(yt+1|Lt ), the predictive likelihood, which is given by

p (yt+1|Lt ) =
∫

p (yt+1|Lt+1) p (Lt+1|Lt ) d Lt+1.

This density is unknown for nearly all interesting models (outside of pure
Gaussian specifications) and is costly to evaluate.12

11 At this stage, it is clear how easy it is to incorporate correlated Brownian shocks.

12 In some settings, analytical approximations could be used at this stage. The distribution p(yt+1|Xt ) can be written
as

p (yt+1|Xt ) =
∫

p (yt+1, Xt+1|Xt ) d Xt+1.
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Our algorithm utilizes an Euler approximation to p(yt+1|Lt+1):

pM (yt+1|Lt+1) = N

⎛⎝M−1∑
j=0

μs
t, j +

M−1∑
j=0

Zs
t, j+1 J s

t, j+1,

M−1∑
j=0

(
σs

t, j

)2

⎞⎠ .

To approximate p(yt+1|Lt ), intermediate states, jump times, and jump sizes
must be integrated out. Integrating out the jump times and jump sizes is straight-
forward, as jump times are Poisson (or conditionally Poisson) and jump sizes
are typically assumed to be normally distributed or some other tractable distri-
bution. In fact, with normally distributed jumps, one can exactly integrate out∑Nt+1

n=Nt +1 Zs
n without discretization (we utilize this in our algorithms).

It is more difficult to deal with the persistent state variables, Xt, j , that appear
in the drift and diffusion coefficients. We extend the generic APF algorithm of
Pitt and Shephard (1999) that replaces the intermediate states, in this case Xt, j ,

by a likely value, such as the mean or mode. For example, we use mean approx-
imations by calculating X̂t, j = E[Xt, j |Xt ] (using the continuous-time speci-
fication) and defining μ̂s

t, j = μs(X̂t, j )M−1 and σ̂s
t, j = σs(X̂t, j )M−1/2, which

implies that

p̂M
(
yt+1|

{
Zs

t, j , J s
t, j

}M

j=1, Xt
)=N

⎛⎝M−1∑
j=0

μ̂s
t, j +

M−1∑
j=0

Zs
t, j+1 J s

t, j+1,

M−1∑
j=0

(̂
σs

t, j

)2

⎞⎠ .

The jump times and sizes can be analytically integrated out to deliver an
analytical form for p̂M (yt+1|Xt ). This step is not exact, and an importance-
sampling reweighting of particles is required at the end of the algorithm.

As an example of this step, consider a time-discretization of Bates’ (1996)
model:

yt+1 = μ +
√

Vtε
s
t+1 +

Nt+1∑
j=Nt +1

Zs
j

Vt+1 = Vt + κv (θv − Vt ) + σv

√
Vtε

v
t+1,

where Nt ∼ Poi(λt) and Zs
j ∼ N (μs, σ

2
s ). In this model, due to the normally

distributed jumps, there is no need to time-discretize the jump process. Using
a mean approximation and integrating out the jump times and sizes,

p̂ (yt+1|Lt ) =
∞∑

k=0

φ
(
yt+1; μ + kμs, V̂t + kσ2

s

) λke−λ

k!
,

For certain multivariate diffusion models (Aı̈t-Sahalia 2006; Aı̈t-Sahalia and Kimmel 2007) and even jump-
diffusion models (Yu 2007), there are analytical approximations to p(yt+1, Xt+1|Xt ) that are inexpensive to
compute. Combined with a simple numerical integration scheme, this could provide a more accurate, but slightly
more computationally intensive alternative to our scheme. We are currently analyzing these for filtering in pure
diffusion settings.
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where V̂t is a function of Vt−1. For most applications, the sum can be truncated
with a low number of terms.13 After resampling using p̂(yt+1|Lt ) , the volatility
particles are tilted toward those that are likely to have generated yt+1. For
example, if |yt+1| is large, resampling results in more high Vt particles.

The second step in the APF algorithm simulates latent variables using the
structure of common models. For example, models with jumps in prices typi-
cally assume that the jump size distribution is normally distributed. In this case,
we can first simulate jump times marginalizing out jump sizes, then simulate
jump sizes, and then simulate persistent states. Denoting the current persistent
state as Xt , then

p
(
N s

t+1 − N s
t = k|Xt , yt+1

) ∝ p
(
yt+1|{X̂t, j }M−1

j=0 , N s
t+1 − N s

t = k
)

p (Nt+1 − Nt = k) = φ
(
yt+1|{X̂t, j }M−1

j=0 , N s
t+1 − N s

t = k
)λke−λ

k!
,

where φ is a normal density and X̂t, j is a known function of Xt , which implies
that jump times can be easily sampled. Notice, as in the example of the APF in
Merton’s model, the new observation yt+1 is used when simulating jump times.

Next, it is also possible to generate a sample directly from

p

⎛⎝ Nt+1∑
n=Nt +1

Zs
n

∣∣∣∣∣∣ Nt+1 − Nt = k, {X̂t, j }M−1
j=0 , yt+1

⎞⎠ ,

since it is just a normal distribution as we are conditioning on the number of
jumps. Incorporating yt+1 is crucial in applications using stock index data, as
there are both rare events and outliers (stock market crash of 1987), consistent
with the intuition from Merton’s example in the previous section.

In some models, the exact timing of the jumps matters. For example, in the
models that we consider below, jumps in prices and states occur coincidentally,
and therefore the dynamics of the state depends on exactly when the jump
occurred. To characterize the times at which they jump, we can use a well-
known property of Poisson process: conditional on a number of jumps over an
interval, the times at which the jumps occurred are uniformly distributed over
the interval.

Finally, the persistent state variables need to be drawn from:

p(Xt+1|Xt , y∗
t+1) ∝ p(y∗

t+1|Xt+1)p(Xt+1|Xt ),

where y∗
t+1 = yt+1 −∑Nt+1

n=Nt +1 Zs
n. This distribution is not available analyti-

cally, and approximations are required. A generic approach, used here, builds
on the generic approach of Pitt and Shephard (1999) by simulating the persistent

13 The algorithm at this stage can be contrasted with Chib, Nardari, and Shephard (2002), who do not integrate
out the jump times and sizes and rather simulate jump times and sizes from the prior distribution, as in the SIR
algorithm.
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state variables from p(Xt+1|Xt ). This applies in every jump-diffusion model
and works well in the models that we consider.

There are a number of alternative methods for incorporating the new obser-
vation at this stage. For example, one can combine an Euler discretization for
the states, which implies that the time-discretized version of p(Xt+1|Xt , y∗

t+1)
is analytical, and then use a Taylor series approximation of the two densities
to generate a normal updating step. We found little if any benefit from this
scheme. Second, the analytical approximations of Aı̈t-Sahalia could be used at
this stage.14

1.4.3 Comparison to existing literature. Our approach is related to a
number of different literatures, and in this subsection, we connect our work
to this prior research. First, our approach complements the recent literature on
“realized volatility” (see, for example, the forthcoming review by Andersen,
Bollerslev, and Diebold). Initially, the focus was on high-frequency volatility
estimators (Andersen et al. 2001; Aı̈t-Sahalia, Mykland, and Zhang 2005),
but more recently the emphasis has shifted to separate diffusive volatility
from jumps in prices (see, for example, Barndorff-Nielson and Shephard
2004, 2006a, 2006b; Huang and Tauchen 2005; Aı̈t-Sahalia and Jacod 2007;
Andersen, Bollerslev, and Diebold 2007). Our approach is different along a
number of dimensions. First, our approach is parametric while the realized
volatility literature is nonparametric. In option pricing, term structure, and port-
folio applications, parametric models are often used. Second, we neither require
nor preclude the use of high-frequency data. Third, our approach can be used to
filter any latent state variable, not just those that affect the second moment. Thus,
for example, we can estimate both time-varying volatility and time-varying ex-
pected returns. Finally, our approach provides a method to coherently combine
the information in different sources, from, for example, option and equity prices.

Bates (2006) develops a filter that works in affine models (either continuous
or discrete time) with a single latent state variable. Bates uses deterministic,
analytical approximations to filtering distributions and numerical integration,
whereas our approach uses discrete particle approximations. The analytical ap-
proximations match moments, which works well when the state variables are
approximately normally distributed, but implementation on more general mod-
els or over longer frequencies is unclear. Bates (2006) focuses on parameter
estimation, but also analyzes filtered volatilities and jumps using simulations
and index data. Our approach is more general than Bates’ and easier to ap-
ply in higher dimensions, but does not utilize the special structure of affine
models. Moreover, our approach applies nonlinear models and with derivative
observations, which are nonlinear functions of the underlying stock prices.

14 Since p(Xt+1|Xt , yt+1) ∝ p(Xt+1, yt+1|Xt ) and the analytical approximations to p(Xt+1, yt+1|Xt ) developed
by Aı̈t-Sahalia (2008) are generally bounded, it is possible to use rejection sampling to generates direct samples
from p(Xt+1|Xt , yt+1).
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Finally, our approach builds on a large literature using particle filters in
the context of discrete-time models in econometrics and statistics. Pitt and
Shephard (1999); Chib, Nardari, and Shephard (2002); and Omori et al. (2007)
use particle filters to construct likelihood functions in discrete time SV models.
Pitt (2002), in concurrent work, uses particle filters for maximum-likelihood
parameter estimation in diffusion-based stochastic volatility models. Durham
and Gallant (2002) and Durham (2003) use an importance-sampling filtering
algorithm resembling a particle filter for estimation of stochastic volatility
models. Doucet, de Freitas, and Gordon (2001) provide a general overview of
particle filters.

1.4.4 Convergence of particle filters. Our approach relies on two approx-
imations: discretizing the SDE and particle approximations. While there are
convergence results for each of these components, it is not straightforward to
combine the asymptotics.

Particle filtering algorithms share many properties with standard Monte Carlo
estimates of expectations of smooth functions of the prices in continuous-time
models. Here, there is a natural trade-off between reducing discretization bias
(large M) and Monte Carlo error (large N ). For smooth functions, there are
standard results on the “efficient” asymptotic trade-off: using an Euler scheme,
N should grow at a rate proportional to M2 (Duffie and Glynn 1995). These
results cannot be directly applied to our case because we are interested in
pointwise convergence of filtering densities, not smooth functions of states.

Under mild regularity on the state transition and the likelihood, particle filters
(SIR or APF) are consistent. If the true model is given by the time discretiza-
tion at interval M, then the particle approximation, pM,N (Lt |yt ), converges
to pM (Lt |yt ) in a pointwise sense as N increases (see, for example, Crisan
and Doucet 2002 for a summary). This implies that the difficult step is prov-
ing pointwise convergence of the approximate transition density pM (Lt |Lt−1)
to the true transition density, p(Lt |Lt−1). For diffusions, there is a remark-
able result in Bally and Talay (1996) proving the pointwise convergence of
pM (Xt |Xt−1) to p(Xt |Xt−1). Brandt and Santa-Clara (2002) use this result to
prove convergence of simulated maximum-likelihood estimators (see also the
appendix in Pedersen 1995). Del Moral and Jacod (2001) and Del Moral, Jacod,
and Protter (2002) combine this result with standard particle convergence to
show that a version of the particle filter is consistent provided that M increases
slower than N (e.g., M = √

N ).15 That N grows faster than M is intuitive and
is similar to the results cited above.

If an analog to Bally and Talay (1996) existed for jump-diffusions, the
arguments in Del Moral, Jacod, and Protter (2002) would apply to derive
the limiting distribution of the particle filter in the case of jump-diffusions.

15 The algorithms in Del Moral and Jacod (2001) and Del Moral, Jacod, and Protter (2002) do not perform any
resampling nor can they adapt (as in Pitt and Shephard 1999), resulting in poor performance in practice.
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However, to our knowledge, there is no analog to Bally and Talay (1996) for
jump-diffusion processes. Proving the pointwise convergence of the densities
for jump-diffusions is an open problem in stochastic analysis, although it has
been conjectured that the Bally and Talay (1996) approach carries over to
jump-diffusions by Hausenblas (2002). Due to this, we are careful to perform
extensive simulations to guarantee that we obtain accurate estimates.

2. Empirical Results

This section provides empirical results using the Duffie, Pan, and Single-
ton (2000) model. Section 2.1 introduces the model, Section 2.2 provides
simulation-based evidence for the SV and SVJ models, and Section 2.3 uses
S&P 500 index returns for estimating/forecasting, disentangling jumps from
stochastic volatility, model specification, and quantifying the informational
content of option prices.

2.1 Stochastic volatility with jumps in prices and volatility

We assume that log-equity prices, Yt , and its stochastic variance, Vt , jointly
solve:

dYt = (μ − Vt/2)dt +
√

Vt dW s
t + d

⎛⎝ Nt∑
j=1

Zs
j

⎞⎠ ,

dVt = κv(θv − Vt )dt + σv

√
dW v

t + d

⎛⎝ Nt∑
j=1

Z v
j

⎞⎠ ,

where W s
t and W v

t are correlated (ρt) Brownian motions, μ is the diffusive eq-
uity risk premium, Zs

j = μs + ρs Z v
j + σsε j , ε j ∼ N (0, 1), Z v

j ∼ exp(μv), and
Nt ∼ Poi(λt). “SV” denotes the special case with λ = 0, “SVJ” the case with
μv = 0, and “SVCJ” the general model. Throughout, we set ρs = 0, as this
parameter is difficult to estimate, as argued by Eraker, Johannes, and Polson
(2003) and Chernov et al. (2003). This also makes the filtering problem more
difficult because there is a lower signal-to-noise ratio between jumps in volatil-
ity and returns.

This model provides analytically attractive option prices and portfolio rules,
and has received significant attention as an empirical model of equity index re-
turns and option prices (see Bates 2000; Pan 2002; Eraker, Johannes, and Polson
2003; Chernov et al. 2003; Eraker 2004; or Broadie, Chernov, and Johannes
2007). The model presents a challenge for filtering given the complicated factor
structure: it contains an unobserved diffusive state (Vt ), unobserved jumps in
the observed state (Zs

j ), and unobserved jumps in the unobserved state (Z v
j ). Be-

cause of this complicated factor structure, the model provides a rigorous hurdle
for filtering. For our simulation and real data results, we use objective measure
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Table 1

Simulation results for the SV model using the parameters θv = 0.9, κv = 0.02, σv = 0.15, and ρ = 0

Monthly Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2 R1 R2 M1 M2

1 2.76 7.28 2.47 5.86 0.93 5.44 0.73 4.15 0.25 4.14 0.19 3.07
2 1.08 6.84 0.95 5.27 0.30 5.40 0.20 4.05 0.20 4.15 0.14 3.06
5 0.41 6.76 0.33 5.08 0.23 5.40 0.14 4.04 0.21 4.15 0.14 3.06

10 0.22 6.76 0.18 5.04 0.20 5.40 0.13 4.04 0.19 4.14 0.13 3.06
25 0.17 6.76 0.13 5.02 0.19 5.40 0.13 4.04 0.19 4.15 0.13 3.06

R1 (R2) and M1 (M2) are RMSE and MAE errors between the filtered mean for a given M and the true filtered
mean (or the true volatilities). The numbers are multiplied by 10 and throughout we use N = 10,000.

parameters from Eraker, Johannes, and Polson (2003), but in simulations we
do study the performance for alternative parameter values.

The details of the filtering algorithms are given in the Appendix, specializing
the general approach of the previous section.

2.2 Simulation-based results

2.2.1 SV model. We simulate 100 sample paths using the Euler scheme
at a frequency 1/100 of a day, and returns are then sampled at various fre-
quencies (daily, weekly, monthly). Using these returns, the filter is run for
M = 1, 2, 5, 10, 25, and 100. The algorithm is computationally fast; for exam-
ple, running the filter for 500 observations with N = 10,000 and M = 10 took
about three minutes of CPU time on a Xeon 1.8 GHz processor in Linux with
code written in C. Since it is impossible to compute the true filter, we regard
M = 100 as the true filter, in the sense that it is devoid of discretization error.

Two sets of statistics summarize the filter’s performance. The first set is the
root mean squared error (RMSE) and mean absolute error (MAE) comparing
the approximate filtered means for a given M, E M [Vt |yt ], and the true filter,
E[Vt |yt ]. E[Vt |yt ] is the minimum variance estimator of Vt . We also report the
RMSE and MAE between the filtered means and the true simulated volatilities.
These results are generally of less interest in terms of the algorithm’s perfor-
mance (as the optimal filtering distribution is our target), but are important for
practical applications.

Tables 1 and 2 summarize the performance for two parameter configurations,
for daily, weekly, and monthly data, and for various values of M . Table 1 reports
a “base case” parameterization, μ = 0.5, θv = 0.9, κv = 0.02, σv = 0.15, and
ρ = 0 (the units are in daily variances). For example, θv = 0.9 corresponds to
about 15% annualized (

√
θv · 252)· ρ is constrained to zero to reduce the signal

to noise ratio, making it more difficult to estimate volatility. Table 2 reports
filtering results for different parameters that generate high and volatile variance
paths (κv = 0.08 , θv = 1.8, and σv = 0.30).

Results indicate that for a fixed sampling interval (daily, weekly, or monthly),
increasing M reduces the discretization bias, improving the accuracy of the fil-
ter. For monthly data, the RMSE and MAE are roughly halved by increasing
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Table 2

Simulation results for the SV model using the parameters κv = 0.08, θv = 1.8, and σv = 0.30

Monthly Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2 R1 R2 M1 M2

1 6.44 12.39 6.28 10.47 2.17 10.03 1.82 7.95 0.81 8.41 0.62 6.46
2 3.02 11.01 2.89 8.97 0.52 9.85 0.43 7.70 0.32 8.37 0.24 6.41
5 0.80 10.62 0.72 8.36 0.26 9.84 0.21 7.67 0.28 8.38 0.21 6.41

10 0.30 10.60 0.25 8.27 0.24 9.85 0.19 7.67 0.29 8.39 0.22 6.41
25 0.22 10.60 0.17 8.25 0.24 9.85 0.18 7.67 0.28 8.37 0.21 6.40

R1 (R2) and M1 (M2) are RMSE and MAE errors between the filtered mean for a given M and the true filtered
mean (or the true volatilities). The numbers are multiplied by 10 and throughout we use N = 10,000.

M from 1 to 2, from 2 to 5, and from 5 to 10. p(Vt+1|Vt ) is noncentral χ2 for
all sampling intervals, but the degree of non-normality is generally greater for
longer horizons, peaking at frequencies close to the monthly range as noted
in Das and Sundaram (1999). While data augmentation always improves the
performance, the effects are modest for daily sampling intervals. Here, the
RMSE falls from 0.25 for M = 1 to 0.20 for M = 2, indicating that discretiza-
tion bias is not a first-order effect for daily data. This is consistent with prior
research showing that the effect of discretization bias on parameter estimates
is swamped by sampling variation, at least for the daily sampling frequencies
and common specifications (see, for example, Pritsker 1998).

The accuracy is sensitive to parameter values, in large part because the
degree of non-normality in p(Vt+1|Vt ) varies with the parameters, especially
κv and σv . When these parameters are small, there is little bias introduced when
using the M = 1 Euler scheme. Table 2 considers a set of parameters with
higher average volatility (θv = 1.8, annualized), faster mean-reversion (κv =
0.08), and higher volatility of volatility (σv = 0.30), consistent with volatility
processes for individual stocks (Bakshi and Cao 2004). Table 2 indicates that,
as expected, there are larger gains to data augmentation and the gains are greater
for less frequent sampling. The results show that even a modest amount of data
augmentation (M = 2) with daily data drastically reduces the errors.

Figures 1 and 2 provide a graphical depiction of the filter’s performance for
daily (Figure 1) and monthly (Figure 2) sampling frequencies. The top panels
display simulated returns; the middle panels display the true volatilities (dots)
and posterior means for M = 1, 2, 5, and 25. The bottom panel displays the
difference between the true filtered posterior mean (M = 100) and the filtered
posterior means for each M . It is clear that errors at both frequencies and for
all degrees of data augmentation are greater when volatility is higher. Filtered
estimates underestimate volatility when volatility is high and overestimate
volatility when it is low. This is clearly the pattern in Figures 1 and 2 and
occurs because filtered estimates are smoothed expectations based on past
returns and volatility is mean-reverting.

Economically, there is no difference across the filtered volatility for daily
sampling and various degrees of data augmentation. In fact, it is not possible to
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Figure 1

A representative simulated sample path of daily returns (top panel), posterior means of the filtering distribution
of volatility for M = 1, 2, and 5 (the true volatilities are the dots), and discretization error for the difference
between the posterior means and true mean for M = 1, 2, and 5.

differentiate the estimates in the middle panel as the largest differences are on
the order of 0.05 when Vt is over 1.5. With monthly sampling, data augmentation
is economically important as large errors for M = 1 are drastically reduced via
data augmentation. For example, around data points 375, the true variance
is about four (30% annualized volatility) and the filtered estimate for M = 1
is significantly less than the filtered estimates for M > 1. This shows how
important data augmentation is with infrequently sampled data.

Figure 3 displays a smoothed version of pM (Vt |yt ) for daily return sampling
and various values of M . p1(Vt |yt ) is close to normal as it utilizes a normal
approximation to p(Vt+1|Vt ). For higher values of M, pM (Vt |yt ) is increasingly
non-normal and positively skewed for higher values of M , which occurs because
p(Vt+1|Vt ) is non-normal and skewed and any approximation errors are small.
Although this figure shows an average volatility day, the effect is stronger during
extremely high- or low-volatility periods, when mean-reversion is stronger.
There is a similar effect on the filtered distribution of returns as the kurtosis
increases with data augmentation as the approximations to the conditional
distributions are more accurate.

2.2.2 Incorporating jumps: the SVJ model. This section considers adding
price jumps to the SV model. “Volatility” is now generated by two components:
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Figure 2

A representative simulated sample path of monthly returns (top panel), posterior means of the filtered volatility
distribution for M = 1, 2, and 5 (the true volatilities are the dots), and discretization error for the difference
between the posterior means and the true mean for M = 1, 2, and 5.
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Figure 3

Filtering densities for the stochastic volatility model as a function of the degree of data augmentation (M). The
densities are defined over spot variance, Vt , and are smoothed using kernels.
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Table 3

Simulation results for the SVJ model

Weekly Daily

M R1 R2 M1 M2 R1 R2 M1 M2

Variances

1 0.20 3.65 0.16 2.82 0.20 2.81 0.15 2.14
2 0.16 3.64 0.12 2.82 0.20 2.81 0.14 2.14
5 0.15 3.64 0.12 2.82 0.20 2.81 0.14 2.14

Jump sizes

1 0.16 5.88 0.05 1.32 0.05 1.20 0.01 0.11
2 0.14 5.87 0.05 1.31 0.04 1.20 0.01 0.11
5 0.13 5.87 0.05 1.31 0.04 1.20 0.01 0.11

Jump times

Hit1 Hit2 Hit1 Hit2
1 98.6 29.5 98.6 60.2
2 99.1 29.5 98.6 60.2
5 99.1 29.5 100 61.1

The summary statistics for variance estimation are the same as in the previous tables. Hit1 reports the percentage
of jumps (as identified by the true filter) that are identified by the approximate filter. Hit2 identifies the percentage
of actual jumps that are identified by the approximate filter. The numbers are multiplied by 10 and throughout
we use N = 10,000.

a slow-moving stochastic volatility component and the infrequent, but large,
jumps, complicating filtering because large returns could be generated by ei-
ther high volatility or jumps. The SVJ model parameters are again based on
Eraker, Johannes, and Polson (2003): μ = 0.05, θv = 0.82, κv = 0.02, σv =
0.10,μs = −2.5, σs = 4.0, and λs = 0.006. Here, volatility is “smoother,” as
σv is significantly lower than in the SV model.

Table 3 summarizes the results for daily and weekly frequencies (jump
estimation results were so poor at the monthly frequency, they are not reported).
For the variances and jump sizes, the first two panels provide the RMSE and
MSE distances between the filtered posterior means for a given M and either
the true filter or the true state, as in the previous section. The differences
between M = 5 and M = 25 are quite small, so we do not report the results for
M = 25. For volatility estimation, the results are qualitatively similar to those
in the previous section.

The results indicate that there is little benefit to data augmentation at either
the daily or weekly frequency. For volatility, this is not surprising, because the
parameters used in the SVJ model imply that volatility moves more slowly than
in the SV model, reducing the benefits of data-augmentation. Similarly, there is
little increase in the precision of the jump size estimate vis-à-vis the true jump
sizes as augmentation increases. Since jumps are rare (about 0.006 · 252 = 1.6
per year), it is unlikely that more than one jump would occur over a daily or
weekly frequency, leading to small gains from data augmentation. Jump sizes
are more precisely estimated using daily versus weekly data, which is also not
surprising.
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We use two statistics to quantify the types of errors that could be made esti-
mating jump times. We assume a jump occurred if the filtered jump probability
is greater than 50%. The first statistic, Hit1, quantifies how data augmenta-
tion affects jump time estimates and is defined by the percentage of jump
times identified by the approximate filter that are also identified by the true
(M = 100) filter. For example, Hit1 = 90 for M = 2 indicates that of the total
jump times identified by the true filter, 90% were also identified by the M = 2
approximate filter, quantifying discretization bias. The second statistic, Hit2,
gives the percentage of true simulated jumps that were also identified by the
approximate filter.

It is very difficult to identify jump times at a weekly frequency. A comparison
of the distance measures to the truth for daily and weekly frequencies shows that
RMSE (MSE) for weekly data is about five (12) times as large. Hit2 indicates
that with daily data, about 60% of the jump times are correctly identified. This
should not be surprising. Since Z j ∼ N (2.5, 42), just over 40% of the jump
sizes are between ±2.5%. Since daily diffusive volatility is about 0.9% (

√
0.8),

more than 40% of the jumps are not “significant” as they are less than a three-
standard-deviation diffusive shock. In addition, volatility changes over time,
and thus it is not surprising that even with daily data, only about 60% of the
jumps are identified.16

The ability to identify jumps falls for longer sampling intervals. For weekly
data, only 30% of the true jump times are correctly identified. Via the time-
aggregation, total diffusive return volatility over a week is roughly

√
5 ≈ 2.25

times larger than daily volatility. If daily volatility is about 1%, a 3% move is a
statistical outlier. For weekly data, an outlier is a move greater than 7%, which
is more likely to be generated by high volatility.

Thus, even if parameters are known, it is very difficult to identify jumps
using weekly data. Although most papers analyzing models with jumps use
daily data (even many of the earliest ones, for example, Beckers 1981 or Jarrow
and Rosenfeld 1984), there are papers that use less frequently sampled data. For
example, Andersen, Benzoni, and Lund (2004) use weekly data to estimate a
term structure model with jumps while Das and Uppal (2004) use monthly data
to estimate a jump-diffusion model on equity returns. The results here indicate
that it is very difficult to identify jump components at these frequencies.

Figure 4 provides a graphical view of the filtering results for a randomly
selected simulation of 2000 days for the SVJ model with filtered estimates
using M = 10 and N = 10,000. The top panel displays the simulated returns;
the second panel displays the true volatility path (dots), the (2.5, 50, 97.5)
quantiles of pM (Vt |yt ); the third panel displays the true jump times (dots) and
estimated jump probabilities; and the bottom panel displays the true jump sizes

16 This raises a subtle specification issue. The normally distributed jump specification implies that many of the
jumps are going to be too small to identify even with daily data. This implies that either higher-frequency data
is needed, or alternatively, a model specification that constrains all jump movements to be large.
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Figure 4

Performance of the filtering algorithm using simulated daily data for the SVJ model. The top panel displays
returns, the second panel displays the simulated volatilities (dots) and the (10, 50, 90) quantiles of the filtering
distribution, the third panel displays filtered jump probabilities (true jumps displayed as dots), and the fourth
panel displays the filtered jump size means (true jump sizes are dots). Prices were simulated from an Euler
scheme with 100 time steps per day and the algorithm was run for M = 10 and N = 10,000.

(dots) and the filtered jump size means. The confidence bands on the volatility
state are typically about 2% on each side of the posterior mean. This estimation
risk has always been a major concern, given the important role that volatility
estimates play in finance applications.17

Our algorithm identifies large jumps, but misses many of the smaller jumps
that are less than about 2% in absolute value. The missed jumps are too small
to be identified as the algorithm cannot separate them from normal, day-to-day
movements. These results are important for practical applications, as the results

17 In fact, Merton (1980) argues that the “most important direction is to develop accurate variance estimation models
which take into account the errors in variance estimates” (p. 355).
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show that the algorithm is effective in identifying important (i.e., reasonably
large sized jumps) movements.

We have also performed extensive simulations using the general SVCJ model.
The results are similar to those for the SVJ model and are not reported. At daily
frequencies, it is possible to identify both price and volatility jumps as their
occurrence is coincidental. In effect, price jumps signal that volatility has
increased. If jump occurrence is not coincidental, as is the case in one of the
double-jump models in Duffie, Pan, and Singleton (2000), then it is possible to
estimate price jumps, but estimates of volatility jumps are not reliable as the
signal-to-noise ratio is too small.

2.3 Applications with S&P 500 returns

We now consider filtering jumps and stochastic volatility from index returns
and index option prices for the three models. We consider four separate uses
of the optimal filter: disentangling jumps from stochastic volatility, forecasting
volatility, sequential model testing, and analyzing the informational content of
returns regarding volatility vis-à-vis option prices.

2.3.1 Disentangling stochastic volatility and jumps and forecasting

volatility. We next turn to the problem of disentangling stochastic volatility
from jumps and forecasting volatility. To do this, we again use the parameters
from Eraker, Johannes, and Polson (2003) and consider filtering over the time
period from 1980 to 2003. Unlike the results in the previous sections, we in-
corporate the leverage effect (ρ = −0.40 for SV, −0.47 for SVJ, and −0.48 for
SVCJ). We use N = 50,000 and M = 10.

Figure 5 displays filtered volatility estimates (
√

Vt ) for the SV, SVJ, and
SVCJ models. Average filtered volatility is highest for the SV model, as all
the return volatility is attributed to Vt , in contrast to the SVJ and SVCJ, that
attribute about 10–15% of total return volatility to price jumps. The dynamics
of volatility differ substantively, at least at certain times, across models. In
periods with no jumps, volatility estimates are similar, but estimates diverge
rather dramatically during periods of market stress, such as 1987, 1997, and
1998 and because each model responds differently to shocks, as the long-run
volatility mean and κv are different across models.

To see the differences along alternative dimensions, Figure 6 displays the
predictive volatility distributions, p(

√
Vt+1|yt ), and predictive return distribu-

tions, p(yt+1|yt ), for a day just prior to the crash (Wednesday, October 14,
1987), just after the crash of 1987 (Wednesday, October 21, 1987), and two
weeks after the crash (Wednesday, November 2, 1987). Prior to the crash,
the predictive densities were already different, but in an interesting way. The
SV density is shifted to the right of the other two. This occurs because of
relatively large moves in the months prior to the crash that were in part ex-
plained by jump components, resulting in a less elevated predictive volatility
for the SVJ and SVCJ models. The very heavy right tail for the SVCJ model
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Filtered volatility states. This figure provides filtered volatilities for the SV model (blue, solid line), the SVCJ
model (green, lightly shaded line), and the SVJ model (red, shaded line) over various time periods using daily
S&P 500 returns.

generated by potential jumps in variance is also clear. Despite the high volatil-
ity, the predictive return distributions were similar, although the SVJ and SVCJ
model return distributions are noticeably more peaked, indicative of additional
kurtosis relative to the SV model. It is difficult to see the tail differences.

The predictive distributions for October 21 are markedly different. SV and
SVJ model predictive volatility is much lower, as their Brownian shocks do not
allow volatility to increase rapidly. The SVJ model’s filtered volatility is lower
than the SV model, because it attributes much of the crash to a price jump. To
be precise, E[

∑Nt+1
n=Nt +1 Zs

n|yt+1] is −20% for the SVJ model and −12% for the
SVCJ model. Thus, the filtering results indicate that almost half of the crash’s
movement is due to elevated volatility. The predictive return distributions have
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This figure provides predictive volatility and return distributions around the crash of 1987. The left-hand panels
provide predictive volatility densities p(

√
Vt+1 | yt ) and the right-hand panels provide predictive return distribu-

tions p(yt+1 | yt ) for each model, for three days around the crash (October 19, 1987).

a very different tail behavior, with SVCJ having much more tail mass than
the SV and SVJ due to high volatility. Thus, the SVCJ model is more able to
capture the +8% move that was realized on October 21. The differences linger
for a considerable amount of time, as the bottom panels indicate. More than
two weeks after the crash, SVCJ volatility is much higher than that for SV and
SVJ. Even though SVCJ has a faster speed of mean-reversion (κv) than SV or
SVJ, volatility has not returned to average values very quickly.

Although predictive volatility and return estimates across models are differ-
ent, there is no formal indication as to which estimates are more accurate. To
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Table 4

Variance forecasting results

Daily Weekly Monthly

Bias RMSE Bias RMSE Bias RMSE

SV 0.12 7.72 0.56 20.34 1.84 52.54
SVJ 0.09 7.74 0.42 20.48 1.52 51.75
SVCJ 0.09 7.69 0.38 20.28 1.26 51.67

Forecasting results over three time horizons for each model.

address this issue, we compute forecasts of total variance over various horizons
(daily, weekly, and monthly), and compare the estimates to those subsequently
realized. In each model, expected future variance is given by

Et

[∫ t+τ

t
Vsds

]
+ vart

⎡⎣ N s
t+τ∑

n=N s
t +1

Zs
n

⎤⎦ ,

which is known analytically. Realized τ-day variance is∑τ−1
j=0 log(St+ j+1/St+ j )2.
Table 4 reports the bias and RMSE for daily, weekly, and monthly total

variance forecasts for each model. To our knowledge, these are the first formal
forecasting exercises done for continuous-time stochastic volatility models.
To get a sense of the scale of the RMSE’s, consider a movement like the
crash of 1987, which was −22.5 (returns are multiplied by 100). If forecasted
daily volatility was 3, then the absolute variance forecast error is |22.52 − 32|.
Results indicate that the SVCJ model performs better for forecasting, as it has
the lowest bias and RMSE for each time horizon. However, the differences
are rather small, and not likely statistically or economically significant. Daily
variance is about 1, so the differences in bias at a daily frequency are certainly
insignificant, although the bias differences are a bit more substantial at the
monthly frequency. The differences in RMSE are similarly quite modest, not
likely economically or statistically significant.

2.3.2 Sequential likelihood ratios and model choice. We next consider the
problem of sequentially monitoring model fit via likelihood ratios. Figure 7
displays index returns and sequential likelihood ratios, LRSV,SV C J (t) and
LRSV J,SV C J (t), over the full sample, and also during the subsample of the
months surrounding the crash of 1987. We do not include LRSV,SV J (t), since
it is the ratio of the two likelihood ratios that are reported.

Full-sample log-likelihood ratios indicate that the SVCJ model generates a
much higher likelihood than the SV or SVJ models. More interesting are the
dynamics. Focusing on LRSV,SV C J (t) first, it is interesting to note that for a
good portion of the early 1980s, the SV model provided a better fit than the
SVCJ model. This occurs because κv is smaller in the SV model, allowing
volatility to remain high or low for longer periods, and there were few large
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Sequential likelihood ratios. This figure provides returns and sequential likelihood ratios for the full sample
(left-hand panels) and for the months around the crash of 1987 (right-hand panels).

movements during this period (the largest absolute returns over this period
were about 4%). The period around the crash of 1987 quickly differentiates the
models, as indicated by the right panels of Figure 7. The difference between
SV and SVCJ occurs mostly during the crash of 1987, as the SV model cannot
generate a large movement when predicted volatility was only 2% or 3%. The
SV model also had difficulties with a number of other large movements in 1989,
1991, 1997, and 1998. Since 1999, it is interesting to note that the SV model
has significantly outperformed the SVCJ model, which again occurs due to the
slower speed of mean-reversion in the SV model.

The SVJ and SVCJ model fits were roughly similar prior to the crash. There
is a modest difference on the crash data, but the difference was clearer in the
days after as the SVJ model has a very difficult time handling these large
movements. The fit of the SVCJ model was modestly better throughout most
of the 1990s, with larger improvements occurring during Fall 1997 and 1998.
Overall, there is little difference between the SVJ and SVCJ models over the
last 15 years.
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What can we learn from these results? First, model fits are mainly driven
by large returns and periods of market stress, showing the importance of ac-
curate models of these periods. In particular, it would be interesting to assess
how different jump size distributions (e.g., non-normal) or time-varying jump
intensities (e.g., Bates 2000) would impact the likelihood ratios. In terms of
non-jump periods, it seems reasonable that time-variation in the long-run mean
or speed of mean reversion of Vt would also impact the results. The improved
fit of the SV model compared to the SVCJ model since 1999 suggests that
relatively small differences in volatility parameters can generate substantial
improvements in fits, at least over certain time periods.

2.3.3 The informational content of returns and option prices. Most ap-
proaches for estimating volatility and jumps rely exclusively on returns, ig-
noring the information embedded in option prices. In principle, options are
a rich source of information regarding volatility, which explains the common
use of Black-Scholes implied volatility as a volatility proxy for practitioners.
In contrast to this is the common academic approach of only using returns to
estimate volatility.

In this section, we consider volatility estimates using returns and, addi-
tionally, option prices. Our goal is to quantify the informativeness of options
regarding volatility and also to examine whether the informational content of
the two sources is consistent, as a good model would indicate. For a given
model, option prices are given by

C(St , Vt , θ
P, θQ) = EQ

t

[
exp

(
−
∫ T

t
rsds

)
max(ST − K , 0)

]
,

where the expectation is taken under the risk-neutral dynamics

dYt = (rt − Vt/2)dt +
√

Vt dW s
t (Q) + d

⎛⎝ NQ
t∑

j=1

Zs
j (Q)

⎞⎠
− λQ exp

(
μQ

z + 0.5
(
σQ

z

)2)
dt,

dVt = κQ
v

(
θQ
v − Vt

)
dt + σv

√
Vt dW v

t (Q) + d

⎛⎝ NQ
t∑

j=1

Z v
j (Q)

⎞⎠ ,

where N Q
t ∼ Poi(λQt), Zs

j (Q) ∼ N (μQ
z , (σQ

z )2), and Z v
j (Q) ∼ exp(μQ

v ).
Options are highly informative about volatility, but the information content

is dependent on the model specification and P- and Q-measure parameter
estimates. Misspecification or poorly estimated risk-premiums could result in
directionally biased estimates of Vt using option prices. This informativeness
of index options is mitigated by the fact that these options contain relatively
large bid-ask spreads, as noted by George and Longstaff (1993) or Bakshi, Cao,
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and Chen (1997). This implies that while option prices are informative, they
may be quite noisy as a measure of volatility.

To capture these error sources (misspecification, parameter estimates, and
bid-ask spreads), we assume that option prices are observed with errors,

log(Ct ) = log(C(St , Vt , θ
P, θQ)) + εt ,

and εt ∼ N (0, σ2
ε ) is the pricing error. We assume σε = 0.10, consistent with

observed at-the-money index option prices. In general, the higher the bid-ask
spread, the less informative option prices are about volatility, which implies our
pricing error is conservative and will not bias our findings. Broadie, Chernov,
and Johannes (2007) provide estimates of diffusive and jump risk premiums
that we use for this section.

We focus on two issues: informativeness and consistency. The first is the
general informativeness of the two data sources regarding volatility. We filter
volatilities using only returns and then using returns and options jointly and
compare the average standard deviations of p(Vt |yt ) and p(Vt |yt , Ct ). We
expect the posterior standard deviations to be smaller incorporating options.
Second, we compare the filtering distributions with and without options to
analyze the extent to which the information in returns is consistent with the
information in option prices. The existing literature typically compares Black-
Scholes implied volatility to future realized volatility in order to understand the
predictive content of implied volatility. This literature is firmly nonparametric
in the sense that specific models or risk-premium estimates are not considered.
Here, we are interested in understanding the informational content of the two
sources in the context of a model that has been shown to fit both returns and
options well.

We use S&P 500 index returns and options on the S&P 500 index futures
contract from 1987 to 2003. We use an at-the-money call option contract
with maturity greater than one week, but less than five weeks. The options
are American and thus it is important to account for the possibility of early
exercise. We use the American adjustment feature in Broadie, Chernov, and
Johannes (2007).

The results for each model are in Table 4, with a graphical summary for the
SVCJ model in Figures 8 and 9. Regarding informativeness, Table 5 indicates
that the posterior standard deviation falls drastically in each model when options
are added. The decrease is greatest when incorporating risk-premiums, as the
posterior standard deviation is roughly 40% lower in the SVJ and SVCJ mod-
els. This decrease in estimation uncertainty occurs even though we assumed
option pricing errors, justifying the common perception that options are highly
informative about volatility. Moreover, if parameters were estimated, options
might be even more informative about volatility, as options aid in estimating
risk-neutral and structural parameters.
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Figure 8

Filtered volatility using only returns data and both returns and options data. For each we include the posterior
means and a (5, 95) confidence band. The darker lines are using only returns (generally the higher of the two sets
of lines) and the lighter lines are using both returns and options. We assume no risk-premiums.

Table 5

Filtering results using returns and returns and option prices for the SVJ and

SVCJ models

Model Risk-premiums SD (Vt | yt ) SD (Vt | yt , Ct ) Prob (P95 > Q05)

SV No 0.354 0.235 0.061
SVJ No 0.298 0.228 0.144

Yes 0.298 0.175 0.560
SVCJ No 0.384 0.256 0.117

Yes 0.384 0.233 0.274

Regarding consistency, the results are less encouraging. First, assuming no
risk-premiums, we see from Table 5 that the upper 95% tail of the filtering
distribution using only returns is typically lower than the lower 5% tail of
the filtering distribution using options and returns. This is most easily seen
in Figure 8 where the green lines (which represent the 5th, 50th, and 95th
percentiles of the filtering distribution using options and returns) are generally
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Figure 9

Filtered volatility using only returns data and both returns and options data. For each we include the posterior
means and a (5, 95) confidence band. The darker lines are using only returns (generally the higher of the two
sets of lines) and the lighter lines are using both returns and options. We assume the risk-premiums estimated in
Broadie, Chernov, and Johannes (2005).

higher than those obtained only from returns. While the two series tend to move
together, the levels are somewhat different.

A few examples provide the necessary intuition. In early 1990, after Iraq’s
invasion of Kuwait, estimates of Vt including options were higher than those
based on returns. Clearly, the information embedded in options anticipated
larger moves than were subsequently observed. Next, note that the levels of
volatility from the two sources were broadly consistent in the low-volatility
period from 1993 to 1996. From 1997 onward, the estimates based on options
are substantially higher than those based only on returns.

Figure 9 incorporates jump risk premiums based on the estimates in Broadie,
Chernov, and Johannes (2007). The jump risk premiums reduce μs (from about
−4% to −6%) and increase σs (from about 3% to 7%) and μv (from 1.5
to 7), and have the net result of increasing risk-neutral expected variance,
thereby decreasing option-based estimates of Vt . The two data sources are now
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generally consistent from 1993 to 1996; however, the option-based information
still implies a higher volatility for the pre-1993 period and the post-1997 period,
indicating that the two sources are not generally consistent.

The main explanations for the differences are model misspecification, under
either P- or Q-measure. Note that the actual volatility (whether under P (re-
turns) or Q (options)) is generally high for long periods of time (1987–1992
and 1997–2003) and low for long periods of time (1992–1996). In the model
specified above, the long-run mean of Vt is constant (θv in the SV and SVJ
models, and θv + μvλ/κv in the SVCJ models). It is unlikely that Vt would
remain above or below its long-run mean for an extended period of time. Duffie,
Pan, and Singleton (2000) introduced a model with a time-varying long-run
diffusive variance mean, which could capture this feature. We find this to be
a plausible explanation. Second, time-varying risk-neutral parameters could
explain the result and be driven by time-varying risk aversion or business cycle
risk. The periods with the largest differences (1991 and the late 1990s/early
2000s) were also periods with substantial macroeconomic uncertainty (e.g.,
recession). It would be interesting to analyze a model that generates substantial
time-varying jump risk premiums, to see if these models could account for
these observations. Finally, as mentioned above, joint estimation of the param-
eters using both options and returns data would likely result in more accurate
parameter estimates and could alleviate some of the differences, although it is
not likely that all of them would be eliminated.

3. Conclusions

This paper develops particle filtering algorithms for filtering and sequential
parameter learning. The methods developed apply generically in multivariate
jump-diffusion models. The algorithm performs well in simulations, and we
also apply the methodology to filter volatility, jumps in returns, and jumps in
volatility from S&P 500 index and index option returns.

We find that while volatility forecasts are often quite different across models,
the different forecasts are roughly of the same accuracy, although the more
general models do offer some improvement. In terms of model diagnostics,
we compute likelihood ratios and find that they are highly informative about
model specification, even though volatility forecasts do not provide a firm
ranking of models. We also analyze the information embedded in options and
returns, quantifying the informational content of options vis-à-vis returns and
analyzing the consistency of options and returns data. We find that if there is
a priced jump risk, returns and options often are consistent, but they are also
often not consistent. We discuss potential explanations for this inconsistency.

In future work, we are working on four methodological and empirical exten-
sions. First, we are working on incorporating Aı̈t-Sahalia’s (2008) analytical
approximations for resampling and state propagation in the APF algorithm
for pure diffusion models. Second, we are working on sequentially learning

2793



The Review of Financial Studies / v 22 n 7 2009

about state variables and parameters in continuous-time. Johannes, Polson, and
Stroud (2007) find that particle filtering methods work well in certain discrete-
time models. Third, another interesting extension is to apply particle filtering
to continuous-time models with small jumps or non-normal jump distributions,
such as those driven by Levy processes (see, for example, Barndorff-Nielson
and Shephard 2006b). Finally, an interesting extension would be to compare the
accuracy of volatility and jump estimates obtained from our filtering method-
ology to those obtained from high-frequency data.

Appendix: Detailed Algorithms

This appendix provides the full algorithms that we used to analyze simulated and S&P 500 index
return data for the SV and SVJ models. Here, yt+1 = Yt+1 − Yt denotes the return, V t+1 denotes the
integrated volatility over the interval [t, t + 1), φ(·|m, v) denotes the normal density with mean m
and variance v, Poi(·|λ) denotes the Poisson mass function with rate λ, and Mult(N ; π1, . . . , πN )
denotes the multinomial distribution with N outcomes with probabilities π1, . . . , πN .

A.1 SV model
1. First-stage resampling. Given the initial weighted particle set, {V (i)

t , π
(i)
t }N

i=1, compute the

expected integrated volatility V̂ (i)
t+1 = E[V t+1|V (i)

t ], and compute the first-stage weights for
each particle i = 1, . . . , N :

w
(i)
t+1 ∝ φ

(
yt+1 | μy , V̂ (i)

t+1

)
.

Resample the initial particles by drawing the indices z(i) ∼ Mult(N ; w(1)
t+1, . . . , w

(N )
t+1) and

defining the resampled volatilities V (i)
t = V z(i)

t . At this stage, we note that (a) we need only to
retain the initial state and not the whole path (these will be simulated forward from this initial
state in the next step) and (b) E[V t+1|V (i)

t ] are available in closed form for all affine models.
2. Generating volatilities. Simulate volatility paths using the Euler approximation to the transi-

tion density:

V (i)
t, j = V (i)

t, j−1 + κv

(
θv − V (i)

t, j−1

)
M−1 + σv

√
V (i)

t, j−1 ε
(i)
t, j ,

for j = 0, . . . , M − 1, where ε
(i)
t, j are iid N (0, M−1). Collect the simulated volatilities into a

vector V (i)
t+1 = (V (i)

t,0 , . . . , V (i)
t,M−1), and compute the volatility integrals:

W
(i)
t+1 =

M−1∑
j=0

√
V (i)

t, j−1 ε
(i)
t, j , V

(i)
t+1 = 1

M

M−1∑
j=0

V (i)
t, j−1.

3. Second-stage reweighting. Evaluate the second-stage (importance sampling) weights:

π
(i)
t+1 ∝ π

(i)
t φ

(
yt+1|μy + ρW

(i)
t+1, (1 − ρ2)V

(i)
t+1

)/
w

z(i)
t+1.

This provides a weighted particle set {V (i)
t+1,π

(i)
t+1}N

i=1, which represents the filtering distribu-
tion at time t + 1. At this stage, we may resample the particles from the discrete distribution
to obtain an unweighted sample from the filtering distribution.
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A.2 SVJ model
1. First-stage resampling. Given initial particles {V (i)

t , π
(i)
t }N

i=1, compute the expected integrated

volatility V̂ (i)
t+1 = E[V t+1|V (i)

t ], and evaluate the first-stage weights:

w
(i)
t+1 ∝

∞∑
k=0

φ
(
yt+1|μy + kμs , V̂ (i)

t+1 + kσ2
s

)λke−λ

k!
.

Resample the particles by drawing the indices z(i) ∼ Mult(N ; w(1)
t+1, . . . , w

(N )
t+1) and defining

the resampled volatilities as (V (i)
t , V̂ (i)

t+1) = (V z(i)
t , V̂ z(i)

t+1 ).

2. Generating the number of jumps. Generate the number of jumps J (i)
t+1 = N s(i)

t+1 − N s(i)
t from

the discrete distribution {p(i)
k }∞k=0, with probabilities defined by

p(i)
k ∝ φ

(
yt+1 | μy + kμs , V̂ (i)

t+1 + kσ2
s

) λke−λ

k!
.

3. Generating jump sizes. Generate the total jump size Z (i)
t+1 = ∑N s(i)

t+1

n=N s(i)
t +1

Zs
n from a normal

distribution Z (i)
t+1 ∼ N (μ(i)

Z , σ
(i)
Z ), with mean and variance given by

μ
(i)
Z = J (i)

t+1μs + J (i)
t+1σ

2
s /V̂ (i)

t+1

(
yt+1 − μy − J (i)

t+1μs
)
,

σ
(i)
Z = J (i)

t+1σ
2
s

(
1 − J (i)

t+1σ
2
s /V̂ (i)

t+1

)
.

4. Generating volatilities. Simulate volatility paths from the transition density using the Euler
approximation for j = 0, . . . , M − 1,

V (i)
t, j = V (i)

t, j−1 + κv

(
θv − V (i)

t, j−1

)
M−1 + σv

√
V (i)

t, j−1 ε
(i)
t, j , ε

(i)
t, j ∼ N (0, M−1).

Collect the simulated volatilities into a vector V (i)
t+1 = (V (i)

t,0 , . . . , V (i)
t,M−1), and compute the

volatility integrals:

W
(i)
t+1 =

M−1∑
j=0

√
V (i)

t, j−1 ε
(i)
t, j , V

(i)
t+1 = 1

M

M−1∑
j=0

V (i)
t, j−1.

5. Second-stage reweighting. Compute the second-stage weights:

π
(i)
t+1 ∝ π

(i)
t

Poi
(
J (i)

t+1|λ
)

p(i)

J (i)
t+1

φ
(
Z (i)

t+1|μs , σ
2
s

)
φ
(
Z (i)

t+1|μ(i)
Z , σ

(i)
Z

) φ
(
yt+1|μy + ρW

(i)
t+1 + Z (i)

t+1, (1 − ρ2)V
(i)
t+1

)
w

z(i)
t+1

,

where Poi(·) is the Poisson probability mass function, and p(i)
k are the probabilities defined

in Step 2.
This results in the discrete distribution: {(V (i)

t+1, J (i)
t+1, Z (i)

t+1), π(i)
t+1}N

i=1, which can be used for
Monte Carlo approximation.

Note that in practice the Poisson approximation in Steps 1 and 2 is truncated at a low number.
In fact, for our applications with rare jumps (λ small), we found no difference between this and
using a Bernoulli approximation (assuming that k is either 0 or 1). The SVCJ model is handled
similarly with two minor modifications. First, in Step 1, the formula for E[V t+1|V (i)

t ] changes, and
naturally incorporates jumps in volatility. Second, in Step 4, the variance jump sizes are simulated
to generate volatility paths.
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