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Abstract

We introduce multi-edge type LDPC codes, a generalization of the concept of irregular LDPC codes

that yields improvements in performance, range of applications, adaptability and error floor. The multi-

edge type LDPC codes formalism includes various constructions that have been proposed in the literature

including, among others, concatenated tree (CT) codes [1], (generalized irregular) repeat accumulate

(RA) codes [2], [3], and codes in [4], [5]. We present results establishing the improved performance

afforded by this more general framework. We also indicate how the analysis of LDPC codes presented

in [6], [7] extends to the multi-edge type setting.

Index Terms

Low density parity check code, belief propagation, irregular LDPC, threshold

I. INTRODUCTION

In this paper we introduce multi-edge type LDPC codes, a generalization of regular and

irregular LDPC codes. The framework gives rise to ensembles not possible in the irregular

LDPC framework. Various new features can be added to LDPC designs and new constraints

brought to bear. This framework has already been used to produce LDPC codes that perform

better than standard irregular LDPC codes over standard channels such as the AWGN channel,

especially for short block lengths, while requiring lower complexity. It has been used to adapt

an LDPC design to a turbo equalizer receiver structure, producing significant gains [8]. The

framework yields high performance codes of very low rates and high rate codes with low error

floors.
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In the recent literature on LDPC codes one finds various constructions whose structure falls

outside the scope of standard irregular LDPC as considered in, e.g., [7], [9]. Through these

constructions, and also through observation of the structure of optimized degree distributions of

standard irregular LDPC codes, it has become apparent that improvements in various aspects of

the iterative decoding performance of LDPC codes can be achieved by introducing new features

into the graph specifying the code. Some such recently proposed constructions are concatenated

tree (CT) codes [1], (generalized irregular) repeat accumulate (RA) codes [2], [3], and certain

codes constructed in [4], [5] that we will refer to as KS codes. The multi-edge type generalization

admits all of the above-mentioned constructions as special cases. The multi-edge formalism is

capable of specifying a particular graph; Thus, the formalism is in some sense universal. The

purpose, however, is to specify ensembles, i.e., to design macroscopic interconnection structure.

The multi-edge formalism admits parametric optimization as done for standard irregular LDPC

codes (degree distributions) in [7]. We use density evolution to find interesting top-performing

structures and present various examples: structures with high thresholds using only low degrees

(low complexity), structures that simultaneously yield high thresholds and low error floors, and

structures useful for very low rate LDPC codes. The framework also provides for better adaptation

of code structure to a larger iterative process, such as a turbo equalizer, for an example see [8].

The basic idea of multi-edge type LDPC codes is inherent in the modifier “multi-edge type.”

In the definition of standard irregular LDPC ensembles (degree distributions) all edges in the

Tanner graph representation are statistically interchangeable. In other words, there exists a single

statistical equivalence class of edges. Here we consider ensembles with multiple equivalence

classes of edges. In the standard irregular LDPC ensemble definition, nodes in the graph (both

variable and constraint) are specified by their degree, i.e., the number of edges they are connected

to. In the multi-edge type setting an edge degree is a vector; it specifies the number of edges

connected to the node from each edge equivalence class (type) independently. A formal definition

of the multi-edge type LDPC ensemble is presented in Section II.

Standard irregular LDPC code ensembles are specified by their degree distributions. These

are polynomials representing the fraction of nodes of each degree, usually taken from the edge

perspective. In the multi-edge type setting the edge perspective is problematic because there is

no unique edge perspective and it often occurs that no single edge type connects to every node

type. Therefore, in the multi-edge type setting we prefer to represent graph ensembles from a
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node perspective. We introduce our parameterization in Section II. Under this parameterization

all structural constraints on the parameters are linear and key functionals, such as code rate, are

linear. In standard irregular LDPC codes the degree distributions are constrained by the fact that,

in an actual graph, the number of edges emanating from the variable node side must coincide

with the number of edges emanating from the constraint node side. In the multi-edge type setting,

each edge type introduces one such constraint.

Let us briefly remark on what we consider to be the main significance and advantage of

the multi-edge type extension of LDPC ensembles. Optimized (for threshold) standard irregular

LDPC code ensembles tend to have a large fraction of degree two variable nodes. Introducing

a positive fraction of degree one variable nodes in the degree distribution of standard irregular

LDPC ensembles guarantees that the threshold will cease to exist; it is impossible, under these

circumstances, for the infinite graph to converge to zero probability of error. It is evident, however,

in view of the predominance of degree two variable nodes in optimized degree sequences that

degree one variable nodes might be beneficial. Degree one variable nodes can be admitted

without sacrificing the threshold if they are admitted in a controlled way. The multi-edge type

generalization of LDPC codes provides for this extension. Other structural modifications afforded

by multiple edge types include the ‘accumulate’ structure associated to RA codes. This structure

can be interpreted as connecting degree two variable nodes in a chain (this idea also appears in

the constructions of KS codes [5]). This method of controlling degree two variable nodes can

be shown to have benefit on the stability of the ‘delta-function-at-infinity’ fixed point of density

evolution, allowing a relatively large number of degree two nodes without loosing stability, and

it often simplifies encoding. On the other hand, large numbers of degree two variable nodes tend

to produce graphs with relatively high error floors. This too can be addressed in the multi-edge

type framework. A third modification multi-edge type LDPC codes readily admit is the addition

punctured variable nodes, sometimes referred to as state variables. This will be seen to be useful

both for increasing thresholds and for lowering error floors. Another generalization we admit is

to allow different node types to have different received distributions associated to them. This

is the mechanism by which we introduce punctured variable nodes. This can also be useful in,

e.g., combining multi-level modulation with LDPC coding. We shall not, however, pursue this

extension in this paper.
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II. MULTI-EDGE TYPE LDPC ENSEMBLES

Bi-partite (Tanner) [10] graphs represent LDPC codes in a natural way, with variable nodes on

the one hand (left), constraint nodes on the other (right), and edges between the two indicating

participation of variables in constraints. Let us recall the structure of irregular LDPC graphs. The

degree d of node specifies the number of edges it attaches to. We say that the node has d sockets:

edges attach to sockets. The number of sockets K on either side of the graph is the same. An

edge is a pairing of sockets, one from each side of the graph. If node degrees are specified then

one often considers ensembles of graphs. If the sockets on both sides are enumerated then a

specific graph is determined by the permutation on K elements giving the pairing of sockets

and an ensemble is induced by a set of permutations.

A multi-edge type ensemble is comprised of a finite number ne of edge types. The degree

type of a constraint node is vector of (non-negative) integers of length ne; the ith entry of this

vector records the number of sockets of the ith type connected to such a node. We shall also

refer to this vector as an edge degree in this case. The degree type of a variable node has two

parts although it may be viewed as a vector of (non-negative) integers of length nr + ne, where

nr is the number of different channels over which a bit may be transmitted. The two parts are

of length nr and ne respectively. The first part relates to the received distribution and will be

termed the received degree and the second part specifies the edge degree. The edge degree plays

the same role as for constraint nodes. Edges are typed as they pair sockets of the same type.

This constraint, that sockets must pair with sockets of like type, characterizes the multi-edge

type concept. In a multi-edge type description, different node types may have different received

distributions, i.e, the associated bits may go through different channels.

We assume throughout that all channels are symmetric (see Section VII for a definition and [7]

for further implications). They are therefore represented by R the distribution of log-likelihood

ratio z(y) := log p(y|x=0)
p(y|x=1)

conditioned on x = 0.

In this paper we focus on graphs with two received distributions. The first, whose density

we denote by R0, is special as it is used is used to indicate state (or punctured) variables. The

channel associated to R0 is erasure with probability one, hence, R0 = δ0. The second, whose

density is R1, represents the binary memoryless symmetric channel over which the code bits are

transmitted.
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III. PARAMETERIZATION

To represent the structure of the graph we introduce the following node-perspective multino-

mial representation. We interpret degrees as exponents. Let d := (d1, ..., dne) be a multi-edge

degree and let x := (x1, ..., xne ) denote (vector) variables. We use xd to denote
∏ne

i=1 xdi
i .

Similarly, Let b := (b0, ..., bnr) be a received degree and let r := (r0, ..., rnr) denote variables

corresponding to received distributions. By rb we mean
∏nr

i=0 rbi
i . Typically, vectors b will have

one entry set to 1 and the rest set to 0.

A graph ensemble is specified through two multinomials, one associated to variable nodes and

the other associated to constraint nodes. We denote these multinomials by

ν(r,x) :=
∑

νb,d rbxd and µ(x) :=
∑

µd xd

respectively, where coefficients νb,d and µd, are non-negative reals.

We will now interpret the coefficients. Let N be the length of the codeword. For each variable

node degree type (b,d) the quantity νb,dN is the number of variable nodes nodes of type (b,d)

in the graph. Similarly, for each constraint node degree type d the quantity µdN is the number

of constraint nodes of type d in the graph.

Let us introduce some additional notation. We define

νri
(r,x) :=

d

dri

ν(r,x) , νxi
(r,x) :=

d

dxi

ν(r,x) , and µxi
(x) :=

d

dxi

µ(x) .

We use 1 to denote a vector of all 1’s, the length being determined by context.

The coefficients of ν and µ are constrained to ensure that the number of sockets of each type

is the same on both sides (variable and constraint) of the graph. This gives rise to ne linear

conditions on the coefficients of ν and µ as follows.

[Socket count equality constraints] νxi
(1, 1) = µxi

(1), i = 1, ..., ne . (1)

When there are multiple (non-empty) channels, with the ith being used for a fraction πi of

the transmitted bits, then we have the constraints

[Received Constraints] νri
(1, 1) = πi , i = 1, ..., nr , (2)

where, typically, πi will be given positive constants satisfying
∑nr

i=1 πi = 1. When there is

only a single channel then the constraint reduces to νr1(1, 1) = 1 . Note that νr0 is not directly

constrained, we are free to introduce punctured variable nodes.
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The nominal code rate (assuming all constraints are linearly independent) is given by

[Code Rate] rate = ν(1, 1) − µ(1) . (3)

To see that this is the code rate, note that if we multiply rate by N then the result is the

number of variable nodes in the graph minus the number of constraint nodes. This is, nominally,

the number of independent variable nodes. Dividing this by N is, by definition, the code rate.

Thus, for a given set of node degree types, the set of possible code rates is an interval whose

minimum and maximum may be found by linear programming. Fixing the code rate amounts to

imposing a linear constraint on the parameters.

Note that all key functionals and constraints on the parameters are linear. Thus, even after

fixing the code rate, the space of admissible parameters is a convex polytope. Extreme points

may be easily found using linear programming. This aspect of the parameterization is particularly

useful when optimizing the parameters.

The specific multi-edge type structures we present in this paper have relatively few node degree

types. For this reason, when presenting structures we list only those degrees that have non-zero

coefficients in ν and µ. Consider the example shown in Table VI. This example has four edge

types. Thus, the edge degree vectors, presented in the rows of the table, are non-negative integer

sequences of length four.

IV. GRAPH ENSEMBLES

A variable node of degree type (b,d) has di sockets of type i. A constraint node of degree

type d has di sockets of type i. The parameters are constrained so that, for each edge type, the

total number of sockets on the variable node side is the same as the total number of sockets on

the constraint node side.

Consider enumerating the sockets on both sides of the graph in some arbitrary manner. Let

the total number of sockets on either side of the graph be K = K1 + K2 + ... + Kne , where Ki

is the number of edges of type i. A particular graph is determined by a permutation π on K

letters such that socket i on the variable node side is connected to socket π(i) on the constraint

node side. In the multi-edge type setting we constrain socket π(i) to be of the same type as

socket i. Thus, π = (π1, ..., πne ) can be decomposed into ne distinct permutations where πi is a

permutation on Ki elements.
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The standard ensemble of graphs under consideration is defined by viewing πi as a random

variable distributed uniformly over the set of all permutations on Ki elements. Furthermore,

the permutations for different edge types are independent. In practice, of course, one does not

choose the permutations πi uniformly randomly.

V. CONCENTRATION

The analysis carried out for standard LDPC ensembles in [6] and [7] extends straightforwardly

to multi-edge type LDPC codes. The concentration theorem for LDPC codes holds for the

generalized structures. Some details of the proof presented in [6], [7] require modification: a

different phase in the martingale argument is required for each edge type.

Suppose we fix the parameters ν, µ describing multi-edge type structure and we instantiate

a particular graph of size n. Let Z�[n] denote the bit error rate after decoding � iterations. We

may interpret Z�[n] as averaged over the realization of the channel or not; only the constants in

the statement of the theorem below will depend on this choice. Let EZ�[n] denote the expected

value of this quantity, averaged over the choice of permutation π, i.e., over the ensemble of

graphs (assuming fixed nodes), and also over the realization of the channel.

Theorem 1: For any � there exists a constant β such that the probability that
∣∣Z�[n]−E[Z�[n]]

∣∣ >

ε is less than e−βε2n. Furthermore, the limit Z�[∞] := limn→∞ E[Z�[n]] exists and there exists a

constant γ such that
∣∣E[Z�[n]] − Z�[∞]

∣∣ < γ
n
.

VI. DISTRIBUTIONS

The primary objects of interest in the analysis of decoding LDPC codes are probability distri-

butions of log-likelihood ratios, and symmetric distributions (see the next section) in particular.

The space of these distributions and its basic properties were presented in [7]. We recall the

basic definitions here.

Let F denote the space of right continuous, non-decreasing functions F defined on R satisfying

limx→−∞ F (x) = 0 and limx→∞ F (x) ≤ 1. To each F ∈ F we associate a random variable z over

(−∞, +∞]. The random variable z has law or distribution F, i.e., Pr{z ∈ (−∞, x]} = F (x).

The reason we allow limx→∞ F (x) ≤ 1 rather than limx→∞ F (x) = 1 is to permit z to have

some probability mass at +∞, indeed Pr{z = +∞} = 1 − limx→∞ F (x). A random variable z

over (−∞, +∞] is completely specified by its distribution Fz ∈ F .
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We will work with “densities” over (−∞, +∞] which, formally, can be treated as (Radon-

Nikodyn) derivatives of elements of F . Certain densities appear often in the analysis. The density

δ0 represents the derivative of the distribution F = 1x≥0 and corresponds to a channel that

erases with probability 1. The density δ∞ represents the derivative of the distribution F = 0 and

corresponds to a channel that delivers bits perfectly.

We say that a sequence of densities f1, f2, . . . converges to the limit f if F1(x), F2(x), . . .

converges to F (x) at all points of continuity of F.

The main properties of F we use in this paper are sequential compactness, that any sequence

of densities has a convergent subsequence, and monotonicity under physical degradation, that

any sequence of densities ordered by physical degradation converges to a limit density.

VII. SYMMETRY

We assume BPSK signaling and that all channels are symmetric, that is

p(y|x = 1) = p(−y|x = −1) .

Without loss of generality, we assume that y is the log-likelihood ratio of x, and denote p(y|x =

1) by R(y). It follows that R is a symmetric density, i.e.,

R(−y) = e−yR(y) .

Since all densities and channels considered in this paper are symmetric, we will use symmetric

densities to represent channels and vice-versa.

Let P be a symmetric density. Define Prerr(P) to be the propability of error of the associated

channel,

Prerr(P) :=

∫ 0−

−∞
P(x) dx +

1

2

∫ 0+

0−
P(x) dx . (4)

Let us also define the Battacharya constant associated to the channel:

B(P) :=

∫ +∞

−∞
e−

1
2
xP(x) dx . (5)

For symmetric distributions the following bound holds.

2Prerr(P) ≤ B(P) ≤ 2
√

Prerr(P)(1 − Prerr(P)) (6)

where the left inequality is tight for the binary erasure channel (BEC) and the right is tight for

the binary symmetric channel (BSC). (For a proof see [7].)
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Let us consider the performance of a repetition code over the channel P. If we repeat a bit

k times independently over the channel P (canonically assuming the bit is a 0 and transmitted

using BPSK signalling, i.e., as a 1) then its posterior likelihood has distribution P⊗k, P convolved

with itself (over R) k times. We have the following result

Lemma 1: If Q corresponds to any symmetric channel, then

Prerr(Q
⊗�) ≥ B(Q)�

(
1

1 + e2B(Q)
4(�+1)

)(
e

3π

√
B(Q)

� + 1

)

This result is useful in the analysis of the stability condition of density evolution, see Section

IX. The proof of this result is given in the appendix.

The following result was proved in [7]

Lemma 2: If Q is a symmetric channel with probability of error ε, then Q is physically

degraded with respect to ηδ0 + (1 − η)δ∞ for all η ≤ 2ε.

A. Analyticity of Symmetric Densities

Let f be a symmetric density. The generalized Fourier transform of f,

f̂(z) :=

∫ ∞

−∞
e−ztf(t) dt ,

is analytic in the strip {z : � z ∈ (0, 1)}. Note that, by symmetry, this function is symmetric

about the point z = ( 1
2
, 0). Note also that B(f) = f̂(1

2
, 0). Let us define Bc(f) := f̂(1

2
+ c, 0) for

c ∈ (−1
2
, 1

2
). Thus, B0(f) = B(f) and Bc(f) = B−c(f).

Theorem 2: A symmetric density f is uniquely determined by Bc(f) for any interval of values

for c.

Proof: The density f is determined by f̂(z) for {z : � z ∈ (0, 1)}, and, since this analytic,

it is determined by Bc(f) for any infinite set of c with an accumulation point inside (0, 1).

Theorem 3: The functionals Bc(f) are monotonic under physical degradation, i.e., if f � g,

then Bc(f) ≥ Bc(g) for all c.

Proof: The proof will be presented elsewhere.

VIII. DENSITY EVOLUTION

Density evolution [6] describes the behavior of the decoder in the infinite block length limit.

Density evolution therefore allows determination of Z�[∞]. (We assume here and henceforth that
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a belief propagation decoder is used.) An efficient algorithm implementing density evolution for

standard LDPC ensembles was described in [6] and further refined in [7]. An even more efficient

implementation has been recently described in [12].

Under density evolution, the distributions, or message densities, propagate through the abstract

description of the graph in a manner paralleling the propagation of messages through the graph

under message passing decoding. The main difference between the two is that message densities

emerging from the different node types are averaged: In standard irregular LDPC codes they are

averaged across the different degrees; In multi-edge type LDPC they are averaged across node

types independently for each edge type. In the standard irregular LDPC framework messages

are represented by a single density function, since all edges are statistically equivalent; In the

multi-edge type framework messages are represented by ne density functions, one for each edge

type.

We shall here briefly describe how message densities are combined at the nodes. Under

belief propagation, incoming log-likelihood ratio messages at variable nodes are summed to give

outgoing log-likelihood ratio messages, hence, under density evolution, the message densities are

convolved. Under belief propagation, at constraint nodes we can transform the log-likelihoods

messages into a representation over GF[2]×R
+ so that the message passing operation performed

on the messages is again addition. Thus, under density evolution, the densities of the messages,

when view as densities over GF[2]×R
+, are again convolved. (For details see [7].) To distinguish

these two convolutions we refer to them as convolution in the variable node domain, in the first

case, and convolution in the constraint node domain, in the second case.

Let us introduce some additional notation. We consider vectors of symmetric densities P =

(P1, ..., Pne ) where Pi is the density of messages carried on edge type i. By δ0 we mean a vector

of densities where each density is δ0. Similarly, by δ∞ we mean a vector of densities where

each density is δ∞.

We introduce the following multinomials:

λ(r,x) :=

(
νx1(r,x)

νx1(1, 1)
,
νx2(r,x)

νx2(1, 1)
, ...,

νxne
(r,x)

νxne
(1, 1)

)

ρ(x) :=

(
µx1(x)

µx1(1)
,
µx2(x)

µx2(1)
, ...,

µxne
(x)

µxne
(1)

)
.

(7)

We remark that in the case of a single edge type, these definitions reduce to degree distribution

pairs (λ, ρ) of standard irregular LDPC codes except that we have introduced a variable repre-
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senting received distributions into the arguments of λ. Previously, the received distribution was

not an argument of λ.

Let P�(Q) denote the vector of messages passed from variable nodes to check nodes in

iteration � assuming that P0(Q) = Q. When no argument is indicated we mean Q = δ0,

corresponding to an actual decoding. Similarly, let R denote distributions corresponding to the

received distributions.
(
R(y) = p(y|x = 1) assuming that y = log p(y|x=1)

p(y|x=−1)

)
.

The following recursion represents density evolution.

[Density Evolution] P�+1 = λ(R, ρ(P�)) . (8)

Here, the multiplication operation inside ρ(P) is convolution of densities in the constraint

node domain and inside λ(R,X) it is convolution of densities in the variable node domain.

Density evolution describes the asymptotic behavior of the decoding process for the multi-edge

type ensemble as block length tends to infinity as described in [6].

A. Fixed Points, Convergence, and Monotonicity

In the multi-edge type setting certain degeneracies arise that are not possible in the standard

irregular LDPC setting. There are two obvious degeneracies we will rule out a priori: Punctured

degree one variable nodes and received distributions equal to δ∞. A punctured degree one variable

node effectively eliminates its neighboring constraint from the decoding process, and a node with

received distribution δ∞ can be removed from the graph with no effect.

We say Q is physically degraded with respect to P, denoted Q � P, if Qi is physically

degraded with respect to Pi, denoted Qi � Pi, for i = 1, ..., ne. We assume a parameterized

family of input distributions R(σ) ordered by physical degradation where increasing σ degrades

the input distribution.

Theorem 4: If, for a vector density Q and some k > 0 we have Pk(Q) ≺ (�)Q, then,

Pk(�+1)(Q) ≺ (�)Pk�(Q) for all � ≥ 0, and P�(Q)
�→∞−−−→ F for some vector density F.

Proof: Monotonicty, that Pk(�+1)(Q) ≺ (�)Pk�(Q) under the stated assumptions, follows

from the tree channel argument appearing in [11]. Convergence of Pk�(Q) in � follows from

sequential compactness of the space of symmetric distributions and completeness of functionals

monotonic under physical degradation. Finally, convergence of P� follows from continuity of

density evolution.
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The above theorem implies that P�(δ0) always converges to a well-defined limit density.

Usually we are interested in knowing when the output bit error rate goes to zero, i.e., we are

interested in knowing when ν(R, ρ(P�))
�→∞−−−→ δ∞.

Assume R = R(σ) is a one parameter family of vector distributions ordered by physical

degradation: R(σ) � R(σ′) if σ > σ′. We define the decoding threshold as

σ∗ := sup{σ : lim
�→∞

ν(R(σ), ρ(P�)) = δ∞}.

In the standard irregular LDPC setting, if σ < σ∗ then P� �→∞−−−→ δ∞. In the multi-edge setting

it is not always obvious what the fixed-point limit of P� might be. It is clear, however, that such

a fixed point must be perfectly decodable.

A density vector F is a perfectly decodable fixed point of density evolution if it is a fixed

point and ν(R, ρ(F)) = δ∞. A multi-edge type structure may have more than one perfectly

decodable fixed point. Indeed, consider the simple example

ν(r0, r1, x1, x2) = r0x1x2, and µ(x1, x2) = x1x2.

Any vector density F = (F1, F2) satisfying F1 = δ∞ or F2 = δ∞ is a perfectly decodable fixed

point for the associated density evolution.

Given a fixed point F, let

EVC
∞ = EVC

∞ (F) := {i : Fi = δ∞} and EVC
<∞ = EVC

<∞(F) := {i : Fi 	= δ∞} . (9)

Similarly, let

ECV
∞ = ECV

∞ (F) := {i : ρi(F) = δ∞} and ECV
<∞ = ECV

<∞(F) := {i : ρi(F) 	= δ∞} . (10)

Lemma 3: If the fixed point F is perfectly decodable then

EVC
<∞(F) ∩ ECV

<∞(F) = ∅.
Proof: Assume F is perfectly decodable. Since no received distribution is δ∞, we see that

each variable node type has positive degree in ECV
∞ . It follows that if i 	∈ ECV

∞ then i ∈ EVC
∞ , i.e.,

EVC
<∞ ⊂ ECV

∞ .

Note that a corollary of the above lemma is that no constraint node type can have degree

more than one in EVC
<∞(F) for a perfectly decodable fixed point F.
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One of the complicating features of the multi-edge framework is the possibility of having

degree one variable nodes. The presence of degree one variable nodes guarantees that message

distributions associated with certain edge types will be strictly bounded away from δ∞. Any

edge type that is connected to degree one variable nodes never carries the distribution δ∞ in the

variable-to-check direction. Any other edge type that connects to constraint nodes also connected

to these edge types never carries the distribution δ∞ in the check-to-variable direction. This

“bounded away from δ∞” propagates through the graph in a manner similar to erasure decoding

with check nodes and variable nodes reversed.

Recursively define two edge-type subsets EVC
fin and ECV

fin as follows. Initially EVC
fin [0] is all edge

types that have positive probability of being connected to a degree one variable node and E CV
fin [0] =

∅.
Iterate the following two steps for t = 1, 2, . . .

1) Let ECV
fin [t] be the union of ECV

fin [t−1] and those edge types i 	∈ ECV
fin [t−1] that have positive

probability of being connected to a constraint node that has another edge in E VC
fin [t − 1].

2) Let EVC
fin [t] be the union of EVC

fin [t−1] and those edge types i 	∈ EVC
fin [t−1] that have positive

probability of connecting to a variable node having all other edges in E CV
fin [t].

For all t large enough we have EVC
fin [t] = EVC

fin [t − 1] and ECV
fin [t] = ECV

fin [t − 1] and we let EVC
fin

and ECV
fin denote these limiting sets.

Lemma 4: There exists a perfectly decodable fixed point if and only if EVC
fin ∩ ECV

fin = ∅.
Moreover, if EVC

fin ∩ ECV
fin = ∅, then there exists a unique perfectly decodable fixed point F

satisfying Fi = δ∞ for all i 	∈ EVC
fin .

Proof: It is clear that, for any fixed point F, we have EVC
fin ⊂ EVC

<∞ and ECV
fin ⊂ ECV

<∞. Thus,

Lemma 3 implies that there cannot exist a perfectly decodable fixed point if E VC
fin ∩ ECV

fin 	= ∅.
Assume now that EVC

fin ∩ ECV
fin = ∅. It follows that no constraint node can have degree more

than one in EVC
fin . It also follows that each variable node type has at least one edge type not in

ECV
fin .

Let Ψ denote the space of vector densities Q satisfying Qi = δ∞ for i 	∈ EVC
fin . For each Q ∈ Ψ

we have ρj(Q) = δ∞ for all j 	∈ ECV
fin and this implies that λi(R, ρ(Q)) = δ∞ for i 	∈ EVC

fin . Thus,

we see that Q ∈ Ψ ⇒ P1(Q) ∈ Ψ . Moreover, since every variable node type has at least one

edge not in ECV
fin , we have ν(R, ρ(Q)) = δ∞ for all Q ∈ Ψ.

Let Q0 ∈ Ψ be that element with Qi = δ0 for i ∈ EVC
fin and let Q∞ ∈ Ψ be that element
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with Qi = δ∞ for i ∈ EVC
fin . By Theorem 4 P�(Q0)

�→∞−−−→ F0 and P�(Q∞)
�→∞−−−→ F∞ for vector

densities F0,F∞ ∈ Ψ and any other fixed point F ∈ Ψ satisfies F∞ ≺ F ≺ F0 . What remains is

to prove uniqueness, which is equivalent to F∞ = F0 .

Since no check node can have degree more than one in EVC
fin , it follows that for any Q ∈ Ψ

each ρk(Q) is a convex combination of δ∞ and Qj , j ∈ EVC
fin . Hence, for each i ∈ EVC

fin , P1
i (Q)

can be written as a polynomial in R and Qj, j ∈ EVC
fin .

P1
i (Q) =

Ki∑
k=1

wi,kR
ci,k

Qei,k

where wi,k > 0 and
∑Ki

k=1 wi,k = 1 and multiplication denotes variable node domain convolution.

Moreover, we can assume that ei,k
j > 0 only for j ∈ EVC

fin .

By induction, the same holds for P�
i(Q) for each � ≥ 1. We claim that for some � sufficiently

large P�
i(Q) has at least one non-trivial term that does not depend on Q, i.e., wi,k > 0 and

ei,k = 0. To see the claim first note that it is clearly true for each i ∈ EVC
fin [0] for all � ≥ 1.

For each i ∈ ECV
fin [1] and � ≥ 1 it follows that ρ�

i(P(Q)) is a polynomal in R and Q with at

least one term that does not depend on Q. It now follows that the claim holds for for each

i ∈ EVC
fin [1]\EVC

fin [0] for all � ≥ 2. Finite induction, following this line, completes the proof of the

claim.

Let Q̃ denote the sub-vector of Q taking only those components in E VC
fin . Thus, any perfectly

decodable fixed point F we have

F̃ = U(F̃) (11)

where

Ui(F̃) = wi,0Ai(R) +

Ki∑
k=1

wi,kR
ci,k

F̃
ei,k

(12)

where Ai(R) is a fixed distribution, not δ0, wi,0 > 0 and and
∑Ki

k=0 wi,k = 1. The claim is that

such an equation has a unique solution. Let U�(Q̃) denote the �th iterate of U, where U0(Q̃) = Q̃.

Then U�(δ0) is a physically increasing sequence in � that converges to the fixed point F̃
0

and

U�(δ∞) is a physically decreasing sequence in � that converges to the fixed point F̃
∞

. Clearly,

by monotonicity, for any fixed point F̃ we have F̃
∞ ≺ F̃ ≺ F̃

0
. We will show that F̃

∞
= F̃

0
by

showing that Bc(F̃
∞

) = Bc(F̃
0
) for all c ∈ (0, 1).
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Fix c. Let us abuse notation slightly by defining U(x) for a real valued vector x where

multiplication in (12) is multiplication of reals as follows

Ui(x) = wi,0Bc(Ai(R)) +

Ki∑
k=1

wi,kBc(R)c
i,k

xei,k

. (13)

First note for any c that Bc(F̃
0
) and Bc(F̃

∞
) are fixed points of U. Let b0 denote Bc(F̃

0
) and

b∞ denote Bc(F̃
∞

). Note that if x and y are vectors satisfying 0 ≤ x ≤ y ≤ 1 component-wise,

then 0 < U(x) ≤ U(y) < 1. Thus, for any fixed point b we have

0 < b∞ ≤ b ≤ b0 < 1 (14)

Our aim is now to prove that b0 = b∞. Note that Ui is an increasing convex function of its

(real) arguments for each i. Since U(b0) = b0 and U(b∞) = b∞ it then follows that for each

that 1 ≥ U(b0 + ε(b0 −b∞)) ≥ (b0 + ε(b0 −b∞)) component-wise for all for ε > 0 sufficiently

small But this implies that U�(b0 +ε(b0−b∞)) converges to a fixed point b∗ satisfying b∗ ≥ b0

component-wise with equality holding only if b∞ = b0. By (14), however, we have b∗ = b0.

We summarize the general situation in the following.

Theorem 5: Given a multi-edge type structure, there exists a perfectly decodable fixed point

if and only if EVC
fin ∩ECV

fin = ∅. Given EVC
fin ∩ECV

fin = ∅, the perfectly decodable fixed point is unique

or there exist non-empty disjoint edge types E1 and E2, both disjoint from EVC
fin ∪ ECV

fin , such that

A. No node type has degree more than one in E1.

B. All variable nodes with degree one in E1 are state variable nodes with all other edges in

E2.

C. All check nodes with positive degree in E2 have degree one in E1.

Furthermore, if edge types satisfying A,B, and C, exist, then either there are multiple perfectly

decodable fixed points or no perfectly decodable fixed point is reachable under standard (decod-

ing) density evolution.

Proof: The first part of the theorem just restates Lemma 4.

Assume EVC
fin ∩ ECV

fin = ∅. By Lemma 4 there exists a unique perfectly decodable fixed point

F� with F�
i = δ∞ for all i 	∈ EVC

fin .
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Assume now that there exists another perfectly decodable fixed point F and let G denote ρ(F).

Then, Fk 	= δ∞ for some k 	∈ EVC
fin . Set

m := max
i�∈EVC

fin

B(Fi) .

and define

E1 := {i 	∈ EVC
fin : B(Fi) = m} .

Note that E1 is necessarily disjoint from ECV
fin by Lemma 3. Now, an edge type i 	∈ EVC

fin connects

only to variable node types having at least one other edge not in E CV
fin . Therefore,

m ≤ max
i�∈ECV

fin

B(Gi) . (15)

An edge type i 	∈ ECV
fin can not connect to constraint nodes having positive degree in E VC

fin , and,

by Lemma 3, no constraint node type can have degree more than one in EVC
<∞(F). Therefore,

max
i�∈ECV

fin

B(Gi) ≤ m . (16)

Combining (15) and (16) we now have

max
i�∈ECV

fin

B(Gi) = m

and so we define

E2 := {i 	∈ ECV
fin : B(Gi) = m} .

By Lemma 3 we have E2 ∩ EVC
fin = ∅.

We will now show that A, B, and C hold. First, since E1 ⊂ EVC
<∞(F), Lemma 3 implies no

constraint node type can have degree more than one in E1. Let (b,d) be a variable node type

that has an edge of type i ∈ E1. Then variable node type (b,d) has at least one other edge type

not in ECV
fin . Thus, the density S outgoing from variable node type (b,d) on the given edge in

E1 at the fixed point F satisfies B(S) ≤ m by equation (16). Now, if B(S) < m in any such

case then we would have B(Fi) < m which contradicts i ∈ E1. Since E1 ⊂ EVC
∞ , however, if a

variable node type (b,d) had degree more than one in E1, then, for variable node type (b,d),

we would have B(S) = 0. Since this cannot occur, no variable node type can have degree more

than one in E1. We have now shown A.

By the same argument as above, we see that if a variable node type (b,d) with an edge in

E1, has a received distribution other than R0 then B(S) < m. Since variable node types (b,d)
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with an edge in E1 have at least one other edge in E2, if they have a third edge type whose

constraint-to-variable message density is not δ0, then again we would have B(S) < m. Now,

only edge types in E2 can have constraint-to-variable message density equal to δ0, so B holds.

Note, moreover, that if m < 1 then each variable node type (b,d) with positive degree in E1

must have edge degree two.

Since any check node has degree at most one in EVC
<∞, and edge types not in ECV

fin connect only

to constraint nodes with no edges in EVC
fin , we see that constraint nodes with positive degree in

E2 must have precisely degree one in E1, i.e., C holds.

Assume now that edge types satisfying A,B, and C exist. It is easy to see that P�(δ0) satisfies

P�
i = δ0 for all � ≥ 0 and i ∈ E1. Thus, there is either a perfectly decodable fixed point F with

Fi = δ0 for all i ∈ E1, or, if not, then P�(δ0) cannot converge to a perfectly decodable fixed

point.

We will call a multi-edge structure non-degenerate if EVC
fin ∩ ECV

fin = ∅ and there do not exists

non-empty disjoint edge types E1 and E2, both disjoint from EVC
fin ∪ ECV

fin satisfying A,B and C,

of Theorem 5. Otherwise, the structure is called degenerate.

B. Cascaded Constructions for Degree One Variable Nodes

In most cases in which a graph is designed to have degree one variable nodes a simple

cascaded construction is used. We now focus on this special case.

Let us assume that the Tanner graph can be decomposed into disjoint subgraphs Ξ1 and Ξ2

and the set of edges E12 which connect to both subgraphs. We say that the Tanner graph is a

(Ξ1, Ξ2) cascade if all edges in E12 have their variable socket in Ξ1 and their constraint socket

in Ξ2.

Typcially, we assume that the edge types E12 which connect to both to Ξ1 and Ξ2 only so

connect, i.e., they are distinct from edge types connecting within Ξ1 or Ξ2. We will be especially

interested in the case where Ξ2 contains variable nodes of degree one only, constraint nodes in

Ξ2 each connect to a single degree one variable node, and Ξ1 contains variable nodes only of

degree greater than one. Thus, the LDPC code consists of that portion defined by the graph Ξ1,

together some parity check bits of the bits associated to Ξ1. We call such a construction a simple

degree one cascade.
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Obviously, the cascade concept can be recursed and generalized in other ways, but the

construction outlined above is sufficient for the purposes of this paper and all of the examples

presented later having degree one variable nodes are simple cascades.

IX. STABILITY

Stability analysis of density evolution examines the (asymptotic) behavior of the decoder when

it is close to successful decoding. The basic question of interest is when can one be certain that

the error probability is converging to zero, assuming it has gotten sufficiently close. In the

standard irregular setting one can look at the error rate of the edge message distribution and ask

whether it is tending to zero. In the multi-edge type setting this notion is inadequate because, as

we saw in the previous section, messages on certain edge types may not converge to zero error

probability even though the output error rate converges to zero. Nevertheless, a more-or-less

complete stability theory can be developed. We shall present the theory for the case of simple

cascades.

Consider first a multi-edge structure with no degree one variable nodes. Define the matrix

Λ = Λ(r) by

Λi,j :=
d

dxj
λi(r,x) |x=0

and define the (constant) matrix P by

Pi,j :=
d

dxj
ρi(x) |x=1

Theorem 6: Assume a multi-edge structure with no degree one variable nodes. If Λ(B(R))P
is a stable matrix (spectral radius less than one) then there exists γ > 0 such that P�(Q)

�→∞−−−→ δ∞

for any Q satisfying maxi{Prerr(Qi)} < γ.

Proof: The proof of this result follows closely the proof for standard irregular LDPC

ensembles which was presented in [11]. We will therefore not present the proof here.

Remark. Note that if the structure is degenerate, possessing edge type subsets E1 and E2 as

in Theorem 5, then the matrix product Λ(B()R)P is, at best, marginally stable, i.e., it has 0 as

an eigenvalue.

The converse to Theorem 6 is a little trickier to state. It is not difficult to concoct structures

where setting the density on one edge type to δ∞ causes all densities to eventually converge to

δ∞ after a few iterations. Thus, assuming that Λ(B(R)P is unstable, we cannot say, as we did
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in the standard irregular case, that if Q 	= δ∞ then Q will not approach δ∞. We do, however,

have the following.

Theorem 7: Assume a non-degenerate multi-edge structure with no degree one variable nodes.

If Λ(B(R))P is an unstable matrix (spectral radius greater than one), then there exists ε > 0

such that

lim inf
�→∞

Prerr(ν(P�(Q))) ≥ ε,

for any Q satisfying mini{Prerr(Qi)} > 0.

Proof: Assume that Λ(B(R))P is unstable. By the Perron-Frobenious theorem there exists

a non-negative (real) eigenvector v of Λ(B(R))P with real positive eigenvalue ξ > 1 whose

magnitude equals the spectral radius. Without loss of generality we assume that v i ≤ 1 for

i = 1, ..., ne.

Consider density vector V(η) where Vi(η) = ηviδ0 + (1 − ηvi)δ∞ defined for any η ∈ [0, 1].

For any fixed �, it is not hard to see that P�(V(η)) = η
(
Λ(R)P)�

v+O(η2) where multiplication

of matrix elements is variable domain convolution. It follows directly that B(P�(V(η))) = ηξ�v+

O(η2). Analogous to Lemma 1, one can show (for a proof see the Appendix) that

Prerr(
(
Λ(R)P)�

v) ≥ 1

1 + e2Bmin

4(�+nr)

e

3π

√ Bmin

� + nr
ξ�v

where the inequality is component-wise and Bmin := mini B(Ri). Since ξ > 1, we can choose

� = L large enough so that Prerr(P
L(V(η))) ≥ 2ηv + O(η2) component-wise. Assuming now

that η < η′, where η′ > 0 is small enough, we have Prerr(P
L(V(η))) ≥ ηv . It now follows from

Lemma 2 that PL(V(η)) � V(2η). By Theorem 4 we have P�(V)
�→∞−−−→ F for some fixed point

F satisfying F � V(η′). Since F 	= δ∞, F is not perfectly decodable. Let ε := Prerr(ν(ρ(F(η′))))

and note ε > 0.

Assume mini{Prerr(Qi)} > 0. By Lemma 2 we have Q � V(η) for some η ∈ (0, η′]. For �

sufficiently large we have P�(V(η)) � V(η′). Thus,

lim inf
�→∞

Prerr(ν(P�(Q))) ≥ lim inf
�→∞

Prerr(ν(P�(V(η))))

≥ lim inf
�→∞

Prerr(ν(P�(V(η′))))

= ε .
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A. Stability of Simple Cascades

In this section we study stability of (non-degenerate) simple cascaded constructions as de-

scribed in Section VIII-B.

Consider a simple cascaded construction in which edge types 1, . . . , j1 are those exclusively

in Ξ1, edge types j1 + 1, . . . , j2 are those exclusively in E1,2, and edge types j2, . . . , ne are

those exclusively in Ξ2, i.e., they attach exclusively to degree one variable nodes. Under density

evolution, the densities P�
i(Q) for i > j2 are independent of � and Q, and each is a convex

combination of the received densities R1, . . . , Rnr . Without loss of generality (split edge types

if necessary) we may assume that for i > j2 and � ≥ 1, P�
i(Q) a received density.

Let Ψ(R) denote the space of vector densities Q of length ne such that Qi = R(i) for i ∈
[j2 + 1, ..., ne].

Given a vector x = (x1, . . . , xK) we let x[a,b] denote the sub-vector (xa, . . . , xb).

The polynomial ν can be written as

ν(r,x) = ν1(r, x[1,j2]) + ν2(r, x[j2+1,ne ]) ,

where each term in ν1 has degree at least two in x[1,j1] and each term in ν2 has degree one in

x[j2+1,ne ].

Similarly, the polynomial µ can be written as

µ(x) = µ1(x[1,j1]) + µ2(x[j1+1,ne ])

and each term in µ2 has degree one in x[j2+1,ne ].

Let F denote the unique perfectly decodable fixed point and let G = ρ(F). Thus, Fi = δ∞ for

i ∈ 1, . . . , j2, and for i > j2 we have Fi is a received distribution. Define ρ2,1(r,x[j1+1,...,j2]) :=(
ρ[j1+1,j2](x)

)
. Let us now define the j1 edge type, nr received type, multi-edge structure

νs(r,x′), µs(x′)

by

νs(r,x′) :=
1

ν1(1, 1)
ν1(r,x′, ρ2,1(r, 1))

µs(x′) :=
1

µ1(1)
µ1(x′) .

(17)

Essentially, this system represents the structure Ξ1 with the edges E12 all carrying the fixed

message distribution ρ2,1(R, δ∞) in the constraint-to-variable direction. We refer to this as the
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stability kernel of the simple cascade. Without loss of generality, we can assume that each

element of ρ2,1(R, δ∞) is equal to a received distribution.

Let Λs and Ps denote the stability matrix factors for stability kernel.

Theorem 8: If Λs
(B(R)

)Ps is a stable matrix then there exists a constant γ > 0 such that

ν(R, ρ(P�(Q)))
�→∞−−−→ δ∞

for any Q ∈ Ψ(R) satisfying maxi∈[1,j2]{Prerr(Qi)} < γ.

Proof: Assume Λs
(B(R))Ps is stable. Consider now the slightly modified stability kernel

with nr received types and j1 edge types.

νs(r, r′, δ∞) :=
1

ν1(1, 1)
ν1(r,x′, r′) (18)

and µs defined as before. The original stability kernel sets each element of r′ to a convex

combination of elements of r.

Let Hη denote the length j2 − j1 vector density where each element is the density associated

to the BSC with cross-over probability η. Let S�[Hη] be the density evolution arising from the

modified stability kernel with received distributions
(
R, ρ2,1(R,Hη)

)
and S0 = Q[1,j]. For all

η > 0 sufficiently small the matrix Λs
(B(R, ρ2,1(R,Hη))

)Ps is stable. Hence, for all γ > 0

sufficiently small it follows that S�[Hη]
�→∞−−−→ δ∞ . whenever mini{Qi} ≤ γ.

Consider now the sequence P�(Q). Assume that P�
[1,j1]

≺ S� and P�
[j1+1,j2]

≺ Hη . It then

follows that ρ[j1+1,...,j2](P
�) ≺ ρ2,1(R,Hη) . From this we easily conclude that P�+1

[j1+1,j2]
=

λ[j1+1,j2](R, ρ(P�)) ≺ Hη , and that P�+1
[1,j1]

= λ[1,j1](R, ρ(P�)) ≺ S�+1 . Since, for γ ≤ eta

sufficiently small, we clearly have P0
[1,j1]

≺ S0 and P0
[j1+1,j2]

≺ Hη , we now conclude by

induction that P�
[1,j2]

≺ S�, hence P�
[1,j1]

�→∞−−−→ δ∞ .

X. OPTIMIZATION

The main tool used to optimize structures is density evolution. Generally speaking, we use

hill-climbing methods. Since the space of admissible parameters is a polytope, it is easy to

generate extreme points using linear programming.

It is somewhat harder to explain how one arrives at good structures. This is something of an

art. We have borrowed from the various examples in the literature and some ideas come out of

interaction with the optimization. Many of the structural ideas presented here appear to be new,

especially for low error floors.
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There undoubtedly remain interesting structures to be uncovered.

XI. MULTI-EDGE TYPE EXAMPLES

In this section we present some examples. The first few examples simply show how to express

various well-known code structures in the multi-edge type framework. Later examples present

new designs.

A. Standard Irregular LDPC

The standard irregular structure is represented as

ν(r, x) = r1

J∑
j=2

νjx
j
1 and µ(x) =

K∑
j=3

µkx
k
1

where we abbreviate ν(0,1),j as νj , with the received normalization
∑J

j=2 νj = 1, the socket

count constraint
∑J

j=2 jνj =
∑K

j=3 kµk , and the code rate c =
∑J

j=2 νj −
∑K

j=3 µk . From this

we obtain

λ(r, x) = r1

J∑
j=2

λjx
j−1
1 and ρ(x) =

K∑
j=3

ρkx
k−1
1

where we define λk =
jνj∑J

j=2 jνj
and ρk = kµk∑K

j=3 kµk
The stability condition reduces to the familiar

B(R1)λ2ρ
′(1) < 1.

B. Repeat Accumulate (RA) Codes

Rate 1/q repeat accumulate codes are represented by a two edge type structure as follows.

ν(r, x) = r1x
2
1 +

1

q
r0x

q
2 and µ(x) = x2

1x2 .

Note that received constraint and the socket count constraints are satisfied. We obtain

λ(r, x) =

(
r1x1, r0x

q−1
2

)
and ρ(x) =

(
x1x2, x

2
1

)

and stability matrix is given by 
B(R1) B(R1)

0 0


 .

Since B(R1) < 1 (unless R1 = δ0 which we ruled out) we see that RA codes are guaranteed

to be stable.
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C. Irregular Repeat Accumulate (IRA) Codes

The IRA structure also requires two edge types as follows.

ν(r, x) = ν(2,0)r1x
2
1 +

J∑
j=2

νjr1x
j
2 and µ(x) =

K∑
j=3

µkx
2
1x

k
2

where we abbreviate ν(0,1),(2,0) as ν(2,0), ν(0,1),(0,j) as νj and µ(2,j) as µj. The received constraint is

1 = ν(2,0) +
∑J

j=2 νj , while the socket count constraints are 2ν(2,0) = 2
∑K

k=1 µk and
∑J

j=2 jνj =∑K
k=1 kµk . The code rate is given by c = ν(2,0)+

∑J
j=2 νj−

∑K
k=1 µk = 1−∑K

k=1 µk = 1−ν(2,0) .

We obain

λ(r, x) =

(
r1x1, r1

J∑
j=2

λjx
j−1
1

)
and ρ(x) =

(
x1

K∑
k=1

µk

1 − c
xk

2, x
2
1

K∑
k=1

ρkx
k−1
2

)

where we set λj :=
jνj∑J

j=2 jνj
and ρk := kµk∑K

k=1 kµk
.

The stability matrix is computed as
B(R1) 0

0 B(R1)λ2





1

∑K
k=1

kµk

1−c

2
∑K

k=1(k − 1)ρk


 = B(R1)


 1

∑K
k=1

kµk

1−c

2λ2 λ2

∑K
k=1(k − 1)ρk




Letting ρ′
2(1) denote

∑K
k=1(k − 1)ρk and ρ′

1(1) denote
∑K

k=1
kµk

1−c
we can write the eigenvalues

of the stability matrix as

B(R1)
1 + λ2ρ

′
2(1) ± √

(1 − λ2ρ
′
2(1))2 + 8λ2ρ

′
1(1)

2

Note, in particular, that if λ2 = 0 then stability is guaranteed.

The main difference between RA/IRA codes and standard irregular codes, from the structural

perspective, is the control of degree two variable node connectivity. The structure allows many

degree two nodes yet has guaranteed stability if there are no additional degree two nodes (with

ν2 = 0 for IRA codes). It also simplifies encoding as the degree two nodes can be connected in

a chain.

D. CT codes

The rate 1/2 (3,1) concatenated tree code structure [1] requires 5 edge types for its multi-edge

type representation, see table I. Table I shows the basic structure for the (3, 1) CT-code [1].

The authors of [1] also propose certain encoding methods, graph constructions, and decoding

schedules for these codes which are not considered here.
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TABLE I

RATE 1/2 (3,1) CONCATENATED TREE CODE STRUCTURE

νb,d b d µd d

0.5 0 1 3 0 1 0 0 0.5 3 2 0 0 0

0.5 1 0 0 2 0 1 0 0.5 0 0 1 1 1

0.5 0 1 0 0 0 0 1

AWGN: σ∗ = 0.925

The CT structure is a simple degree one cascade. The stability kernel, see table II, is interesting,

because, in effect, one of the bits is repeated. Except for that feature, the stability kernel is an

IRA structure. Thus, stability is guaranteed.

TABLE II

RATE 1/2 (3,1) STABILITY KERNEL FOR CONCATENATED TREE CODE STRUCTURE

νb,d b d µd d

0.5 0 2 3 0 0.5 3 2

0.5 0 1 0 2

E. Constructions of Kantor and Saad

TABLE III

BASIC RATE 1/2 STRUCTURE OF KANTOR AND SAAD

νb,d b d µd d

0.500 1 0 5 0 0 0.050 1 2 0

0.500 0 1 0 2 0 0.450 2 2 0

0.500 0 1 0 0 1 0.075 6 0 1

0.050 7 0 1

0.375 2 0 1

The basic degree structure for the rate 1/2 code over the AWGN proposed by Kantor and
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TABLE IV

REFINED RATE 1/2 STRUCTURE OF KANTOR AND SAAD

νb,d b d µd d

0.450 1 0 2 3 0 0 0.050 1 0 2 0

0.050 1 0 1 4 0 0 0.450 2 0 2 0

0.500 0 1 0 0 2 0 0.075 0 6 0 1

0.500 0 1 0 0 0 1 0.050 0 7 0 1

0.375 0 2 0 1

AWGN: σ∗ = 0, but transition at σ = 0.951.

Saad [5] is shown in table III. By construction, the variable nodes with degree (5, 0, 0) are the

information bits of the code. As given, the structure does not have a perfectly decodable fixed

point, by Lemma 3. In their paper, Kantor and Saad say that edges should be connected uniformly.

This suggests the modified structure indicated in table IV. Again, the structure does not have

a perfectly decodable fixed point by Lemma 3. The problem is that this is essentially a simple

cascade structure but it has degree 1 variable nodes in Ξ1. No further control of connectivity can

solve the problem. Nevertheless, density evolution shows that there is a fixed point with small

error rates, near 5 × 10−4 averaged accross all variable nodes, and that a transition occurs to

a fixed point with large error rate, near 10−1 for σ � 0.951. If the isolated (degree 1 variable

node) edges are spread out some improvement is possible, and the multi-edge type structure

could model this with about 20 edge types, some improvement would be expected.

A small adjustment to the structure can turn it into a valid simple cascaded structure. Some

doping of the systematic nodes is required. After making this modification and optimizing, we

obtained the structure in table V which has a threshold of 0.952.

F. An optimized rate 1/2 example

Here we describe an example design of a degree structure for a rate 1/2 code for the AWGN.

The structure is designed to have high threshold with low degrees, as a result, its performance

for small block lengths is quite good. It is not designed to exhibit a deep error floor, and we

will show how to modify the degree structure for deeper error floors later.

Table VI shows the basic degree structure. The AWGN threshold for this structure is about
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TABLE V

MODIFIED RATE 1/2 STRUCTURE OF KANTOR AND SAAD

νb,d b d µd d

0.497124 1 0 2 3 0 0 0.499994 2 0 2 0

0.002865 0 1 2 3 0 0 0.060507 0 6 0 1

0.500000 0 1 0 0 2 0 0.052737 0 7 0 1

0.497135 0 1 0 0 0 1 0.383884 0 2 0 1

AWGN: σ∗ = 0.952.

TABLE VI

HIGH THRESHOLD LOW DEGREE RATE 1/2 MULTI-EDGE STRUCTURE

νb,d b d µd d

0.5 0 1 2 0 0 0 0.4 4 1 0 0

0.3 0 1 3 0 0 0 0.1 3 2 0 0

0.2 1 0 0 3 3 0 0.2 0 0 3 1

0.2 0 1 0 0 0 1

AWGN: σ∗ = 0.965

σ∗ = 0.965. Further optimization of the parameters can increase that to about σ∗ = 0.968. Table

VII modifies the construction to put in degree two variable nodes in a chain, in the RA style. This

imparts guaranteed stability to the structure. The threshold is reduced to σ∗ = 0.960. Further

optimization of the parameters can increase that to about σ∗ = 0.965. Table VIII shows another

structural modification to ensure that each puncture variable node receives some non-zero soft

information in the first iteration. In this case, the structure uniquely determines the parameters.

By introducing another variation on the edge split used to produce the structure and further

optimizing, the threshold can be increased to σ∗ = 0.965. Although each of these alterations

slightly reduces the threshold, they impart other advantages.

Graphs generated from this structure outperform standard turbo codes down to block lengths

of about 1000 and are significantly better for larger block lengths. This is a consequence of high

thresholds (good asymptotic performance) with low degrees (fast convergence to the asymptote).
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Fig. 1. Hardware based simulation for rate 1/2 codes with the degree structure given in Table VIII. Code parameters (n, k)

are (64x, 32x) with x = 10, 20, 40, 80, 160. Floating point simulations will yield improved performance with somewhat lower

error floor. The dashed lines indicate floating point simulation results for the x = 20 code.

TABLE VII

MODIFICATION FOR GUARANTEED STABILITY OF 1/2 MULTI-EDGE STRUCTURE

νb,d b d µd d

0.5 0 1 2 0 0 0 0 0.4 2 2 1 0 0

0.3 0 1 0 3 0 0 0 0.1 2 1 2 0 0

0.2 1 0 0 0 3 3 0 0.2 0 0 0 3 1

0.2 0 1 0 0 0 0 1

AWGN: σ∗ = 0.960
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Fig. 2. Hardware based simulation for rate 1/2 codes with the degree structure given in Table IX. Code parameters (n, k) are

(64x, 32x) with x = 10, 20, 40, 80, 160. Compared to the performance in Fig. 1 we see about 0.2dB loss in the waterfall region,

as predicted by the thresholds, and significantly better error floor performance. Since error floor simulation was not feasible in

all cases, we also show error floor performance as predicted using the method outlined in [14].

TABLE VIII

MODIFICATION FOR RAPID INITIALIZATION OF STATE VARIABLES OF THE RATE1/2 MULTI-EDGE STRUCTURE.

νb,d b d µd d

0.5 0 1 2 0 0 0 0 0 0.4 2 2 1 0 0 0

0.3 0 1 0 3 0 0 0 0 0.1 2 1 0 2 0 0

0.2 1 0 0 0 2 1 3 0 0.2 0 0 0 0 3 1

0.2 0 1 0 0 0 0 0 1

AWGN: σ∗ = 0.960
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TABLE IX

MODIFIED RATE 1/2 STRUCTURE FOR LOWER ERROR FLOOR.

Variable Constraint

νb,d b d µd d

0.25 0 1 2 0 0 0 0 0.25 1 3 1 0 0

0.583333 0 1 0 3 0 0 0 0.25 1 4 1 0 0

0.166666 1 0 0 0 3 3 0 0.166666 0 0 0 3 1

0.166666 1 0 0 0 0 0 1

AWGN: σ∗ = 0.936

G. LDPC for Low Error Floors

Recently, some advances have been made in our understanding of error floor behavior of

LDPC codes [13], [14]. We will not reiterate that material here, but it is of use in developing

the results as it provides insight into the structures that produce low error floors.

Let us first revisit the rate 1
2

structure as presented in TableFloating point simulations will yield

improved performance with somewhat lower error floor. VII. This structure produces graphs that

have relatively high error floors. For the [10240,5120] code seen in Fig. 1 the error floor begins

at about 4×10−9 BER and for the [5120,2560] code the error floor begins at about 5×10−8 BER

(using a 5 bit hardware decoder). In this case, it is easy to understand that the relatively high

error floor arises mostly from the large fraction of degree two variable nodes. By modifying the

structure so as to reduce the number of degree two variable nodes, one can achieve much deeper

error floors. Table IX shows one such modification. (This is not the higheset threshold possible,

some modifications can yield a threshold of σ∗ = 0.947). Constraint nodes have at most one

degree two neighbor. For the [5120,2560] code the error floor begins at about 2 × 10−11 BER

and for the [10240,5120] code the error floor is predicted to begin at about 4× 10−13 BER, see

Fig. 2.

More interesting effects can be found by looking at high rate codes. This has practical

importance since many applications requiring high speeds and low error floors use high rate

codes. We will present here only an indication of what can be done. Consider a regular (3,9)

structure.

ν(r, x) = r1x
3
1 and µ(x) =

1

3
x9

1 .
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This is a rate 2/3 code with AWGN threshold σ∗ � 0.708. Error floors arise because of small

unavoidable structures in the graph. If the right degree could be lowered then the error floor

could be lowered. By introducing high degree punctured nodes this can be accomplished. In

this case, and in many cases, it can also result in an improvement in the threshold. Consider

a regular (3,8) structure but to every check node attach one more edge going to a degree 9

puntured variable node. The resulting degree structure is the following.

ν(r, x) = r1x
3
1 +

1

24
r0x

9
2 and µ(x) =

3

8
x8

1x2 . (19)

The resulting code is still rate 2/3 but the error floor is that that arises from the (3,8) structure.

The degee 9 variable nodes essentially do not participate in error floor failure events. Perhaps

surprisingly, the threshold for the AWGN is σ∗ � 0.721, better than for the regular case. Some

simulation results are presented in Fig. 3.
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Fig. 3. Rate 2/3 examples. BER and FER (dashed) curves for regular (3,9) code and MET code (19). Note the MET code

outperforms the regular one both in the waterfall and error floor region. Simulation performed on hardware platform using a 5

bit decoder.
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The idea of puncturing nodes to maintain girth was suggested by MacKay [15]. Note that the

idea here is quite different, the girth is not improved. On the (3,8) portion of the graph the girth

distribution is improved but on the overall graph it is not. The fact that the punctured nodes are

high degree and that their connectivity is controlled is critical to achieving the results presented

here.

H. Low Rate LDPC

One encounters a difficulty when designing very low rate LDPC codes in the standard irregular

framework, it is relatively difficult to achieve high thresholds. In contrast, for high rate codes,

with rates approaching 1, even regular codes have quite good thresholds. It turns out that simple

cascades provide an ideal framework for low rate LDPC codes. One begins with a high rate

code, and then appends to it a large number of parity check bits. An example for a simple rate

1/10 degree structure is given in table X. The AWGN threshold for this structure is σ∗ � 2.535,

the Shannon limit is 2.6, leaving a gap of about 0.2 dB. This structure is somewhat similar to

the recently introduced Raptor codes [16].

TABLE X

RATE 1/10 DEGREE STRUCTURE

νb,d b d µd d

0.1 0 1 3 20 0 0.025 15 0 0

0.025 0 1 3 25 0 0.875 0 3 1

0.875 0 1 0 0 1

AWGN: σ∗ = 2.535

XII. CONCLUSIONS

The multi-edge type framework is a natural generalization of the notion of irregularity of

LDPC codes. This framework captures most degree structures of interest in an efficient and

compact language. Through some examples we have illustrated several techniques that be used

to improve various aspects of LDPC performance.
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APPENDIX

Asymptotics of Distributions Let R by a symmetric density. Define

R̂(ω) :=

∫ ∞

−∞
e−iωxe−

1
2
xR(x) dx .
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Note that this is the Fourier transform evaluated at 1
2
+ iω and that R̂ is real and even R̂(−ω) =

R̂(ω). By symmetry we have d
dω

R̂(ω) |ω=0= 0. Now

d2

dω2
R̂(ω) = −

∫ ∞

−∞
x2e−iωxe−

1
2
xR(x) dx

= −2

∫ ∞

0

x2 cos(ωx)e−
1
2
xR(x) dx

Since
∫ ∞
0

R(x) dx ≤ 1 it now follows that

d2

dω2
R̂(ω) ≥ −2 max

x∈[0,∞)
x2 | cos(ωx)| e− 1

2
x

≥ −2 max
x∈[0,∞)

x2e−
1
2
x

= −32e−2

Noting that R̂(0) = B(R), it now follows that

R̂(ω) ≥ B(R)
(
1 − 1

B(R)
16e−2ω2

)

Assume � is even. Then R̂�(ω) ≥ 0. We can now write

R̂�(ω) ≥
(
B(R)

(
1 − 1

B(R)
16e−2ω2

)+
)�

≥ B(R)�(1 − �

B(R)
16e−2ω2)+

Applying Plancherel’s theorem, we have for any distribution R,

Prerr(R) =
1

2

∫ ∞

−∞
e−| 1

2
x|e−

1
2
xR(x) dx

=
1

π

∫ ∞

−∞

1

1 + 4ω2
R̂(ω) dw

=
2

π

∫ ∞

0

1

1 + 4ω2
R̂(ω) dw
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Assume again that � is even. We now have

Prerr(R
⊗�) =

∫ ∞

0

2/π

1 + 4ω2
R̂�(ω) dw

≥ B(R)�

∫ e
4

√
B(R)

�

0

2/π

1 + 4ω2
(1 − �

B(R)
16e−2ω2)dw

≥ B(R)� 2/π

1 + e2B(R)
4�

∫ e
4

√
B(R)

�

0

(1 − �

B(R)
16e−2ω2)dw

= B(R)� 2/π

1 + e2B(R)
4�

2

3

e

4

√
B(R)

�

= B(R)� 1

1 + e2B(R)
4�

e

3π

√
B(R)

�

For the case � is odd, we note that 1
B(R)

R̂(ω) ≤ 1. We can then write

Prerr(R
⊗�) =

∫ ∞

0

2/π

1 + 4ω2
R̂�(ω) dw

≥ 1

B(()R)

∫ ∞

0

2/π

1 + 4ω2
R̂�+1(ω) dw

and proceed as before.

So, in general, we have

Prerr(R
⊗�) ≥ B()�(R)

1

1 + e2B(R)
4(�+1)

e

3π

√
B(R)

� + 1

We want to generalize this to the matrix case. Consider the matrix M(R) := Λ(R)P. Each

entry of M(R) is of the form
∑nr

i=1 aiRi where the ai are positive coefficients. Thus, the entries

of M �(R) are of the form
∑

aiR
di

where the ai are positive coefficients and
∑nr

j=1 di
j = �. Let

Bmin := minB(()Ri). Applying essentially the same argument as above we obtain

Prerr(R
di

) ≥ B(Rdi

)
1

1 + e2Bmin

4(�+nr)

e

3π

√ Bmin

� + nr

hence

Prerr(M(R)�) ≥ 1

1 + e2Bmin

4(�+nr)

e

3π

√ Bmin

� + nr
B(M(R))�

=
1

1 + e2Bmin

4(�+nr)

e

3π

√ Bmin

� + nr
( M(B(R)) )�
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where the inequality is component-wise. If v is a positive eigenvector of M(B(R)) with positive

eigenvalue ξ, then

Prerr(M(R)�v) ≥ 1

1 + e2Bmin

4(�+nr)

e

3π

√ Bmin

� + nr

ξ�v

component-wise.
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