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Weakly Pulse-Coupled Oscillators, FM Interactions,
Synchronization, and Oscillatory

Associative Memory
Eugene M. Izhikevich

Abstract—We study pulse-coupled neural networks that satisfy
only two assumptions: each isolated neuron fires periodically, and
the neurons are weakly connected. Each such network can be
transformed by a piece-wise continuous change of variables into
a phase model, whose synchronization behavior and oscillatory
associative properties are easier to analyze and understand. Using
the phase model, we can predict whether a given pulse-coupled
network has oscillatory associative memory, or what minimal
adjustments should be made so that it can acquire memory.
In the search for such minimal adjustments we obtain a large
class of simple pulse-coupled neural networks that can memorize
and reproduce synchronized temporal patterns the same way a
Hopfield network does with static patterns. The learning occurs
via modification of synaptic weights and/or synaptic transmission
delays.

Index Terms—Canonical models, Class 1 neural excitability,
integrate-and-fire neurons, multiplexing, syn-fire chain, transmis-
sion delay.

I. INTRODUCTION

I N THIS turorial paper we exploit the relationship between
pulse-coupled neural networks and phase models [3], [20],

[34]. Since synchronization behavior and some oscillatory
associative properties of phase models are understood (see
[14] for a review), the relationship provides a powerful tool
for analysis of pulse-coupled networks.

Since we do not assume that the reader is familiar with phase
models, we devote a large portion of the paper (Sections IV
and VI) to an elementary introduction into some essential
aspects of the phase model theory.

A. Pulse-Coupled Neural Networks

Some treat pulse-coupled networks as the third generation
of neural-network models that take into account the spiking
nature of neurons, and hence, are much closer to biology than
classical artificial neural network models (see, e.g., [22] and
[23] for a review). Many other scientists, especially those who
study Hodgkin–Huxley neurons, treat pulse-coupled neural
networks as toy models; that is, even though the networks
are based on abstractions of important properties of biological
neurons, they are still far away from the reality (despite the
fact that we have no idea what the reality is). As a conse-
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quence, all results obtained by studying pulse-coupled neural
networks might be irrelevant to the brain. However, it has been
proven recently [14], [19] that many biophysically detailed and
biologically plausible Hodgkin–Huxley-type neural networks
can be transformed into pulse-coupled form by a piece-wise
continuous change of variables. Thus, the difference between
pulse-coupled neural networks and the Hodgkin–Huxley-type
models is just a matter of coordinate change. Therefore, it is
imperative that we understand the information processing that
takes place in pulse-coupled neural networks.

B. Review of Methods

There are many approaches toward understanding behavior
of pulse-coupled neural networks:

• Spike Density Distribution: Methods of statistical physics,
such as Fokker–Planck equation and mean-field approx-
imations, have proven to be useful in analysis of spike
density distributions of fully connected pulse-coupled
oscillatory networks when the size of the network
and the strength of connections ; see [1],
[20], and [33].

• Spike Response Models: Many weakly pulse-coupled net-
works can be written in the “spike response” form,
which is a system of nonlinear integral equations having
“synaptic kernels” (see review by W. Gerstner [9]).

• Firing Maps: Analysis of strongly pulse-coupled net-
works can be reduced to an analysis of a firing mapping.
The theory is based on the Poincaré return maps, and
was first introduced by Mirollo and Strogatz [28]; see
also [8], [25], and [29].

• Phase Models: Weakly pulse-coupled networks of oscil-
latory neurons can be transformed into simpler phase
models [3], [20], [34]. This is the approach we use in
the present paper.

Of course, a straightforward analysis [3], [12] and computer
simulations can also provide an invaluable information about
behavior of pulse-coupled networks.

C. Weak Connections

Most of the methods mentioned above work only when
connections between neurons are weak. Remarkably, this
assumption is biologically plausible, since it follows fromin
vitro observation that amplitudes of postsynaptic potentials are
less than 1 mV, which is extremely small in comparison with
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the amplitude of an action potential (around 100 mV) and the
amplitude of the mean EPSP necessary to discharge a quiescent
cell (around 20 mV); see [14, Sec. 1.3].

For example, PSP’s in hippocampal granule cells are as
small as 0.1 0.03 mV [26]. Firing of a hippocampal CA3
pyramidal cell elicits EPSP in other CA3 pyramidal cells
ranging from 0.6 to 1.3 mV [27]. Firing of the same CA3
cell can evoke EPSP in CA1 pyramidal cells (via Schaffer
collateral) of amplitude 0.13 mV [31]. The majority of PSP’s
in pyramidal neurons of the rat visual cortex are less than
0.5 mV in amplitude, with the range 0.05–2.08 mV [24].
As Mason and coauthors [24] point out in their discussion
section, there is an underestimate of the true range because
PSP’s smaller than 0.03 mV would have gone undetected.

D. Phase Model

If the pulse-coupled neurons are weakly connected and
each neuron exhibits autonomous oscillatory behavior, then the
entire network can be transformed into a simpler phase model
by a piece-wise continuous change of variables. A precise
statement is given by Theorem 1 whose proof can be found in
the Appendix. A generalization of the theorem that takes into
account nontrivial temporal dynamics of synaptic transmission
is straightforward [34] and can also be found in Appendix II.

Each (phase) variable in the phase model has the meaning
of timing of firing of the corresponding neuron, and the phase
model captures how timing of one neuron affects that of
the other one on a long time scale. The phase model is not
pulse-coupled, which simplifies its analysis significantly. Still,
studying the phase model provides an invaluable information
about pulse-coupled networks because the difference between
the former and the latter is just a matter of coordinate change.

E. FM Interactions

If the weakly pulse-coupled network consists of neurons
having nonresonant frequencies, then the corresponding phase
model is uncoupled. Thus, the long-term interactions between
nonresonant neurons can be “removed” by a piece-wise con-
tinuous change of variables. This mathematical result can be
explained in ordinary language as follows: Since the neurons
are weakly connected, any change in timing of firing of one
cell induces small changes in timing of another cell. Such
small changes can accumulate and become significant on a
time scale of many periods, or they can cancel each other and
remain small. When the neurons have nonresonant frequencies,
the changescanceleach other. In contrast, when the neurons
have resonant or nearly equal frequencies, the small changes
accumulate and become significant.

We see that whether or not two neurons interact depends
not only on the existence of synaptic connections between
them, but also on the relation between their frequencies. The
interaction is most effective when the frequencies are nearly
equal. We refer to such interactions as being frequency mod-
ulated (FM) and discuss them in detail in Section III, which
is aimed to the readers having no mathematical background.
There we discuss how FM interactions can provide a powerful
mechanism for multiplexing of neural signals.

F. Synchronization

Studying synchronization and other locking behavior in
pulse-coupled networks can be a daunting task. In Section IV
we show that it is a relatively simple task when we consider
phase models. Our major tool is the Ermentrout theorem [6],
which provides sufficient conditions for stability of synchro-
nized solutions. In Section VII we use the classical integrate-
and-fire model to illustrate how the theorem works. Our
analytical results are corroborated by computer simulations
and findings of other scientists who used alternative methods
discussed in Section I-B above. In particular, we confirm a
well-known fact that neither excitation, inhibition, nor synaptic
transmission delay alone contributes to synchronization, but
their interplay does.

G. Oscillatory Associative Memory

A sufficient condition for the existence of oscillatory as-
sociative memory in phase models is well known. It follows
from the Theorem 9.15 by Hoppensteadt and Izhikevich [14],
which we present in Section VI. There we extend the theorem
for pulse-coupled neurons. Thus, we obtain a simple criterion
to determine whether a given pulse-coupled network has the
associative memory. It turns out that the leaky integrate-and-
fire model does not satisfy the criterion. In attempt to make
a minimal adjustment, we discover a large class of simple
pulse-coupled networks that are guaranteed to have oscillatory
associative memory: They can memorize and reproduce non-
trivial temporal patterns in the same way the standard Hopfield
network does with static patterns.

H. Learning Through Modification of Transmission Delays

Connections between pulse-coupled neurons are determined
by two sets of parameters: the strengths and the delays. It
is commonly assumed that learning consists in modifying
the strength of connections, while the delays are either kept
constant or neglected. In Section VII we present a (complex-
conjugate Hebbian) learning rule that changes the delays
to memorize temporal patterns. The learning rule was de-
rived originally for weakly connected oscillators near multiple
Andronov–Hopf bifurcation [16], and it seems to work for
pulse-coupled oscillatory networks too.

II. THE PHASE MODEL

A. General Pulse-Coupled Neural Networks

Many pulse-coupled networks can be written in the follow-
ing form:

(1)

Here denotes the rescaled membrane potential of
the th neuron. The function describes its dynamics. When

reaches 1, theth neuron is said tofire a spike, and is reset
to the new value . This moment is marked as. The
dimensionless parameterdenotes the strength of connections
in the network. The function describes the effect of firing



510 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999

of the th neuron onto theth one: If fires, variable is
incremented by after some time delay . The
increment is produced by the Dirac delta functionsatisfying

for all , , and . Neither
nor are assumed to be continuous. A possible ambiguity of
the pulse-coupled network of the form (1) when two or more
neurons fire simultaneously is discussed in Appendix I-A.

A typical example of a pulse-coupled neural network is the
leaky integrate-and-fire model, which can be written in the
form (1) for

and (2)

where are some (synaptic) coefficients. A nontrivial
arises when the absolute refractory period is taken into

account; that is, the period immediately after the firing during
which the neuron is not sensitive to any input. Let
be the length of the refractory period, then

if
if

B. Weakly Connected Neural Networks

In this paper we assume that , which implies
that connections between neurons are weak. This assump-
tion follows from in vitro observation that amplitudes of
postsynaptic potentials (PSP’s) are around 0.1 mV, which is
small in comparison with the amplitude of an action potential
(around 100 mV) and the amplitude of the mean EPSP
necessary to discharge a quiescent cell (around 20 mV); see
detailed discussion by Hoppensteadt and Izhikevich [14, Sec.
1.3] who obtained an estimate for a
model of hippocampal granule cells usingin vitro data from
hippocampus [26].

We remark that we do not need infinitesimalfor our
manipulations below. For example, the phase model theorem
“1” is expressed in the form: There is an such that for
all . Most of the illustrations found in this paper are
simulations of integrate-and-fire networks for .

C. Periodic Spiking

We are interested in the case when each neuron

(3)

in the pulse-coupled network (1) can fire repeatedly without
any input from the other neurons. This happens when

for all . [Indeed, if for some
, then stops at .] One can easily find

the period

and the frequency

of such periodic spiking.

D. The Phase Model Theorem

Let be the solution of theth equation in the uncou-
pled system (3) starting from ; that is,

(4)

Obviously, is -periodic, and its firing occurs at the
times . Weak input from the other neurons
may delay or advance each firing thereby introducing an-
phase deviation (phase shift). Such deviations may accumulate
with each cycle and become significant on the time scale of
order . To take them into account, we introduce a slow
phase deviation variable . Here is the unit circle,
which can be thought of as the interval having points
zero and identified (glued).

Theorem 1—Phase Model For Weakly Pulse-Coupled Oscil-
lators: Consider the pulse-coupled system of the form (1) and
suppose that each ; that is, each neuron fires repeatedly.
Suppose that each synaptic transmission delayis a constant
that is independent from the strength of connections. Then,
there is an such that for all there is a piece-wise
continuous change of variables of the form

(5)

that transforms (1) into the phase model

(6)

where and is the slow time. Each parameter

accounts for frequency changes that are due to network con-
nections [constants are defined below in (9)]. Each con-
nection function has zero mean value and can be written
in one of the following forms:

• Equal Frequencies: If , then

(7)

where is the rescaled time delay

(8)

is a function, and

(9)

is a constant.
• Resonant Frequencies: If for some relatively

prime integers and , then

for some -periodic function that vanishes when the
order of resonance, , increases.
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Fig. 1. An illustration of the relation (5) between the actual solution,
x(t), of the pulse-coupled system (1) and its reconstruction using the
phase model (6). Simulations of the leaky integrate-and-fire neurons,
ai = 1; bi = 0:9; " = 0:02; see Section V.

• Nonresonant Frequencies: If for all nonzero
integers and , then

for all and .

The proof of the theorem involves averaging theory and is
given in Appendix I. A generalization of the theorem for the
case of nontrivial temporal synaptic transmission is discussed
in Appendix II.

In this paper we consider weakly pulse-coupled oscillators
having equal frequencies and possibly delayed interactions. In
this case function is given by (7). Obviously, it depends
on the phase difference , so that we can rewrite the
phase model (6) in the following “classical” form

(10)

Since we neglect the small order term , the relation (5)
illustrated in Fig. 1 is valid only on the fast time scale,, of
order . The relation may hold on the infinite time scale
if additional conditions are imposed, e.g., that (10) exhibits
frequency locking.

III. FM I NTERACTIONS AND THE NATURE OF NEURAL CODE

We see that the pulse-coupled neural network (1) can
be transformed into the phase model (6) by the change of
variables of the form (5). Synaptic connections from theth
neuron to the th one affect the value of the parameter
and the form of the function . The former determines the
“averaged” effect of the connection that is due to increased
excitation (or inhibition) converging to theth neuron. The
latter determines how the phase (timing of firing) of one
neuron affects that of the other one. We say that two neurons
interact when one of them can distinguish timing of another
one.

The form of depends on the relation between the
frequencies and . A seemingly counterintuitive fact is
that when the frequencies are nonresonant. It implies
that whether or not the neurons interact depends not only
on the existence of synaptic connections between them, but
also on the relation between their frequencies. A neuron can

Fig. 2. An illustration of FM interactions between two neurons: Whether
or not two interconnected neurons interact depends on the ratio of their
frequencies. Continuous bars denote the spiking activity of two neurons.
Dashed vertical bars denote firing when a brief perturbation is applied.Equal
Frequencies:Any changes in phase (timing) of firing of one neuron affect the
phase (timing) of the other one.Nonresonant Frequencies:A neuron is not
sensitive to changes in phase of the other neuron even though the neurons are
connected. (Simulations of two leaky integrate-and-fire neurons. Parameters:
" = 0:05; t 2 [0; 30]; bi = 0:5; gij = 1; a1 = 1; a2 = 1, or a2 = 1:15.)

dynamically turn on or off its communication with another
neuron simply by changing the frequency of spiking, without
changing the strength of synaptic connections.

We illustrate this issue in Fig. 2 using two coupled integrate-
and-fire neurons. When they have equal frequencies, they lock
(see continuous vertical bars in the upper part of the figure).
If a brief strong stimulus is applied to so that its phase is
shifted (dashed bars), the other neuron tracks the change by
acquiring a phase shift (compare continuous and dashed bars
for ). Since the neurons are weakly connected ( ),
the interaction between them is not instantaneous; i.e., it takes
a few spikes, but the neuronsdo communicatevia their phases.
In contrast, when they have nonresonant frequencies, one of
the neurons is not sensitive to phase of the other one. Such
neuronsdo not interact, at least on the time scale of
periods.

In Fig. 3 we consider another, less trivial example. We
model each column by three strongly connected leaky
integrate-and-fire neurons so that fires whenever or

do. Thus, the spike train of is a superposition of the
spike trains of and . The latter fire periodically with
the frequencies and , respectively, where or

is the column number. We also assume that
and . Notice that both neurons and in
the second column receive an identical (quasiperiodic) spike
train from the first column via . From Theorem 1 it
follows that can distinguish the part of the signal coming
from from the part coming from , because and

have the same frequencies. To verify this we perturb
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Fig. 3. Multiplexing of neural signals. Interaction between identical neuronsx11 and x21 does not interfere with the interaction between the neurons
x12 and x22 having different frequency even though all neurons use a single transmission linex13. When we change the phase ofx11 by applying a
phase resetting stimulus, the corresponding neuronx21 acquires a phase shift, butx22 does not (compare continuous and dashed bars).Parameters: Each
column consists of strongly connected leaky integrate-and-fire neurons (2) withbij = 1, a11 = a21 = 2, a21 = a22 = 2:3, and a13 = a23 = 0.
Connections between the columns" = 1=20 and time t 2 [0; 20] (from [18]).

the phase of the first neuron without changing the phase
of the second one. The old (new) activity is depicted as
continuous (dashed) bars in Fig. 3. From the figure we can
see that acquires a phase shift while does not. If
we changed the phase of , then would not acquire
a phase shift but would. Thus, the pairs of neurons

and oscillating with different frequencies
can communicate selectively using different channels but a
single transmission line. This is probably the simplest example
of multiplexing of neural signals.

We see that the frequency of a periodically spiking neuron
controls its communication with other neurons. We refer
to such communication as being frequency modulated (FM
interaction). In analogy with FM radio, we may say thatthe
frequency (mean firing rate) of a periodically spiking neuron
does not carry any information other than identifying a channel
of communication. Information (i.e., neural code) is carried
through modulations of interspike intervals, which are phase
deviations . They are also referred to as being frequency
modulations in electrical engineering literature.

Surprisingly, the result is much more general, and its
applicability goes far beyond pulse-coupled neural networks.
Hoppensteadt and Izhikevich [14, ch. 9] have proven this for
all neural systems satisfying only two assumptions: 1) each
unit is an autonomous oscillator and 2) the connections are
weak. (If any of these assumptions is violated, then we can

present counter-examples showing that FM interactions might
not take place.) This result was extended later [18] to include
oscillators having multifrequency autonomous rhythmic activ-
ity. In both cases each oscillator may describe dynamics of
an excitable dendritic spine, a single cell, a cortical column,
or entire brain structure, and consist of enormous number of
variables and parameters taking into account all known (or
still unknown) biophysical information. As soon as the two
assumptions are satisfied, the interactions become FM.

The universality of FM interactions may shed some light
on why the brain exhibits rhythmic activity, and why there
are so many frequencies. We hypothesize [13] thatneurons or
cortical columns need rhythmic activity to communicate selec-
tively. That is, they communicate only with those oscillators
that have appropriate frequencies. They do not communicate
with the other oscillators even though there might be synaptic
connections between them. Thus, various ensembles of oscil-
lators can process information without any cross-interference.
An oscillator (a neuron or a cortical column) may participate
in different ensembles simply by changing its frequency.

FM interactions might prove to be useful in design of
neurocomputers, since they can avoid the-connectivity
problem. Indeed, a conventional neurocomputer having
neurons must have at least connections [Fig. 4(a)],
which makes building such a computer for largeimpractical.
Now suppose that each neuron is a high-frequency oscillator
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(a)

(b)

Fig. 4. (a) A conventional neurocomputer havingn neurons (shaded cir-
cles) would have at leastn(n � 1)=2 connections and (b) an oscillatory
neurocomputer can have onlyn connections: from each neuron to a common
media (black circle). The neurons can communicate selectively by changing
the frequency,
i, of oscillation.

and the neurons communicate through a common medium
[Fig. 4(b)] so that there are only connections. Then any two
neurons can change dynamically the connection between them
by changing their frequencies. In particular, they can turn the
connections on and off. What we have proven here and in [13]
and [14] is that this mechanism would work regardless of the
technical details of how the neurons are connected, what their
design is, etc. A potential problem is that whenever a neuron
changes its frequency, it alters its connections with many other
neurons too. It is not clear yet how to cope with this effect
or to take advantage of it. In any case, programming such an
oscillatory neurocomputer would require new concepts going
beyond the Hopfield network paradigm.

IV. SYNCHRONIZATION: GENERAL THEORY

Since weakly pulse-coupled oscillators can be dynamically
partitioned into independent ensembles, it suffices to study in-
formation processing taking place within each such ensemble.
Without loss of generality we assume that the entire network is
a single ensemble; that is, we consider neurons having equal
frequencies. Due to the phase model theorem, it suffices to
consider the phase model (10).

The th and th neurons are said to besynchronizedwhen

where is some constant, and is the slow time.
If ( ), then synchronization is said to be

Fig. 5. Examples of various synchronization regimes.

in-phase (anti-phase). When differs from zero and ,
the synchronization is said to beout-of-phase; see Fig. 5
and [14, ch. 9] for more details. If every pair of neurons
is synchronized, then so is the entire network. Obviously, it
suffices to check that is synchronized with .

In terms of the voltages , the synchronization implies
that and fire simultaneously. It does not imply, though,
that for all , unless for all .
This makes studying synchronization in (10) much easier than
studying it in (1).

To find a synchronized solution in (10) one should find
constants and , such that

for all (11)

where . Then the synchronized solution has
the form

(12)

where is an arbitrary phase shift.
Let

denote the derivative of at .
Theorem 2—Ermentrout 1992:The synchronized solution

(12) is orbitally stable if all

and the matrix is irreducible; that is, the graph
defined by is complete.

For example, when we consider a network of identical
oscillators

then the in-phase synchronized solution always exists, and it
is stable when .

A generalization of the Ermentrout theorem for the case
when the functions are discontinuous at is discussed
in Section IV-B below.

The Ermentrout theorem provides only the sufficient condi-
tion for synchronization. Thus, synchronized regimes in (10)
may be possible in other circumstances.
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(a)

(b)

(c)

Fig. 6. Equilibria of (13) for various!.

A. Example: Two Neurons

It is usually difficult to find a solution to (11) when .
The case does not pose any problem, and can easily be
analyzed. Let be the phase difference between
two coupled neurons. Then

(13)

where

and

Some examples of are depicted in Fig. 9. Stable equilibria
of (13) correspond to synchronized solutions of the phase
model. Geometrically, the equilibria are the intersections of
the graph of and the horizontal line , as we illustrate
in Fig. 6. They are stable if the slope of the graph at the
intersection is negative. (Do not mix this condition with the
requirement of the Ermentrout theorem that derivatives of
are positive: and are different, in some sense opposite
functions.) When the parameter passes either or

, the synchronized solutions disappears via saddle-
node bifurcation on a limit cycle [see Fig. 6(c)], and the new
behavior is calleddrifting: The activity is either quasiperiodic
or high order locked; see Chapter 9 by Hoppensteadt and
Izhikevich [14] for detailed explanations.

B. Discontinuous

System (11) is usually easy to solve when functions are
discontinuous. Let be a point of discontinuity of ; that is

see left-hand side of Fig. 7. Whenever in (11), we
allow to assume any value betweenand so that the
system is solved. The Ermentrout theorem can still be applied,

Fig. 7. A discontinuous function can be approximated by a continuous one,
so thatHij() can assume any value betweena and b.

but instead of looking at the sign of derivative atto check
the stability, we require that .

Our motivation for this procedure is simple: We treat
discontinuous functions as continuous ones in a singular limit;
see right-hand side of Fig. 7. The inequality ensures
that the derivative at is positive.

Discontinuous functions arise frequently in applications
because the conditions and do
not have to be satisfied in the pulse-coupled networks (1) even
when and are continuous. The resulting discontinuity of

at is a mathematical consequence of the fact that
pulse-coupled neural networks of the form (1) are ambiguous
when two or more neurons fire simultaneously (see discussion
in Appendix I-A). Surprisingly, the discontinuity leads to the
following simple criterion for checking stability of in-phase
synchronized solutions.

Theorem 3—Stability of In-Phase Synchronized Solutions:
Consider pulse-coupled oscillators (1) having continuous func-
tions and at and and no transmission
delays. If the in-phase synchronized solution exists, and

(14)

for all and , then the solution is stable.
Since in-phase synchronized solutions (as well as antiphase

solutions) always exist when the neurons are identical, one
need only to check the condition (14) in this case. For example,
the condition is satisfied for integrate-and-fire neurons, which
implies that they synchronize in-phase.

Proof: We abuse notation below and use whenever
and whenever . From (8)

and (14) it follows that . Since there are no
transmission delays, all , and from (7) it follows that

and, hence, .
Discontinuities in the connection functions may result

in the following phenomena:

• super-convergence to synchronized solution;
• perfect synchrony;
• persistence to heterogeneity.

The easiest way to see this is to consider a pair of oscillators
and assume that the function in (13) has a discontinuity
at and is between and , as we depict in Fig. 8.
If is in some neighborhood of, then it takes a finite
amount of time to converge to it (i.e., super-convergence).
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Fig. 8. Discontinuities in functionsHij orH may lead to super-convergence
to perfect synchrony and persistence to heterogeneity (see details in the text).

After the convergence the solution for all (perfect
synchrony). Moreover, stays at even when we vary
the parameter (i.e., persistence to heterogeneity). These
properties of weakly pulse-coupled oscillators resemble those
of relaxation oscillators [32].

A nasty drawback of discontinuous functions is that the
solution may not be unique. Let us illustrate this issue using
system (11). Suppose each has a discontinuity at

(which is the case for integrate-and-fire neurons; see
Section V). Since each assumes many values, then so
does the parameter in the system

for all

which corresponds to in-phase synchronized solutions having
different frequencies. Whatever frequency is observed in actual
simulations of (1) depends on the algorithm used when two or
more neurons fire simultaneously; see the Appendix I-A, for
discussion of this issue.

V. SYNCHRONIZATION: EXAMPLES

Let us apply the theory described above to a number of
well-known pulse-coupled networks.

A. Integrate-and-Fire

Integrate-and-fire neurons provide one of the simplest ex-
ample of pulse-coupled networks [30]. Let denote
the rescaled membrane potential of theth neuron. A nonleaky
integrate-and-fire neuron is governed by the equation

until crosses the threshold value (the parameter
must be positive to ensure that). At this moment, which we
denote by , it pulls membrane potentials of the other neurons
by a fixed amount possibly bringing them to the threshold
too. Such system can be written in the form (1) where

and

Simple calculations show that

(Period)

(Frequency)

(The Solution)

[see (10)]

[see (13)]

see the top part of Fig. 9. Since , we see that such a
pulse-coupled network behaves as if it were uncoupled on the
time scale of order ; that is, the distance between successive
firings of the th and the th neurons does not change with
time; see illustration in Fig. 10. Behavior of such a neural
network is not interesting even when we introduce inhibitory
synapses or explicit synaptic transmission delays.

B. Leaky Integrate-and-Fire

A network of leaky integrate-and-fire neurons is described
by the system

where we require that so that each neuron is an
autonomous oscillator. Peskin [30], Mirollo and Strogatz [28],
Kuramoto [20], and many others have studied synchronization
phenomena in such a network.

1) Excitatory Connections:Suppose all . It is a
simple exercise to check that

See Fig. 9 for illustrations. Notice that each is discon-
tinuous at , and

This results in super-convergence to the in-phase synchronized
solution, which we illustrate in Fig. 11. Moreover, the solution
persists under small heterogeneity of the frequencies; see
Section IV-B. Mirollo and Strogatz [28] and Kuramoto [20]
obtained the same result using different methods.

Analysis of the shape of the functions can say more
about behavior of the integrate-and-fire neurons. For example,
the fact that the derivative of is negative implies that even
if a completely out-of-phase synchronized solution existed, it
would be unstable. (Indeed, it follows from the Ermentrout
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Fig. 9. Various functions for integrate-and-fire neurons.

Fig. 10. Simulation of n = 7 nonleaky integrate-and-fire neurons.
The network behaves as if the neurons were uncoupled. (Parameters:
ai = 1; bi = 0; " = 1=20; t 2 [0; 30].)

Fig. 11. Super-convergence to the in-phase synchronized solution in a net-
work of n = 7 integrate-and-fire neurons having instantaneous excitatory
connections. (Parameters:ai = 1; bi = 1=2; " = 1=20; t 2 [0; 30].)

theorem that any such solution would be stable for .)
Thus, a stable splay (merry-go-around) state cannot exist in
such a network.

Now suppose there is an explicit time delay , which
induces a phase shift in connection functions, as we depict
in Fig. 12. From the Ermentrout theorem it follows that the
in-phase synchronized solution becomes unstable in this case
since each . But many other stable solutions may
appear (see illustration in Fig. 13) including the asynchronous
states [1]. This is in agreement with the results obtained by
Coombes and Lord [3].

2) Inhibitory Connections:Suppose the synaptic connec-
tions are inhibitory; that is, all . Each connection
function looks like the one depicted in Fig. 14(a). The

Fig. 12. Explicit synaptic transmission delay (e.g., 1/3 of a period) induces
a phase shift (2�=3) in the connection functionHij corresponding to the
leaky integrate-and-fire neuron.

Fig. 13. Desynchronization of the integrate-and-fire network with an ex-
plicit transmission delay. In-phase synchronization is not a stable solution.
(Parameters:n = 8; ai = 1; bi = 1=2; � = 1=3; " = 1=20; t 2 [0; 30].)

in-phase synchronized solution continues to exist but becomes
unstable. Since for all , any antiphase or
out-of-phase synchronized solution, if exists, becomes stable.
This confirms the result of Nishuraet al. [29].

Let us introduce a small synaptic transmission delay. Then
each acquires a phase shift and look qualitatively similar
to the one depicted in Fig. 14(b). Since in this
case, the in-phase synchronized solution, if exists, becomes
stable (see Fig. 15), but there is no super-convergence, perfect
synchrony, and persistence to heterogeneity. Since in-phase
solution always exists in the case of two identical neurons,
we confirm the result of Van Vreeswijk and coauthors [34]
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(a)

(b)

Fig. 14. (a) FunctionHij for integrate-and-fire neurons with inhibitory
synapses and (b) the same function is phase-shifted by2�=3 due to the
synaptic transmission delay that takes a third of a cycle.

Fig. 15. Convergence to the in-phase synchronized solution in the inhibitory
integrate-and-fire network with explicit transmission delays. (Parameters:
ai = 1; bi = 1=2; � = 1=3; " = 1=20; t 2 [0; 30].)

that inhibition, not excitation, may synchronize neural firing
of two identical neurons having noninstantaneous synaptic
transmission.

3) What Matters in Neural Locking:Let us summarize
what we found so far. We study effect of excitation,
inhibition, and transmission delay on the dynamics of leaky
integrate-and-fire neurons. We confirm results of other authors
(who used different methods) thatneither of these factors
alone contributes to the in-phase synchronization, but their
combination does. For example, the in-phase state is super-
stable for excitatory instantaneous connections, but becomes
unstable or disappears when transmission delay is introduced
provided that the delay is not proportional to the period. In
contrast, the in-phase synchronized state is unstable when the
connections are inhibitory, but introduction of a transmission
delay can make it stable.

C. Leaky Integrate-and-Fire with Refractory Period

An obvious modification of the integrate-and-fire neuron is
an introduction of the absolute refractory period during which
the cell is not sensitive to any input. This results in piece-
wise constant function that is zero for all from some
neighborhood of ; see bottom of Fig. 9. One can modify
the integrate-and-fire neurons further and further to take into
account more and more biophysical information. This would
result in a pulse-coupled model that would be as complex and
cumbersome as the Hodgkin–Huxley neurons.

D. Class 1—Excitable Oscillators

Let us ask the following question:“Are there any neural
network models that are as simple as the integrate-and-fire

Fig. 16. Pulse-coupled canonical model (15) for Class 1 neural excitability.

model, yet as biologically plausible as Hodgkin–Huxley-type
models?” Remarkably,there are. More precisely, there are
pulse-coupled canonical models that possess the following
universal property: many biophysically detailed and biolog-
ically plausible Hodgkin–Huxley-type neural networks can
be transformed into the pulse-coupled canonical models by
a piece-wise continuous change of variables [19]. Thus, the
only difference between the pulse-coupled canonical models
and the biophysically detailed neural models is just a matter of
coordinate change. The only major requirement is that the bio-
physically detailed models exhibit Class 1 neural excitability
[11]; that is, they can fire with an arbitrary low frequency. As a
result, the question of biological plausibility of such canonical
models is replaced by the question of biological plausibility of
Class 1 neural excitability. This is the essence of the canonical
model approach developed in the book by Hoppensteadt and
Izhikevich [14].

Derivation of such pulse-coupled canonical models can be
found in [14] and [19]. It is based on the mathematical
techniques developed by Ermentrout and Kopell [4], [7] to
study parabolic bursting. The pulse-coupled canonical model
that corresponds to periodic spiking of identical neurons (see
[19]) can be written in the form (1)

(15)

The shape of the connection function is
depicted in Fig. 16. Notice that it is continuous and ,
which can be interpreted as follows: The neurons are not sensi-
tive to external inputs when they are in a process of generating
an action potential. Thus, such takes into account absolute
and relative refractory periods. It is amazing that suchwas
not “postulated,” “invented,” or “motivated by biology,” but
was obtained as a result of the Ermentrout–Kopell change of
variables applied to an arbitrary Class 1 excitable system.

System (15) can be transformed into the phase model (10).
It has the form

(16)

where

Notice that , which is depicted in Fig. 16, can be rep-
resented as . When (15) has
transmission delays, then there is an induced phase shift added
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to . In any case, the canonical model can be written in
the Kuramoto form [21]

(17)

where we incorporated into and into .
Thus, the Kuramoto model is canonical for Class 1 excitable
oscillators having delayed interactions.

Let us study the existence and stability of various syn-
chronized solutions in (16). Notice that each is an even
function. As a result, a network of two identical oscillators
can maintain an arbitrary phase shift because and

for all ; see Section IV-A. This agrees with the
result obtained in [19]. Since each , the in-phase
synchronized solution cannot be exponentially stable. In fact,
it is unstable when (see [19]). Both results confirm and
extend numerical [10] and analytical [4] findings that difficulty
to synchronize is a natural property of Class 1 excitable
oscillators that is relatively independent from the equations
that describe each cell. In this sense Class 1 excitable neurons
are quite different from the integrate-and-fire neurons.

As has been pointed out before [4], behavior of identical
Class 1 excitable oscillators is not generic in the sense that
small heterogeneity (different and/or ) or synaptic trans-
mission delay (phase shift of ) can change it significantly.
For example, in Section VII-D below we show that the Class
1 excitable oscillators can learn and reproduce the in-phase
synchronized state (as well as any other temporal pattern) by
modifying the transmission delays.

VI. OSCILLATORY ASSOCIATIVE MEMORY: GENERAL THEORY

Hoppensteadt and Izhikevich [14, Th. 9.15] have proven
the following result, which is an analog of Cohen–Grossberg
convergence theorem for nonoscillatory neurons:

Theorem 4—Convergence Theorem for Oscillatory Neural
Networks: Consider the phase model (10) and suppose that

and

(18)

for all . Then the network dynamics converge
to a limit cycle. On the limit cycle, all neurons oscillate
with equal frequencies and constant phase deviations. This
corresponds to synchronization of the network activity.

Since there can be many such limit cycles, the phase model
(10) and hence the pulse-coupled network (1) can act as a
multiple attractor type neural network; see Fig. 17. Whether
or not this property renders any advantages over the classical
Hopfield network (where attractors are just equilibria) is still
an open question.

The convergence theorem can be illustrated using the Ku-
ramoto model (17). The requirement (18) implies that

and

for all and . A learning rule that satisfies this requirement
is discussed later.

Fig. 17. Each memorized image is represented as a limit cycle attractor in
the phase space of the model (from [14]).

A. Integrate-and-Fire

It is easy to see that condition (18) cannot be satisfied for
corresponding to the integrate-and-fire networks consid-

ered above unless all . This does not imply,
though, that such networks have trivial associative properties
because the convergence theorem provides only a sufficient
condition. Below we modify the integrate-and-fire network so
that we can apply the convergence theorem and guarantee that
integrate-and-fire-type networks have oscillatory associative
memory. Moreover, we show that there can be many such
modifications.

B. Weakly Pulse-Coupled Oscillators

Below we consider the following pulse-coupled network:

(19)

where we take so that each oscillator has period
and frequency . We do not lose any generality, because
we prove a lemma in the Appendix that shows that nonconstant

could be transformed into constant ones by a continuous
change of variables.

Theorem 5—The Convergence Theorem For Weakly
Pulse-Coupled Oscillators:Consider the weakly pulse-
coupled network (19) and the corresponding phase model
(10). Let be an arbitrary odd function having period
1, see examples in Fig. 18. Let , and be
arbitrary constants. If the connection functions have the form

(20)

(21)

and

(mod 1) (22)

where (mod 1) means modulo 1. Then the condition (18) in
the convergence theorem for oscillatory neural networks is
satisfied. If, in addition

(23)

for all and , then the activity of the pulse-coupled network
(19) converges to an-neighborhood of a limit cycle. On the
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Fig. 18. Examples of odd functions having period 1 (see Theorem 5 for
details).

limit cycle all neurons fire with equal frequencies and constant
phase differences, which corresponds to synchronization of the
network activity.

Since there may be many such limit cycles, each for each
memorized image, the pulse-coupled network (19) can act as
a multiple attractor neural network provided thatis not very
large. The network can store and retrieve oscillatory images
in essentially the same way the Hopfield network does with
static images; see examples in Fig. 20.

Proof: From (8) it follows that

Since is odd, it has zero average, and from (9) it follows that

From (7) it follows that

where mod is the phase shift that is due to
the transmission delay . Obviously

is odd

(22)

which completes the proof of the first part of the theorem.
Equation (23) implies that for all and . The rest

follows from the phase model Theorem 1 and the convergence
Theorem 5.

It should be stressed that the theorem above provides only
the sufficient condition for the pulse-coupled neural network

Fig. 19. Functions gij corresponding to the pulse-coupled systems
(24)–(26), respectively.

(19) to have oscillatory associative memory. Thus, other pulse-
coupled networks that do not satisfy the assumptions of the
theorem should not be discarded immediately without an
additional analysis.

VII. OSCILLATORY ASSOCIATIVE MEMORY: EXAMPLES

A. Instantaneous Synaptic Transmission

Let us consider the case when there are no transmission
delays; that is, when all . We start from the following
question:“Are there any simple pulse-coupled neural networks
that are guaranteed to have oscillatory associative memory?”
Below is a list of some of them

(24)

(25)

(26)

where we used instead of because
when it fires a spike. The corresponding functions are
depicted in Fig. 19.

Each model has its own advantages and drawbacks. For
example, the seemingly simplest function
in (24) has a nonzero average . Therefore, the
condition (23) has the form

const independent of (27)

and can be interpreted as follows: All neurons in the network
have equal amount of “postsynaptic sites.” The condition may
easily be violated during learning period unless a special
learning rule is used.

System (25) is free from this drawback, but the function
changes its sign. This may seem to

be biologically implausible if one interprets positive as
“excitation” and negative as “inhibition.” However, there
is another interpretation:Negative delays the next firing
of the th neuron, while positive advances it. Whenever

changes signs implies that the effect of firing of theth
neuron onto theth neuron depends on the relative timing of
their firing. If in the system (25), and just fired
( ), then a firing of delays the next firing of . In
contrast, if is about to fire a spike ( ), then firing
of the th neuron advances this event. This occurs in many
biophysically detailed Hodgkin–Huxley-type models.
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Fig. 20. A pulse-coupled neural network (30) can memorize temporal patterns (in-phase, anti-phase, and out-of-phase synchronized solutions) by modifying
synaptic weightssij and transmission delays�ij . Parameters:" = 1=20; n = 8; t 2 [0; 30].

System (26) exhibits essentially the same behavior as (25),
but the connection function is con-
tinuous and . Such network does not
have nasty problems associated with discontinuities, such as
nonuniqueness of solutions; see Section IV-B. Moreover, we
find (but cannot explain) that this model learns out-of-phase
temporal patterns better than (25) does; see Fig. 20.

B. Learning Rule

Let us discuss possible learning rules for the pulse-coupled
networks for which the convergence theorem above is appli-
cable. To be as general as possible, we consider the networks
in the following form:

(28)

where is an odd function having period “1.” Without loss
of generality we assume that it changes signs from “+” to “”
when passes ; see examples in Fig. 19. We use
so that the condition (23) is always satisfied regardless of the
values of . The convergence Theorem 5 requires that

mod and

It is convenient to introduce a complex synaptic coefficient

Then, the requirement above means that the complex synaptic
matrix is self-adjoint; i.e.,

for all and . Notice, that this condition is general and does
not depend on form of the odd function.

The requirement that is self-adjoint arises naturally in
weakly connected networks near multiple Andronov–Hopf
bifurcations [14]–[16], for which a learning rule is well known:
Let the complex variable

denote the periodic activity of theth neuron (the neuron fires
when crosses the positive part of the real line). The
learning rule [14], [16] has the following simple form:

(29)

where and are some (small) positive parameters. The latter
has the meaning of the fading constant. Since we do not have
any better idea, we take the learning rule (29) and apply it to
pulse-coupled oscillators (28).

Suppose and fire incoherently. Then the product
assumes many values randomly, and from the averaging it
follows that , which implies thatthe connections
between incoherently firing neurons weaken.

Now suppose that and fire periodically with a constant
phase shift. For example, fires units of time after
does; that is

mod

Due to the special form of (28), we have

mod
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and hence

mod

for all . From

it follows that

where we neglected the small term . We see that

and mod

The former limit implies that the synaptic connection
strengthens. Let us show that the latter limit implies that the
neurons learn the phase shift . That is, whenever fires,

tends to fire with the memorized time delay. Indeed,
suppose , then there can be three cases.

• fires too early. This happens when .
At the moment fires, ,
hence , which causes a delay of the firing
of the th neuron.

• fires too late. Hence , hence
and , which causes

an advance in the firing of theth neuron.
• The neurons fire with exact time difference . Then

, and the difference is preserved.

Thus,the learning rule (29) memorizes not only correlation be-
tween the firings of the neurons, but also the phase information;
that is, the relative timing of their firings.

One may claim that (29) is not biologically plausible be-
cause it requires the knowledge of the presynaptic membrane
potential at all times. An obvious modification of (29),
which uses only the timing of the presynaptic spiking, has the
following form:

Here is incremented by whenever the th neuron
fires. Since such firings occur every units of time,
we can rewrite the equation above in the following form:

where the reset from to occurs when fires.

C. Transmission Delays: Timing Is Everything

Consider the pulse-coupled system (28) with nonzero trans-
mission delay constants

(30)

The condition (22) implies that in order to have oscillatory
associative memory, the transmission delaysand must
be in a certain relation with the parameters and .

When the delays are nonzero and fixed, the learning rule
may have the form

(31)

where the complex-valued parameters

and

compensate for the delays. Such learning rule allows the
network to memorize the phase information in the same way it
does if there were no delays (as we describe in the Section VI).

It is also feasible to consider the case when the parameters
and are fixed, but the transmission delays and

can be modified due to the learning. Let

be the complex-valued synaptic coefficient (notice the minus
sign). The learning rule has the form (31), but

and

compensate for the phase shift in. For example, when
, the parameters and are real, and

the rule produces the delays satisfying

mod

We interpret this as follows: It takes precisely one period (or a
multiple of a period) for a spike to travel from theth neuron
to the th neuron and back to theth one.

There can be many other learning rules for the pulse-coupled
network (30) so that it has an oscillatory associative memory.
A seemingly counterintuitive fact is that one can “teach”
the network by modifying only the synaptic transmission
delays without modifying the synaptic efficacy . This
emphasizes the importance of spike timing code as opposed
to mean firing rate code and puts a new twist into the idea of
“syn-fire” chains [2].

Example—Learning Temporal Patterns:To illustrate the
idea of learning via modifying the synaptic connections and
the transmission delays, we consider the pulse-coupled system
(30) for and for . This is the
same as to take the systems (25) and (26) with transmission
delays. Each synchronized temporal pattern can be represented
as a complex vector

...
C

and can be interpreted as follows: When neuronfires a
spike ( , therefore ), the second neuron
has membrane potential , etc. Obviously, the network
activity is synchronized (possibly out-of-phase) in this case.

Let be the set of temporal patterns to be memo-
rized; see illustration at the top of Fig. 20. We take the complex
synaptic matrix in the form
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where means transpose and complex-conjugate. Each co-
efficient

is easily computed, and the synaptic weight and
the delay Arg can easily be determined. The latter
is defined only when . Notice the similarity with the
Hebbian rule, in which all are real and, hence, there is no
need for conjugation. We set for all in our simulations
in Fig. 20.

From the figure we can see that each key patterbuilds
a periodic attractor in the phase space of the network. If the
initial condition is chosen near the attractor, then the network
converge to it. Notice that the convergence takes just a few
spikes, which is far below the theoretical limit of
spikes.

D. Class 1 Excitable Oscillators

Let us apply the convergence theorem for pulse-coupled
networks to the canonical model for Class 1 excitable neurons
having delayed interactions. Such a model can be written in
the form

(32)

The function can be represented
in the form (20) when

The condition (22) has the form

mod

and has an obvious interpretation: It takes half a cycle (plus
a multiple of the period) for a spike to travel from theth
neuron to the th one and back to theth. If, in addition,

for all and , and (27) holds, then the pulse-coupled
canonical model has an oscillatory associative memory. Again,
one can “teach” the strength of synaptic connectionsand/or
the synaptic transmission delays to memorize oscillatory
images.

We stress that whether or not the pulse-coupled network
(32) has any advantage over the classical Hopfield network
is still an open question. This is especially frustrating after
we take into account that (32) is a canonical model forall
weakly coupled Class 1 excitable oscillators regardless of the
equations that describe dynamics of each cell [19].

VIII. D ISCUSSION

The major purpose of this paper is to explore the link
between the theory of pulse-coupled neural networks and
the theory of weakly connected oscillators. Our major tool
is Theorem 1 according to which all weakly pulse-coupled
oscillatory networks of the form (1) can be converted into
a phase model of the form (6) by a piece-wise continuous
change of variables. Since the only difference between the

former and the latter is just a matter of coordinate change,
we study the phase model and deduce many interesting facts
about behavior of pulse-coupled networks.

A. FM Interactions

Each variable in the phase model (6) has the meaning of
timing of firing of the th neuron. Each function describes
how timing of spiking of the th neuron affects that of theth
one on the time scale of order . When the neurons have
nonresonant frequencies, the corresponding function
even when and are connected in the original pulse-
coupled network (1). This means that such connections are
functionally insignificant and do not affect dynamics of the
neurons. (They may contribute though to a slight increase or
decrease of the mean firing rate, since they affect the parameter

.)
We see that whether or not two weakly pulse-coupled neu-

rons interact depends not only on the existence of connections
between them, but also on the frequencies of their firing.
In analogy with FM radio, we say that connections between
such neurons are frequency modulated (FM). In particular,
we conclude that the mean firing rate (the frequency) of a
periodically spiking neuron does not carry any information
other than identifying a channel of communication. The infor-
mation (neural code) is carried via modulations of interspike
intervals.

B. Synchronization

To study the existence and stability of synchronized so-
lutions in the pulse-coupled model one should solve the
algebraic equation (11) and apply the Ermentrout theorem.
This relatively easy procedure provides a powerful tool for
analysis of pulse-coupled networks. In particular, it allows
us to confirm and extend results of others (see Section V)
regarding the locking dynamics of integrate-and-fire neurons:
Neither the sign of synaptic connections (i.e., excitation or
inhibition), nor the synaptic transmission delays alone con-
tribute to synchronization, but their combination does. We
also find that behavior of integrate-and-fire neurons may
be quite different from the behavior of other pulse-coupled
networks.

C. Oscillatory Associative Memory

One of the most important contributions of phase models
into the theory of pulse-coupled networks is the convergence
theorem for oscillatory neural networks; see Section VI. The
theorem provides a criterion for checking the existence of
oscillatory associative memory in pulse-coupled networks.
Moreover, it provides an algorithm for invention of pulse-
coupled networks that are guaranteed to have associative
properties. Such pulse-coupled networks can memorize and
reproduce temporal patterns in the same way a standard
Hopfield network does with stationary patterns. Learning in
such pulse-coupled networks may consist in modifying not
only the weights of synaptic connections, but also the duration
of synaptic transmission delays.
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D. Limitations

Our results are exact when the strength of synaptic connec-
tions is not very large; that is, when , where is
some parameter that depends on the details of the network. In
particular, almost all illustrations in this paper were made for

. To which extent the results are valid for largeis an
open question. We hope however that they can still provide an
adequate intuition into the behavior of strongly pulse-coupled
neural networks.

APPENDIX I
PROOF OF THEPHASE MODEL THEOREM FOR

WEAKLY PULSE-COUPLED OSCILLATORS

Let us prove the following general lemma, which can be
interpreted as follows: Any “leaky” pulse-coupled oscillatory
network can be transformed into “nonleaky” form by an
appropriate continuous change of variables.

Lemma 6: There is a continuous change of variables that
transforms (1) into

(33)

where each is the phase resetting curve defined below
(35). Firing a spike corresponds to crossing . At this
moment it increments by .

The factor is due to the fact that behaves like
when it crosses , and

Proof: Let , , be a solution of (3) starting
from . We represent it in the form

(34)

Since

the firing of the th neuron occurs when .
When neurons do not fire (i.e., when all ), we

differentiate both sides of (34) with respect toand divide
by to obtain

When the th neuron fires, , and is incremented
by . At this moment crosses . Since it
behaves like , it increments the phase variable
by . The function can be determined from

This leads to

(35)

which completes the proof of the lemma.

Even though the difference between (1) and (33) is a matter
of coordinate change, the latter may have certain advantages: It
has fewer nonlinear terms. Hence, it may be easier to analyze
and/or simulate.

A. Possible Discontinuity of

Each function may be discontinuous at when
or . Such a discontinuity, which

affects behavior of the system only when two or more neurons
fire simultaneously, reflects the ambiguity of the pulse-coupled
system (1) when neurons fire simultaneously.

Let us illustrate this issue when and
and fire simultaneously. In practice they never fire

simultaneously, so we have at the moment of firing.
Suppose fires first. Whether it advances or delays is
irrelevant, because the spike from theth neuron arrives when

has already crossed . The increment of is

(36)

in this case. In contrast, if fires first, it increments
by , which is different from (36). Therefore,
it is not clear what value we should use if theydo fire
simultaneously. The apparent contradiction is reflected in
discontinuities of and in Theorem 1.

B. Phase Deviation Variables

Let us represent each in the form

(37)

where is the phase deviation from the natural
oscillation . It accounts for modulations of the interspike
intervals that are due to the weak inputs from the other
neurons. To determine the phase, and hence the voltage
of the th neuron, it suffices to determine its phase deviation

. Knowing phase deviations provides complete information
about behavior of the network.

We rewrite the phase model (33) in terms of phase devia-
tions . For this we substitute (37) into (33) to obtain

Averaging theory [14, Sec. 9.3] provides a nearly identical
change of variables (valid for all less than certain )

(38)

that transforms this system into the form

(39)

where , is the slow time, and is
the “average” of the term given by

(40)

It depends not only on the form of , but also on the resonant
relations between the frequencies and .
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C. Equal Frequencies

Let us consider the simplest case when
for some . (The case is considered in Section I-F
below.) Let be the period of oscillation. Then
(40) converges to the integral

where , and we do not change the integration
limits because is -periodic. Thus, the system (39) can
be written in the form

where is the rescaled transmission delay. Let
be the slow time. Then

and we rewrite the system above in the form

Here we implicitly assumed that the delay constants,, are of
the same order of magnitude as the periods. In this case the
delayaffects onlythe small term in the equation above.
This seems to be a universal principle in the theory of weakly
connected oscillators [5], [14]. In contrast, if the delay is long
enough and comparable with periods, then the averaged
equation above does acquire an explicit time delay [17].

D. Resonant Frequencies

We say that the frequencies and are resonantif

for some relatively prime integersand . One can prove an
analog of [14, Th. 9.6 or 9.12] to show that the average
can be represented in the form

(41)

for some -periodic function , which approaches the
constant defined below when the order of the resonance

increases.
Indeed, since , (40) converges to the integral

Let us check that the sum is a -periodic function of .
For this notice that and are relatively prime, therefore,
the set

mod mod

is a permutation of the set

Hence, the sum can be rearranged in the form

where is some -periodic function. Let
, then is -periodic, and (41) holds.

If we treat (or ) as the rectangular method approxi-
mation to the integral of with the integration step ,
then we can conclude that

(42)

that is, approaches a constant when the order of the
resonance increases.

E. Nonresonant Frequencies

We say that the frequencies and arenonresonantif

for any nonzero integers and . In this case the integral (40)
converges to the constant

The proof follows from the ergodic theory and is provided
elsewhere. Intuitively, it also follows from (42) when .

Finally, we can write the averaged phase model in the form
(6), where

is a connection function having zero mean value, and

From (34), (37), and (38) it follows that

We depicted typical and in Fig. 1.
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F. Nearly Equal Frequencies

We can relax the requirement from Section I-C and assume
that all

where are frequency deviations. Thus, we consider a weakly
heterogeneous network. Applying transformations (37) and
(38) as if all were zeros, we get

This system can be written in the form (6) if we incorporate
into .

APPENDIX II
GENERALIZATION: TEMPORAL SYNAPTIC TRANSMISSION

The phase model theorem 1 can easily be extended to
pulse-coupled networks having nontrivial temporal synaptic
transmission. Below we summarize the theory for nearly
identical neurons. Our exposition is based on [34].

If neurons experience firings of other neurons as brief
increments or decrements of their membrane potentials, then
we can use Dirac delta functions and write the pulse-coupled
system in the form (1). In contrast, when the postsynaptic
effect is extended in time (e.g., it has slow rise), then the
pulse-coupled network should be written in the form

(43)

where denotes the time of last spiking of theth neuron,
and is some function that describes the temporal effect
of synaptic transmission. For example, can be the alpha
function

describing the postsynaptic conductance. Corresponding
has the form

where is some constant. It is commonly assumed
that when is greater than the period of the
th oscillator, which means that the secretion of synaptic

transmitter due to the incoming spike is much greater than
that due to the previous spikes.

In general, each is a vector describing the membrane
potential, ion conductances, and other electro-physiological
characteristics of neurons. In this case one should use the
Malkin theorem [14, Th. 9.2] to convert (43) into the phase
model (10).

When all are scalars, and the neurons have nearly
identical frequencies , then the phase model
theorem 1 can be proved [34], but the functions defined
in (8) have the following form

where is the common period.
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