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a b s t r a c t

The original rough set model was developed by Pawlak, which is mainly concerned with
the approximation of sets described by a single binary relation on the universe. In the view
of granular computing, the classical rough set theory is established through a single gran-
ulation. This paper extends Pawlak’s rough set model to a multi-granulation rough set model
(MGRS), where the set approximations are defined by using multi equivalence relations on
the universe. A number of important properties of MGRS are obtained. It is shown that
some of the properties of Pawlak’s rough set theory are special instances of those of MGRS.

Moreover, several important measures, such as accuracy measure a, quality of approxima-
tion c and precision of approximation p, are presented, which are re-interpreted in terms of a
classic measure based on sets, the Marczewski–Steinhaus metric and the inclusion degree
measure. A concept of approximation reduct is introduced to describe the smallest attribute
subset that preserves the lower approximation and upper approximation of all decision
classes in MGRS as well. Finally, we discuss how to extract decision rules using MGRS.
Unlike the decision rules (‘‘AND” rules) from Pawlak’s rough set model, the form of decision
rules in MGRS is ‘‘OR”. Several pivotal algorithms are also designed, which are helpful for
applying this theory to practical issues. The multi-granulation rough set model provides an
effective approach for problem solving in the context of multi granulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory, originated by Pawlak [16,17], has become a well-established mechanism for uncertainty management
in a wide variety of applications related to artificial intelligence [2,5,6,11,20,23,24,31,32,41]. One of the strengths of rough
set theory is that all its parameters are obtained from the given data. This can be seen in the following paragraph from [16]:
‘‘The numerical value of imprecision is not pre-assumed, as it is in probability theory or fuzzy sets – but is calculated on the
basis of approximations which are the fundamental concepts used to express imprecision of knowledge”. In other words,
instead of using , the rough set data analysis (RSDA) utilizes solely the granularity structure of the given data, expressed as
classes of suitable equivalence relations.

Knowledge representation in the rough set model is realized via information systems (IS) which are a tabular form of an
OBJECT ? ATTRIBUTE VALUE relationship, similar to relational databases. An information system is an ordered triplet
S ¼ ðU;AT; f Þ, where U is a finite non-empty set of objects, AT is a finite non-empty set of attributes (predictor features),
and fa : U ! Va for any a 2 AT with Va being the domain of an attribute a. For any x 2 U, an information vector of x is given
. All rights reserved.
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by Inf ðxÞ ¼ fða; faðxÞÞja 2 ATg. In particular, a target information system is given by S ¼ ðU;AT; f ;D; gÞ, where D is a finite non-
empty set of decision attributes and gd : U ! Vd for any d 2 D with Vd being the domain of a decision attribute d.

If Q is a set of predictor features and d a decision attribute, then RSDA generates rules of the form
1 In d
termina

2 In a
achievin
^
q2Q

xq ¼ mq ) xd ¼ m0
d _ xd ¼ m1

d _ � � � _ xd ¼ mk
d; ð1Þ
where xq ¼ mq denotes that the attribute value of object x under attribute q is equal to mq, and xd ¼ mr
d (r ¼ 1;2; . . . ; k) rep-

resents that the attribute value of object x under decision attribute d equals to mr
d (r ¼ 1;2; . . . ; k). Clearly, the form of deci-

sion rules is ‘‘AND” rules, i.e., conjunction operations in between the descriptions of condition attributes should be
performed.

In the past 10 years, several extensions of the rough set model have been proposed in terms of various requirements, such
as the variable precision rough set (VPRS) model (see [43]), the rough set model based on tolerance relation (see [7–9]), the
Bayesian rough set model (see [33]), the fuzzy rough set model and the rough fuzzy set model (see [1,34,35]). In the view of
granular computing (proposed by Zadeh [40]), a general concept described by a set is always characterized via the so-called
upper and lower approximations under a single granulation, i.e., the concept is depicted by known knowledge induced from
a single relation (such as equivalence relation, tolerance relation and reflexive relation) on the universe. However, this ap-
proach to describing a target concept is mainly based on the following assumption:

If P and Q are two sets from predictor features and X # U is a target concept, then the rough set of X is derived from the
quotient set U=ðP [ QÞ. In fact, the quotient set is equivalent to the formula
dP [ Q ¼ fPi \ Q j : Pi 2 U=P; Qj 2 U=Q ; Pi \ Pj – Øg:
It implies the following two ideas:

(1) We can perform an intersection operation between any Pi and Qj.
(2) The target concept is approximately described by using the quotient set U=ðP [ QÞ.

In fact, the target concept is described by using a finer granulation (partitions) formed through combining two known
granulations (partitions) induced from two-attribute subsets. Although it generates a much finer granulation and more
knowledge, the combination/fining destroys the original granulation structure/partitions.

In general, the above assumption cannot always be satisfied or required in practice. In the following, several practical
cases are given to illustrate its restrictions.

Case 1. In some data analysis issues, for the same object, there is a contradiction or inconsistent relationship between its
values under one attribute set P and those under another attribute set Q. In other words, we cannot perform the
intersection operations between their quotient sets and the target concept cannot be approximated by using
U=ðP [ QÞ.

Case 2. In the process of some decision making, the decision or the view of each of decision makers may be independent
for the same project (or a sample, object and element) in the universe. In this situation, the intersection operations
between any two quotient sets will be redundant for decision making.

Case 3. To extract decision rules from distributive information systems1 and groups of intelligent agents2 through using
rough set approaches, knowledge representation and rough set approximations should be investigated. For the reduc-
tion of the time complexity of rule extractions, it is unnecessary for us to perform the intersection operations in
between all the sites in the context of distributive information systems.

In these circumstances, we often need to describe concurrently a target concept through multi binary relations (e.g.
equivalence relation, tolerance relation, reflexive relation and neighborhood relation) on the universe according to a user’s
requirements or targets of problem solving. In the literature [18], to more widely apply rough set theory to practical issues, a
simple multi-granulation rough set model is proposed, based on multi equivalence relations. Furthermore, Qian et al. illu-
minated several basic views for establishing a multi-granulation rough set model in the context of incomplete information
systems [19].

In the view of granular computing, an equivalence relation on the universe can be regarded as a granulation, and a par-
tition on the universe can be regarded as a granulation space [13,14,20,22,37–39]. Hence, the classical rough set theory is
based on a single granulation (only one equivalence relation). Note that any attribute set can induce a certain equivalence
relation in an information system.

The main objective of this paper is to extend Pawlak’s single-granulation rough set model to a multi-granulation rough set
model (MGRS), where the set approximations are defined by using multi equivalence/tolerance relations on the universe. The
ata mining and knowledge discovery, we are often faced with such a problem in which there are many information systems from various site and
l unit. These information systems can be called distributive information systems [27–30].
rtificial intelligence, an intelligent agent is an autonomous entity which observes and acts upon an environment and directs its activity towards
g goals (i.e. it is rational). Intelligent agents are often described schematically as an abstract functional system similar to a computer program [25,26].
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rest of the paper is organized as follows. Some preliminary concepts in Pawlak’s rough set theory such as the lower approx-
imation, upper approximation, accuracy measure and degree of dependency are briefly reviewed in Section 2.

In Section 3, for a complete information system, based on multi equivalence relations, an extension of Pawlak’s rough set
model is obtained, where a target concept is approximated by using the equivalence classes induced from multi-granula-
tions. A detailed algorithm is designed to compute the lower approximation of a target concept in complete information sys-
tems. And a number of important properties of MGRS are investigated. It is shown that some of the properties of Pawlak’s
rough set theory are special instances of those of MGRS. Several important measures in MGRS, such as accuracy measure a,
quality of approximation c and precision of approximation p, are presented, which are re-interpreted in terms of a classic mea-
sure based on sets, the Marczewski–Steinhaus metric, and the inclusion degree measure. An importance measure of lower
approximation and an importance measure of upper approximation are introduced for evaluating the significance of a con-
dition attribute with respect to the decision attribute in complete target information systems.

In Section 4, a concept of approximation reduct is introduced to describe the smallest attribute subset that preserves the
lower approximation and upper approximation of all decision classes in MGRS. The notion is based on the so-called upper
approximation reduct and lower approximation reduct. An approximation core is employed to describe the intersection set
of all approximation reducts. Based on this concept, we discuss how to extract decision rules from a complete target infor-
mation system. Unlike decision rules (‘‘AND” rules) from Pawlak’s rough set model, the form of decision rules in MGRS is
‘‘OR”. Furthermore, their computational methods are presented, which are helpful for applying this theory in practical issues.

Finally, Section 5 concludes the paper.
2. Pawlak’s rough set theory

Throughout this paper, we assume that the universe U is a finite non-empty set.
Let us recall a few facts about partitions and equivalence relations. Suppose that bP is a partition of U induced from the

attribute set P in an information system. If x 2 U, we let bPðxÞ be the class of bP containing x, and hbP the equivalence relation
associated with bP , i.e.,
xhbP y() bPðxÞ ¼ bPðyÞ: ð2Þ
Rough set data analysis is based on the conviction that knowledge about the world is available only up to a certain gran-
ularity, and that granularity can be expressed mathematically by partitions and their associated equivalence relations [13].

If X # U and bP is a partition of U, then the lower approximation (of X by bP) is defined as
XbP ¼[fY 2 bP : Y # Xg ð3Þ
and the upper approximation as
X
bP ¼[fY 2 bP : Y \ X – Øg: ð4Þ
A pair of the form hXbP ;XbP i is called a rough set. Obviously, XbP ¼ U n ð�XbP Þ, i.e., the upper approximation can be expressed
by using the set complement and the lower approximation.

The area of uncertainty or boundary region is defined as
@bP ðXÞ ¼ XbP n XbP : ð5Þ
To measure the imprecision of a rough set, Pawlak [16] recommended for X – Ø the ratio
aðbP ;XÞ ¼ jXbP j
jXbP j ¼

jXbP j
jUj � jð� XÞbP j ; ð6Þ
which is called the accuracy measure of X by bP . It characterizes the degree of completeness of our knowledge about X, given
the granularity of bP . This measure depends not only on the approximation of X, but on the approximation of �X as well.

Suppose that two views of the world are given by the partitions bP and bQ of the universe U, with associated equivalence
relations hbP and hbQ . If a class Pi of bP is a subset of a class Qj of bQ , then Pi is called deterministic with respect to bQ , or just
deterministic, if bQ is understood.

A frequently applied measure for this situation is the quality of approximation of bQ by bP , also called the degree of depen-
dency. It is defined as
cðbP ; bQ Þ ¼P XbP��� ��� : X 2 bQn o
jUj ; ð7Þ
which evaluates the deterministic part of the rough set description of bQ by counting those elements that can be re-classified
to blocks of bQ with the knowledge given by bP .
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In the rough set data analysis, the measure of importance of condition attributes B # AT with respect to decision attributes
D is defined as cðAT;DÞ � cðAT n B;DÞ. In particular, when B ¼ fag; cðAT;DÞ � cðAT n a;DÞ is the measure of importance of attri-
bute a 2 AT with respect to D.

For an information system S ¼ ðU;AT; f Þ and B # AT , if bB ¼ cAT and dB n fbg – cAT for any b 2 B, then B is called a reduct
of S. Furthermore, let fBi : i 6 lg be the set of all the reducts of S, then we call B ¼

Tl
i¼1Bi the core of this information

system.
For a target information system S ¼ ðU;AT; f ;D; gÞ; PosATðDÞ ¼

S
X2bD X bAT

is called a positive region of D with respect to AT.

For B # AT, if PosBðDÞ ¼ PosATðDÞ and PosBnfagðDÞ– PosATðDÞ for any a 2 B, then B is called a relative reduct of S. Furthermore,
let fBi : i 6 lg be the set of all the relative reducts of S, then we call B ¼

Tl
i¼1Bi the relative core of this target information

system.
If every class of bQ is a union of classes of bP , i.e. hbP # hbQ , then we say that bP is finer than a partition bQ , and write bP � bQ . In

particular, the identity partition is the partition containing only singleton sets, the universal partition only has the universe set.
The former is the finest partition on any non-empty set, and the latter is the roughest partition on the universe U.

3. MGRS in complete information systems

For an information system, any attribute domain Va may contain special symbol ‘‘�” to indicate that the value of an attri-
bute is unknown. Here, we assume that an object x 2 U possesses only one value for an attribute a; a 2 AT . Thus, if the value
of an attribute a is missing, then the real value must be from the set Va n f�g. Any domain value different from ‘‘�” will be
called regular. A system in which values of all attributes for all objects from U are regular (known) is called complete, and it is
called incomplete otherwise [7–10,12]. In particular, S ¼ ðU;AT; f ;D; gÞ is called a complete target information system if val-
ues of all attributes AT and D for all objects from U are regular (known), where AT is called the conditional attributes and D is
called the decision attributes.

Let S ¼ ðU;AT; f Þ be a complete information system. Each subset of attributes P # AT determines a binary indiscernibility
relation INDðPÞ on U:
Table 1
A comp

Proje

e1

e2

e3

e4

e5

e6

e7

e8
INDðPÞ ¼ fðx; yÞ 2 U � U : 8a 2 P; faðxÞ ¼ faðyÞg: ð8Þ
The relation INDðPÞ; P # AT , is an equivalence relation hbP and constructs a partition bP of U.

Example 3.1. Here, we employ an example to illustrate some concepts of a complete target information system and
computations involved in our proposed MGRS. Table 1 depicts a complete target information system containing some
information about an emporium investment project. Locus, Investment and Population density are the conditional attributes of
the system, whereas Decision is the decision attribute. (In the sequel, L; I; P and D will stand for Locus, Investment, Population
density and Decision, respectively.) The attribute domains are as follows: VL ¼ fgood; common; badg;VI ¼ fhigh; lowg;
VP ¼ fbig; small;mediumg and VD ¼ fYes;Nog.
3.1. Rough set approximation

In this subsection, we first discuss the approximation of a set by using two equivalence relations on the universe, i.e., the
target concept is described by two granulation spaces.

Definition 3.1 [18]. Let S ¼ ðU;AT; f Þ be a complete information system, bP; bQ be two partitions on the universe U, and X # U.
The lower approximation and the upper approximation of X in U are defined by the following
XbPþbQ ¼ fx : bPðxÞ# X or bQ ðxÞ# Xg ð9Þ
and
X
bPþbQ ¼� ð� XÞbPþbQ ; ð10Þ
lete target information system about emporium investment project.

ct Locus Investment Population density Decision

Common High Big Yes
Bad High Big Yes
Bad Low Small No
Bad Low Small No
Bad Low Small No
Bad High Medium Yes
Common High Medium No
Good High Medium Yes
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The area of uncertainty orboundary region is defined as
@bPþbQ ðXÞ ¼ XbPþbQ n XbPþbQ :

Remark. From Eqs. (9) and (10), it can be seen that the lower approximation in MGRS is defined through using the equiv-
alence classes induced by multi independent equivalence relations, whereas standard rough lower approximation is repre-
sented via those derived by only one equivalence relation. Each of the upper approximations in MGRS and SGRS can be
characterized by the complementary set of the lower approximation of the complementary set of the target concept. In fact,
if we perform an intersection operation between two equivalence partitions and use these new obtained classes to approx-
imation a given target concept, then MGRS will generate standard rough set model. That is to say, the difference between
standard rough lower and upper approximations and multi-granulation lower and upper approximations is precisely caused
by two different approximation methods.

We will illuminate the rough set approximation based on multi-granulations and the difference between MGRS and Paw-
lak’s rough set theory through the following example and Proposition 3.1.

Example 3.2 (Continued from Example 3.1). Let X ¼ fe1; e2; e6; e8g. Three partitions are induced from Table 1 as follows:
bL ¼ ffe1; e7g; fe2; e3; e4; e5; e6g; fe8gg;bPffe1; e2g; fe3; e4; e5g; f; e6; e7; e8gg

and
 dL [ P ¼ ffe1g; fe2g; fe3; e4; e5g; fe6g; fe7g; fe8gg:
By computing, we have that
XbLþbP ¼ fx : bLðxÞ# X or bPðxÞ# Xg ¼ fe8g [ fe1; e2g ¼ fe1; e2; e8g;

X
bLþbP ¼� ð� XÞbLþbP ¼� fØ [ fe3; e4; e5gg ¼ fe1; e2; e3; e4; e5; e6; e7; e8g \ fe1; e2; e6; e7; e8g ¼ fe1; e2; e6; e7; e8g:
But, the lower approximation and the upper approximation of X based on Pawlak’s rough set theory are as follows:
XcL[P
¼ fY 2 dL [ P : Y # Xg ¼ fe1; e2; e6; e8g;

X
cL[P ¼ fY 2 dL [ P : Y \ X – Øg ¼ fe1; e2; e6; e8g:
Obviously,
XbLþbP ¼ fe1; e2; e8g# fe1; e2; e6; e8g ¼ XcL[P
;

X
bLþbP ¼ fe1; e2; e6; e7; e8g � fe1; e2; e6; e8g ¼ X

cL[P :
As a result of this example, we have the following proposition.

Proposition 3.1. Let S ¼ ðU;AT; f Þ be a complete information system, bP ; bQ be two partitions induced from the attributes P and Q,
respectively, and X # U. Then, XbPþbQ # X cP[Q

and XbPþbQ � X cP[Q .

Proof

(1) For any x 2 XbPþbQ , from Definition 3.1, it follows that x 2 bPðxÞ and x 2 bQ ðxÞ. Hence, x 2 bPðxÞ \ bQ ðxÞ. ButbPðxÞ \ bQ ðxÞ 2 dP [ Q for any x 2 U, and XcP[Q
¼
S
fY 2 dP [ Q : Y # Xg from the definition. Therefore, x 2 XcP[Q

, i.e.,
XbPþbQ # XcP[Q

.

(2) From Pawlak’s rough set theory, we know XcP[Q ¼� ð� XÞcP\Q
. Applying the result of (1), we have that

XcP[Q ¼� ð� XÞcP[Q
# � ð� XÞbPþbQ ¼ XbPþbQ , i.e., XbPþbQ � XcP[Q .
This completes the proof. h

Corollary 3.1. @bP ðXÞ# @bPþbQ ðXÞ and @bQ ðXÞ# @bPþbQ ðXÞ.
The following Fig. 1 shows that the difference between Pawlak’s rough set model and the multi-granulation rough set

model.

In Fig. 1, the bias region is the lower approximation of a set X obtained by a single granulation P [ Q , which is expressed
by the equivalence classes in the quotient set U=ðP [ QÞ, and the shaded region is the lower approximation of X induced by
two granulations P þ Q , which is characterized by the equivalence classes in the quotient set U=P and the quotient set U=Q
together.
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Fig. 1. Difference between Pawlak’s rough set model and MGRS.
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Just from the definition of approximations, one can get the following properties of the lower and upper approximations.

Proposition 3.2. Let S ¼ ðU;AT; f Þ be a complete information system, bP ; bQ be two partitions induced by the attributes P and Q,
respectively, and X # U. The following properties hold

(1) XbPþbQ # X # XbPþbQ ;

(2) ØbPþbQ ¼ ØbPþbQ ¼ Ø and UbPþbQ ¼ UbPþbQ ¼ U;

(3) ð� XÞbPþbQ ¼� XbPþbQ and ð� XÞbPþbQ ¼� XbPþbQ ;

(4) XbPþbQbPþbQ ¼ XbPþbQbPþbQ ¼ XbPþbQ ;

(5) XbPþbQbPþbQ ¼ XbPþbQbPþbQ ¼ XbPþbQ ;

(6) XbPþbQ ¼ XbP [ XbQ ;

(7) XbPþbQ ¼ XbP \ XbQ ;

(8) XbPþbQ ¼ XbQþbP and XbPþbQ ¼ XbQþbP .

Proof. If P ¼ QðP;Q # ATÞ, then (9) degenerates into XbP ¼ fY 2 bP : Y # Xg, and (10) degenerates into
XbP ¼ fY 2 bP : Y \ X – Øg. Obviously, they are the same as the lower approximation and the upper approximation of Pawlak’s
rough set theory [16], respectively. Hence, the terms (1)–(8) hold.

If P – QðP;Q # ATÞ, we prove them as follows:

(1a) Let x; y 2 XbPþbQ ðx; y 2 UÞ. Then, bPðxÞ# X and bQ ðxÞ# X. But x 2 bPðxÞ and y 2 bQ ðyÞ. Hence, x; y 2 X and XbPþbQ # X.

(1b) Let x; y 2 X. Then, x 2 bPðxÞ \ X and y 2 bQ ðyÞ \ X, i.e., bPðxÞ \ X – Ø and bQ ðyÞ \ X – Ø. Hence, x; y 2 XbPþbQ and
X # XbPþbQ .

(2a) From (1), we know that ØbPþbQ # Ø and Ø # ØbPþbQ (because the empty set is included in every set). Therefore,
ØbPþbQ ¼ Ø.

(2b) Suppose ØbPþbQ – Ø. Then, there exists x such that x 2 ØbPþbQ – Ø. Hence, bPðxÞ \ Ø – Ø. But bPðxÞ \ Ø ¼ Ø. It contra-
dicts the assumption. So, ØbPþbQ ¼ Ø.

(2c) From (1), we know that UbPþbQ # U. And if x 2 U, then bPðxÞ# U and bQ ðxÞ# U. Hence, x 2 UbPþbQ and U # UbPþbQ . Thus,
UbPþbQ ¼ U.

(2d) From (1), one can get that U # UbPþbQ . And UbPþbQ # U hold clearly. Thus, UbPþbQ ¼ U.

(3) From (10), ð� XÞbPþbQ ¼� XbPþbQ is obvious. Let X ¼� X. Then, ð� XÞbPþbQ ¼� ð� ð� XÞÞbPþbQ ¼� XbPþbQ .

(4a) From (1), we know that XbPþbQbPþbQ # XbPþbQ . If x 2 XbPþbQ , then bPðxÞ; bQ ðxÞ# X. Hence, bPðxÞbPþbQ # XbPþbQ and

bQ ðxÞbPþbQ # XbPþbQ . But bPðxÞbPþbQ ¼ bPðxÞ and bQ ðxÞbPþbQ ¼ bQ ðxÞ. Thus, bPðxÞ; bQ ðxÞ# XbPþbQ and x 2 XbPþbQbPþbQ . Hence, we have

that XbPþbQ ¼ XbPþbQbPþbQ .
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(4b) From (1), XbPþbQ # XbPþbQbPþbQ hold. If x 2 XbPþbQbPþbQ , then bPðxÞ \ XbPþbQ – Ø and bQ ðxÞ \ XbPþbQ – Ø, i.e., there exist y 2 bPðxÞ
and z 2 bQ ðxÞ such that y 2 XbPþbQ and z 2 XbPþbQ . Hence, bPðyÞ# X; bQ ðzÞ# X. But bPðyÞ ¼ bPðxÞ and bQ ðzÞ ¼ bQ ðxÞ. Thus,bPðxÞ# X; bQ ðxÞ# X and x 2 XbPþbQ . Hence, we have that XbPþbQ � XbPþbQbPþbQ . Therefore, XbPþbQ ¼ XbPþbQbPþbQ .

(5a) From (1), XbPþbQ # XbPþbQbPþbQ hold. If x 2 XbPþbQbPþbQ , then bPðxÞ \ XbPþbQ – Ø and bQ ðxÞ \ XbPþbQ – Ø. For some

y 2 bPðxÞ; y 2 XbPþbQ , and some z 2 bQ ðxÞ; z 2 XbPþbQ , we have that bPðyÞ \ X – Ø and bQ ðzÞ \ X – Ø. But bPðxÞ ¼ bPðyÞ andbQ ðxÞ ¼ bQ ðzÞ. Thus, bPðxÞ \ X – Ø; bQ ðxÞ \ X – Ø. That is to say, x 2 XbPþbQ hold, which yields XbPþbQ � XbPþbQbPþbQ . There-

fore, we have that XbPþbQ ¼ XbPþbQbPþbQ .

(5b) From (1), we know XbPþbQ � XbPþbQbPþbQ . If x; y 2 XbPþbQ , then bPðxÞ \ X – Ø; bQ ðyÞ \ X – Ø. Thus, bPðxÞ# XbPþbQ andbQ ðyÞ# XbPþbQ (because if x0 2 bPðxÞ, then bPðx0Þ \ X ¼ bPðxÞ \ X – Ø, i.e., x0 2 XbPþbQ ). And x 2 XbPþbQbPþbQ , we have that

XbPþbQbPþbQ � XbPþbQ . Therefore, we get that XbPþbQbPþbQ ¼ XbPþbQ .

(6) From (9), we easily know that for 8x 2 U, if bPðxÞ# X then x 2 XbPþbQ , and if bQ ðxÞ# X then x 2 XbPþbQ . That is, XbP # XbPþbQ
and XbQ # XbPþbQ . And, if there exists y 2 X with y 2 XbPþbQ �Sx2U

bPðxÞ �Sx2U
bQ ðxÞ ¼ Ø, then bPðyÞ ¼ Ø and bQ ðyÞ ¼ Ø.

Therefore, we have that XbPþbQ ¼ XbP [ XbQ .

(7) From (10) and (6), one can obtain that

b b b b b b

XPþQ ¼� ð� XÞbPþbQ ¼� ðð� XÞbP [ ð� XÞbQ Þ ¼� ð� XP[ � XQ Þ ¼ XP \ XQ :
(8) They are straightforward from Definition 3.1.

This completes this proof. h

In order to discover the relationship between the approximations of a single set and the approximations of two sets de-
scribed by using two equivalence relations (granulations) on the universe, the following properties are given.

Proposition 3.3. Let S ¼ ðU;AT; f Þ be a complete information system, bP ; bQ be two partitions induced by the attributes P and Q,
respectively, and X;Y # U. The following properties hold

(1) ðX \ YÞbPþbQ ¼ ðXbP \ YbP Þ [ ðXbQ \ YbQ Þ;
(2) ðX [ YÞbPþbQ ¼ ðXbP [ YbP Þ \ ðXbQ [ YbQ Þ;
(3) ðX \ YÞbPþbQ # XbPþbQ \ YbPþbQ ;

(4) ðX [ YÞbPþbQ � XbPþbQ [ YbPþbQ ;

(5) X # Y ) XbPþbQ # YbPþbQ ;

(6) X # Y ) XbPþbQ # YbPþbQ ;

(7) ðX [ YÞbPþbQ � XbPþbQ [ YbPþbQ ;

(8) ðX \ YÞbPþbQ # XbPþbQ \ YbPþbQ .
Proof. If P ¼ Q (P;Q # AT), then (9) degenerates into XbP ¼ fY 2 bP : Y # Xg and (10) degenerates into XbP ¼ fY 2 bP :

Y \ X – Øg. Obviously, they are the same as the lower approximation and the upper approximation of Pawlak’s rough set
theory [16], respectively. Hence, (1)–(8) hold.

If P – QðP;Q # ATÞ, we prove them as follows:

(1) ðX \ YÞbPþbQ ¼ ðX \ YÞbP [ ðX \ YÞbQ ¼ ðXbP \ YbP Þ [ ðXbQ \ YbQ Þ.
(2) ðX [ YÞbPþbQ ¼ ðX [ YÞbP \ ðX [ YÞbQ ¼ ðXbP [ YbP Þ \ ðXbQ [ YbQ Þ.
(3) It follows from (1) that
ðX \ YÞbPþbQ ¼ ðXbP \ YbP Þ [ ðXbQ \ YbQ Þ ¼ ððXbP \ YbP Þ [ XbQ Þ \ ððXbP \ YbP Þ [ YbQ Þ
¼ ððXbP [ XbQ Þ \ ðYbP [ XbQ Þ \ ððXbP [ YbQ Þ \ ðYbP [ YbQ ÞÞÞ
¼ XbPþbQ \ YbPþbQ \ ððYbP [ XbQ Þ \ ðXbP [ YbQ ÞÞ# XbPþbQ \ YbPþbQ :
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(4) It follows from (2) that
ðX [ YÞbPþbQ ¼ ðXbP [ Y
bP Þ \ ðXbQ [ Y

bQ Þ ¼ ððXbP [ Y
bP Þ \ X

bQ Þ [ ððXbP [ Y
bP Þ \ Y

bQ Þ
¼ ððXbP \ X

bQ Þ [ ðYbP \ X
bQ Þ [ ððXbP \ Y

bQ Þ [ ðYbP \ Y
bQ ÞÞ ¼ X

bPþbQ [ Y
bPþbQ [ ððYbP \ X

bQ Þ [ ðXbP \ Y
bQ ÞÞ

� X
bPþbQ [ Y

bPþbQ :

(5) If X # Y , then X \ Y ¼ X. It follows from (3) that
ðX \ YÞbPþbQ ¼ XbPþbQ # XbPþbQ \ YbPþbQ ) XbPþbQ ¼ XbPþbQ \ YbPþbQ ) XbPþbQ # YbPþbQ :

(6) If X # Y , then X [ Y ¼ Y . It follows from (4) that
ðX [ YÞbPþbQ ¼ Y
bPþbQ � X

bPþbQ [ Y
bPþbQ ) Y

bPþbQ ¼ X
bPþbQ [ Y

bPþbQ ) X
bPþbQ # Y

bPþbQ :

(7) It is clear that X # X [ Y and Y # X [ Y . It follows that XbPþbQ # X [ YbPþbQ and YbPþbQ # X [ YbPþbQ . Hence, XbPþbQ [ YbPþbQ

# X [ YbPþbQ .

(8) It is clear that X \ Y # X and X \ Y # Y . It follows that XbPþbQ � X \ YbPþbQ and YbPþbQ � X \ YbPþbQ . Hence, ðX \ YÞbPþbQ # XbPþbQ
\YbPþbQ .

This completes this proof. h

Based on the above conclusions, we here extend Pawlak’s rough set model to a multi-granulation rough set model
(MGRS), where the set approximations are defined through using multi equivalence relations on the universe.

Definition 3.2. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and cP1 ;cP2 ; . . . ; bPm be m partitions induced by the
attributes P1; P2; . . . ; Pm, respectively. The lower approximation and the upper approximation of X related to cP1 ;cP2 ; . . . ; bPm

are defined by the following:
XPm

i¼1
bPi
¼ fx :

_bPiðxÞ# X; i 6 mg ð11Þ
and
X
Pm

i¼1
bPi ¼� ð� XÞPm

i¼1
bPi
: ð12Þ
Similarly, the area of uncertainty orboundary region in MGRS can be extended as
@Pm

i¼1
bPi
ðXÞ ¼ XPm

i¼1
bPi
n XPm

i¼1
bPi
:

From the definition we obtain the following interpretations:

	 The lower approximation of a set X with respect to
Pm

i¼1
bPi is the set of all elements, which can certainly be classified as

X using
Pm

i¼1
bPi (are certainly X in view of

Pm
i¼1
bPi).

	 The upper approximation of a set X with respect to
Pm

i¼1
bPi is the set of all elements, which can possibly be classified as

X using
Pm

i¼1
bPi (are possibly X in view of

Pm
i¼1
bPi).

	 The boundary region of a set X with respect to
Pm

i¼1
bPi is the set of all elements, which can be classified neither as X nor

as not-X using
Pm

i¼1
bPi.

To apply this approach to practical issues, we here present an algorithm for computing the lower approximation of a set X
in the rough set model based on multi equivalence relations.

Algorithm 1. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and P # 2AT , where P ¼ fP1; P2; . . . ; Pmg.
This algorithm gives the lower approximation of X by P: XPm

i¼1
bPi
¼ fxjbPiðxÞ# X; i 6 mg.

We use the following pointers:

i ¼ 1;2; . . . ;m points to bPi,
j ¼ 1;2; . . . ; jbPij points to Yj

i 2 bPi, and
L records the computation of the lower approximation.

For every i and every j, we check whether or not Yj
i \ X ¼ Yj

i. If Yj
i \ X ¼ Yj

i, then we put Yj
i into the lower approximation of

X: L L [ Yj
i.

(1) Compute m partitions: cP1 ;cP2 ; . . . ; bPm (see Algorithm E in [4]);
(2) Set i 1; j 1; L ¼ Ø;
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(3) For i ¼ 1 to m Do

For j ¼ 1 to jUj Do

If Yj
i \ X ¼ Yj

i, then
let L L [ fujg,

Endif
Endfor
Set j 1,

Endfor
(4) The computation of the lower approximation X by P is completed. Output the set L.

We know that the time complexity of computing m partitions is OðmjUj2Þ (see Algorithm E in [4]). The time complexity of
(I3) is also OðmjUj2Þ since there are

Pm
i¼1jbPij (6 jUj � jUj) intersections Yj

i \ X to be calculated. Hence, the time complexity of
Algorithm 1 is O ðmjUj2Þ.

This algorithm can be run in parallel mode to compute concurrently all corresponding classifications and intersections
from many attributes. Its time complexity will be O ðjUj2Þ. Similar to this idea, the algorithm for computing the upper
approximation of a set also can be designed correspondingly.

Just from the definitions of above approximations, one can get the following properties of the lower and upper
approximations.

Proposition 3.4. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and cP1 ;cP2 ; . . . ; bPm be m partitions induced by the
attributes P1; P2; . . . ; Pm, respectively. Then, the following properties hold

(1) XPm

i¼1
bPi
¼
Sm

i¼1XbPi
;

(2) X
Pm

i¼1
bPi ¼

Tm
i¼1XbPi ;

(3) ð� XÞPm

i¼1
bPi
¼� X

Pm

i¼1
bPi ;

(4) ð� XÞ
Pm

i¼1
bPi ¼� XPm

i¼1
bPi

.

Proof. If i ¼ 1, they are straightforward. If i > 1, we prove them as follows:

(1) It can be easily proved from the formula (11).
(2) From (1) and the formula (12), we have that
X
Pm

i¼1
bPi ¼� � Xð ÞPm

i¼1
bPi
¼�

[m
i¼1

� Xð ÞbPi
¼�

[m
i¼1

� X
bPi

� �
¼
\m
i¼1

X
bPi :
(3) It can be easily proved from the formula (12).
(4) Let X ¼� X in the formula (12). Then, we have that ð� XÞ

Pm

i¼1
bPi ¼� XPm

i¼1
bPi

.

This completes this proof. h

Proposition 3.5. Let S ¼ ðU;AT; f Þ be a complete information system, X1;X2; . . . ;Xn # U, and cP1 ;cP2 ; . . . ; bPm be m partitions
induced by the attributes P1; P2; . . . ; Pm, respectively. Then, the following properties hold

(1)
Tn

j¼1Xj

� �Pm

i¼1
bPi
¼
Sm

i¼1

Tn
j¼1XjbPi

� �
;

(2)
Sn

j¼1Xj

� �Pm

i¼1
bPi ¼

Tm
i¼1

Sn
j¼1Xj

bPi

� �
;

(3)
Tn

j¼1Xj

� �Pm

i¼1
bPi

#
Tn

j¼1ðXjPm

i¼1
bPi
Þ;

(4)
Sn

j¼1Xj

� �Pm

i¼1
bPi �

Sn
j¼1ðXj

Pm

i¼1
bPi Þ;

(5)
Sn

j¼1Xj

� �Pm

i¼1
bPi
�
Sn

j¼1ðXjPm

i¼1
bPi
Þ;

(6)
Tn

j¼1Xj

� �Pm

i¼1
bPi #

Tn
j¼1ðXj

Pm

i¼1
bPi Þ.

Proof. Similar to Proposition 3.3, one can prove these properties.

(1)
Tn

j¼1Xj

� �Pm

i¼1
bPi
¼
Sm

i¼1

Tn
j¼1Xj

� �bPi
¼
Sm

i¼1

Tn
j¼1XjbPi

� �
.
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(2)
Sn

j¼1Xj

� �Pm

i¼1
bPi ¼

Tm
i¼1

Sn
j¼1Xj

� �bPi ¼
Tm

i¼1

Sn
j¼1Xj

bPi

� �
.

(3)
Tn

j¼1Xj

� �Pm

i¼1
bPi
¼
Sm

i¼1

Tn
j¼1XjbPi

� �
¼
Tn

j¼1

Sm
i¼1XjbPi

� �
\ � � � ¼

Tn
j¼1ðXjPm

i¼1
bPi
Þ \ � � � #

Tn
j¼1ðXjPm

i¼1
bPi
Þ.

(4)
Sn

j¼1Xj

� �Pm

i¼1
bPi ¼

Tm
i¼1

Sn
j¼1Xj

bPi

� �
¼
Sn

j¼1

Tm
i¼1Xj

bPi

� �
[ � � � ¼

Sn
j¼1ðXj

Pm

i¼1
bPi Þ [ � � � �

Sn
j¼1ðXj

Pm

i¼1
bPi Þ.

(5) It follows from Xj #
Sn

j¼1Xj that XjPm

i¼1
bPi

#
Sm

i¼1XjPm

i¼1
bPi

. Hence, we have that
Sn

j¼1Xj

� �Pm

i¼1
bPi
�
Sn

j¼1ðXjPm

i¼1
bPi
Þ.

(6) It follows from
Tn

j¼1Xj # Xjðj 2 f1;2; . . . ;ngÞ
� �

that Xj

Pm

i¼1
bPi �

Tn
j¼1Xj

Pm

i¼1
bPi . Hence, it has that

Tn
j¼1Xj

� �Pm

i¼1
bPi #Tn

j¼1ðXj

Pm

i¼1
bPi Þ.

This completes the proof. h
Proposition 3.6. Let S ¼ ðU;AT; f Þ be a complete information system, X1;X2; . . . ;Xn # U with X1 # X2 # � � �Xn, and cP1 ;cP2 ; . . . ; bPm

be m partitions induced by the attributes P1; P2; . . . ; Pm, respectively. Then, the following properties hold

(1) X1Pm

i¼1
bPi

# X2Pm

i¼1
bPi

# � � � # XnPm

i¼1
bPi

;

(2) X1

Pm

i¼1
bPi # X2

Pm

i¼1
bPi # � � � # Xn

Pm

i¼1
bPi .

Proof. Suppose 1 6 i 6 j 6 n. Then, Xi # Xj holds.

(1) Clearly, Xi \ Xj ¼ Xi. Hence, it follows from (3) in Proposition 3.5 that XiPm

i¼1
bPi
¼ ðXi \ XjÞPm

i¼1
bPi

# XiPm

i¼1
bPi
\

XjPm

i¼1
bPi
) XiPm

i¼1
bPi
¼ XiPm

i¼1
bPi
\ XjPm

i¼1
bPi
) XiPm

i¼1
bPi

# XjPm

i¼1
bPi

.

Therefore, we have that
X1Pm

i¼1
bPi

# X2Pm

i¼1
bPi

# � � � # XnPm

i¼1
bPi
:

(2) Obviously, Xi [ Xj ¼ Xj. Hence, it follows from (4) in Proposition 3.5 that
Xj

Pm

i¼1
bP i ¼ ðXi [ XjÞ

Pm

i¼1
bPi � Xi

Pm

i¼1
bPi [ Xj

Pm

i¼1
bPi ) Xj

Pm

i¼1
bPi ¼ Xi

Pm

i¼1
bPi [ Xj

Pm

i¼1
bPi ) Xi

Pm

i¼1
bPi # Xj

Pm

i¼1
bPi :

Therefore, we have that

X1

Pm

i¼1
bPi # X2

Pm

i¼1
bPi # � � � # Xn

Pm

i¼1
bPi :
This completes the proof. h
3.2. Several measures in MGRS

Uncertainty of a set (category) is due to the existence of a borderline region. The greater the borderline region of a set, the
lower is the accuracy of the set (and vice versa). Similar to aðbP ;XÞ in (2), in order to more precisely express this idea, we
introduce another accuracy measure as follows.

Definition 3.3. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and cP1 ;cP2 ; . . . ; bPm be m partitions induced by the
attributes P1; P2; . . . ; Pm, respectively. The accuracy measure of X by

Pm
i¼1
bPi is defined as� �
a
Xm

i¼1

bPi;X

 !
¼

XPm

i¼1
bPi

��� ���
X
Pm

i¼1
bPi

���� ���� ; ð13Þ
where X – Ø and jXj denotes the cardinality of a set X.

Proposition 3.7. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and P ¼ fcP1 ;cP2 ; . . ., bPmg be m partitions induced by
the attributes P1; P2; . . . ; Pm, respectively. If P0 # P, then
a
Xm

i¼1

bPi;X

 !
P a

X
bP i # P0

bPi;X

0B@
1CAP aðbPi;XÞ; i 6 m:
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Proof. Since P0 # P is a subset of P, it follows from Definition 3.2 that
[m
i¼1

XbPi
�
[
bPi2P0

XbPi
and

\m
i¼1

X
bPi #

\
bPi2P0

X
bPi :
Then, it is clear that� � � �
[m
i¼1

XbPi

�����
�����P [

bPi2P0

XbPi

������
������ and

\m
i¼1

X
bPi

�����
����� 6 \

bPi2P0

X
bPi

������
������:
Hence, we have that � � � �

a
Xm

i¼1

bPi;X

 !
¼

XPm

i¼1
bP i

���� ����
X
Pm

i¼1
bP i

���� ���� ¼
Sm
i¼1

XbPi

���� ����Tm
i¼1

XbPi

���� ����P
S
bPi2P0

XbPi

�����
�����

T
bPi2P0

XbPi

������
������
¼

P
bPi2P0

XbPi

�����
�����

P
bPi2P0

XbPi

������
������
¼ a

X
bPi # P0

bPi;X

0B@
1CA:

� �

Similarly, we have a

PbPi # P0
bPi;X P aðbPi;XÞ ði 6 mÞ.

Thus, for any P0# P and Pi 2 P, the inequality a
Pm

i¼1
bPi;X

� �
P a

PbPi # P0
bPi;X

� �
P aðbPi;XÞði 6 mÞ hold. This completes the

proof. h

Proposition 3.7 shows that the accuracy measure of a set enlarges as the number of granulations for describing the con-
cept increases.

Note that the accuracy measure of a set described by using multi granulations is always better than that of the set de-
scribed by using a single granulation. The former is suitable for more accurately describing a target concept and solving prob-
lems according to a user’s requirements.

In particular, if bPi � bPj , then aðbPi þ bPj ;XÞ ¼ aðbPi;XÞ. It can be understood by the following proposition.

Proposition 3.8. Let S ¼ ðU;AT; f Þ be a complete information system, X # U and P ¼ fcP1 ;cP2 ; . . . ; bPmg with cP1 � cP2 � � � � � bPm

be m partitions induced by the attributes P1; P2; . . . ; Pm, respectively. Then,
XPm

i¼1
bPi
¼ X bP1

and X
Pm

i¼1
bPi ¼ X

bP1 :
Proof. Suppose 1 6 j 6 k 6 m and bPj � cPk . From the definition of �, we know that for any bPjðxÞ 2 bPj , there exists cPkðxÞ 2 cPk

such that bPjðxÞ#cPkðxÞ. Therefore, we have that X bPk
# XbPj

, i.e., XbPjþbPk
¼ XbPj

[ XbPk
¼ XbPj

. Since cP1 � cP2 � � � � � bPm, we have that
XPm

i¼1
bPi
¼ X bP1

.

Similarly, we also have that XbPj # X bPk , i.e., XbPjþbPk ¼ XbPj \ X bPk ¼ XbPj . Thus, we have that X
Pm

i¼1
bPi ¼ X bP1 .

This completes the proof. h

Let S ¼ ðU;AT; f Þ be a complete information system, bQ be the partition induced by the attribute set Q, and
P ¼ fcP1 ;cP2 ; . . . ; bPmg m partitions induced by the attributes P1; P2; . . . ; Pm, respectively. The quality of approximation of bQ by
P, also called the degree of dependency, is defined by
c
Xm

i¼1

bPi; bQ !
¼

P
YPm

i¼1
bPi

���� ���� : Y 2 bQ� �
jUj ; ð14Þ
and is used to evaluate the deterministic part of the rough set description of bQ by counting those elements which can be re-
classified to blocks of bQ with the knowledge given by

Pm
i¼1
bPi.

Corollary 3.2. If bQ � bR, then c
Pm

i¼1
bPi;
bQ� �
6 c

Pm
i¼1
bPi; bR� �

.

Corollary 3.3. Let P ¼ fcP1 ;cP2 ; . . . ; bPmg be m partitions. If P0 # P, then c
Pm

i¼1
bPi; bQ� �

P c
PbPi # P0

bPi; bQ� �
P cðbPi; bQ Þ.

Gediga and Düntsch [3] introduced a simple statistic pðbP ;XÞ ¼ jXbP jjXj for the precision of (deterministic) approximation of X # U
given bP, which is not affected by the approximation of �X. This is just the relative number of elements in X which can be
approximated by bP. Clearly, pðbP;XÞP aðbP;XÞ. It is important to point out that pðbP;XÞ requires complete knowledge of X, whereas
a does not, since the latter uses only the rough set ðX;XÞ. In MGRS, it can be extended and becomes the formula� �
p
Xm

i¼1

bPi;X

 !
¼

XPm

i¼1
bPi

��� ���
jXj : ð15Þ
Obviously, p
Pm

i¼1
bPi;X

� �
P a

Pm
i¼1
bPi;X

� �
.
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In fact, this measure denotes the relative number of elements in X which can be approximated by
Pm

i¼1
bPi

� �
.

Corollary 3.4. Let P ¼ fcP1 ;cP2 ; . . . ; bPmg be m partitions. If P0 # P, then p
Pm

i¼1
bPi;X

� �
P p

PbPi # P0
bPi;X

� �
P pðbPi;XÞ.

However, if X # Y # U, the inequality p
Pm

i¼1
bPi;X

� �
6 p

Pm
i¼1
bPi; Y

� �
cannot be established in general.

For each class X of bQ , the accuracy of approximation of
Pm

i¼1
bPi with respect to X is weighted by the cardinality of X relative

to the number of elements in U, and we get that
c
Xm

i¼1

bPi; bQ
 !

¼
X
X2bQ
jXj
jUjp

Xm

i¼1

bPi;X

 !
¼
X
X2bQ pðXÞp

Xm

i¼1

bPi;X

 !
:

Therefore, c
Pm

i¼1
bPi; bQ� �

is the mean precision of the approximation of bQ by
Pm

i¼1
bPi.

Using a as a basis, we have
c
Xm

i¼1

bPi; bQ !
¼
X
X2bQ
jXj
jUja

Xm

i¼1

bPi;X

 !
¼
X
X2bQ pðXÞa

Xm

i¼1

bPi;X

 !
:

Thus, c
Pm

i¼1
bPi; bQ� �

also can be regarded as the weighted mean of the accuracies of approximation of the sets X 2 bQ byPm
i¼1
bPi.

Yao [38] connected rough set approximation with a classic distance measure based on sets, called Marczewski–Steinhaus
metric (MZ), which is defined by
MZðX;YÞ ¼ jX [ Y j � jX \ Y j
jX [ Yj :
Gediga and Düntsch [3] redefined the measures a; c and p using MZ, which discovers the relationships between these mea-
sures and MZ in Pawlak’s rough set theory.

In the multi-granulations rough set model, the above measures a; c and p presented can be redefined through using MZ as
a
Xm

i¼1

bPi;X

 !
¼ 1�MZ XPm

i¼1
bPi
;X
Pm

i¼1
bPi

� �
;

p
Xm

i¼1

bPi;X

 !
¼ 1�MZ XPm

i¼1
bPi
;X

� �
;

and
c
Xm

i¼1

bPi; bQ !
¼ 1�MZ

[
X2bQ XPm

i¼1
bPi
;
[

X2bQ X
Pm

i¼1
bPi

0B@
1CA ¼ 1�MZ

[
X2bQ XPm

i¼1
bPi
;U

0B@
1CA:
In addition, Xu and Liang [36] introduced two forms of inclusion degree concept D0 and D1 in rough set theory as follows:
D0ðY=XÞ ¼ X \ Yj j
jXj ðX – ØÞ and

D1ðbP ; bQ Þ ¼
S

X2bP X
� �

\
S

Y2bQ Y
� ���� ���S

Y2bQ Y
��� ��� :
It is easy to see that
a
Xm

i¼1

bPi;X

 !
¼

XPm

i¼1
bPi
\ X
Pm

i¼1
bPi

���� ����
X
Pm

i¼1
bPi

���� ���� ¼ D0 XPm

i¼1
bPi

X
Pm

i¼1
bP i

	 ��
;

p
Xm

i¼1

bPi;X

 !
¼

XPm

i¼1
bPi
\ X

���� ����
jXj ¼ D0 XPm

i¼1
bPi

	
X

� �

and
c
Xm

i¼1

bPi; bQ !
¼

P
YPm

i¼1
bPi

���� ���� : Y 2 bQ� �
jUj ¼

S
Y2bQ YPm

i¼1
bPi

� �
\
S

Y2bQ Y
� ����� ����S

Y2bQ Y
��� ��� ¼ D1

[
Y2bQ YPm

i¼1
bPi

[
Y2bQ Y

,0B@
1CA:
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Thus, these three measures a;p and c can be reduced to inclusion degree.
Since the multi-granulations rough set model mainly considers the lower approximation and the upper approximation of

a target concept by multi equivalence relations, in the following, we only introduce a measure of importance of condition
attributes with respect to decision attributes in a complete target information system.

Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system, a measure of importance of condition attributes P # AT
with respect to decision attributes D in MGRS in terms of the under approximation and the upper approximation can be di-
vided into two forms: an importance measure of the lower approximation and an importance measure of the upper
approximation.

Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system and P be a non-empty subset of AT: Ø 
 P # AT. Given a
condition attribute a 2 P and X 2 bD. Firstly, we give two preliminary definitions in the following:

Definition 3.4. We say that a is lower approximation significant in P with respect to X if XPjPj
i¼1
bPi
� XPjPj

i¼1;Pi – a
bPi

(Pi 2 P), and

that a is not lower approximation significant in P with respect to X if XPjPj
i¼1
bPi
¼ XPjPj

i¼1;Pi – a
bPi

(Pi 2 P), where jPj is the

cardinality of attribute set P.

Definition 3.5. We say that a is upper approximation significant in P with respect to X if X
PjPj

i¼1
bPi 
 X

PjPj
i¼1;Pi – a

bPi (Pi 2 P), and

that a is not upper approximation significant in P with respect to X if X
PjPj

i¼1
bPi ¼ X

PjPj
i¼1;Pi – a

bPi (Pi 2 P), where jPj is the cardi-

nality of attribute set P.

We introduce a quantitative measure for the significance as follows:
The importance measure of the lower approximation of condition attributes P # AT with respect to decision attributes D in

MGRS is defined as
SPðDÞ ¼

P
XPm

i¼1
bPi
n XPm

i¼1;PiRP
bPi

�����
����� : X 2 bD( )

jUj ; ð16Þ
where the attributes AT ¼ fP1; P2; . . . ; Pmg, bPi 2 AT is the partition induced by the condition attribute Pi, and bD is the partition
induced by the decision attributes D.

The importance measure of the upper approximation of condition attributes P # AT with respect to decision attributes D in
MGRS is defined as
SPðDÞ ¼

P
X
Pm

i¼1;PiRP
bPi n X

Pm

i¼1
bPi

�����
����� : X 2 bD( )

jUj ; ð17Þ
where the attributes AT ¼ fP1; P2; . . . ; Pmg, bPi 2 AT is the partition induced by the condition attribute Pi, and bD is the partition
induced by the decision attributes D.

In particular, when P ¼ fag; SaðDÞ is the importance measure of the lower approximation of the attribute a 2 AT with re-
spect to D and SaðDÞ is the importance measure of the upper approximation of the attribute a 2 AT with respect to D.

To compute the significance of an attribute a in P with respect to D, we need to compute jPj partitions bPi (i 6 jPj). The time
complexity for computing each partition is OðjUj2Þ. So, the time complexity for computing jPj partitions is OðjPjjUj2Þ. There-
fore, the time complexity of computing a lower approximation of X 2 bD (jbDj 6 jUj) by P is OðjPjjUj3Þ.

From the above two definitions, we know the following:

	 SPðDÞP 0 and SPðDÞP 0;
	 attributes P with respect to D is the lower approximation significant if and only if SPðDÞ ¼ 0; and
	 attributes P with respect to D is the upper approximation significant if and only if SPðDÞ ¼ 0.
Example 3.3 (Continued from Example 3.1). Compute the importance measure of each condition attribute with respect to the
decision attribute d.

By computing, we have that
SLðdÞ ¼
jf1;2;8g n f1;2gj þ jf3;4;5g n f3;4;5gj

8
¼ 1

8
;

SIðdÞ ¼
jf1;2;8g n f1;2;8gj þ jf3;4;5g n f3;4;5gj

8
¼ 0 and

SPðdÞ ¼
jf1;2;8g n f8gj þ jf3;4;5g n f3;4;5gj

8
¼ 2

8
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and
Table 2
Data se

Data

Tie-t
Derm
Car

Table 3
The two

Mea

c in
c in

Table 4
The two

Mea

c in
c in

Table 5
The two

Mea

c in
c in
SLðdÞ ¼ jf1;2;6;7;8g n f1;2;6;7;8gj þ jf3;4;5;6;7;8g n f3;4;5;6;7gj
8

¼ 1
8
;

SIðdÞ ¼ jf1;2;6;7;8g n f1;2;6;7;8gj þ jf3;4;5;6;7g n f3;4;5;6;7gj
8

¼ 0 and

SPðdÞ ¼ jf1;2;6;7;8g n f1;2;6;7;8gj þ jf1;2;3;4;5;6;7g n f3;4;5;6;7gj
8

¼ 2
8
:

It follows from Example 3.3 that SPðdÞ > SLðdÞ > SIðdÞ and SPðdÞ > SLðdÞ > SIðdÞ. That is to say, the important measures of
the lower approximation and upper approximation of condition attribute P are all maximum, and the important measures of
the lower approximation and upper approximation of condition attribute I are all minimum. In fact, from SIðdÞ ¼ SIðdÞ ¼ 0,
one can remove the condition attribute I in terms of the approximation representation of all decision classes in Table 1.

In the following, through experimental analyses, we illustrate the deference between the MGRS and Pawlak’s rough set
model. We have downloaded three public data sets (complete target information systems) with practical applications from
UCI Repository of machine learning databases, which are described in Table 2. All condition attributes and decision attributes
in these three data sets are discrete.

Here, we compare the degree of dependency in MGRS with that in Pawlak’s rough set model on these three practical data
sets. The comparisons of values of two measures with the numbers of features in these three data sets are shown in Tables 3–
5 and Figs. 2–4.

In Figs. 2–4, the term MGRS is the complete multi-granulations rough set framework proposed in this paper, and the term
SGRS is Pawlak’s rough set model. It can be seen from Figs. 2–4 that the value of the degree of dependency in MGRS is not
bigger than that in Pawlak’s rough set model for the same number of selected features, and this value increases as the num-
ber of selected features becomes bigger in the same data set. In particular, from Figs. 2 and 3, it is easy to see that the values
of the degree of dependency in MGRS are equal to zero. In this situation, the lower approximation of the target decision
equals an empty set in the decision table. In essence, it is because that the equivalence classes induced by a singleton
ts description.

sets Samples Condition features Decision classes

ac-toe 958 9 2
atology 366 33 6

1728 6 4

degrees of dependency with different numbers of features in the data set Tie-tac-toe.

sure Features

1 2 3 4 5 6 7 8 9

SGRS 0.0000 0.0000 0.1253 0.1628 0.4186 0.7766 0.9436 1.0000 1.0000
MGRS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

degrees of dependency with different numbers of features in the data set Dermatology.

sure Features

3 6 9 12 15 18 21 24 27 30 33

SGRS 0.0437 0.6066 0.8552 0.8962 0.9809 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MGRS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

degrees of dependency with different numbers of features in the data set Car.

sure Features

1 2 3 4 5 6

SGRS 0.0000 0.1875 0.1875 0.4583 0.4809 1.0000
MGRS 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333
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Fig. 2. Variation of the two degrees of dependency with the numbers of features (data set Tie-tac-toe).
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Fig. 3. Variation of the two degrees of dependency with the numbers of features (data set Dermatology).
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Fig. 4. Variation of the two degrees of dependency with the numbers of features (data set Car).
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attribute are all coarser than those induced by multi attributes. One can draw the same conclusion from Fig. 4. Therefore,
although the MGRS cannot obtain much bigger approximation measure and degree of dependency than Pawlak’s rough
set model, this approach can be used in concept representation, rule extraction and data analysis from data sets under multi
granulations on the basis of keeping original granulation structure.

4. Attribute reduction

Intuitively, some attributes are not significant in a representation and their removal has no real impact on the value of the
representation of elements [15,41,42]. If it is not significant, one can simply remove an attribute from further consideration.

Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system, P # AT and the decision partition by D be bD ¼ fX1;

X2; . . . ;Xrg. The lower approximation distribution function and upper approximation distribution function are defined as
follows:
DP ¼ X1P
Pi2P

bPi
;X2P

Pi2P

bPi
; . . . ;XrP

Pi2P

bPi

0@ 1A

and
DP ¼ X1

P
Pi2P
bPi
;X2

P
Pi2P
bPi
; . . . ;Xr

P
Pi2P
bPi

 !
:

Definition 4.1. Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system and P be a non-empty subset of AT.
(1) If DP ¼ DAT , we say that P is a lower approximation consistent set of S. If P is a lower approximation consistent set,
and no proper subset of P is lower approximation consistent, then P is called a lower approximation reduct of S.

(2) If DP ¼ DAT , we say that P is an upper approximation consistent set of S. If P is an upper approximation consistent set,
and no proper subset of P is upper approximation consistent, then P is called an upper approximation reduct of S.

(3) If P is not only a lower approximation reduct but also a upper approximation reduct, then P is called an approxi-
mation reduct of S.

Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system. If cAT � bD, then we say S is consistent, otherwise it is
inconsistent [10].

It is easy to prove that an upper approximation consistent set must be a lower approximation consistent set, but the con-
verse is not true in an inconsistent target information system. Clearly, P is a lower approximation consistent set iff P is a
upper approximation consistent set in a consistent target information system.

In particular, If bD ¼ fXg, we regard the above P as a lower approximation reduct, an upper approximation reduct and an
approximation reduct of a set X, respectively.

Let S ¼ ðU;AT; f ; d; gÞ be a complete target information system, where U ¼ fe1; e2; . . . ; ejUjg;AT ¼ fP1; P2; . . . ; PjATjg andbd ¼ fX1;X2; . . . ;Xrg. In the rough set model based on multi equivalence relations, we here develop an algorithm for comput-
ing all lower approximation reducts-that is, all subsets AT0 : AT01;AT02; . . . ;AT0s of AT such that:

(1) dAT0 ¼ dAT ; and
(2) if AT 0 
 AT0, then dAT 0 – dAT .
Algorithm 2. This algorithm gives all lower approximation reducts of the target information system S.
Let us denote the binomial coefficients by Ck

jATj ¼ jATj!=k!ðjATj � kÞ!.

(1) Let us denote C1
jATj ¼ jATj singletons, one-attribute subsets, by
AT11 ¼ fP1g;AT12 ¼ fP2g; . . . ;AT1j ¼ fPjg; . . . ;AT1C1
jATj
¼ fPjATjg:
(2) Let us denote C2
jATj ¼ jATjðjATj � 1Þ=2! two-attribute subsets by
AT21 ¼ fP1; P2g; . . . ;AT2j ¼ fP1; Pjg; . . . ;AT2C2
jATj
¼ fPjATj�1; PjATjg:
(3) Generally, let us denote Ck
jATj ¼ jATj!=k!ðjATj � kÞ! k-attribute subsets by
ATk1 ¼ fP1; P2; . . . ; Pkg; . . . ;ATkj; . . . ;ATkCk
jATj
¼ fPjATj�kþ1; . . . ; PjATj�1; PjATjg:
(4) Notice that CjATj
jATj ¼ 1 jATj-attribute subset is AT jATj1 ¼ AT.
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The algorithm is to search subsets of AT as follows: singletons, two-attribute subsets, . . ., t-attribute subsets, and so on.
Continue up to the unique jATj-attribute subset AT itself.

We use the following variables:

	 s – the number of the lower approximation reducts we have already found,
	 t – counting from 1 to s,
	 k – we are currently searching k-attribute subset ATkj, and
	 j – we are currently searching the jth subset ATkj in all k-attribute subsets ATk1; . . ., ATkj; . . . ;ATkCk

jATj
.

(II1) Set j 1; s 0; k 1;
(II2) While k 6 jATj Do
j 1;
While j 6 Ck

jATj Do
for t ¼ 1 to s Do

If AT0t 
 ATkj, then break;
Endif

Endfor
if dATkj

¼ dAT , then
s sþ 1;AT0s  ATkj;

Endif
j jþ 1;

Endwhile
k kþ 1;

Endwhile
(II3) Output AT01;AT02; . . . ;AT0s (s lower approximation reducts).

The time complexity of this algorithm for finding all lower approximation reducts is exponential since it checks all
subsets in 2AT , and j2AT j ¼ 2jATj. We know that the time complexity of computing jATj partitions is OðjATjjUj2Þ and the time
complexity of computing a lower approximation of every X 2 bd (jbdj 6 jUj) by ATkj (k 6 jATj) is OðjATjjUj3Þ. Thus, the time
complexity of Algorithm 2 is
Table 6
A lower

Proje

e1

e2

e3

e4

e5

e6

e7

e8
2jATj � OðjATjjUj2 þ jATjjUj3Þ ¼ Oð2jATjjATjjUj3Þ:
Example 4.1 (Continued from Example 3.1). Compute all lower approximation reducts for the complete target information
system about emporium investment project.

One can find all lower approximation reducts for this target information system in Table 1 by using the above Algorithm 2
(see Table 6).

Similar to the idea of Algorithm 2, one can design an algorithm to compute all upper approximation reducts in a complete
target information system.

However, the time complexity of Algorithm 2 is exponential so that it cannot be applied efficiently to practical appli-
cations. We here provide a heuristic algorithm based on the importance measure of lower approximation of a condition
attribute with respect to the decision attribute d to find a lower approximation reduct in complete target information
systems.

Algorithm 3. Let S ¼ ðU;AT; f ; d; gÞ be a complete target information system, where U ¼ fe1; e2; . . . ; ejUjg;AT ¼ fP1; P2;

. . . ; PjATjg and bd ¼ fX1;X2; . . . ;Xrg.
This algorithm finds a lower approximation reduct through using a heuristic information.
approximation from Table 1.

ct Locus Population density Decision

Common Big Yes
Bad Big Yes
Bad Small No
Bad Small No
Bad Small No
Bad Medium Yes
Common Medium No
Good Medium Yes
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We use the following variables:

	 AT0 – it is used to record a lower approximation reduct, and
	 i – we are currently searching the ith condition attribute AT 0i in the given sequence.
(III1) Compute jATj condition partitions and a decision partition bd;
(III2) Sort AT ¼ fP01; P

0
2; . . . ; P0jATjg, where SP0i

ðdÞP SP0iþ1
ðdÞ;

(III3) Set i 1;AT0 ¼ Ø.
(III4) If dAT0 – dAT , then
AT0  AT0 [ P0i,
i iþ 1;
Endif

(III5) Found a lower approximation reduct: AT0. Output the set AT0.

The time complexity of this algorithm for computing jATj condition partitions and a decision partition bd is
OððjATj þ 1ÞjUj2Þ. The time complexity of computing jATj importance measures is OðjATjjUj3Þ and the time complexity of
sorting is OðjATjlog2jATjÞ. And the time complexity for running jATj comparisons dAT0 ¼ dAT is OðjATjjUj3Þ. Thus, the time
complexity of Algorithm 3 is
OððjATj þ 1ÞjUj2 þ jATjjUj3 þ jATjlog2jATj þ jATjjUj3Þ ¼ OðjATjjUj3Þ:
Let A be the set of all lower approximation reducts and B be the set of all upper approximation reducts. It is obvious that the
approximation reducts C ¼ A \ B.

Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system, where U ¼ fe1; e2; . . . ; ejUjg;AT ¼ fP1; P2; . . . ; PjATjg andbD ¼ fX1;X2; . . . ;Xrg. We denote all lower approximation reducts of X 2 bD by AðXÞ and all upper approximation reducts of
X 2 bD by BðXÞ and all approximation reducts of X 2 bD by CðXÞ, respectively. And, we call CoreðAðXÞÞ the lower approximation
core of X;CoreðBðXÞÞ the upper approximation core of X and CoreðCðXÞÞ the approximation core of X, respectively.

Proposition 4.1. Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system and bD ¼ fX1;X2; . . . ;Xrg. Then
A ¼
\r

k¼1

AðXkÞ and B ¼
\r

k¼1

BðXkÞ:
Proof. They are straightforward from Definition 4.1.

We call CoreðAÞ ¼
T

Ai(Ai 2 A), CoreðBÞ ¼
T

Bi(Bi 2 B) and CoreðSÞ ¼
T

Ci(Ci 2 C) the lower approximation core, the upper
approximation core and the approximation core of a complete target information system S, respectively. h

Proposition 4.2. Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system and bD ¼ fX1;X2; . . . ;Xrg. Then
CoreðAÞ ¼
\r

k¼1

CoreðAðXkÞÞ and CoreðBÞ ¼
\r

k¼1

CoreðBðXkÞÞ:
Proof. They are straightforward. h

Clearly, we have that CoreðSÞ ¼ CoreðAÞ \ CoreðBÞ. In fact, the core is indispensable attribute to construct an approxima-
tion reduct. One can find CoreðSÞ ¼ fLocus; Populationdensityg from the target information system S in Table 1. Fig. 5 shows
the relationship between the approximation reducts and the approximation core of a target information system.
Reduct 1
Reduct 3

Core

Reduct 2

Fig. 5. Relationship between the approximation reducts and the approximation core.
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In the following, we discuss the definition of decision rule and several rule extracting methods based on MGRS in a com-
plete target information system.

If Q is a set of predictor features and d a decision attribute, then MGRS generates rules of the form
_
q2Q

xq ¼ mq ) xd ¼ m0
d _ xd ¼ m1

d _ � � � _ xd ¼ mk
d; ð18Þ
where xr is the attribute value of object x with respect to attribute r.
Unlike the decision rules (‘‘AND” rules) from Pawlak’s rough set theory [16,17,20,21], the form of these decision rules is

‘‘OR”. That is to say, they can be decomposed to many decision rules. In essence, the restriction of this kind of decision rules is
weaker than that of decision rules from Pawlak’s rough set theory, since intersection operations among equivalence classes
need not be performed in MGRS.

In the following, we present an algorithm for rule extracting in the rough set model based on multi equivalence relations.

Algorithm 4. Let S ¼ ðU;AT; f ; d; gÞ be a complete target information system, where U ¼ fe1; e2; . . . ; ejUjg;AT ¼ fP1; P2;

. . . ; PjATjg and bd ¼ fX1;X2; . . . ;Xrg.
This algorithm extracts some certain ‘‘OR” decision rules from a complete target information system on the basis of lower

approximation reduct of a system.
We use the following variables:

	 i – counting from 1 to jAT0j,
	 j – we are currently searching the jth equivalence class Pj

i in the partition bPi,
	 k – counting from 1 to r,
	 Rule – it is used to record decision rules extracted, and
	 Ruleset – it is used to record the set containing all decision rules extracted.
(IV1) Compute a lower approximation reduct AT0 ¼ fP1; P2; . . . ; PjAT0 jg.
(IV2) Set i 1; j 1; k 1;Rule ¼ Ø and Ruleset ¼ Ø.
(IV3) While k 6 r Do //all decision classes have not been checked;
While i 6 jAT0j Do //all condition attributes in the lower approximation reduct have not been checked;
While j 6 jbPij Do //all equivalence classes in the the partition bPi have not been checked;

If Pj
i # Xk

then Rule Rule [ dexðPj
iÞ,

otherwise we ignore it; //it cannot form a certain rule;
Endif
j jþ 1; // to check next equivalence classes Pj

i 2 bPi;
Endwhile
i iþ 1; j 1;// to check next attribute Pi;
Endwhile
Rule Rule) dexðXkÞ, put Rule into the set Ruleset and Rule Ø;
k kþ 1; i 1; // to check next Xk;

Endwhile
(IV4) Output the decision rule set Ruleset.

We know that the time complexity of computing a lower approximation reduct is OðjATjjUj3Þ. The time complexity of
(IV3) is OðjAT0jjUj2Þ since it performs intersection operations between each Pj

i and Xk (see Algorithm 1). Thus, the time
complexity of Algorithm 4 is
OðjAT0jjUj2 þ jATjjUj3Þ ¼ OðjATjjUj3Þ:
Example 4.2 (Continued from Example 3.1). Extract certain ‘‘OR” decision rules from Table 1 by using Algorithm 4.

One can find a lower approximation reduct AT02 ¼ fLocus; Populationdensityg for this target information system in Table 1
by using the above Algorithm 2.

In Table 1, the decision partition is ddecision ¼ fX1;X2g ¼ ffe1; e2; e6; e8g; fe3; e4; e5; e7gg. By computing, their lower
approximations by two granulations bL þ bP are as
X1bLþbP ¼ fe1; e2; e8g and X2bLþbP ¼ fe3; e4; e5g:
There are two certain ‘‘OR” decision rules extracted from Table 1 as follows:
ðLocus ¼ goodÞ _ ðPopulationdensity ¼ bigÞ ) ðDecision ¼ YesÞ
and
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ðPopulationdensity ¼ smallÞ ) ðDecision ¼ NoÞ:
If we check that whether Pj
i \ Xk ¼ Ø or not based on a upper approximation reduct obtained, the algorithm for extracting

uncertain decision rules from a complete target information system also can be designed analogously.
However, Since the time complexity of Algorithm 4 based on an approximation reduct is OðjATjjUj3Þ, it is inconvenient to

be used in practical issues. In the following, we present an improved algorithm for rule extracting in the rough set model
based on multi equivalence relations. It is worth noting that this algorithm need not compute an approximation reduct.

Algorithm 5. Let S ¼ ðU;AT; f ;D; gÞ be a complete target information system, where U ¼ fe1; e2; . . . ; ejUjg;AT ¼ fP1; P2;

. . . ; PjATjg and bD ¼ fX1;X2; . . . ;Xrg.
This algorithm directly extracts some certain ‘‘OR” decision rules from a complete target information system.
We use the following variables:

	 i – counting from 1 to jATj,
	 j – we are currently searching the jth equivalence class Pj

i in the partition bPi,
	 k – counting from 1 to r,
	 Rule – it is used to record decision rules extracted, and
	 Ruleset – it is used to record the set containing all decision rules extracted.
(IV1) Compute jATj partitions fcP1 ;cP2 ; . . . ; dPjATj g.
(IV2) Set i 1; j 1; k 1, Rule ¼ Ø and Ruleset ¼ Ø.
(IV3) While k 6 r Do //all decision classes have not been checked;
While i 6 jAT0j Do //all condition attributes have not been checked;
While j 6 jbPij Do // all equivalence classes in the partition bPi have not been checked;

If Pj
i # Xk then Rule Rule [ dexðPj

iÞ,
otherwise we ignore it; //it cannot form a certain rule;

Endif
j jþ 1; //to check next equivalence classes Pj

i 2 bPi;
Endwhile
i iþ 1, j 1; //to check next attribute Pi;
Endwhile
Rule Rule) dexðXkÞ, put Rule into the set Ruleset and Rule Ø; k kþ 1; i 1; //to check next Xk;

Endwhile
(IV4) Output the decision rule set Ruleset.

We know that the time complexity of computing jATj partitions is OðjATjjUj2Þ. The time complexity of computing
intersection operations between a partition and Xi 2 bD is OðjUjjXijÞ. Thus, the time complexity of Algorithm 5 is
OðjATjjUj2 þ jATjjUjjX1j þ jATjjUjjX2j þ � � � þ jATjjUjjXrjÞ ¼ OðjATjjUj2 þ jATjjUjðjX1j þ jX2j þ � � � þ jXrjÞÞ

¼ OðjATjjUj2 þ jATjjUj2Þ ¼ OðjATjjUj2Þ:
This algorithm also can be run in parallel mode to compute concurrently all corresponding classifications and intersec-
tions between each partition and decision classes from many attributes. This time complexity will be OðjUj2Þ.

Example 4.3 (Continued from Example 3.1). Extract the ‘‘OR” decision rules from Table 1 through using Algorithm 5.

There are two certain ‘‘OR” decision rules extracted from Table 1 by using Algorithm 5 as follows:
ðLocus ¼ goodÞ _ ðPopulationdensity ¼ bigÞ ) ðDecision ¼ YesÞ
and
ðPopulationdensity ¼ smallÞ _ ðInvestment ¼ lowÞ ) ðDecision ¼ NoÞ:
From Examples 4.2 and 4.3, we know that these decision rules extracted from the same target information systems are
dissimilar. For Example 4.3, unlike Example 4.2, the rule ðPopulationdensity ¼ smallÞ _ ðInvestment ¼ lowÞ ) ðDecision ¼ NoÞ
has two parts:
ðPopulationdensity ¼ smallÞ ) ðDecision ¼ NoÞ
and
ðInvestment ¼ lowÞ ) ðDecision ¼ NoÞ:
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In fact, for the target set X2 ¼ fe3; e4; e5; e7g, it has two lower approximation reducts Populationdensity and Investment. How-
ever, the lower approximation reduct of this target system does not contain the attribute Investment. This difference can be
easily understood by Proposition 4.1, i.e., the lower approximation reduct of a target system S is the intersection set of the
lower approximation reducts of every decision classes induced by the decision attributes.

What we want to point out is that: like the idea of Algorithm 5, one can extract uncertain decision rules from a complete
target information system through using a upper approximation reduct of every decision class.

The above results and analyses give a tentative study for knowledge discovery from multi information systems and data
analysis through multi granulations in the framework of rough set theory. For some practical applications, the two methods
SGRS and MGRS can be combined to solve problems. As mentioned in footnotes 1 and 2, distributive information systems
and groups of intelligent agents are all data analysis and problem solving from multi granulations (each information system
or intelligent agent can be regarded as a granulation or viewpoint). Rasiowa and Marek [25,26] gave mechanical proof sys-
tems for logic of reaching consensus by groups of intelligent agents. Rauszer [27–30] established rough logic for multi agent
systems and proposed approximation methods for information systems, in which there exists an ordering relation between
two information systems. MGRS proposed in this paper does not concern on logic reasoning from multi granulations, but try
to establish a study framework based on rough set theory through using multi granulations. Hence, one can say that the mul-
ti-granulation rough set model will provide a novel approach to knowledge discovery from multi information systems and
data analysis through multi intelligent agents.

5. Conclusions and discussion

In this paper, the classical single-granulation rough set theory has been significantly extended. As a result of this exten-
sion, a multi-granulation rough set model (MGRS) has been developed. In this extension, the approximations of sets are de-
fined by using multi equivalence relations on the universe. These equivalence relations can be chosen according to a user’s
requirements or targets of problem solving. This extension has a number of useful properties. In particular, some of the prop-
erties of Pawlak’s rough set model have become special instances of those of MGRS.

Under MGRS, we have developed several important measures, such as the accuracy measure a, the quality of approxima-
tion c and the precision of approximation p, and re-interpreted them in terms of a classic measure based on sets, the Mar-
czewski–Steinhaus metric and the inclusion degree measure. An importance measure of upper approximation and an
importance measure of lower approximation have been introduced to measure the importance of a condition attribute with
respect to decision attributes as well.

In order to acquire brief rules from a target complete information system, the attribute reduction and rule extraction have
been discussed. A concept of approximation reduct has been used to describe the smallest attribute subset that preserves the
lower approximation and upper approximation of all decision classes in MGRS. Unlike decision rules (‘‘AND” rules) from
Pawlak’s rough set model, the form of decision rules in MGRS is ‘‘OR”. Several key attribute reduction algorithms and rule
extracting algorithms have been designed as well, which will be helpful for applying this theory to practical issues. The mul-
ti-granulation rough set model provides an effective approach for problem solving in the context of multi granulations.

Standard rough set theory and multi-granulation rough set framework are complementary in many practical applications.
When two attribute sets in information systems possesses a contradiction or inconsistent relationship, or efficient compu-
tation is required, MGRS will display its advantage for rule extraction and knowledge discovery; when there is a consistent
relationship between its values under one-attribute set and those under another attribute set, standard rough set theory
(SGRS) will hold dominant position. In particular, for some practical applications in which the above two cases occur con-
currently, these two concepts can be combined to solve problems.

Further research includes how to evaluate the MGRS method in comparison with Pawlak’s original approaches and how
to extend other rough set methods in the context of multi granulations.
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