QoS Routing: The Precomputation PerspectiveT

Ariel OrdaandAlexander Sprintson
Department of Electrical Engineering
Technion—Israel Institute of Technology

Haifa 32000, Israel
{ari el @e, spal ex@x}.technion.ac.il

Abstract

A major algorithmic challenge posed by QoS routing is thedtegoromptly identify a suitable path upon a connection esqu
while at the same time ensure that the selected path isegtis§, both in terms of the connection’s QoS requiremeagsyell as
in terms of the global utilization of network resources. lamg practical cases,ecomputatioscheme offers a suitable solution
to the problem: a background process prepares a data basb,aviables to identify a suitable path upon each connectiguest,
through a simple, fast, procedure.

While much work has been done in terms of path selection dlgos, the precomputation perspective got little attemtio
Simplistic adaptations of standard algorithms turn to kefficient. Accordingly, we consider the precomputationgpective,
focusing on two major settings of QoS routing. The first is(fractically important) special case where the QoS comstisof the
“bottleneck” type, e.g. a bandwidth requirement, and neétvaptimization is sought through hop minimization. Forstketting,
the standard Bellman-Ford algorithm offers a straightémavprecomputation scheme. However, we show that, by expdoi
the typical hierarchical structure of large-scale netvgprdne can achieve a substantial improvement in terms of atatipnal
complexity. Then, we turn to consider the more generalrsgitif “additive” QoS constraints (e.g., delay) and genend €osts.
As the routing problem becomes NP-hard, we focus-@ptimal approximations, and derive a precomputation sehthat offers
a major improvement over the standard approach.

Keywords

QoS, Routing, Precomputation, Hierarchical networks.

. INTRODUCTION

Broadband integrated services networks are expected pmdumultiple and diverse applications, with various qual-
ity of service (QoS) requirements. Accordingly, a key isButhe design of broadband architectures is how to provide
the resources in order to meet the requirements of each ctonegand, moreover, how to meet that goal in a network-
wide efficient manner. The establishment of efficient QoSinguschemes is, undoubtedly, one of the major building
blocks in such architectures. Indeed, QoS routing has beesubject of several studies and proposals (see, e.g. [1],
[5], [71, [10], [11], [13], [15], [17], [18], [16] and referaces therein). It has been recognized that the establishmfien
an efficient QoS routing scheme poses several complex ogake

QoS routing is, in general, a complex problem, due to seveasdons. One complication is the need to deal with
several QoS requirements, each potentially imposing samst@ints on the path choice. Then, beyond the need to
address the requirements of individual connections, Qo8nm needs to consider also the global use of network re-
sources, since meeting the requirements of a QoS requelgténtipe reservation of sufficient resources, e.g., banthyid
along the selected path. Finally, the identity of the resgii¢‘optimal”) path is connection-dependent, yet exegutin
the path search procedure for each connection may turn dag tmmputationally prohibitive. Nonetheless, the above
obstacles notwithstanding, QoS routing is facilitated @ practical settings by the following. First, while a ceon
tion may pose several QoS requirements, it turns out thattbéten translate mainly intomndwidthrequirement [2],

[3]. Bandwidth, in turn, belongs to the class of “bottlentphth requirements, which are much easier to handle than
“additive” requirements, such as delay, loss and jitted,[118], [14]. As for global network optimization, often ititns

out that much can be achieved by employing the simple aitesf hop minimizatiori2], [4]; indeed, a consequence of
the need to reserve resources such as bandwiddacdhlink of the connection’s path is that, with fewer hops one-con
sumes fewer resources. As a result, hop-constrained péthipgtion has emerged as an important problem in several
recent proposals for IP-oriented QoS routing protocols [ckily, hop minimization turns out to be an optimization
criterion that is relatively easy to handle. Lastly, to @/baving to perform a separate path computation for each new

This research was supported by the Consortium for Widebasmdrunications, administered by the Israeli Ministry of wistty and Com-
merce.

request, several proposed QoS routing protocols are baggecomputingpaths for all possible QoS requirements [7],
[2], [4] as a background process, hence considerably ragubie computational load upon each connection request.
The above observations form the foundations of the pregady.sin particular, we focus on path precomputation,
taking the view that it is a highly desirable, and at timeseassary property, of an efficient QoS routing scheme. As
shall be demonstrated, many of the algorithmic tools thatadten proposed as building blocks for QoS routing were
not designed with path precomputation in mind, and bettiitisms can be found when this property is required. This
requirement, namely to efficiently precompute optimal pdtin a whole range of (QoS) requirements, effectively opens
a new area of research. A first step in that direction has beea ih [9], which investigated the problem of precomput-
ing paths of maximal bandwidth for each possible hop-coahie; that problem was termed there as ProbfhiHops
(AHOP) While a trivial solution to that problem is offered by theustiard Bellman-Ford shortest-path scheme [6],
[9] presented an algorithm whose worst-case bound is loyetr; the improvement is achieved only in dense (high
connectivity) topologies, while communication networlssially have a sparse topology. On the other hand, it has been
observed that exploiting the particular topological stme of large-scale broadband networks can often faalitae
establishment of more efficient solutions to (QoS) routingifems [10], [16]. Accordingly, in this study we consider
the hierarchical structurethat is typical of large-scale networks, and indeed obtaiat®ns for Problem AHOP which
offer a substantial improvement, in terms of computaticz@hplexity, upon the standard (Bellman-Ford’s) scheme.
Then, we turn our attention to the harder casadditive QoS requirements (such as delay, jitter and packet loss) and
general(additive) path optimization criteria, beyond hop miniatibn. The respective problem becomes a variant of
the Restricted Shortest Path (RSfpblem, which is known to be NP-hard [8]. Some general agpration schemes
that ares-optimal have been proposed (see, e.g., [12] and refergheesin). However, those schemes have not been
designed with precomputation in mind, and, consequentéynat adequate when precomputation is sought. Accord-
ingly, in the present study we establish an approximatidres®e that offers both efficient solutions as well as efficient
performance, for precomputing “optimal” (minimum cost}ip@for all possible values of an additive QoS requirement.
The rest of the paper is organized as follows. First, in $edti we formulate the network model and formally state
the problems that we consider. Next, in Section Il we coasttie problem of hop minimization with bottleneck QoS
constraints in hierarchical networks: first, in SubsectibfA, we formulate the concept of hierarchical topologies
then, we present and analyze our precomputation schemehwhcomposed of two phases: the first,“background”,
phase is considered in Subsection 1lI-C, while the secooid,demand”, phase is considered in Subsection IlI-D. The
scheme is compared with other (standard) alternatives bs&ttion IlI-E, and its advantages are discussed. Section
IV concerns extension of our BH-HIE scheme to handle “al&lid (rather than “one-to-all”) routing problems. In
Section V-B we discuss application of our findings in an emvinent, such as PNNI's, where nodes are presented with
only anaggregatedmage of the (real) topology. Next, in Section VI we analyd@dl” problems, where one is given
a cost budgetand needs to determineng@inimum weighpath, among those that obey the budget. In Section VIl we
establish improved precomputation schemes for ProblemRE&®-in additional topologies of special interest, beyond
the hierarchical class. Next, in Section VIII we consideadiide QoS constraints and general (additive) path costseH
too, we present and analyze a two-phase precomputatiomsglamd establish its advantage over standard alternatives
Finally, conclusions appear in Section IX.

[I. MODEL AND PROBLEM FORMULATION

This section formulates the general model and main probkefdsessed in this paper. We begin with the definition
of ageneralcommunication network; a definition of a specific class, ngrhérarchical networks, will be introduced
in the next section.

A networkis represented by a directed gra@fiV, E), whereV is the set of nodes an# is the set of links. Let
N = |V]andM = |E|. A pathis a finite sequence of nodgs = (v, vy, ...,v;), such that, fol0 < n < h — 1,
(vn,vnt1) € E; h = |p| is then said to be theumber of hopgor hop count)of p. A path issimpleif all its nodes are
distinct. LetH be the maximum possible hop count of any simple gaih G which may be considered for routing
purposes. Obvioushi < N — 1, and it is much smaller in many typical network topologies;renwver, H is often
restricted to a relatively small value by network control.

For concreteness of exposition, we considdink staterouting environment, where the source node has an image
of the entire network. Each link € E is assigned a positiveeightw(e), whose significance depends on the type of
considered QoS requirement. For example, when the QoSreageint is an upper bound on the end-to-end delay, the
link weight is its delay; whereas when a bandwidth requinei® considered, the link weight(e) is reciprocal to its
available bandwidtlb(e) i.e. w(e) = ﬁ Accordingly, thepath weightW (p) of a pathp is defined differently for

additive metrics, such as delay, than for bottleneck mgtgach as bandwidth. Specifically:

Definition 1: When link weightsw(e) constitute aradditive metric, theweightW (p) of a pathp is defined as the
sum of weights of its links, namely:
« the weight of an empty path is: W (0)) = 0;
« given a nonempty path, W(p) = > w(e).

ecp

Definition 2: When link weightsw(e) constitute eottleneckmetric, theweightW (p) of a pathp is defined as the
weight of its worst link, namely:
« the weight of an empty path i5: W (0)) = 0;
« given a nonempty path, W(p) = rgg;({w(e)};

We can define the notion of a path that is “best” when only patlgits are considered, i.e.:

Definition 3: A minimum-weighpath between two nodesandd is a pathp = {s, ..., d} whose weight is no larger
than that of any other path between those nodes.

Obviously, a minimum-weight path has the best performanitke r@spect to the QoS requirement that is captured
by the link weight metric; for instance, it is a path with mmmim delay or maximum bandwidth. Minimum-weight
paths can be efficiently found by Dijkstra’s shortest-pdgfoathm, inO (N log N + M) computational complexity [6].
Alternatively, for bottleneck metrics, one can employ adpinsearch on the solution space, whose respective corplexi
is O(M log k), wherek is the number of different weights assigned to the netwarkslihence: < M). Obviously, if
the minimum-weight path fails to meet the connection’s Qeuirement, then so does any other path. However, when
the minimum-weight path does meet the QoS requirement,afté not the “right” choice, as it may be wasteful in
terms of global network usage, e.g., it may have a large nuwitigops or use "expensive” links.

Therefore, the goal of QoS routing is to identify a path tlaisfies a given QoS requirement while consuming as few
resources as possible. Since the amount of the resourcesmed on a path depends to a large extent on the number
of its links, the path hop count is considered to be a gooeriwit for estimating the path quality in terms of global
resource utilization. When the hop count criterion is ndiséactory, one can define sonfiek costmetric c¢(e) that
estimates the quality of each lirkin terms of resource utilization; such a cost may depend dowsfactors, e.g., the
link’'s available bandwidth, its location, etc. Thath costis then defined as the sum of the costs of its links, namely:

Definition 4: Given a pathp, its costC(p) is:

ecp
In the present study we shall consider both cases of globahtion criteria, namely hop count and general (integer)

link costs. Note that the former is a special case of therlatte

We are now ready to formulate the main problems that are dersi in this study. Given a connection request
between a source nodec V to a destination nodé € V with some QoS requirements, and given network utilization
preferences as captured by some link costs, the goal of tierQuing scheme is to identify a paghbetweens and
d, which meets the QoS requirements at minimum cost. This eafodmulated as @estricted shortest path (RSP)
problem:

Problem RSP (Restricted Shortest Pathiven are a source nodea destination nodeé and aQoS requirement.
Find a pathp from s to d such that:

1. W(p) <,
2. C(p) < C(p) for every other patlp that satisfies the restrictio (p) < w,
3. there does not exist another pg@thfor which C'(p) = C(p) andW (p) < W (p).

Note that the third requirement is not part of the standafohidien of the RSP problem; we introduce it since, if there
exist more than a single solution to the standard problemyadd typically prefer one that offers better performance.
We refer to a solution of Problem RSP agaveight constrained optimum path from s to d.

For additive weights and general costs, Problem RSP ischatoée, i.e., NP-hard [8]. However, there exist pseudo-
polynomial solutions, based on dynamic programing, whiake gise to fully polynomial approximation schemes
(FPAS), whose computational complexity is reasonable, gee, [12] and references therein).

As mentioned in the Introduction, many QoS routing problarossist of identifying, for each connection request,
a path of minimum hops that still meets the connection’s badith requirement. In other words, the path weight
is a “bottleneck” metric, and its cost is equal to its numbkhaps. Effectively, these problems can be formulated
as variants of Problem RSP, for which (i) weights are of théléweck type and (ii) links have equal costs; each
of these two simplifications renders Problem RSP to be tdetaA main focus of this study is to provide efficient
precomputation schemes for this class of problems, whasesladefinition is presented next.

Problem BH-RSP (Bottleneck weight Hop cost RSRRiven are a source node a destination nodé and a bottle-

neckQoS requirement). Find a pathp from s to d such that:

1. W(p) <w,

2. |p| < |p| for every other patlp that satisfies the restrictid (p) < w,

3. there does not exist another pgthfor which |p| = |p| andW (p) < W (p).

Here too, the last requirement was added in order to prefeong several solutions, one that offers better perfor-
mance.

As mentioned in the Introduction, QoS routing can often besaterably facilitated by means of employingpee-
computation schemevhich performs the path searehpriori for any possible connection request. Such a scheme
comprises of two phases: the first phase (pre-)computegablupath for any possible QoS requirement; the second
provides a (fast) solution upon each connection requdste fist phase, which incurs the main computational burden,
is run as a background process, which needs to be activatgdipon a change in the network state. Therefore, such
schemes offer a significant reduction in computational wadnever the rate of connection requests is higher than that
of changes in the network state, which is the case in manytipahcettings. Precomputation schemes for equal link
costs (i.e., minimum hops) were investigated in [2] and§@kh for bottleneck as well as additive weights. [2] indézht
that the Bellman-Ford algorithm offers a simple precomfiotascheme, by "inverting” the roles of the constraint (QoS
requirement) and the optimization criterion (hops). Thaywhe Bellman-Ford scheme computes a minimum weight
for each possible hop count; upon a connection request, tmenwould choose the minimum hop value for which the
corresponding path meets the connection’s QoS requiremeabrdingly, we define a-hop constrained optimal path
to be a path of minimum weight among all paths from a sounmea destinationl with hop count of at most. The All
Hops Optimum Path problem was then formulated in [9] as fadlo

Problem AHOP (All Hops Optimal): Given are a grapliz = (V, E), a source node € V and a maximum hop
countH, H < N. Find, for each hop valug, 1 < h < H, and each destination nodec V', anh-hop constrained
optimal path betwees andd.

In [9] it was shown that, for general topologies amttitiveweights, it is not possible to improve upon the Bellman-
Ford solution in terms of the worst-case computational demify. For bottleneckweights, [9] provided an alternative
scheme that does improve upon Bellman-Ford’s, in termsefmbrst-case bound; yet, when the topology is sparse, as
is typically the case in communication networks, the solutf [9] is inferior to Bellman-Ford’s. It remained an open
guestion whether one can propose better precomputaticanmeeifor typical network topologies; this is the subject of
Section IlI.

We shall also consider the precomputation perspectivedirttimtext ofadditive QoS requirements argeneralpath
costs. Obviously, in this case precomputation of exactt&wis is intractable, since so is the basic underlying (RSP)
problem. Therefore, we resort to precomputing approxichatamely=-optimal, solutions; this is the subject of Section
VIIL.

I1l. PRECOMPUTATION SCHEME FORPROBLEM BH-RSPIN HIERARCHICAL NETWORKS

In [9] a precomputation scheme for Problem BH-RSP was preghowhich consisted of solving Problem AHOP
during the first phase. Since the solution of Problem AHOR foiecomputes all paths (for all possible bandwidth
requirements), the second phase just consisted of segrdrithe solution in the data base produced by the first phase,
according to the QoS requirement of the incoming connectemjuest. As a result, the computational complexity
incurred by the second phase was jo$tog H + |p|), where|p| is the hop count of the identified solution. We refer to
this precomputation scheme as the AHOP-based scheme.

As mentioned in [9], the Bellman-Ford shortest path al@ponifprovides a simple scheme for solving Problem AHOP,
with a computational complexity ab (M H); for a general (dense) topology, that bound can grow to barae las
O(N?H). For bottleneck weight metrics (in other words, for ProbIBid-RSP), [9] provided an alternative scheme,

whose computational complexity @(%H); evidently, the latter outperforms Bellman-Ford’s in dengpologies,

i.e., whenM > % but not in sparse topologies, which are the typical setihgcpmmunication networks.

It remained an open question whether one can improve upolattiee in typical network topologies. In this section
we demonstrate that, by exploiting the hierarchical stmecthat is typical of large-scale networks, one can edhalali
precomputation scheme for Problem BH-RSP, which offergaifscant improvement upon the above solutions.

We begin by formulating the hierarchical network model unclensideration, which is inspired by the ATM PNNI
recommendations [1]. Next, by exploiting the propertiesttadt model, we establish the required precomputation

'More precisely, the first phase needs to prepare a data bikeykich the second phase can easily retrieve the requistid p

scheme.

Specifically, the rest of the section is organized as follofisst, we introduce some terminology and formulate the
hierarchical model. Then, we construct an auxiliary praredtermed ProcedureLOSTER, which is a main building
block of our precomputation scheme. Next, we describe thegmputation algorithm, which constitutes the first phase
of our scheme, and then present ProcedurFwhich implements its second phase.

A. Hierarchical Model Formulation

The network is represented by a grah= (V, E) and is referred to as thectual networkor thelayer-1 hierarchy
We assume that the actual network has a cefterarchical structure In order to state the precise meaning of the last
term, we need to introduce some additional terminology.

Suppose that we partition the (actual) network nodes inhoesdisjoint set opeer groupgor clusterg, and refer to
each resulting peer group as tdager-2 node Furthermore, suppose that we repeat the above processihatc for
eachi > 1, layer+ nodes are clustered into layepeer groups, each then becoming a lafjer-1) node. We repeat this
process until, for som&’, we end up with a single layds- peer group. Having performed suchi&{stage) partition,
we say that layet-nodes that form a laygr- + 1) nodew are itschildren, andw is their parent similarly, the layer:
peer group that forms a layéi—+ 1) nodew is referred to ashe child peer group of.. A descendantf a node is either
its child or a descendant’s child.

Next, for each layei, 1 < i < K, we constructayer- links, in the following way. First, we classify the actual
(layer-1) links into two types:intra-cluster links,which connect between nodes of the same peer groupjraed
clusterlinks, which connect between nodes of different peer groMgs then define the set of lay2iinks as follows.
Each inter-cluster link = (u, v) (of the actual network), gives rise to a corresponding k&ykmk, which connects the
parent nodes of. andw. Intra-cluster links (of the actual network) are not reprged at layel. Following the same
process as above, each lagdink is classified as either intra-cluster or inter-clustand layer3 links are then defined,;
the process is repeated up to the ldstth layer. We have thus defined, for eaghl < i < K, sets of layel- nodes
and links, which effectively form &yer- topology.

It should be noted that a nodeof a layer: > 1 represents a subgraph of the actual network, to which we asféhe
source graphof v, namely:

Definition 5: Given a layer: nodew, i > 1, its source graphS|v] is defined to be the subgraph of the actual network
induced by the set af's descendants.

It is convenient to define also the source graph of a peer grmamely:

Definition 6: Given a peer grouf, its source graphS[C] is defined to be the subgraph of the actual network
induced by the set of descendants of all nodesC.

A node inS[C], which has a neighbor that does not belong{¢’], is called aborder node. For convenience, we
refer to border nodes &§[C'] also as border nodes 6f. We denote by the maximum number of border nodes in any
peer group.

We are now ready to define the concepthdérarchical structure Intuitively, it means that the network can be
partitioned into peer groups, according to the above psycasch that, at all layers, peer groups are relatively small
(each comprises of at moSk(log V) nodes), and, at the same time, so is the number of interecllisks. Formally:

Definition 7: A network G(V, E) is said to possestaerarchical structurdf it can be iteratively clustered into some
K layers of peer groups, according to the process describegkabuch that all the following hold:

1. The number of nodes in a peer group is at least 2 and atdnadtered = O(log N).

2. The number of border nodes is small; specifically, theseiae (fixed) valué, such that the number of border nodes
of each peer group is at madst

Note that, since there are at ledstodes in each peer group, we have tRat= O(log M) = O(log N).

Let us illustrate the above terminology through an exambpig. 1 depicts an actual, layer 1, topology, while Fig. 2
presents possible layer 2 and layer 3 topologies. In thimpl@awe havel = 6, K = 3,b = 2.

Networks that have a hierarchical structure shall be reteto ashierarchical networks In this section we assume
that networks belong to this class, and, furthermore, theit hierarchical structure, i.e., partition into peergps, is
given.

We can establish the following “sparsity” property of hietaical networks:

Lemma 1: In a hierarchical networld? = O(N log N).

Proof: For each actual (layer-1) linke E, there exists an intra-cluster link of some peer graypvhich belongs
to some layet-topology. Accordingly, let us count the number of intrastir links of all peer groups of all topologies.
Each peer group has at mae&tintra-cluster links, and a layertopology consists of)(d” ~?) peer groups. Therefore,

Fig. 2. Example network: layer 2 and layer 3 topologies

the total number of intra-cluster links of all topologiesatsmostd? - (d + d? + ... + dX~') = O(N - d). Next, it is easy
to verify that each intra-cluster link represents at migslinks of the actual network. As a result, the total number of
links in E is at mostN - b? - d = O(N log N). [|

B. ProcedureCLUSTER

In general, the task of the first phase of a precomputatioarselis to considerably reduce the computational burden
at the second phase. With hierarchical networks, this gaall®e achieved by precomputing, per peer group, the
"costs” of all connections that may be established acrogddgforithm BH-HIE which constitutes the first phase of our
precomputation scheme, implements that idea, by sequigrdéling to Procedure CUSTER , which is described in
this subsection.

Procedure CUSTER receives, as input, some layepeer groupC, and a node, which is one ofC’s border nodes.

It then (pre-)computes, for each border nadef C' and hop-count,, the minimum weight-hop constrained patp
that connects betweenandw through the peer group; the weight of this path is stored 3adimensional arrayi’®,
namelyT“[s, v, h] = W (p). A main idea in Procedure @WSTERs that, when applied on a layepeer group as input,

it already has available the outpiif’ of previous invocations on lower layer peer groups

For the layert topology, the implementation of Procedure USTER is straightforward, since it essentially solves a
standard Problem AHOP. For all higher layers, however, aenataborated process is required, since each single node
represents a whole subgraph of the actual network.

Consider the invocation of Procedure GSTER on a layeri peer groupC, where: > 1. At this stage, due to the
previous invocations of the procedure, we have the follgwitformation on each node € C: for each pair(u; us)
of border nodes of the child peer groap of v, and for each hop value < h < d~!, we have the minimum weight
value of a path with at mogt hops that runs between those two nodes aafsshe procedure starts by constructing
the following auxiliary graphC(V, E). Each node € C is substituted irC' by the set of border nodes, of its child
peer groupC’,. Each such pair of border nodes is connected iy a link; in addition, each two nodes @ which are
connected by a link in the actual network, are also conneloyed link in C. Having constructed the topology 6f,
the procedure produces (through its sub-procedurelALIZE) a setS of quadruplequy, us, h, w), such that; and
uy are two connected nodes @ & is a hop count value, and is the minimum weight value that can be supported on
a path with at most hops betweem; andusy, as computed in the previous invocations of ProcedureSGerR. The
procedure then assigns “length” valugs) to the linkse € C, in the following iterative way. Initially, all lengths are

considered as infinite; then, the procedure scans th8 bgtincreasing order of the weight values: for each scanned
quadruple(uy, us, h, w), the procedure sets the lengthcof= (uq,us) to the value ofh, and then updates the tree of
minimum-length paths ig’ from the source node this way, the values &f“ 3, -, -] are identified. More specifically, if
the change in the length efresults in shortening the length betweeand some border nodee C to a (smaller) value
h, thenT“[3, v, fz} is assigned the value af, i.e., the weight value of the scanned quadruple. The fospetification
of Procedure CUSTER appears in Fig. 3.

We proceed to establish the following properties of the edure.

Lemma 2: Given are a layef peer groupC and the (correct) values af¢ for every lower layer peer groug'.
Then, for each border nodeof C and for each) < h < d*, Procedure CUSTER identifies the minimum weight of a
h-hop constrained path fromto v in the source grapK[C] of C.

Proof: By way of contradiction, assume that the lemma does not fididn, for some border nodeof C, there
exists a pattp = {s = vo,v,, ..., v = v} € S[C], for which |p|< h andW (p) < T¢[s, v, h]. Denote the first node
in p for whichu € C by v, the second by, etc., up tas,, = v. The nodes); constitute a path id’, which we denote
byp = {s = 0, 0,,...,9, = v}. Leti be alowest value af, for whichT[s, v;, |p;|] > W (p;), wherep; = {s, ..., 7;}
is a subpath op. Note that fori = 7 — 1 still holds T [s, v;, |p;|] = W (p;).

Consider now a linke = (v;_1,9;) € C, and a subpatp, of p that corresponds te, p. = {v; ., ...,9;}. It is easy
to verify that(v;_1, v;, h,w) € S, whereh = |pe| andw < W (p,).

We need to consider two possible cases:

1. When the quadrupléw; 1, ;, h,w) is processed at line 7 of the algorithm, it holds th&t[5,5; 1, |p; .|| =
W(p;_.). In this case, the sub-procedupeopagate will be invoked at line 12 of ProcedureLOSTER with pa-
rameters®; 1, v;, h, w). After the invocation 0PROPAGATE T implies thatT“[5, v;, |p;|] = W (p;), hence resulting
in a contradiction.
2. Otherwise, consider the step of the algorithm in whI¢hs, o; 1, |p;_.|] was assigned the value(p; ,). Since
the quadrupl€v; 1,v;, h, w) was already processed by the loop at line 7, this update kaalsecursive invocation
of the sub-procedureROPAGATE (line 6) with parametersuf_1,v;, h, w), wherew = w(p;_,) and, again, after this
invocation,7¢[s, v;, |p;|] = W (p;), resulting in a contradiction.

[|
In the next lemma we analyze the complexity of ProcedwesIER .

Lemma 3: The computational complexity of Procedure GSTER for a layers peer group ig)(d'*+1).

Proof: First, let us count the number of elementsSinFor eache € C we added at mosf’ elements ta5. We
also added at most ! elements for every pair of border nodes of the child peer g@ufor eachw € C. In total, the
number of elements i is at mosth? - d""(2), This is also the complexity of the sub-proceduneriALIZE and of
lines2-11 of Procedure CUSTER.

Next, we show that sorting the elementsSh€onsumes)(d’) running time. Note tha§’s elements are constructed
from at mosth? - d ordered sets, and an additional set of at mdstd? links. It is easy to verify that such a sorting can
be performed by) (d™"(:2) log d) steps.

Finally, let us count the number of invocations of the subepdurePROPAGATE This procedure is invoked? |
times by line 12 of the cluster procedure and also is involestinsively. Each recursive invocation implies thatfor
someu € C is increased by at least Sinceh,, for eachu € C is bounded byl’, the number of recursive invocations
of propagate is O(d'*!). Note that a single invocation pf opagate requires constant time.

We conclude that the total running time of Procedute)€TER is y is indeedO (d**1). [

C. First phase: AlgorithnBH-HIE

In this subsection we describe Algorithm BH-HIE, which implents the first phase of our precomputation scheme.

Algorithm BH-HIE computes, for each peer group of each laifes best cost (in terms of number of links) for each
weight value that can be supported through the peer grouecifgglly, for each peer grou@’, and considering each
border node as a source node, we identify the solution of déhesponding Problem AHOP in the source grafity|
of C. These solutions are then the input of ProceduredbFwhich implements the second phase of the precomputation
scheme.

Algorithm BH-HIE runs across the hierarchical layers in attom-up” manner. First, we process each peer group
C of the actual network, in the following way. Considering ledmrder node of C as a source node, we invoke

2In this context, if the source graph 6fincludes the source nodgthens is also considered as one@fs border nodes.

ProcedureCLUSTER (G, 3):
parameters
C(V, E)- alayerk peer group
5 - a source node, which is a border nodeCof
variables
S- a set of “node-node-hop-weight” quadruples
C(V, E)- the auxiliary graph, i.e.:
forallveV
Adj(v) - the adjacency list for a node?
forallv e V
h.,- the minimum length of a path betweemandv in C
notation
C- the child peer group of a layernodev.
B(C) - the set of border nodes of the peer grdtip

INITIALIZE ()
for allv € V do
hy «d" +1
Adj(v) «+ 0
hs <0
T%[5,5,00 + 0
for each(v, u, h, w) € S by increasing order ofy do
if (u,-) € Adj(v)) then
let(u, i) € Adj(v)
10 Adj(v) «+ Adj(v)\(u,1)
11 Adj(v) « Adj(v) U {(u,h)}
12 PROPAGATHv, u, h, w);

OO N~ WNPE

ProcedurePROPAGATE (v, u, h, w):

1 if (hy + h) < hy then

2 fori< (hy+h)to(h, —1) do

T[5,v,i] < w

PO[5,v,i] < v

hu < (ho + h)

for all (x,i) € Adj(u) do
PROPAGATHu, x, i, w)

~No o bh W

ProcedureINITIALIZE ():

1 5«0

2 Ve

3 for eachw € V do

4 C « the child peer group of node

5 B ¢ the set ofC’s border nodes

6 V«VUuUB

7 for each paifui,u2) € B do

8 for h « 1tod* do

9 S « SU{(u1,us, h, Tu1,us, b))}
10 for eache = (v,u) € C do
11 C « the child peer group of node
12 B, « the set ofC’s border nodes
13 C « the child peer group of node.
14 B, « the set ofC’s border nodes
15 for each paifui, u2) : (u1 € B, Auz € B,) do
16 if de(u1,us) € S[C] then
17 S+ SU{(u1,u2,1,w(e))}
18 return S,V

¢ Adj(v) = {(u,l.)} for a nodev, wherel, is the length of the edge= (v, u).

Fig. 3. Procedure QUSTER

9

Procedure CUSTER described in Subsection 1lI-B, and store the result in thaydf'“. We then iteratively apply the
same process to all higher layers. The formal specificatfdgorithm BH-HIE appears in Fig. 4.

Algorithm BH-HIE (G, s):
parameters

G- actual network;
s € G- source node.

notation
B(C)- the set of border nodes of a peer gratly
G;- the layers topology;
C},C?,- the peer groups of the layetopology.

1 i«1

2 whilei < K do

3 for each peer group?{ of G; do

4 for each node € B(C?) do

5 invoke Procedure QUSTER for (CX_;, v).
6 11+ 1

“In this context, if the source graph 6fincludess, thens is also considered as one @fs border nodes.
Fig. 4. Algorithm BH-HIE

We proceed to establish the following properties of AlgoritBH-HIE.
Lemma 4: Algorithm BH-HIE solves Problem
AHOP for all peer groups at all layers.
Proof: Straightforward by induction on topology layers and apgiien of Lemma 2. [|
Lemma 5: The computational complexity of Algorithm BH-HIE @(N log® N).

Proof: Let us count the time required to process a laypology. Such a topology contaims(%) peer groups,
for each of which the cluster procedure is invoked. Sinceumming time of Procedure IWSTER is O(d'*!) (by
Lemma 3), a layei-topology requireD(N - d) = O(N log N) operations. As there arE = log(N) layers,the
algorithm’s complexity iSO (N log? N). [|

D. Second phase: ProceduenD

We proceed to present ProceduneiB. This procedure is invoked upon each new connection regaedtidentifies
the corresponding path, namely a path of minimum hops amuomgdrresponding source)(and destinationd) that
satisfy the connection’s bottleneck requiremei}. (

The procedure processes the hierarchical layers itehgtisgarting from the first layer, i.e., the actual networlg, u
to the last,K'th, layer. For each layer, we identify the peer grafip for which the source grapK[C] includes the
destination nodéd. Then, a minimum hop path from each border néaé C to d is identified.

For this purpose we construct the following auxiliary gra@gh The destination nodé and the border nodes of the
child peer groups of’ constitute the set ofi’s nodes. Every pair of border nodés, «) of a child peer groug of
C'is connected by a link, whose length is assigned to be themimi number of hops of &-weight constrained path
betweerv andu in the source grapB[C] of C; this value is provided by the arrdy”, which was computed in the first
phase. In addition, for every actual network liak= (v,) for whichw(e) < @ and which gave rise to an intra-cluster
link in C, we add inG a link betweerw andu, whose length is set tb. As a result, a minimum length path @
corresponds to a minimum hop path in the source gigjglj of C.

As shall be shown below, the complexity of ProcedurerF is O(log® N + |p|), where|p| in the number of links in
the identified path. The formal specification of ProcedumeD- appears in Fig. 5.

We proceed to prove the correctness of Procedume F

Lemma 6: Suppose that ProcedureN® is invoked for a source, destination? and (bottleneck) QoS constraiit
Then, the hop count of the returned path is the minimum number of hops of a pathenaictual network between
andd that satisfies the QoS constraint

Proof: By way of contradiction, assume that the lemma does not hdhien, there exists a pafh = {s =
Vg, V1, ..., Uy, = d} in the actual network, for whichV (p)< @ and|p| < h. Forl < i < K, let C; be a layer:
peer group for whichl € S[C;]. Certainly, the patlp includes border nodes of peer grougs 1 < i < k, for some

10

ProcedureFIND (G, s, d, w):
parameters

G- actual network.

s € G- source node;

d € G- destination node;

w- Q0S (bottleneck) requirement;
notations

G- layer+ topology;

S[C]- the source graph of a peer groGh

B(C)- set of border nodes of peer groap
variables

G(V, E)- the auxiliary graph;

let C be a layert peer group, for whickl € C;
remove fromC' all links which weight is bigger thatv;
for each border node € B(C), identify a minimum hop pathi@ from b to d (e.g., using a Breadth First Search algorithm[6]);
V « {B(C)ud};
E + 0
for eachw € B(C) do
add a new link = (v, d) into E;
setl(e) to be the minimum number of hops in a path frero d
14— 2;
while: < K do
11 letC be alayer: peer group, for whicld € S[C];
12 for eachw € C do

[N
O OWoWO~NOOUI A WN P

13 letC, be a child peer group af;

14 V « {VUB(C)};

15 for each ordered painf(w) ? of C,'s border nodeslo

16 if there existh, for which holdsI"® [u, w, k] < wthen

17 find the lowesh, for which holdsT"“* [u, w, h] < 1,

18 add a new link = (u,w),l(e) = hto G;

19 for each pair of nodes, u € V, for which3e = (v,u) € G, w(e) < @ do

20 add a new link = (v,u) to G and set(e) = 1,

21 using Dijkstra’s algorithm, identify the shortest patbriieachy € B(C) tod in G;
22 V<« {B(C)ud}

23 E « 0

24 for eachw € B(C) do

25 add a new link = (v, d) into E;

26 setl(e) to be the length of the shortest path frerto d, asidentified in line 21;

27 lete = (s,d) € E.°
28 returni(e).

“Note that, sincéu, v) is considered as an ordered pair, we distinguish betwegi) and (u, v).
Note that there must exist an edge= (s, d) € E, since the source nodeis a border node of’ (recall that there is only one layét-
peer group).

Fig. 5. Procedure iIND

k < K.Suppose that we traverpefrom d to s. Forl < ¢ < k,denote by; the first node in the traversal that is a border
node ofC; . Also, for each layei, 1 < i < K,we denote byG; the auxiliary graph constructed for this layer. Finally,
we denote by; the length of a shortest path fromto s in GG;,as identified at line 21.

It is sufficient to prove that, for each< i < K, the valué; is at most the hop count of a subpath= {v;, ..., d} of
p. Leti be the minimumi, for which this does not hold. Consider a pgth= {#;, ..., 7; .} in G, which corresponds
to the subpatlp; = {v;, ...,v;—, } of p. It follows that/(p) > |p;|. Thus, there exists a link= (v,) € p, for which
[(e) is greater that the hop count of the corresponding subpath {v, ..., u} of p. There are two possibilities.
1. The linke corresponds to a single actual network link. In this casditikee was assigned the length 1 by line 20 of
the algorithm.
2. Otherwisee = (v,u) is a link between border nodes of a child peer gréypfor some node) € C. In this case,
l. < p. is assigned the lowest, for which it holds thafl'* [v, u, h] < <. Both cases result in a contradiction, hence

11

the lemma follows.
|

We proceed to analyze the computational complexity of tioeguiure.

Lemma 7: The computational complexity of Procedurab is O(|p|+ log® N).

Proof: Note that the grapld contains jusO(log N) nodes and) (log” N) links at each hierarchical layer. The
execution of all lines in the procedure, except from linesah@ 17, require only a fixed number of steps per link, or
O(log? N) per layer. Lines 16 and 17 may be implementedifiog H) running time per link, by a binary search.
These lines are executé(log N) times for each layer, hence they inaiflog N log H) steps per layer. As a result,
the procedure perform@(log? N) operations per layer. Since the number of layer® (fg V), we need)(log® V)
running time in total. In addition, we need(|p|)) time to report the output, wheng is the path identified by the
algorithm. Thus, the time complexity of the procedur®igp|+ log® N). |

The above results are summarized in the following theorem.

Theorem 1: Procedure D provides aO(|p|+ log® N) solution to Problem BH-RSP, i.e.: given a connection
request with source nodg destination nodel, and (bottleneck) QoS constraitit, and given the output of Algo-
rithm BH-HIE, Procedure WD identifies, inO(|p|+ log® N) steps, a path with a minimum number of hops, among
all paths in the actual network betweeandd that satisfy the QoS constraitit

E. Discussion

In this subsection we compare between the performance gireaomputation scheme and its alternatives.

Consider first the “standard” precomputation scheme pregos[9], [2], which was based on solving Problem AHOP
through Bellman-Ford’s shortest path algorithm.

As shown above, hierarchical networks are sparse, in theeséat) = O(N log N). This implies that the stan-
dard scheme incurs a computational complexitygfV H log N) for its first phase, i.e., it i:{)(logiN) slower than
ours. Considering the second phase, the standard schemel{as any other which is based on fully solving Prob-
lem AHOP in the first phase) yields a computational compjesftjust O(|p|+ log H), which is somewhat less than
that of our scheme, i.e0(|p|+log® N), however the difference between the two figures is not siganifi in general,
and nonexistent whelp| is the dominating component.

Next, let us compare between our precomputation schemearaatiernative where no precomputation is performed
atall. In such a “single-phase” scheme, the required patlbeadentified by applying Dijkstra’s shortest path alduonit
which, for M = O(N log N), incurs O(N log N) running time. Sincgp|= O(N), our scheme incurs a smaller
computational complexity upon a connection request. Tfierdnce is particularly significant when the length of the
identified path is significantly smaller thaw, e.g.,|p| = O(log N), which is a typical case. It is interesting to compare
between the two approaches also in the related contexarmmiection admissigrwhere one needs to decide whether a
connection request should be admitted, based on its Qo$eswnt and the cost it incurs; to that end, one needs to
identify the (best) cost of a path over which the connectian be established, however there is no need to explicitly
specify the path itself. This means that our scheme allovebtain an admission decision upon a connection request in
justO(log® N) time, whereas the “single-phase” scheme still in@dd(&VlogN) time.

F. Model Relaxation

One of the properties of hierarchical networks is that thmber of nodes in each peer group is at méstvhere
d = O(log N) (see IlI-A). This requirement may be relaxed by allowingtagr peer groups to be composed from
more thand nodes, provided that in all peer groups the number of linkamnpath isO(log N). This relaxation does
not affect the computational complexity O M log N) for the first phase of our precomputation scheme. This fadlow
from the fact that the computational complexity of ProcedGrUSTER applied to a peer groug' is O(M (C)d(C)),
where M (C) is the number of”’s edges and(C) is an upper bound to the number of links of any patfyisThis, in
turn, may be easily verified in a similar way as done in the Pobbemma 2. Note that in the relaxed mod#l is not
O(N log N) anymore, but can rather be as large®sV?). The computation complexity of the second phase may be
as much ag)(M) in the worst case. However, under under certain condititresyunning time of the second phase is
same as for regular (not extended model). The conditioraisrtaither the source nodenor the destination nodéare
descendants of node, which child peer group comprises rhatd hodes. Note that this restriction applies to at most
2 -log N peer groups out ab (V) peer groups in total.

12

IV. SOLVING ALL -TO-ALL PROBLEMS

The precomputation scheme, described above can be extéordetiroad class of problems related to Problem BH-
RSP. In this section we present the precomputation schen@eviariation of Problem BH-RSP, in which it is required
to solve Problem BH-RSP for any two nodesGn In other words, given a bottleneck QoS constrainand a pair of
nodesv, andwvy, it is required to identify the minimum hop path, among alihgafromw, to v4, which satisfy the QoS
constrainw. The first phase is identical to the precomputation schem®ifoblem BH-RSP and is implemented by
Algorithm BH-HIE. Recall that in this algorithm Procedura GSTER is invoked for each peer group at all layers.
Since the second phase is implemented similarly to the siepgbase of the precomputation scheme for Problem BH-
RSP, we present only a brief description. lkebe a lowest layer for which there exists a peer graupfor which
vs € S(C) andvy € S(C) whereS(C) is the source graph a@f'. Let alsoC; andCy be layer-(i — 1) peer groups, for
which holdsvs € S(C;) andvg € S(Cy), whereS(Cs) andS(Cy) are the source graphs 6f andC, respectively. In
order to identify the minimum hop path from to v, among all paths from, to v4 which satisfy a given QoS constrain
1w, following steps are executed.

1. For each border node of C;, identify the minimum hop path, among all path framto », which satisfy QoS
constraimg.

2. For each border nodeof Cy, identify the minimum hop path from to v4, among all paths that satisfy.

3. Construct the following auxiliary grapi. The set of nodes if¥ includesu, v4, border nodes of all peer groups
whose parent node belongs@) and border nodes of all layefh peer groups. Any two nodesw in G that belong to
the same peer group of G are connected by a link, whose weight is the minimum hop cotiatpath fromv to w in

P, which satisfiesy. In addition there are links from, to border nodes of’; and from border nodes @f,; to v;. The
weight of these links is as computed in steps 1 and 2.

4. |dentify the shortest path from to v, in G.

All this steps are implemented in a similar way as it done iocBdure FND . It is easy to verify that the computation
complexity of this solution is the same as that of Proceduks®F To conclude, we presented a precomputation scheme
for a variation of Problem BH-RSP problem, in which it is rggd to identify paths from any source to any destination;
the computation complexity of our solution@ N log N) for the first phase an@(log® N) for the second.

V. TOPOLOGY AGGREGATION

Our discussion so far concentrated on link state protoedisch assume that a complete and accurate image of the
network is available for a network node. However this apphosuffers from scalability problems. In particular, as a
network grows in size, a significant part of network bandWitdt consumed for maintaining topology image on every
node. As a solution, the ATM forum PNNI standard [1] is desigiio provide a scalable representation of hierarchical
topologies. According to this standard, a cluster doesew@al its internal structure to outside nodes. Insteadppbes
a summary of cost and availabilities of connections thatthmaugh that cluster. This approach is often referred to as
topology aggregation. In this section we discuss a vanatioour precomputation scheme for networks with topology
aggregation.

A. Network topology as seen by a hode

A (proper) aggregated image is simpler than the real topolpet it still captures its structure in the way that makes
it suitable for QoS purposes. Following the ATM PNNI reconmuations [1], we describe the aggregated image of
a network at some node All other peer groups are omitted from the network image. phtceed define the set,
of peer groups that are included by aggregated image of ttveorie for a nodev. A, includes any peer groug'
which source graply(G) includesv. Since there exists only one such a peer group for eachegyegnclude that the
cardinality of A, is at mostO(log V). Fig. 6 depicts aggregated image of the topology depictelignl.

Though an aggregated image that is comprised of thd sit sufficient for identifying a route from to a destination,
it does not contain enough data for QoS routing. Consequemtl need some additional information concerning the
peer groups not included i4,. This information includes a summary of costs and avaitasl of connections that run
through certain peer groups. These peer groups form a setetehyB,. SetB, includes every peer grouf, whose
parent node belongs to a peer groupdin(C itself does not belongs td,). The summary for a peer group s in the
form of the output that would be obtained by Procedura) €TeR if it were applied toC'. In Fig. 6, all peer groups
belonging toB,, are marked as “clouds”. It is easy to verify that the spacepterity of the aggregated imageGy N),
as compared witlh (NlogN) for a non-aggregated image.

13

Fig. 6. An aggregated image of network for a nade

B. A revised precomputation scheme

Only minor changes should be introduced to our precomputatcheme in order to adapt it to networks with topol-
ogy aggregation. Since an aggregated image already ircjugeomputation results for a number of peer groups, the
precomputation phase becomes easier: ProcedwsTER is applied only for one peer group at each layer, and not for
each peer group as in Algorithm BH-HIE. As a result, its cotaianal complexity is jusO (N log N) for networks
with topology aggregation, as compared witfiNlog>N) for hierarchical networks without aggregation. The aggre-
gated image of a peer group € B, can be delivered to from one ofC’s border nodes. With network aggregation,
establishing a new connection with a QoS constraimeéquires additional steps, which include data exchangedsst
source and destination nodes. Indeed, a destination nogleerlacated in a “cloud” in the aggregated image of a source
node, which corresponds to some peer graug B, . The only information that a source node needs for computing
the optimal route tal is the lowest cost of a path from each border nbgef C to d which satisfies the QoS constraint
. This data is also calculated at the precomputation phaisie,ne penalty in terms of computational complexity
The data is sent from the source to destination and its sizenistant (does not depend &f). Upon arrival of this data
to the source node, a variant of AlgorithriN® , which is a straightforward simplification of AlgorithmikD , is exe-
cuted; it identifies a lowest cost path fronto d that satisfieso. This procedure require9(log® N) time. We conclude
that, compared to the regular approach, the topology agfjeegscheme requires less space and fewer messages, and it
gives raise to a faster precomputation algorithm. Its diaathge is that the source and destination nodes are rdquire
to exchange data before establishing the connection.

VI. RESTRICTED BUDGET PROBLEMS

In this section we consider a class of bottleneck problemeravthere is a cost assigned to each network edge. Given
a cost budget, it is required to identifynainimum weighpath, among those that obey the budget. Certainly, this is a
variation of the Restricted Shorted Path (RSP) problemndédfin Section Il. The formal definition is as follows.

Problem GB-RSP (General weight Bottleneck cost RSI®iven are a networkd, a source node, a destination
noded and abudgetB. Find a pathp from s to d such that:
1. C(p) < B,
2. W(p) < W(p) for every other patlp that satisfies the restrictiafi(p) < B,
3. there does not exist another pg@thfor whichW (p) = W (p) andC(p) < C(p).
We begin by noting the following straightforward, yet congionally expensive, scheme to solve this problem: for
each possible weighit in GG, we delete any each edgéor whichw(e) > @, and then execute a shortest path algorithm;
with Dijkstra’s shortest path algorithm, the computatiooamplexity isO(M (M + Nlog N)). In this section we
present a more efficient solution that requires jU$togN) invocations of a shortest path algorithm. Our algorithm
takes advantage of the fact that, for bottleneck metricsirenmam cost of a path from to d whose weight is at most
1 can be found by means of single invocation of a shortest ggttithm. Thus, by performing a binary search on the
range of weight values, a minimum weight path among all pfthm s to d that obeyB may be found.

The formal specification of the algorithm is presented on Fig

Lemma 8: The running time of Algorithm GB-RSP i8((M + N log N)log N).

31t requires only a straightforward addition for precomgiata algorithm.

14

Algorithm GB-RSP (G, s, d, C):
parameters:

G(V, E)- network,
s - a source node
d- a destination node
C- budget

variables:
r1, rp-integers froml to U, whereU is an upper bound of the cost of a path frero d.

1 Tl(—l,rh(—U

2 i+ o0

3 repeat forever do

4 1+

5 i« [1hn

6 if (i =) then

7 return {h, oo}

8 LetE* ={ec Elw(e) <}

9 determine for each € G, the minimal distancé&(v) from s to v (by applying AlgorithmDijkstra orG = (V, E*))
10 setW(v) « ooforallv € V\sandW(s) < 0
11 for all v € V inincreasing order of(v) do

12 for alle = (v,u) € E* do
13 if (level(u) — level(v) = 1) then
14 W (u) < min(W (u), max(W (v), w(e))

15 ifi(d) = hthen

16 return {I(d), W(d)}.
17 ifi(d) < hthen

18 TR 1

19 d&i“?“[— 1

Fig. 7. Algorithm GB-RSP

Fig. 8. An example of a special topology

Proof: Initially, the search range is at magf. After the first iteration it shrinks td//2, etc. As a result, the total
number of iterations i (logN). Since the computational complexity of each iteratio®{s\/ + N log N), the total
running time of the algorithm i® (M + N log N) log N). [|
The correctness of the algorithm follows from the fact ti tost of the solution is monotonically nonincreasing with
the allowed weight. The above results are summarized inall@arfing theorem.

Theorem 2: Algorithm GB-RSP solves GB-RSP with a computational comipteof O(M + N log N)(log N).

VIl. PRECOMPUTATION SCHEME FORPROBLEM BH-RSPIN SPECIAL TOPOLOGIES

In this section we discuss special topologies for whichdleiist efficient precomputation schemes for Problem BH-
RSP. Our discussion is limited to the class of “one-to-omebfems, i.e., the problems with a single or limited number
of destinations. We describe first the properties of sucbltapes that facilitate the efficiency of the precomputatio
scheme. Lep be ah-hop constrained optimal path fromto d and W (p) = w. Suppose that, for sonte > h, it
holds that the weighty of a h-constrained optimal path equalsito In other words, relaxing the constraint fdinks
does not yield a better path. Furthermore, there are onlyndadd number ofh. values, for which the link count of
h-constrained optimal path fromto d is h. We denote the set of such values$yy; = {hi, ko, ...h }. In this section
we consider topologies for which the cardinality$f, is bounded by some small (fixed) valieAn example of such
topology appears on Fig. 8. For this topology the valué 2. We proceed to present the precomputation scheme for

15

special topologies. In the first phase of this scheme, imetded by Algorithm BH-SPEC, we precompute for each
v € V theh-hop constrained optimal path frosto v for eachh € S, ,. The weights of that path are stored in an array
WS4 = {wi,ws,...wy }, wherew; is the weight of &;-hop constrained optimal path frosito ». The second phase
identifies for a given QoS constrain, the smallesty; € W 4, for whichw; < & and outputs the corresponding
path. The computational complexity of the first phas@{3/ - k) or O(M) for fixed values oft, and isO(log N) for

the second phase.

Each iteration of Algorithm BH-SPEC builds an auxiliary ghaz. @ is identical toG, but includes only these
links which weight is less or equal to(i). Then, a Breadth First Search Algorithm BFS ([6]) is applied?, which
determines, for each € V' the minimum hop distancg, , from s to v. Let 4 be the minimum hop count of a path from
stodin G and letiy be the minimum weight of &—hop path froms to d. Then, the value of(i) for the next iteration

is set to the maximum value of weight % among all weight that are less than
The formal specification of Algorithm BH-SPEC appears in.Big

Algorithm BH-SPEC (G, s):
parameters

G- actual network;

s € G- source node.

d € G- destination node
variables

w(4)- iteration parameter

1 i+1

2 w(i) + oo
3 while do
4 delete all linke € E,for whichw(e) > w(i)

5 invoke Algorithm BFS orG, determine for each € G, the minimal hop distanckv) from s tov
6 for eachv € V do
-

8

9

W (v) < oo
W(s) « 0
for eachv € V in increasing order of(v) do
10 for eache = (v,u) € E do
11 if I(u) —I(v) = 1then
12 W (u) = min{W (u), max{W (v), w(e) }}
13 h; = 1(d)

14w =W(d)

15 i+i+1

16 letw = maxcep{w(e) < w;}
17 w(i) «

Fig. 9. Algorithm BH-SPEC

Lemma 9: The computational complexity of Algorithm BH-SPEC (XM - d), wherek is an upper bound to
cardinality of the seb 4.

Proof: Itis easy to verify that each iteration incutg§ M), and that for each element i) 4 only a single iteration

is performed. [|

As stated above, the second part of the precomputation scliemtifies, for a given requiremetit, aw-constrained
optimal path froms to d. We first find the smallest; € W C, 4, for whichw; < . This procedure requireS(log N)
time. The output of the second phase is a path which weight &d link count ish;.

In the next lemma we prove that this path igaconstrained optimum path fromto d.

Lemma 10: Let @ be a bottleneck constrain apdbe a path returned by the algorithm. Thenis the minimal link
path among all paths fromto d that satisfy the constrait.

Proof: Consider the values afi(i) over the various iterations of Algorithm BH-SPEC. Ljebe an iteration, in
which the value ofw(j) is minimal, but still greater thagb. The invocation of Algorithm BFS guarantees thatis a
minimum hop count of a path fromto d that satisfies the constraii |
We conclude our discussion in the following theorem.

Theorem 3: For the special topologies described above, there exists@mputation scheme whose complexity is
O(M - k) for the first phase an@(logN) for the second.

16

VIll. PRECOMPUTATION SCHEME FORADDITIVE METRICS

In this section we consider the routing problem wattiditive QoS constraints angenerallinks costs. As mentioned
in Section Il, this problem is in fact the restricted sharfesth Problem RSP, which, in general, is known to be NP-hard.
Accordingly, we resort to precomputation schemes that effproximatesolutions to Problem RSP.

We note that a precomputation scheme can be constructededbade of existing approximation algorithms for
Problem RSP (e.g. [12]), i.e., by sequentially executirepttor various cost values. However, as we shall see, such
a simplistic approach results in a (overly) high computadiocomplexity. Therefore, in this section we propose a
precomputation scheme that findssaoptimal solution to Problem RSP, for all possible QoS caiist values, within
O((M+Nlog N)-H-1.log C) computational complexity for the first phase anflog (1) +log(H)+loglog(C)+|p|)
for the second phase, whefes an upper bound on the (additive) cost of a path, |@hds the hop count of the identified
path.

The section is organized as follows. First, we present ads@olynomial solution for Problem RSP in the special
case of directed acyclic graphs (DAGs). Next, based on thatisn, we establish a@((M + N log(N)) - H - 1 -log C)
precomputation scheme that providescamptimal solution for general topologies.

A. Pseudo-polynomial Solution for Problem RSP

As a first step, we present a (computationally inefficiengua®-polynomial solution, Algorithm PP-RSP, which is
based on a generalization of Bellman-Ford’s algorithm. tRersake of simplicity, we assume that the underlying graph
is a DAG; an extension to general graphs is straightforward.

The algorithm is based on dynamic programming and assuntegeincosts. Given a (additive) QoS constraint
the algorithm starts with a zero “budget’= 0 and increments it by a value @fon each iteration, until &-weight
constrained path from to d is discovered. At each iteration, the algorithm repeatesiiects the destination node
u € V according to a topologically sorted ordeand relaxes all links leaving. The process of relaxing a link:, v)
consists of testing whether the best path found so far can be improved by going througlinder the current budget
restrictionc and, if so, updating the best path for nade

Since for each:,1 < ¢ < ¢, the algorithm perform$) (M) operations, its complexity i® (M - ¢), whereé is an
upper bound on the cost of &{weight constrained optimum) path frogto anyv € V. The formal specification of
Algorithm PP-RSP appears in Fig. 10.

B. Polynomial Precomputation (Approximation) Scheme

We proceed to present a precomputation scheme that prasvdogsmal solutions for Problem RSP. First,
we present a solution for DAGs, whose complexity (for thet fidsase) isO(M H log C'/¢), whereC' is an
upper bound on the cost of a path, and then extend it in ordebtain anO((M + N log N)H logC/¢)
solution for general topologies.

B.1. Algorithm for directed acyclic graphs

The following algorithm is based on Algorithm PP-RSP, angsiés acost quantizatiompproach. Specif-
ically, it considers only a limited number of budget valuesmelyl, c;, c,, ..., wherec; = §° for somed > 1.
For each node € V' and for eachy;, the algorithm outputs a near-minimum weight [c;] of a path froms
to v, whose cost is at most.

For a fixed value of, the number of iteration is polynomial on the input size. @a bther hand, this
approach does not provide an exact solution, and the appatian ratios depends on the choice 6f
The formal specification of Algorithm RSP-DAG is presentedrig. 11.

Lemma 11: Given are a DAGG, a source node and an approximation parameter For a (arbitrary)
valuew, let c?' be the cost of as-weight constrained optimal path fromto a (arbitrary) node € V, and
leté = X 2miUn q{cq;|W1, l¢;] < w}, where the value®/,[¢;] are the output of Algorithm RSP-DAG far,

1=1,2,...[logs C
s, e andv. Then%:tpt <e.
Proof: Let p”'={vy = s,v1,...,v, = d} be aw-weight constrained optimal path fromto d. Note

that C(p") = ', W(p*') < w. For1l < j < h, we denote byp;?”t = {v,,...,v;} a subpath op*,

“ A topological sort of a DAGG is a linear ordering of its vertices such that(ifcontains an edge, v), thenu appears before in the ordering.
A topologically sorted order may be computed by a DFS alborif6].

Algorithm PP-RSP (G(V, E), w):
parameters:
G(V, E) - network
s € G - source node
w- weight (additive QoS) constraint
variables:
¢ - the “budget”
forallv e V
Wy [c] - the minimum weight of a path betwesrandv
whose cost is at most

1 forallveVdo
2 W,[0] +
3 W,0]«0
4 c+1
5 whileW,[c] > w for somev € V do
6 Wi+« 0
7 foralwveVdo
8 Woyle] « Wyle —1]
9 for each node: taken in topologically sorted ordelio
10 for each node € Adj[u] do
11 lete = (u, v)
12 if (w(e) < w)then
13 Wyle] = min[W,[c], Wy [c — c(e)] + w(e)]

14 c+c+1

Fig. 10. Algorithm PP-RSP

Algorithm RSP-DAG (G(V, E), s, €):
parameters:

G(V, E) - network

s € (G - source node

- approximation parameter
variables:

¢; - the “budget”

forallv e V

Wy [ei] - the approximated minimum weight of a path betwsemndwv whose cost is at most

notation

C'- an upper bound to the cost of a pathtn

§=01/(0 - t57)
Yol = |58l |

1 forallveV
2 do W,[0] < oo
3 Wi0]«0
4 co 0
5 i+1
6 ¢+ 1
7 whilec; < C do
8 Ws [CZ} ~—0
9 foralveVdo
10 Walei] = Wylei-1]
11 for each node: taken in topologically sorted ordelio
12 for each node € Adj[u]
13 lete = (u,v)
14 if(c(e) < ¢i) then
15 Wolei] < min[W, [ei], Wa[[lei — c(e)[}] + w(e)]
16 i+ (i+1)
17 ¢« |6

18 return {W,[ci] |7 =1,2,...|]log; C|} foreachv € V

Fig. 11. Algorithm RSP-DAG

17

18

w =W (), =C(pf). Foranodey,j=1,..,hleté; = min {¢;|W,,[e;] < w™'}, where
1=1,2,...[logs C| :

We prove by induction op thaté; < c;?”t - 87. As the base step, we consider the execution of the loop
of line 7 fori = [logsc(e)] , wheree = (s,v;). Line 15 assures that,, (¢;) < w;. Therefore¢; < ¢; <
c(e) -6 < P - 6. Thus, we proved that, < " - 4.

For the inductive step, we assume that r"”’ 87 holds forl, 2, .., j — 1 and prove that it holds foi. Let us
consider the execution of the loop ofhne?io# [logs(¢;—1 + c(e)) |, wheree = (v;_1,v;). Sincec;_; < ¢;,
the value oV, . [¢;] was fixed in the loop of line 7 at either the current or a presiberation. In both cases
the value ofV,,_, [¢;_,] does not change after nodgis processed. As aresult, and sintg _, [¢; 1] < w]”’],
line 15 assures thal’,,[c;] < w™. Therefored; < ¢; < 6+ (¢—1 + c(e)) < 6+ (7' - 67 + c(e)), for

e = (vj_1,v;), where the last mequallty follows from the inductive asgtion. Hencec] < c"”’ 7, since
c;pt = ";ptl + c(e), wheree = (v;_1,v;).

Leté = ;=-. We have proved thay < - for 1 < j < h. This result implies that = ¢, < (I{fg)h.
Moreover, since foh < H it holds that(1 —)h > (1—+)", and sincd1 — £)" is an increasing function
of H, we conclude tha¢1 £y > 1 —¢ande < 2L, Therefore%f”” < g ie, 27 < £, Since
£ = 14z, itholds thatt fpt < ¢ and the lemma follows. [|

Lemma 12: The computational complexity of Algorithm RSP-DAGGE(% - M Hlog(C), whereC' is an
upper bound on the cost of a pathGn
Proof: Let us count the number of iteratioisof the algorithm’s main loop (i.e.the loop beginning

on line 7). Leté = = Clearly,@ < O, thusk < 1nf1lf%)' Since for allz > —1 it holds that

In(1 + z) < z, we have that: < Z2C. Each iteration of the main loop requir€y /) time,hence the
complexity of the algorithm i€)(1/¢ - M H InC). Sinceé > 3 for e < 1, it follows that the algorithm’s
complexity isO(1/= - MH In C). |

The next section extends Algorithm RSP-DAG to general gsaphis requires only minor changes to the
algorithm.

B.2. Extension to general graphs

Recall that, in each iteration of Algorithm RSP-DAG, the @ranodes were visited in a topologically
sorted order. Since such order does not exist in graphs witlkes, we process nodes according to their
minimum weights from the source, using an idea similar ta dfeDijkstra’s shortest path algorithm. The
algorithm is presented in Fig. 12.

Theorem 4:Given are a general grapfi, a source node and an approximation parameter For a
(arbitrary) valuew, let c°* be the cost of an-weight constrained optimal path fromto a (arbitrary) node

veV,andletc = X 2miUn ¢ {c;|Wy|ei] < w}, where the value®/, [c;] are the output of Algorithm RSP-
1=1,2,...|logs
GEN forG, s, andv. Then& f,f’f' <e.

Proof: Stralghtforward since the algorithm is essentially samtb Algorithm RSP-DAG, except for
the order by which nodes are visited during an iteration eflttop at line 7. The correctness of the algorithm
follows from the fact that nodes with lower valuesldf,[¢;] are visited first, as in Algorithm RSP-DAGH

Theorem 5: The computational complexity of Algorithm RSP-GENGX? - (M + Nlog N)H log C),
whereC' is an upper bound on the cost of a pathin

Proof: The algorithm performs the same number of iterations as ilyn RSP-DAG, i.e.,O(% .
Hlog C). It can be easily verified that each iteration incax&\/ + N log N) computational complexity. We

thus conclude that the computational complexity of the @llgm is O (L - (M + N log N)H log C). |

B.3. The Second Phase

Algorithm RSP-GEN constitutes the first phase of our preaataijon scheme, and its output, i.e. the
valuesW,[¢;], is used by the second phase of the precomputation scheme.

19

Algorithm RSP-GEN (G(V, E), s, €):

parameters:
G(V, E) - network
s € G - source node
- approximation parameter

variables:
¢; - the “budget”
forallv e V

Wy [ei] - the approximated minimum weight of a path betwsemndwv whose cost is at most
Q - priority queué
notation

C'- an upper bound on the cost of a pattGn

0= (1/(1 = ox5r7)
Yol = (518!

for allv € V do
Wy [0] + oo
Ws[0] <0
co 0
1+ 0
C; 1
whilec; < C do
WS[C,'} 0
Q0
10 foralwveVdo
11 Waylei] = Wylei1]
12 Add(Q, v, Wy[ci));
13 while(Q # 0) do
14 u +Extract_Min(Q)®;

O©CoO~NOOUTDAWNLPEP

15 for each node € Adj[u] do

16 lete = (u, v)

17 if(c(e) < ¢;) then

18 Wo[ci] < min[Wo[es], Wau[[lei — c(e) [|] + w(e)]
19 i+ (i+1)

20 ¢« |07]

21 return {Wylc;i] |i=1,2,...[logs C|} foreachv € V

“The priority queud is implemented with a Fibbonacci heap [6]. Two operatiomssapportedhdd(Q, v, w) andExtract-Min(Q).
With Fibonacci Heaps, the amortized cost of each prioriég peration i€ (log V') [6].

Fig. 12. Algorithm RSP-GEN

The second phase is invoked at a source ngdgoon a connection request betweeand a destination
noded € V, with a QoS requirement. The scheme then determines the minimyrfor which W,[¢;] < w.
This operation can be performeddh(log() +log(H) +loglog(C)) time by means of a binary search on the
values ofi¥,[¢;]. The scheme reports the path betweamdd that corresponds td/,[¢;], which, by Theorem
4, is aw-weight constrained path betweemndd with ane-optimal cost. This path is not determined by the
first phase explicitly, but can be derived from its output{i(ip|) operations. Therefore, the second phase
incurs a total computational complexity 6f(log(2) + log(H) + loglog(C) + |p|).

C. Discussion

We described a precomputation scheme for Problem RSP ihadtps:-optimal solutions within a compu-
tational complexity of) ((M+N log N)-Z log C) for the first phase an@ (log(1)+log(H)+loglog(C)+|p|)
for the second phase.

Compared with an alternative single-phase (i.e., “no prgmatation”) scheme, our scheme allows to (sig-
nificantly) reduce the time required for establishing a n@mrection. Indeed, in a single-phase scheme

5This requires a mild and straightforward modification of élithm RSP-GEN. For simplicity of exposition, the detaite amitted here.

20

Problem RSP should be solved for each connection requestigh a standard-optimal approximation to
Problem RSP [12], which incurs a computational complexft@t()Mg loglog C) for DAGs, andO((M +

N log N)g loglog C) for general graptfs Hence, the second phase of our scheme allows to identify an

e-optimal path upon a connection requésg; NV - g -loglog C) times faster.

As previously noted, a precomputation scheme can be tsngahstructed on the base of existing approx-
imation algorithms for Problem RSP, such as [12], by seqaliyEexecuting them for various cost values.
The computational complexity of this solution, fosmgledestination, i) ((M + N log N)£ loglog C) for
general graphs. In order to perform the precomputation fobPmMRSP , this algorithm should be invoked
O("£€) timesper destinationwith a total complexity ofO((M + Nlog N) - £loglog C*€ N) for all
destinations, which is significantl;‘ﬁi—cN times) higher than that of our solution.

IX. CONCLUSIONS

QoS routing poses major challenges in terms of algorithregigh. On one hand, the path selection process
is a complex task, due to the need to concurrently deal wighctinnection’s QoS requirements, as well as
with the global utilization of network resources; on theathand, connection requests need to be handled
promptly upon their arrival, hence there is limited time feeed on path selection. In many practical cases,
a precomputation scheme offers a suitable solution to tbkl@m: a background process (the “first phase”)
prepares a data base, which enables to identify a suitathi@eipan each connection request, through a simple,
fast, procedure (the “second phase”).

While much work has been done in terms of path selection &lkgos, the precomputation perspective
received little attention. As was demonstrated in this pagpmplistic adaptations of standard algorithms are
usually inefficient.

Accordingly, this study considered the precomputatiorspective, focusing on two major settings of QoS
routing. First, we considered the (practically importasypecial case where the QoS constraint is of the “bot-
tleneck” type, e.g. a bandwidth requirement, and netwotkngpation is sought through hop minimization.
For this setting, the standard Bellman-Ford algorithmrsfeestraightforward precomputation scheme. How-
ever, we showed that, by exploiting the typical hierarchétaucture of large-scale networks, one can achieve
a substantial(()(logN)) improvement in terms of computational complexity. Thee, twrned to consider the
more general setting of “additive” QoS constraints (e.glag) and general link costs. As the routing prob-
lem is NP-hard, we focused eroptimal approximations, and derived a precomputatioesahthat offers a
major (%N) improvement over a “standard” approach.

Some topics are the subject of ongoing research. Thesalgrc(l) precomputation schemes for the (NP-
hard) Problem RSP, which are based laagrangian relaxatiortechniques; (ii) precomputation schemes
for Problem RSP irhierarchical networks; (iii) establishing an algorithmic technique fautomatically)
partitioning a hierarchical network into the corresporygpeer groups.

Finally, we note that, except for unicast path selectioatdglare many other networking problems, such as
flow optimization, spanning tree minimization, multicasi optimization, etc., for which the precomputation
perspective offers a rich ground for future research.

REFERENCES

[1] Private Network-Network Interface Specification vIENNI). ATM Forum Technical Committee, March 1996.

[2] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, T. Bjieynda, and D. Williams. QoS routing mechanisms and OSR#hsixins. Internet
Draft, December 1998.

[8] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, and 8pdathi. Intra-Domain QoS Routing in IP Networks: A Feabthiand
Cost/Benefit AnalysislIEEE Network Magazinel999. To appear.

[4] G. Apostolopoulos, R. Guérin, S. Kamat, and S. Tripatbuality of service based routing: A performance perspectin Proceedings of
SIGCOMM pages 17-28, Vancouver, Ontario, CANADA, September 1998.

[5] A.Bestavros and I. Matta. Load Profiling for Efficient Rewselection in Multi-Class Networks. FProceedings of IEEE ICNP’9Atlanta,
GA, October 1997.

[6] T.H.Cormen, C. E. Leiserson, and R. L. Rivelsttroduction to AlgorithmsMIT Press, Cambridge, MA, 1990.

[7] E.Crawley, R. Nair, B. Rajagopalan, and H. Sandick. Arreavork for QoS-based Routing in the Internet — RFC No. 238terhet RFC,
August 1998.

5The last statement, regarding general graphs, does noamippid 2], but can be easily verified.

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

21

M. R. Garey and D. S. Johnso@omputers and IntractabilityFreeman, San Francisco, 1979.

R. Guerin and A. Orda. Computing Shortest Path for Any Menof Hops. 1998. Unpublished manuscript.

R. Guérin and A. Orda. QoS-based routing in networkhwnaccurate state and metrics informatidEEE/ACM Transactions on Net-
working 1999. To appear.

R. Guérin, A. Orda, and D. Williams. QoS routing mecisams and OSPF extensions. Internet Draft, December 193 iAlProceedings
of the 2nd IEEE Global Internet Mini-Conference, Phoeni¥, November 1997.

R. Hassin. Approximation schemes for the restricteort&st path problemMathematics of Operations Researd7(1):36—-42, February
1992.

D. H. Lorenz and A. Orda. QoS Routing in Networks with @nain ParameterdEEE/ACM Transactions on Networking(6):768—778,
December 1998.

D. H. Lorenz and A. Orda. Optimal Partition of QoS Reguirents on Unicast Paths and Multicast Trees.Pioceedings of IEEE
INFOCOM’99, New York, NY, March 1999.

Q. Ma and P. Steenkiste. Quality of Service Routing feaffic with Performance Guarantees. Pmoceedings of IWQo0S’'9Tolumbia
University, New York, NY, May 1997.

A. Orda. Routing with End to End QoS Guarantees in BraadbNetworks IEEE/ACM Transactions on Networking©99. To appear.

C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS&hRouting Algorithm in Integrated Services Packet Nelesiom Proceedings of
IEEE ICNP’97 Atlanta, GA, October 1997.

Z.Wang and J. Crowcroft. Quality-of-Service Routirg Supporting Multimedia ApplicationdEEE JSAC 14(7):1288-1234, September
1996.

