
1

QoS Routing: The Precomputation Perspectivey
Ariel OrdaandAlexander Sprintson

Department of Electrical Engineering
Technion—Israel Institute of Technology

Haifa 32000, Israelfariel@ee,spalex@txg.technion.ac.il
Abstract

A major algorithmic challenge posed by QoS routing is the need to promptly identify a suitable path upon a connection request,
while at the same time ensure that the selected path is satisfactory, both in terms of the connection’s QoS requirements,as well as
in terms of the global utilization of network resources. In many practical cases, aprecomputationscheme offers a suitable solution
to the problem: a background process prepares a data base, which enables to identify a suitable path upon each connectionrequest,
through a simple, fast, procedure.

While much work has been done in terms of path selection algorithms, the precomputation perspective got little attention.
Simplistic adaptations of standard algorithms turn to be inefficient. Accordingly, we consider the precomputation perspective,
focusing on two major settings of QoS routing. The first is the(practically important) special case where the QoS constraint is of the
“bottleneck” type, e.g. a bandwidth requirement, and network optimization is sought through hop minimization. For this setting,
the standard Bellman-Ford algorithm offers a straightforward precomputation scheme. However, we show that, by exploiting
the typical hierarchical structure of large-scale networks, one can achieve a substantial improvement in terms of computational
complexity. Then, we turn to consider the more general setting of “additive” QoS constraints (e.g., delay) and general link costs.
As the routing problem becomes NP-hard, we focus on"-optimal approximations, and derive a precomputation scheme that offers
a major improvement over the standard approach.

Keywords

QoS, Routing, Precomputation, Hierarchical networks.

I. INTRODUCTION

Broadband integrated services networks are expected to support multiple and diverse applications, with various qual-
ity of service (QoS) requirements. Accordingly, a key issuein the design of broadband architectures is how to provide
the resources in order to meet the requirements of each connection, and, moreover, how to meet that goal in a network-
wide efficient manner. The establishment of efficient QoS routing schemes is, undoubtedly, one of the major building
blocks in such architectures. Indeed, QoS routing has been the subject of several studies and proposals (see, e.g. [1],
[5], [7], [10], [11], [13], [15], [17], [18], [16] and references therein). It has been recognized that the establishment of
an efficient QoS routing scheme poses several complex challenges.

QoS routing is, in general, a complex problem, due to severalreasons. One complication is the need to deal with
several QoS requirements, each potentially imposing some constraints on the path choice. Then, beyond the need to
address the requirements of individual connections, QoS routing needs to consider also the global use of network re-
sources, since meeting the requirements of a QoS request implies the reservation of sufficient resources, e.g., bandwidth,
along the selected path. Finally, the identity of the required (“optimal”) path is connection-dependent, yet executing
the path search procedure for each connection may turn out tobe computationally prohibitive. Nonetheless, the above
obstacles notwithstanding, QoS routing is facilitated in many practical settings by the following. First, while a connec-
tion may pose several QoS requirements, it turns out that these often translate mainly into abandwidthrequirement [2],
[3]. Bandwidth, in turn, belongs to the class of “bottleneck” path requirements, which are much easier to handle than
“additive” requirements, such as delay, loss and jitter [10], [13], [14]. As for global network optimization, often it turns
out that much can be achieved by employing the simple criterion ofhop minimization[2], [4]; indeed, a consequence of
the need to reserve resources such as bandwidth oneachlink of the connection’s path is that, with fewer hops one con-
sumes fewer resources. As a result, hop-constrained path optimization has emerged as an important problem in several
recent proposals for IP-oriented QoS routing protocols [7]. Luckily, hop minimization turns out to be an optimization
criterion that is relatively easy to handle. Lastly, to avoid having to perform a separate path computation for each newyThis research was supported by the Consortium for Wideband Communications, administered by the Israeli Ministry of Industry and Com-
merce.

2

request, several proposed QoS routing protocols are based on precomputingpaths for all possible QoS requirements [7],
[2], [4] as a background process, hence considerably reducing the computational load upon each connection request.

The above observations form the foundations of the present study. In particular, we focus on path precomputation,
taking the view that it is a highly desirable, and at times necessary property, of an efficient QoS routing scheme. As
shall be demonstrated, many of the algorithmic tools that are often proposed as building blocks for QoS routing were
not designed with path precomputation in mind, and better solutions can be found when this property is required. This
requirement, namely to efficiently precompute optimal paths for a whole range of (QoS) requirements, effectively opens
a new area of research. A first step in that direction has been done in [9], which investigated the problem of precomput-
ing paths of maximal bandwidth for each possible hop-count value; that problem was termed there as ProblemAll-Hops
(AHOP). While a trivial solution to that problem is offered by the standard Bellman-Ford shortest-path scheme [6],
[9] presented an algorithm whose worst-case bound is lower;yet, the improvement is achieved only in dense (high
connectivity) topologies, while communication networks usually have a sparse topology. On the other hand, it has been
observed that exploiting the particular topological structure of large-scale broadband networks can often facilitate the
establishment of more efficient solutions to (QoS) routing problems [10], [16]. Accordingly, in this study we consider
thehierarchical structurethat is typical of large-scale networks, and indeed obtain solutions for Problem AHOP which
offer a substantial improvement, in terms of computationalcomplexity, upon the standard (Bellman-Ford’s) scheme.
Then, we turn our attention to the harder case ofadditiveQoS requirements (such as delay, jitter and packet loss) and
general(additive) path optimization criteria, beyond hop minimization. The respective problem becomes a variant of
theRestricted Shortest Path (RSP)problem, which is known to be NP-hard [8]. Some general approximation schemes
that are"-optimal have been proposed (see, e.g., [12] and referencestherein). However, those schemes have not been
designed with precomputation in mind, and, consequently, are not adequate when precomputation is sought. Accord-
ingly, in the present study we establish an approximation scheme that offers both efficient solutions as well as efficient
performance, for precomputing “optimal” (minimum cost) paths for all possible values of an additive QoS requirement.

The rest of the paper is organized as follows. First, in Section II we formulate the network model and formally state
the problems that we consider. Next, in Section III we consider the problem of hop minimization with bottleneck QoS
constraints in hierarchical networks: first, in SubsectionIII-A, we formulate the concept of hierarchical topologies;
then, we present and analyze our precomputation scheme, which is composed of two phases: the first,“background”,
phase is considered in Subsection III-C, while the second, “on-demand”, phase is considered in Subsection III-D. The
scheme is compared with other (standard) alternatives in Subsection III-E, and its advantages are discussed. Section
IV concerns extension of our BH-HIE scheme to handle “all-to-all” (rather than “one-to-all”) routing problems. In
Section V-B we discuss application of our findings in an environment, such as PNNI’s, where nodes are presented with
only anaggregatedimage of the (real) topology. Next, in Section VI we analyze “dual” problems, where one is given
a cost budget, and needs to determine aminimum weightpath, among those that obey the budget. In Section VII we
establish improved precomputation schemes for Problem BH-RSP in additional topologies of special interest, beyond
the hierarchical class. Next, in Section VIII we consider additive QoS constraints and general (additive) path costs. Here
too, we present and analyze a two-phase precomputation scheme, and establish its advantage over standard alternatives.
Finally, conclusions appear in Section IX.

II. M ODEL AND PROBLEM FORMULATION

This section formulates the general model and main problemsaddressed in this paper. We begin with the definition
of ageneralcommunication network; a definition of a specific class, namely hierarchicalnetworks, will be introduced
in the next section.

A network is represented by a directed graphG(V;E), whereV is the set of nodes andE is the set of links. LetN = jV j andM = jEj. A path is a finite sequence of nodesp = (v0; v1; :::; vh), such that, for0 � n � h � 1,(vn; vn+1) 2 E; h = jpj is then said to be thenumber of hops(or hop count)of p. A path issimpleif all its nodes are
distinct. LetH be the maximum possible hop count of any simple pathp in G which may be considered for routing
purposes. Obviously,H � N � 1; and it is much smaller in many typical network topologies; moreover,H is often
restricted to a relatively small value by network control.

For concreteness of exposition, we consider alink staterouting environment, where the source node has an image
of the entire network. Each linke 2 E is assigned a positiveweightw(e), whose significance depends on the type of
considered QoS requirement. For example, when the QoS requirement is an upper bound on the end-to-end delay, the
link weight is its delay; whereas when a bandwidth requirement is considered, the link weightw(e) is reciprocal to its
available bandwidthb(e) i.e. w(e) = 1b(e) . Accordingly, thepath weightW (p) of a pathp is defined differently for
additive metrics, such as delay, than for bottleneck metrics, such as bandwidth. Specifically:

3

Definition 1: When link weightsw(e) constitute anadditivemetric, theweightW (p) of a pathp is defined as the
sum of weights of its links, namely:� the weight of an empty path is0 : W (;) = 0;� given a nonempty pathp,W (p) = Pe2pw(e).

Definition 2: When link weightsw(e) constitute abottleneckmetric, theweightW (p) of a pathp is defined as the
weight of its worst link, namely:� the weight of an empty path is0 : W (;) = 0;� given a nonempty pathp,W (p) = maxe2p fw(e)g;

We can define the notion of a path that is “best” when only path weights are considered, i.e.:
Definition 3: A minimum-weightpath between two nodess andd is a pathp = fs; :::; dg whose weight is no larger

than that of any other path between those nodes.
Obviously, a minimum-weight path has the best performance with respect to the QoS requirement that is captured

by the link weight metric; for instance, it is a path with minimum delay or maximum bandwidth. Minimum-weight
paths can be efficiently found by Dijkstra’s shortest-path algorithm, inO(N logN +M) computational complexity [6].
Alternatively, for bottleneck metrics, one can employ a binary search on the solution space, whose respective complexity
isO(M log k); wherek is the number of different weights assigned to the network links (hencek �M). Obviously, if
the minimum-weight path fails to meet the connection’s QoS requirement, then so does any other path. However, when
the minimum-weight path does meet the QoS requirement, it isoften not the “right” choice, as it may be wasteful in
terms of global network usage, e.g., it may have a large number of hops or use ”expensive” links.

Therefore, the goal of QoS routing is to identify a path that satisfies a given QoS requirement while consuming as few
resources as possible. Since the amount of the resources consumed on a path depends to a large extent on the number
of its links, the path hop count is considered to be a good criterion for estimating the path quality in terms of global
resource utilization. When the hop count criterion is not satisfactory, one can define somelink costmetric (e) that
estimates the quality of each linke in terms of resource utilization; such a cost may depend on various factors, e.g., the
link’s available bandwidth, its location, etc. Thepath costis then defined as the sum of the costs of its links, namely:

Definition 4: Given a pathp; its costC(p) is: C(p) =Xe2p(e):
In the present study we shall consider both cases of global utilization criteria, namely hop count and general (integer)

link costs. Note that the former is a special case of the latter.
We are now ready to formulate the main problems that are considered in this study. Given a connection request

between a source nodes 2 V to a destination noded 2 V with some QoS requirements, and given network utilization
preferences as captured by some link costs, the goal of the QoS routing scheme is to identify a pathp betweens andd, which meets the QoS requirements at minimum cost. This can be formulated as arestricted shortest path (RSP)
problem:

Problem RSP (Restricted Shortest Path):Given are a source nodes, a destination noded and aQoS requirement̂w.
Find a patĥp from s to d such that:
1. W (p̂) � ŵ,
2. C(p̂) � C(p) for every other pathp that satisfies the restrictionW (p) � ŵ,
3. there does not exist another path~p, for whichC(~p) = C(p) andW (~p) < W (p̂).

Note that the third requirement is not part of the standard definition of the RSP problem; we introduce it since, if there
exist more than a single solution to the standard problem, wewould typically prefer one that offers better performance.
We refer to a solution of Problem RSP as aŵ-weight constrained optimum path from s to d.

For additive weights and general costs, Problem RSP is intractable, i.e., NP-hard [8]. However, there exist pseudo-
polynomial solutions, based on dynamic programing, which give rise to fully polynomial approximation schemes
(FPAS), whose computational complexity is reasonable (see, e.g., [12] and references therein).

As mentioned in the Introduction, many QoS routing problemsconsist of identifying, for each connection request,
a path of minimum hops that still meets the connection’s bandwidth requirement. In other words, the path weight
is a “bottleneck” metric, and its cost is equal to its number of hops. Effectively, these problems can be formulated
as variants of Problem RSP, for which (i) weights are of the bottleneck type and (ii) links have equal costs; each
of these two simplifications renders Problem RSP to be tractable. A main focus of this study is to provide efficient
precomputation schemes for this class of problems, whose formal definition is presented next.

4

Problem BH-RSP (Bottleneck weight Hop cost RSP):Given are a source nodes, a destination noded and a bottle-
neckQoS requirement̂w. Find a patĥp from s to d such that:
1. W (p̂) � ŵ,
2. jp̂j � jpj for every other pathp that satisfies the restrictionW (p) � ŵ,
3. there does not exist another path~p, for which j~pj = jpj andW (~p) < W (p̂).

Here too, the last requirement was added in order to prefer, among several solutions, one that offers better perfor-
mance.

As mentioned in the Introduction, QoS routing can often be considerably facilitated by means of employing apre-
computation scheme, which performs the path searcha priori for any possible connection request. Such a scheme
comprises of two phases: the first phase (pre-)computes a suitable path for any possible QoS requirement; the second
provides a (fast) solution upon each connection request1. The fist phase, which incurs the main computational burden,
is run as a background process, which needs to be activated only upon a change in the network state. Therefore, such
schemes offer a significant reduction in computational loadwhenever the rate of connection requests is higher than that
of changes in the network state, which is the case in many practical settings. Precomputation schemes for equal link
costs (i.e., minimum hops) were investigated in [2] and [9],both for bottleneck as well as additive weights. [2] indicated
that the Bellman-Ford algorithm offers a simple precomputation scheme, by ”inverting” the roles of the constraint (QoS
requirement) and the optimization criterion (hops). This way, the Bellman-Ford scheme computes a minimum weight
for each possible hop count; upon a connection request, then, one would choose the minimum hop value for which the
corresponding path meets the connection’s QoS requirement. Accordingly, we define ah-hop constrained optimal path
to be a path of minimum weight among all paths from a sources to a destinationd with hop count of at mosth. The All
Hops Optimum Path problem was then formulated in [9] as follows.

Problem AHOP (All Hops Optimal):Given are a graphG = (V;E), a source nodes 2 V and a maximum hop
countH, H < N . Find, for each hop valueh, 1 � h � H, and each destination noded 2 V , anh-hop constrained
optimal path betweens andd.

In [9] it was shown that, for general topologies andadditiveweights, it is not possible to improve upon the Bellman-
Ford solution in terms of the worst-case computational complexity. Forbottleneckweights, [9] provided an alternative
scheme that does improve upon Bellman-Ford’s, in terms of the worst-case bound; yet, when the topology is sparse, as
is typically the case in communication networks, the solution of [9] is inferior to Bellman-Ford’s. It remained an open
question whether one can propose better precomputation scheme for typical network topologies; this is the subject of
Section III.

We shall also consider the precomputation perspective in the context ofadditiveQoS requirements andgeneralpath
costs. Obviously, in this case precomputation of exact solutions is intractable, since so is the basic underlying (RSP)
problem. Therefore, we resort to precomputing approximated, namely"-optimal, solutions; this is the subject of Section
VIII.

III. PRECOMPUTATION SCHEME FORPROBLEM BH-RSPIN HIERARCHICAL NETWORKS

In [9] a precomputation scheme for Problem BH-RSP was proposed, which consisted of solving Problem AHOP
during the first phase. Since the solution of Problem AHOP fully precomputes all paths (for all possible bandwidth
requirements), the second phase just consisted of searching for the solution in the data base produced by the first phase,
according to the QoS requirement of the incoming connectionrequest. As a result, the computational complexity
incurred by the second phase was justO(logH + jpj), wherejpj is the hop count of the identified solution. We refer to
this precomputation scheme as the AHOP-based scheme.

As mentioned in [9], the Bellman-Ford shortest path algorithm provides a simple scheme for solving Problem AHOP,
with a computational complexity ofO(MH); for a general (dense) topology, that bound can grow to be as large asO(N2H). For bottleneck weight metrics (in other words, for ProblemBH-RSP), [9] provided an alternative scheme,
whose computational complexity isO(N2logNH); evidently, the latter outperforms Bellman-Ford’s in dense topologies,

i.e., whenM > N2logN , but not in sparse topologies, which are the typical settingof communication networks.
It remained an open question whether one can improve upon thelatter in typical network topologies. In this section

we demonstrate that, by exploiting the hierarchical structure that is typical of large-scale networks, one can establish a
precomputation scheme for Problem BH-RSP, which offers a significant improvement upon the above solutions.

We begin by formulating the hierarchical network model under consideration, which is inspired by the ATM PNNI
recommendations [1]. Next, by exploiting the properties ofthat model, we establish the required precomputation1More precisely, the first phase needs to prepare a data base, with which the second phase can easily retrieve the required path.

5

scheme.
Specifically, the rest of the section is organized as follows. First, we introduce some terminology and formulate the

hierarchical model. Then, we construct an auxiliary procedure, termed Procedure CLUSTER, which is a main building
block of our precomputation scheme. Next, we describe the precomputation algorithm, which constitutes the first phase
of our scheme, and then present Procedure FIND, which implements its second phase.

A. Hierarchical Model Formulation

The network is represented by a graphG = (V;E) and is referred to as theactual network,or thelayer-1 hierarchy.
We assume that the actual network has a certainhierarchical structure. In order to state the precise meaning of the last
term, we need to introduce some additional terminology.

Suppose that we partition the (actual) network nodes into some disjoint set ofpeer groups(or clusters), and refer to
each resulting peer group as to alayer-2 node. Furthermore, suppose that we repeat the above process, such that, for
eachi > 1; layer-i nodes are clustered into layer-i peer groups, each then becoming a layer-(i+1) node. We repeat this
process until, for someK, we end up with a single layer-K peer group. Having performed such a (K-stage) partition,
we say that layer-i nodes that form a layer-(i + 1) nodev are itschildren,andv is theirparent; similarly, the layer-i
peer group that forms a layer-(i+1) nodev is referred to asthe child peer group ofv. A descendantof a node is either
its child or a descendant’s child.

Next, for each layeri, 1 � i � K, we constructlayer-i links, in the following way. First, we classify the actual
(layer-1) links into two types: intra-cluster links,which connect between nodes of the same peer group; andinter-
cluster links, which connect between nodes of different peer groups. We then define the set of layer-2 links as follows.
Each inter-cluster linke = (u; v) (of the actual network), gives rise to a corresponding layer-2 link, which connects the
parent nodes ofu andv. Intra-cluster links (of the actual network) are not represented at layer2: Following the same
process as above, each layer-2 link is classified as either intra-cluster or inter-cluster, and layer-3 links are then defined;
the process is repeated up to the last,K ’th layer. We have thus defined, for eachi, 1 � i � K, sets of layer-i nodes
and links, which effectively form alayer-i topology.

It should be noted that a nodev of a layeri > 1 represents a subgraph of the actual network, to which we refer as the
source graphof v, namely:

Definition 5: Given a layer-i nodev, i > 1; its source graphS[v℄ is defined to be the subgraph of the actual network
induced by the set ofv’s descendants.

It is convenient to define also the source graph of a peer group, namely:
Definition 6: Given a peer groupC, its source graphS[C℄ is defined to be the subgraph of the actual network

induced by the set of descendants of all nodesv 2 C.
A node inS[C℄, which has a neighbor that does not belong toS[C℄, is called aborder node. For convenience, we

refer to border nodes ofS[C℄ also as border nodes ofC. We denote byb the maximum number of border nodes in any
peer group.

We are now ready to define the concept ofhierarchical structure. Intuitively, it means that the network can be
partitioned into peer groups, according to the above process, such that, at all layers, peer groups are relatively small
(each comprises of at mostO(logN) nodes), and, at the same time, so is the number of inter-cluster links. Formally:

Definition 7: A networkG(V;E) is said to posses ahierarchical structureif it can be iteratively clustered into someK layers of peer groups, according to the process described above, such that all the following hold:
1. The number of nodes in a peer group is at least 2 and at mostd, whered = O(logN):
2. The number of border nodes is small; specifically, there issome (fixed) valueb, such that the number of border nodes
of each peer group is at mostb:
Note that, since there are at least2 nodes in each peer group, we have thatK = O(logM) = O(logN).

Let us illustrate the above terminology through an example.Fig. 1 depicts an actual, layer 1, topology, while Fig. 2
presents possible layer 2 and layer 3 topologies. In this example we haved = 6, K = 3, b = 2.

Networks that have a hierarchical structure shall be referred to ashierarchical networks. In this section we assume
that networks belong to this class, and, furthermore, that their hierarchical structure, i.e., partition into peer groups, is
given.

We can establish the following “sparsity” property of hierarchical networks:
Lemma 1: In a hierarchical networkM = O(N logN).

Proof: For each actual (layer-1) linke 2 E; there exists an intra-cluster link of some peer groupC, which belongs
to some layer-i topology. Accordingly, let us count the number of intra-cluster links of all peer groups of all topologies.
Each peer group has at mostd2 intra-cluster links, and a layer-i topology consists ofO(dK�i) peer groups. Therefore,

6

Fig. 1. An example of a hierarchical network

Fig. 2. Example network: layer 2 and layer 3 topologies

the total number of intra-cluster links of all topologies isat mostd2 � (d+ d2 + :::+ dK�1) = O(N � d). Next, it is easy
to verify that each intra-cluster link represents at mostb2 links of the actual network. As a result, the total number of
links inE is at mostN � b2 � d = O(N logN).
B. ProcedureCLUSTER

In general, the task of the first phase of a precomputation scheme is to considerably reduce the computational burden
at the second phase. With hierarchical networks, this goal can be achieved by precomputing, per peer group, the
”costs” of all connections that may be established across it. Algorithm BH-HIE which constitutes the first phase of our
precomputation scheme, implements that idea, by sequentially calling to Procedure CLUSTER , which is described in
this subsection.

Procedure CLUSTER receives, as input, some layer-i peer groupC, and a node�s, which is one ofC ’s border nodes.
It then (pre-)computes, for each border nodev of C and hop-counth, the minimum weighth-hop constrained pathp
that connects between�s andv through the peer group; the weight of this path is stored in a3-dimensional arrayTC ,
namelyTC [�s; v; h℄ = W (p). A main idea in Procedure CLUSTER is that, when applied on a layer-i peer group as input,

it already has available the outputT Ĉ of previous invocations on lower layer peer groupsĈ.
For the layer-1 topology, the implementation of Procedure CLUSTER is straightforward, since it essentially solves a

standard Problem AHOP. For all higher layers, however, a more elaborated process is required, since each single node
represents a whole subgraph of the actual network.

Consider the invocation of Procedure CLUSTER on a layer-i peer groupC, wherei > 1. At this stage, due to the
previous invocations of the procedure, we have the following information on each nodev 2 C: for each pair(u1;u2)
of border nodes of the child peer groupCv of v, and for each hop value1 � h � di�1; we have the minimum weight
value of a path with at mosth hops that runs between those two nodes acrossCv. The procedure starts by constructing
the following auxiliary graph�C(�V ; �E). Each nodev 2 C is substituted in�C by the set of border nodesBv of its child
peer groupCv. Each such pair of border nodes is connected in�C by a link; in addition, each two nodes in�C which are
connected by a link in the actual network, are also connectedby a link in �C. Having constructed the topology of�C;
the procedure produces (through its sub-procedureINITIALIZE) a setS of quadruples(u1; u2; h; w), such thatu1 andu2 are two connected nodes in�C, h is a hop count value, andw is the minimum weight value that can be supported on
a path with at mosth hops betweenu1 andu2, as computed in the previous invocations of Procedure CLUSTER. The
procedure then assigns “length” valuesl(e) to the linkse 2 �C, in the following iterative way. Initially, all lengths are

7

considered as infinite; then, the procedure scans the setS by increasing order of the weight values: for each scanned
quadruple(u1; u2; h; w), the procedure sets the length ofe = (u1; u2) to the value ofh, and then updates the tree of
minimum-length paths in�C from the source node�s; this way, the values ofTC [�s; �; �℄ are identified. More specifically, if
the change in the length ofe results in shortening the length between�s and some border nodev 2 C to a (smaller) valueĥ, thenTC [�s; v; ĥ℄ is assigned the value ofw, i.e., the weight value of the scanned quadruple. The formalspecification
of Procedure CLUSTER appears in Fig. 3.

We proceed to establish the following properties of the procedure.
Lemma 2: Given are a layer-k peer groupC and the (correct) values ofT Ĉ for every lower layer peer group̂C.

Then, for each border nodev of C and for each0 � h � dk, Procedure CLUSTER identifies the minimum weight of ah-hop constrained path from�s to v in the source graphS[C℄ of C.
Proof: By way of contradiction, assume that the lemma does not hold.Then, for some border nodev of C, there

exists a pathp = fs = v0; v1; :::; vm = vg 2 S[C℄, for which jpj� h andW (p) < TC [�s; v; h℄. Denote the first nodeu
in p for whichu 2 �C by �v0, the second by�v1, etc., up to�vn = v. The nodes�vi constitute a path in�C, which we denote
by �p = fs = �v0; �v1; :::; �vn = vg. Let {̂ be a lowest value ofi, for whichTC [�s; vi; jpij℄ > W (pi), wherepi = fs; :::; �vig
is a subpath ofp. Note that fori = {̂� 1 still holdsTC [�s; �vi; jpij℄ = W (pi).

Consider now a linke = (�vi�1; �vi) 2 �C, and a subpathpe of p that corresponds toe, pe = f�vi�1; :::; �vig. It is easy
to verify that(�vi�1; �vi; h; w) 2 S, whereh = jpej andw �W (pe).

We need to consider two possible cases:
1. When the quadruple(�vi�1; �vi; h; w) is processed at line 7 of the algorithm, it holds thatTC [�s; �vi�1; jpi�1j℄ =W (pi�1). In this case, the sub-procedurepropagate will be invoked at line 12 of Procedure CLUSTER with pa-
rameters (�vi�1; �vi; h; w). After the invocation ofPROPAGATE, TC implies thatTC [�s; vi; jpij℄ = W (pi), hence resulting
in a contradiction.
2. Otherwise, consider the step of the algorithm in whichTC [�s; �vi�1; jpi�1j℄ was assigned the valuew(pi�1). Since
the quadruple(�vi�1; �vi; h; w) was already processed by the loop at line 7, this update leadsto a recursive invocation
of the sub-procedurePROPAGATE(line 6) with parameters (�vi�1; �vi; h; w), wherew = w(pi�1) and, again, after this
invocation,TC [�s; vi; jpij℄ = W (pi), resulting in a contradiction.

In the next lemma we analyze the complexity of Procedure CLUSTER .
Lemma 3: The computational complexity of Procedure CLUSTER for a layer-i peer group isO(di+1).

Proof: First, let us count the number of elements inS. For eache 2 C we added at mostb2 elements toS. We
also added at mostdi�1 elements for every pair of border nodes of the child peer groupCv for eachv 2 C. In total, the
number of elements inS is at mostb2 � dmin(i;2). This is also the complexity of the sub-procedureINITIALIZE and of
lines2-11 of Procedure CLUSTER .

Next, we show that sorting the elements ofS consumesO(di) running time. Note thatS’s elements are constructed
from at mostb2 � d ordered sets, and an additional set of at mostb2 � d2 links. It is easy to verify that such a sorting can
be performed byO(dmin(i;2) log d) steps.

Finally, let us count the number of invocations of the sub-procedurePROPAGATE. This procedure is invokedj �Ej
times by line 12 of the cluster procedure and also is invoked recursively. Each recursive invocation implies thathu for
someu 2 �C is increased by at least1: Sincehu for eachu 2 �C is bounded bydi, the number of recursive invocations
of propagate isO(di+1). Note that a single invocation ofpropagate requires constant time.

We conclude that the total running time of Procedure CLUSTER is y is indeedO(di+1).
C. First phase: AlgorithmBH-HIE

In this subsection we describe Algorithm BH-HIE, which implements the first phase of our precomputation scheme.
Algorithm BH-HIE computes, for each peer group of each layer, the best cost (in terms of number of links) for each

weight value that can be supported through the peer group. Specifically, for each peer groupC, and considering each
border node as a source node, we identify the solution of the corresponding Problem AHOP in the source graphS[C℄
of C. These solutions are then the input of Procedure FIND ,which implements the second phase of the precomputation
scheme.

Algorithm BH-HIE runs across the hierarchical layers in a “bottom-up” manner. First, we process each peer groupC of the actual network, in the following way. Considering each border node2 of C as a source node, we invoke2In this context, if the source graph ofC includes the source nodes, thens is also considered as one ofC ’s border nodes.

8

ProcedureCLUSTER (G; �s):
parametersC(V;E)- a layer-k peer group�s - a source node, which is a border node ofC
variablesS- a set of “node-node-hop-weight” quadruples�C(�V ; �E)- the auxiliary graph, i.e.:

for all v 2 �VAdj(v) - the adjacency list for a nodev.a

for all v 2 �Vhv- the minimum length of a path between�s andv in �C
notationCv- the child peer group of a layer-i nodev.B(C) - the set of border nodes of the peer groupC.

1 INITIALIZE ()
2 for all v 2 �V do
3 hv dk + 1
4 Adj(v) ;
5 h�s 0
6 TC [�s; �s; 0℄ 0
7 for each(v; u; h; w) 2 S by increasing order ofw do
8 if ((u; �) 2 Adj(v)) then
9 let (u; i) 2 Adj(v)

10 Adj(v) Adj(v)n(u; i)
11 Adj(v) Adj(v) [f(u; h)g
12 PROPAGATE(v;u; h; w);

ProcedurePROPAGATE (v; u; h; w):
1 if (hv + h) < hu then
2 for i (hv + h) to (hu � 1) do
3 TC [�s; v; i℄ w
4 PC [�s; v; i℄ v
5 hu (hv + h)
6 for all (x; i) 2 Adj(u) do
7 PROPAGATE(u;x; i; w)

ProcedureINITIALIZE ():
1 S ;
2 �V ;
3 for eachv 2 V do
4 Ĉ the child peer group of nodev.
5 B the set ofĈ ’s border nodes
6 �V �V [B
7 for each pair(u1; u2) 2 B do
8 for h 1 to dk do
9 S S [f(u1; u2; h; TC [u1; u2; h℄)g

10 for eache = (v; u) 2 C do
11 Ĉ the child peer group of nodev.
12 Bv the set ofĈ ’s border nodes
13 Ĉ the child peer group of nodeu.
14 Bu the set ofĈ ’s border nodes
15 for each pair(u1; u2) : (u1 2 Bv ^ u2 2 Bu) do
16 if 9e(u1; u2) 2 S[C℄ then
17 S S [f(u1; u2; 1; w(e))g
18 return S; �VaAdj(v) = f(u; le)g for a nodev, wherele is the length of the edgee = (v; u).

Fig. 3. Procedure CLUSTER

9

Procedure CLUSTER described in Subsection III-B, and store the result in the array TC . We then iteratively apply the
same process to all higher layers. The formal specification of Algorithm BH-HIE appears in Fig. 4.

Algorithm BH-HIE (G; s):
parametersG- actual network;s 2 G- source node.
notationB(C)- the set of border nodes of a peer groupCa;Gi- the layer-i topology;C1i ; C2i ; :::.- the peer groups of the layer-i topology.

1 i 1
2 while i � K do
3 for each peer groupCji of Gi do
4 for each nodev 2 B(Cji) do
5 invoke Procedure CLUSTER for (Cki�1; v).
6 i i+ 1aIn this context, if the source graph ofC includess, thens is also considered as one ofC ’s border nodes.

Fig. 4. Algorithm BH-HIE

We proceed to establish the following properties of Algorithm BH-HIE.
Lemma 4: Algorithm BH-HIE solves Problem

AHOP for all peer groups at all layers.
Proof: Straightforward by induction on topology layers and application of Lemma 2.

Lemma 5: The computational complexity of Algorithm BH-HIE isO(N log2N):
Proof: Let us count the time required to process a layer-i topology. Such a topology containsO(Ndi) peer groups,

for each of which the cluster procedure is invoked. Since he running time of Procedure CLUSTER is O(di+1) (by
Lemma 3), a layer-i topology requiresO(N � d) = O(N logN) operations. As there areK = log(N) layers,the
algorithm’s complexity isO(N log2N).
D. Second phase: ProcedureFIND

We proceed to present Procedure FIND. This procedure is invoked upon each new connection request, and identifies
the corresponding path, namely a path of minimum hops among the corresponding source (s) and destination (d) that
satisfy the connection’s bottleneck requirement (~w).

The procedure processes the hierarchical layers iteratively, starting from the first layer, i.e., the actual network, up
to the last,K ’th, layer. For each layer, we identify the peer groupC, for which the source graphS[C℄ includes the
destination noded. Then, a minimum hop path from each border nodeb of C to d is identified.

For this purpose we construct the following auxiliary graph�G. The destination noded and the border nodes of the
child peer groups ofC constitute the set of�G’s nodes. Every pair of border nodes(v; u) of a child peer group~C ofC is connected by a link, whose length is assigned to be the minimum number of hops of a~w-weight constrained path
betweenv andu in the source graphS[~C℄ of ~C; this value is provided by the arrayTC , which was computed in the first
phase. In addition, for every actual network linke = (v; u) for whichw(e) � ~w and which gave rise to an intra-cluster
link in C, we add in �G a link betweenv andu, whose length is set to1. As a result, a minimum length path in�G
corresponds to a minimum hop path in the source graphS[C℄ of C.

As shall be shown below, the complexity of Procedure FIND isO(log3N + jpj); wherejpj in the number of links in
the identified path. The formal specification of Procedure FIND appears in Fig. 5.

We proceed to prove the correctness of Procedure FIND.
Lemma 6: Suppose that Procedure FIND is invoked for a sources, destinationd and (bottleneck) QoS constraint~w.

Then, the hop count~h of the returned path is the minimum number of hops of a path in the actual network betweens
andd that satisfies the QoS constraint~w.

Proof: By way of contradiction, assume that the lemma does not hold.Then, there exists a pathp = fs =v0; v1; :::; vm = dg in the actual network, for whichW (p)� ~w and jpj < ~h. For 1 � i � K, let Ci be a layer-i
peer group for whichd 2 S[Ci℄. Certainly, the pathp includes border nodes of peer groupsCi, 1 � i � k, for some

10

ProcedureFIND (G; s; d; ~w):
parametersG- actual network.s 2 G- source node;d 2 G- destination node;~w- QoS (bottleneck) requirement;
notationsGi- layer-i topology;S[C℄- the source graph of a peer groupC;B(C)- set of border nodes of peer groupC.
variables�G(�V ; �E)- the auxiliary graph;

1 letC be a layer-1 peer group, for whichd 2 C;
2 remove fromC all links which weight is bigger than~w;
3 for each border nodeb 2 B(C), identify a minimum hop pathinC from b to d (e.g., using a Breadth First Search algorithm[6]);
4 �V fB(C) [dg;
5 �E ;;
6 for eachv 2 B(C) do
7 add a new linke = (v; d) into �E;
8 setl(e) to be the minimum number of hops in a path fromv to d
9 i 2;

10 while i � K do
11 letC be a layer-i peer group, for whichd 2 S[C℄;
12 for eachv 2 C do
13 letCv be a child peer group ofv;
14 �V f �V [B(Cv)g;
15 for each ordered pair (u;w) a of Cv ’s border nodesdo
16 if there existh, for which holdsTCv [u;w; h℄ � ~wthen
17 find the lowesth, for which holdsTCv [u; w; h℄ � ~w,
18 add a new linke = (u;w); l(e) = h to �G;
19 for each pair of nodesv; u 2 �V , for which9e = (v; u) 2 G;w(e) � ~w do
20 add a new linke = (v; u) to �G and setl(e) = 1,
21 using Dijkstra’s algorithm, identify the shortest path fromeachv 2 B(C) to d in �G;
22 �V fB(C) [dg;
23 �E ;;
24 for eachv 2 B(C) do
25 add a new linke = (v; d) into �E;
26 setl(e) to be the length of the shortest path fromv to d, asidentified in line 21;
27 lete = (s; d) 2 �E.b

28 return l(e):aNote that, since(u; v) is considered as an ordered pair, we distinguish between(v; u) and(u; v):bNote that there must exist an edgee = (s; d) 2 �E, since the source nodes is a border node ofC (recall that there is only one layer-K
peer group).

Fig. 5. Procedure FINDk � K.Suppose that we traversep from d to s. For1 � i � k,denote by�vi the first node in the traversal that is a border
node ofCi . Also, for each layeri, 1 � i � K;we denote by�Gi the auxiliary graph constructed for this layer. Finally,
we denote byli the length of a shortest path from�vi to s in Gi,as identified at line 21.

It is sufficient to prove that, for each1 � i � K, the valueli is at most the hop count of a subpathpi = f�vi; :::; dg ofp. Let {̂ be the minimumi, for which this does not hold. Consider a path�p = f�vi; :::; �vi�1g in �G, which corresponds
to the subpathpi = f�vi; :::; �vi�1g of p. It follows thatl(�p) > jpij. Thus, there exists a linke = (�v; �u) 2 �p, for whichl(e) is greater that the hop count of the corresponding subpathpe = f�v; :::; �ug of p. There are two possibilities.
1. The linke corresponds to a single actual network link. In this case thelink e was assigned the length 1 by line 20 of
the algorithm.
2. Otherwise,e = (�v; �u) is a link between border nodes of a child peer groupCv for some nodev 2 C. In this case,le � pe is assigned the lowesth, for which it holds thatTCv [�v; �u; h℄ � ~w: Both cases result in a contradiction, hence

11

the lemma follows.

We proceed to analyze the computational complexity of the procedure.
Lemma 7: The computational complexity of Procedure FIND isO(jpj+ log3N):

Proof: Note that the graph�G contains justO(logN) nodes andO(log2N) links at each hierarchical layer. The
execution of all lines in the procedure, except from lines 16and 17, require only a fixed number of steps per link, orO(log2N) per layer. Lines 16 and 17 may be implemented inO(logH) running time per link, by a binary search.
These lines are executedO(logN) times for each layer, hence they incurO(logN logH) steps per layer. As a result,
the procedure performsO(log2N) operations per layer. Since the number of layers isO(logN), we needO(log3N)
running time in total. In addition, we needO(jpj)) time to report the output, wherep is the path identified by the
algorithm. Thus, the time complexity of the procedure isO(jpj+ log3N).

The above results are summarized in the following theorem.
Theorem 1: Procedure FIND provides aO(jpj+ log3N) solution to Problem BH-RSP, i.e.: given a connection

request with source nodes, destination noded, and (bottleneck) QoS constraint~w, and given the output of Algo-
rithm BH-HIE, Procedure FIND identifies, inO(jpj+ log3N) steps, a path with a minimum number of hops, among
all paths in the actual network betweens andd that satisfy the QoS constraint~w.

E. Discussion

In this subsection we compare between the performance of ourprecomputation scheme and its alternatives.
Consider first the “standard” precomputation scheme proposed in [9], [2], which was based on solving Problem AHOP

through Bellman-Ford’s shortest path algorithm.
As shown above, hierarchical networks are sparse, in the sense thatM = O(N logN). This implies that the stan-

dard scheme incurs a computational complexity ofO(NH logN) for its first phase, i.e., it isO(HlogN) slower than
ours. Considering the second phase, the standard scheme (aswell as any other which is based on fully solving Prob-
lem AHOP in the first phase) yields a computational complexity of justO(jpj+ logH); which is somewhat less than
that of our scheme, i.e.O(jpj+ log3N), however the difference between the two figures is not significant in general,
and nonexistent whenjpj is the dominating component.

Next, let us compare between our precomputation scheme, andan alternative where no precomputation is performed
at all. In such a “single-phase” scheme, the required path can be identified by applying Dijkstra’s shortest path algorithm,
which, for M = O(N logN), incursO(N logN) running time. Sincejpj= O(N), our scheme incurs a smaller
computational complexity upon a connection request. The difference is particularly significant when the length of the
identified path is significantly smaller thanN , e.g.,jpj = O(logN), which is a typical case. It is interesting to compare
between the two approaches also in the related context ofconnection admission, where one needs to decide whether a
connection request should be admitted, based on its QoS requirement and the cost it incurs; to that end, one needs to
identify the (best) cost of a path over which the connection can be established, however there is no need to explicitly
specify the path itself. This means that our scheme allows toobtain an admission decision upon a connection request in
justO(log3N) time, whereas the “single-phase” scheme still incursO(N logN) time.

F. Model Relaxation

One of the properties of hierarchical networks is that the number of nodes in each peer group is at mostd, whered = O(logN) (see III-A). This requirement may be relaxed by allowing certain peer groups to be composed from
more thand nodes, provided that in all peer groups the number of links onany path isO(logN). This relaxation does
not affect the computational complexity ofO(M logN) for the first phase of our precomputation scheme. This follows
from the fact that the computational complexity of Procedure CLUSTER applied to a peer groupC isO(M(C) _d(C)),
whereM(C) is the number ofC ’s edges andd(C) is an upper bound to the number of links of any path isC. This, in
turn, may be easily verified in a similar way as done in the Proof of Lemma 2. Note that in the relaxed modelM is notO(N logN) anymore, but can rather be as large asO(N2). The computation complexity of the second phase may be
as much asO(M) in the worst case. However, under under certain conditions,the running time of the second phase is
same as for regular (not extended model). The condition is that neither the source nodes nor the destination noded are
descendants of node, which child peer group comprises more thatd nodes. Note that this restriction applies to at most2 � logN peer groups out ofO(N) peer groups in total.

12

IV. SOLVING ALL -TO-ALL PROBLEMS

The precomputation scheme, described above can be extendedfor a broad class of problems related to Problem BH-
RSP. In this section we present the precomputation scheme for a variation of Problem BH-RSP, in which it is required
to solve Problem BH-RSP for any two nodes inG. In other words, given a bottleneck QoS constraintŵ and a pair of
nodesvs andvd, it is required to identify the minimum hop path, among all paths fromvs to vd, which satisfy the QoS
constrainŵ. The first phase is identical to the precomputation scheme for Problem BH-RSP and is implemented by
Algorithm BH-HIE. Recall that in this algorithm Procedure CLUSTER is invoked for each peer group at all layers.
Since the second phase is implemented similarly to the second phase of the precomputation scheme for Problem BH-
RSP, we present only a brief description. Leth be a lowest layer for which there exists a peer groupC, for whichvs 2 S(C) andvd 2 S(C) whereS(C) is the source graph ofC. Let alsoCs andCd be layer�(i� 1) peer groups, for
which holdsvs 2 S(Cs) andvd 2 S(Cd), whereS(Cs) andS(Cd) are the source graphs ofCs andCd respectively. In
order to identify the minimum hop path fromvs to vd among all paths fromvs to vd which satisfy a given QoS constrainŵ, following steps are executed.
1. For each border nodev of Cs, identify the minimum hop path, among all path fromvs to v, which satisfy QoS
constrainŵ.
2. For each border nodev of Cd, identify the minimum hop path fromv to vd, among all paths that satisfŷw.
3. Construct the following auxiliary grapĥG. The set of nodes in̂G includesvs, vd, border nodes of all peer groups
whose parent node belongs toC, and border nodes of all layer�h peer groups. Any two nodesv; w in Ĝ that belong to
the same peer groupP of G are connected by a link, whose weight is the minimum hop countof a path fromv tow inP , which satisfieŝw. In addition there are links fromvs to border nodes ofCs and from border nodes ofCd to vd. The
weight of these links is as computed in steps 1 and 2.
4. Identify the shortest path fromvs to vd in Ĝ.
All this steps are implemented in a similar way as it done in Procedure FIND . It is easy to verify that the computation
complexity of this solution is the same as that of Procedure FIND . To conclude, we presented a precomputation scheme
for a variation of Problem BH-RSP problem, in which it is required to identify paths from any source to any destination;
the computation complexity of our solution isO(N logN) for the first phase andO(log3N) for the second.

V. TOPOLOGY AGGREGATION

Our discussion so far concentrated on link state protocols,which assume that a complete and accurate image of the
network is available for a network node. However this approach suffers from scalability problems. In particular, as a
network grows in size, a significant part of network bandwidth is consumed for maintaining topology image on every
node. As a solution, the ATM forum PNNI standard [1] is designed to provide a scalable representation of hierarchical
topologies. According to this standard, a cluster does not reveal its internal structure to outside nodes. Instead, it supplies
a summary of cost and availabilities of connections that runthrough that cluster. This approach is often referred to as
topology aggregation. In this section we discuss a variation of our precomputation scheme for networks with topology
aggregation.

A. Network topology as seen by a node

A (proper) aggregated image is simpler than the real topology, yet it still captures its structure in the way that makes
it suitable for QoS purposes. Following the ATM PNNI recommendations [1], we describe the aggregated image of
a network at some nodev. All other peer groups are omitted from the network image. Weproceed define the setAv
of peer groups that are included by aggregated image of the network for a nodev. Av includes any peer groupC
which source graphS(G) includesv. Since there exists only one such a peer group for each layer,we conclude that the
cardinality ofAv is at mostO(logN). Fig. 6 depicts aggregated image of the topology depicted onFig. 1.

Though an aggregated image that is comprised of the setAv is sufficient for identifying a route fromv to a destination,
it does not contain enough data for QoS routing. Consequently, we need some additional information concerning the
peer groups not included inAv. This information includes a summary of costs and availabilities of connections that run
through certain peer groups. These peer groups form a set denoted byBv. SetBv includes every peer groupC, whose
parent node belongs to a peer group inAv (C itself does not belongs toAv). The summary for a peer groupC is in the
form of the output that would be obtained by Procedure CLUSTER if it were applied toC. In Fig. 6, all peer groups
belonging toBv are marked as “clouds”. It is easy to verify that the space complexity of the aggregated image isO(N),
as compared withO(NlogN) for a non-aggregated image.

13

v

Fig. 6. An aggregated image of network for a nodev
B. A revised precomputation scheme

Only minor changes should be introduced to our precomputation scheme in order to adapt it to networks with topol-
ogy aggregation. Since an aggregated image already includes precomputation results for a number of peer groups, the
precomputation phase becomes easier: Procedure CLUSTER is applied only for one peer group at each layer, and not for
each peer group as in Algorithm BH-HIE. As a result, its computational complexity is justO(N logN) for networks
with topology aggregation, as compared withO(N log2N) for hierarchical networks without aggregation. The aggre-
gated image of a peer groupC 2 Bv can be delivered tov from one ofC ’s border nodes. With network aggregation,
establishing a new connection with a QoS constraintŵ requires additional steps, which include data exchange between
source and destination nodes. Indeed, a destination node may be located in a “cloud” in the aggregated image of a source
node, which corresponds to some peer groupC 2 Bv . The only information that a source node needs for computing
the optimal route tod is the lowest cost of a path from each border nodebv of C to d which satisfies the QoS constraintŵ. This data is also calculated at the precomputation phase, with no penalty in terms of computational complexity3.
The data is sent from the source to destination and its size isconstant (does not depend onN). Upon arrival of this data
to the source node, a variant of Algorithm FIND , which is a straightforward simplification of Algorithm FIND , is exe-
cuted; it identifies a lowest cost path froms to d that satisfieŝw. This procedure requiresO(log3N) time. We conclude
that, compared to the regular approach, the topology aggregation scheme requires less space and fewer messages, and it
gives raise to a faster precomputation algorithm. Its disadvantage is that the source and destination nodes are required
to exchange data before establishing the connection.

VI. RESTRICTED BUDGET PROBLEMS

In this section we consider a class of bottleneck problems where there is a cost assigned to each network edge. Given
a cost budget, it is required to identify aminimum weightpath, among those that obey the budget. Certainly, this is a
variation of the Restricted Shorted Path (RSP) problem, defined in Section II. The formal definition is as follows.

Problem GB-RSP (General weight Bottleneck cost RSP):Given are a networkG, a source nodes, a destination
noded and abudgetB. Find a patĥp from s to d such that:
1. C(p̂) � B,
2. W (p̂) �W (p) for every other pathp that satisfies the restrictionC(p) � B,
3. there does not exist another path~p, for whichW (~p) = W (p) andC(~p) < C(p̂).
We begin by noting the following straightforward, yet computationally expensive, scheme to solve this problem: for
each possible weight̂w inG, we delete any each edgee for whichw(e) > ŵ, and then execute a shortest path algorithm;
with Dijkstra’s shortest path algorithm, the computational complexity isO(M(M + N logN)). In this section we
present a more efficient solution that requires justO(logN) invocations of a shortest path algorithm. Our algorithm
takes advantage of the fact that, for bottleneck metrics, a minimum cost of a path froms to d whose weight is at mostŵ can be found by means of single invocation of a shortest path algorithm. Thus, by performing a binary search on the
range of weight values, a minimum weight path among all pathsfrom s to d that obeyB may be found.

The formal specification of the algorithm is presented on Fig. 7.
Lemma 8: The running time of Algorithm GB-RSP isO((M +N logN) logN).3It requires only a straightforward addition for precomputation algorithm.

14

Algorithm GB-RSP (G; s; d; C):
parameters:G(V;E)- network,s - a source noded- a destination nodeC- budget
variables:rl; rh-integers from1 toU , whereU is an upper bound of the cost of a path froms to d.

1 rl 1; rh U
2 i 1
3 repeat forever do
4 {̂ i
5 i b rl+rh2
6 if (̂{ = i) then
7 return fĥ;1g
8 LetE� = fe 2 Êjw(e) � ŵg
9 determine for eachv 2 Ĝ, the minimal distancel(v) from s to v (by applying AlgorithmDijkstra onĜ = (V;E�))

10 setW (v) 1 for all v 2 V ns andW (s) 0
11 for all v 2 V in increasing order ofl(v) do
12 for all e = (v; u) 2 E� do
13 if (level(u)� level(v) = 1) then
14 W (u) min(W (u);max(W (v); w(e))
15 if l(d) = ĥ then
16 return fl(d);W (d)g.
17 if l(d) < ĥ then
18 rh i
19 else rl i

Fig. 7. Algorithm GB-RSP

...

2

n
n-1

1 111 1 1 1

2 3

4

5

s d

Fig. 8. An example of a special topology

Proof: Initially, the search range is at mostM . After the first iteration it shrinks toM=2, etc. As a result, the total
number of iterations isO(logN). Since the computational complexity of each iteration isO(M + N logN), the total
running time of the algorithm isO(M +N logN) logN).
The correctness of the algorithm follows from the fact that the cost of the solution is monotonically nonincreasing with
the allowed weight. The above results are summarized in the following theorem.

Theorem 2: Algorithm GB-RSP solves GB-RSP with a computational complexity of O(M +N logN)(logN).
VII. PRECOMPUTATION SCHEME FORPROBLEM BH-RSPIN SPECIAL TOPOLOGIES

In this section we discuss special topologies for which there exist efficient precomputation schemes for Problem BH-
RSP. Our discussion is limited to the class of “one-to-one” problems, i.e., the problems with a single or limited number
of destinations. We describe first the properties of such topologies that facilitate the efficiency of the precomputation
scheme. Letp be ah-hop constrained optimal path froms to d andW (p) = w. Suppose that, for somêh > h, it
holds that the weight̂w of a ĥ-constrained optimal path equals tow. In other words, relaxing the constraint toĥ links
does not yield a better path. Furthermore, there are only a limited number ofh values, for which the link count ofh-constrained optimal path froms to d is h. We denote the set of such values bySs;d = fh1; h2; :::hkg. In this section
we consider topologies for which the cardinality ofSs;d is bounded by some small (fixed) valuek. An example of such
topology appears on Fig. 8. For this topology the value ofk is 2. We proceed to present the precomputation scheme for

15

special topologies. In the first phase of this scheme, implemented by Algorithm BH-SPEC, we precompute for eachv 2 V theh-hop constrained optimal path froms to v for eachh 2 Ss;v. The weights of that path are stored in an arrayWSs;d = fw1; w2; :::wkg, wherewi is the weight of ahi-hop constrained optimal path froms to v. The second phase
identifies for a given QoS constrain̂w, the smallestwi 2 WCs;d, for whichwi � ŵ and outputs the corresponding
path. The computational complexity of the first phase isO(M � k) orO(M) for fixed values ofk, and isO(logN) for
the second phase.

Each iteration of Algorithm BH-SPEC builds an auxiliary graph Ĝ. Ĝ is identical toG, but includes only these
links which weight is less or equal tow(i). Then, a Breadth First Search Algorithm BFS ([6]) is appliedon Ĝ, which
determines, for eachv 2 V the minimum hop distanceds;v from s to v. Let ĥ be the minimum hop count of a path froms to d in Ĝ and letŵ be the minimum weight of ah�hop path froms to d. Then, the value ofw(i) for the next iteration
is set to the maximum value of weight in̂G, among all weight that are less than̂w.

The formal specification of Algorithm BH-SPEC appears in Fig. 9.

Algorithm BH-SPEC (G; s):
parametersG- actual network;s 2 G- source node.d 2 G- destination node
variablesw(i)- iteration parameter

1 i 1
2 w(i) 1
3 while do
4 delete all linkse 2 E,for whichw(e) > w(i)
5 invoke Algorithm BFS onG, determine for eachv 2 G, the minimal hop distancel(v) from s to v
6 for eachv 2 V do
7 W (v) 1
8 W (s) 0
9 for eachv 2 V in increasing order ofl(v) do

10 for eache = (v; u) 2 E do
11 if l(u)� l(v) = 1 then
12 W (u) = minfW (u);maxfW (v); w(e)gg
13 hi = l(d)
14 wi = W (d)
15 i i+ 1
16 letŵ = maxe2Efw(e) < wig
17 w(i) ŵ

Fig. 9. Algorithm BH-SPEC

Lemma 9: The computational complexity of Algorithm BH-SPEC isO(M � d), wherek is an upper bound to
cardinality of the setSs;d.

Proof: It is easy to verify that each iteration incursO(M), and that for each element inSs;d only a single iteration
is performed.

As stated above, the second part of the precomputation scheme identifies, for a given requirement̂w, aŵ-constrained
optimal path froms to d. We first find the smallestwi 2WCs;d, for whichwi � ŵ. This procedure requiresO(logN)
time. The output of the second phase is a path which weight iswi and link count ishi.

In the next lemma we prove that this path is aŵ-constrained optimum path froms to d.
Lemma 10: Let ŵ be a bottleneck constrain andp be a path returned by the algorithm. Then,p is the minimal link

path among all paths froms to d that satisfy the constrain̂w.
Proof: Consider the values ofw(i) over the various iterations of Algorithm BH-SPEC. Letj be an iteration, in

which the value ofw(j) is minimal, but still greater than̂w. The invocation of Algorithm BFS guarantees thathj is a
minimum hop count of a path froms to d that satisfies the constrain̂w.
We conclude our discussion in the following theorem.

Theorem 3: For the special topologies described above, there exists a precomputation scheme whose complexity isO(M � k) for the first phase andO(logN) for the second.

16

VIII. PRECOMPUTATION SCHEME FORADDITIVE METRICS

In this section we consider the routing problem withadditiveQoS constraints andgenerallinks costs. As mentioned
in Section II, this problem is in fact the restricted shortest path Problem RSP, which, in general, is known to be NP-hard.
Accordingly, we resort to precomputation schemes that offer approximatesolutions to Problem RSP.

We note that a precomputation scheme can be constructed on the base of existing approximation algorithms for
Problem RSP (e.g. [12]), i.e., by sequentially executing them for various cost values. However, as we shall see, such
a simplistic approach results in a (overly) high computational complexity. Therefore, in this section we propose a
precomputation scheme that finds an"-optimal solution to Problem RSP, for all possible QoS constraint values, withinO((M+N logN)�H � 1" �logC) computational complexity for the first phase andO(log(1")+log(H)+log log(C)+jpj)
for the second phase, whereC is an upper bound on the (additive) cost of a path, andjpj is the hop count of the identified
path.

The section is organized as follows. First, we present a pseudo-polynomial solution for Problem RSP in the special
case of directed acyclic graphs (DAGs). Next, based on that solution, we establish anO((M+N log(N)) �H � 1" � logC)
precomputation scheme that provides an"-optimal solution for general topologies.

A. Pseudo-polynomial Solution for Problem RSP

As a first step, we present a (computationally inefficient) pseudo-polynomial solution, Algorithm PP-RSP, which is
based on a generalization of Bellman-Ford’s algorithm. Forthe sake of simplicity, we assume that the underlying graph
is a DAG; an extension to general graphs is straightforward.

The algorithm is based on dynamic programming and assumes integer costs. Given a (additive) QoS constraintŵ,
the algorithm starts with a zero “budget” = 0 and increments it by a value of1 on each iteration, until âw-weight
constrained path froms to d is discovered. At each iteration, the algorithm repeatedlyselects the destination nodeu 2 V according to a topologically sorted order4 and relaxes all links leavingu. The process of relaxing a link(u; v)
consists of testing whether the best path tov found so far can be improved by going throughu under the current budget
restriction and, if so, updating the best path for nodev.

Since for each; 1 � � ̂, the algorithm performsO(M) operations, its complexity isO(M � ̂), wherê is an
upper bound on the cost of a (ŵ-weight constrained optimum) path froms to anyv 2 V . The formal specification of
Algorithm PP-RSP appears in Fig. 10.

B. Polynomial Precomputation (Approximation) Scheme

We proceed to present a precomputation scheme that provides"-optimal solutions for Problem RSP. First,
we present a solution for DAGs, whose complexity (for the first phase) isO(MH logC="), whereC is an
upper bound on the cost of a path, and then extend it in order toobtain anO((M + N logN)H logC=")
solution for general topologies.

B.1. Algorithm for directed acyclic graphs

The following algorithm is based on Algorithm PP-RSP, and ituses acost quantizationapproach. Specif-
ically, it considers only a limited number of budget values,namely1; 1; 2; :::, wherei = Æi for someÆ > 1.
For each nodev 2 V and for eachi, the algorithm outputs a near-minimum weightWv[i℄ of a path froms
to v, whose cost is at mosti.

For a fixed value ofÆ, the number of iteration is polynomial on the input size. On the other hand, this
approach does not provide an exact solution, and the approximation ratio" depends on the choice ofÆ.
The formal specification of Algorithm RSP-DAG is presented in Fig. 11.

Lemma 11:Given are a DAGG; a source nodes and an approximation parameter". For a (arbitrary)
value ~w, let opt be the cost of a~w-weight constrained optimal path froms to a (arbitrary) nodev 2 V , and
let ~ = mini=1;2;:::blogÆ CfijWv[i℄ � ~wg, where the valuesWv[i℄ are the output of Algorithm RSP-DAG forG,s; " andv. Then ~�optopt � ".

Proof: Let popt=fv0 = s; v1; :::; vh = dg be a ~w-weight constrained optimal path froms to d. Note
thatC(popt) = opt, W (popt) � ~w. For 1 � j � h, we denote bypoptj = fv0; :::; vjg a subpath ofpopt,4A topological sort of a DAGG is a linear ordering of its vertices such that, ifG contains an edge(u; v), thenu appears beforev in the ordering.
A topologically sorted order may be computed by a DFS algorithm [6].

17

Algorithm PP-RSP (G(V;E); ŵ):
parameters:G(V;E) - networks 2 G - source nodeŵ- weight (additive QoS) constraint
variables: - the “budget”

for all v 2 VWv[℄ - the minimum weight of a path betweens andv
whose cost is at most

1 for all v 2 V do
2 Wv[0℄ 1
3 Ws[0℄ 0
4 1
5 while Wv[℄ > ŵ for somev 2 V do
6 Ws[℄ 0
7 for all v 2 V do
8 Wv[℄ Wv[� 1℄
9 for each nodeu taken in topologically sorted orderdo

10 for each nodev 2 Adj[u℄ do
11 lete = (u; v)
12 if (w(e) � w) then
13 Wv[℄ min[Wv[℄;Wu[� (e)℄ + w(e)℄
14 + 1

Fig. 10. Algorithm PP-RSP

Algorithm RSP-DAG (G(V;E); s; "):
parameters:G(V;E) - networks 2 G - source node"- approximation parameter
variables:i - the “budget”

for all v 2 VWv[i℄ - the approximated minimum weight of a path betweens andv whose cost is at mosti
notationC- an upper bound to the cost of a path inGÆ = (1=(1� "(1+")�H)++ = bÆblogÆ
1 for all v 2 V
2 do Wv[0℄ 1
3 Ws[0℄ 0
4 0 0
5 i 1
6 i 1
7 while i � C do
8 Ws[i℄ 0
9 for all v 2 V do

10 Wv[i℄ Wv[i�1℄
11 for each nodeu taken in topologically sorted orderdo
12 for each nodev 2 Adj[u℄
13 lete = (u; v)
14 if((e) � i) then
15 Wv[i℄ min[Wv[i℄;Wu[w�i � (e)w�℄ + w(e)℄
16 i (i+ 1)
17 i bÆi
18 return fWv[i℄ j i = 1; 2; :::blogÆ Cg for eachv 2 V

Fig. 11. Algorithm RSP-DAG

18woptj = W (poptj), optj = C(poptj). For a nodevj; j = 1; :::; h let ~j = mini=1;2;:::blogÆ CfijWvj [i℄ � woptj g, wherei = bÆi.
We prove by induction onj that ~j � optj � Æj. As the base step, we consider the execution of the loop

of line 7 for i = dlogÆ (e)e , wheree = (s; v1). Line 15 assures thatWv1(i) � w1. Therefore~1 � i �(e) � Æ � opt1 � Æ. Thus, we proved that~1 � opt1 � Æ.
For the inductive step, we assume that~j � optj �Æj holds for1; 2; ::; j�1 and prove that it holds forj. Let us

consider the execution of the loop of line 7 fori = dlogÆ(~j�1 + (e))e, wheree = (vj�1; vj). Since~j�1 < i,
the value ofWvj�1 [~j�1℄ was fixed in the loop of line 7 at either the current or a previous iteration. In both cases
the value ofWvj�1 [̂j�1℄ does not change after nodevj is processed. As a result, and sinceWvj�1 [~j�1℄ � woptj�1,
line 15 assures thatWvj [i℄ � woptj . Therefore,~j � i � Æ � (~j�1 + (e)) � Æ � (optj�1 � Æj�1 + (e)), fore = (vj�1; vj), where the last inequality follows from the inductive assumption. Hence,~j � optj � Æj, sinceoptj = optj�1 + (e), wheree = (vj�1; vj).

Let "̂ = "1+" . We have proved that~j � optj(1� "̂H)j for 1 � j � h. This result implies that~ = ~h � opt(1� "̂H)h .

Moreover, since forh � H it holds that(1� "̂H)h � (1� "̂H)H , and since(1� "̂H)H is an increasing function
of H, we conclude that(1 � "̂H)h � 1 � "̂ and~ � opt1�"̂ . Therefore~�opt� � "̂, i.e., ~�optopt � "̂1�"̂ . Since"̂ = "1+" , it holds that~�optopt � " and the lemma follows.

Lemma 12:The computational complexity of Algorithm RSP-DAG isO(1" �MH logC), whereC is an
upper bound on the cost of a path inG.

Proof: Let us count the number of iterationsk of the algorithm’s main loop (i.e.the loop beginning
on line 7). Let"̂ = "1+" . Clearly, 1(1� "̂H)k � C, thusk � � lnCln(1� "̂H) . Since for allx > �1 it holds thatln(1 + x) � x, we have thatk � H lnC"̂ . Each iteration of the main loop requiresO(M) time,hence the
complexity of the algorithm isO(1="̂ �MH lnC). Since"̂ � "2 for " � 1, it follows that the algorithm’s
complexity isO(1=" �MH lnC).

The next section extends Algorithm RSP-DAG to general graphs. This requires only minor changes to the
algorithm.

B.2. Extension to general graphs

Recall that, in each iteration of Algorithm RSP-DAG, the graph nodes were visited in a topologically
sorted order. Since such order does not exist in graphs with cycles, we process nodes according to their
minimum weights from the source, using an idea similar to that of Dijkstra’s shortest path algorithm. The
algorithm is presented in Fig. 12.

Theorem 4:Given are a general graphG; a source nodes and an approximation parameter". For a
(arbitrary) value~w, let opt be the cost of a~w-weight constrained optimal path froms to a (arbitrary) nodev 2 V , and let~ = mini=1;2;:::blogÆ CfijWv[i℄ � ~wg, where the valuesWv[i℄ are the output of Algorithm RSP-

GEN forG, s; " andv. Then ~�optopt � ".
Proof: Straightforward,since the algorithm is essentially similar to Algorithm RSP-DAG, except for

the order by which nodes are visited during an iteration of the loop at line 7. The correctness of the algorithm
follows from the fact that nodes with lower values ofWv[i℄ are visited first, as in Algorithm RSP-DAG.

Theorem 5:The computational complexity of Algorithm RSP-GEN isO(1" � (M + N logN)H logC),
whereC is an upper bound on the cost of a path inG.

Proof: The algorithm performs the same number of iterations as Algorithm RSP-DAG, i.e.,O(1" �H logC). It can be easily verified that each iteration incursO(M +N logN) computational complexity. We
thus conclude that the computational complexity of the algorithm isO(1" � (M +N logN)H logC).
B.3. The Second Phase

Algorithm RSP-GEN constitutes the first phase of our precomputation scheme, and its output, i.e. the
valuesWv[i℄, is used by the second phase of the precomputation scheme.

19

Algorithm RSP-GEN (G(V;E); s; "):
parameters:G(V;E) - networks 2 G - source node"- approximation parameter
variables:i - the “budget”

for all v 2 VWv[i℄ - the approximated minimum weight of a path betweens andv whose cost is at mostiQ - priority queuea

notationC- an upper bound on the cost of a path inGÆ = (1=(1� "(1+")�H)++ = bÆblogÆ
1 for all v 2 V do
2 Wv[0℄ 1
3 Ws[0℄ 0
4 0 0
5 i 0
6 i 1
7 while i � C do
8 Ws[i℄ 0
9 Q ;

10 for all v 2 V do
11 Wv[i℄ Wv[i�1℄
12 Add(Q; v;Wv[i℄);
13 while(Q 6= ;) do
14 u Extract Min(Q)b;
15 for each nodev 2 Adj[u℄ do
16 lete = (u; v)
17 if((e) � i) then
18 Wv[i℄ min[Wv[i℄;Wu[w�i � (e)w�℄ + w(e)℄
19 i (i+ 1)
20 i bÆi
21 return fWv[i℄ j i = 1; 2; :::blogÆ Cg for eachv 2 VaThe priority queueQ is implemented with a Fibbonacci heap [6]. Two operations are supported:Add(Q; v; w) andExtract Min(Q).bWith Fibonacci Heaps, the amortized cost of each priority tree operation isO(log V) [6].

Fig. 12. Algorithm RSP-GEN

The second phase is invoked at a source nodes, upon a connection request betweens and a destination
noded 2 V; with a QoS requirement̂w. The scheme then determines the minimumi for whichWd[i℄ � ŵ.
This operation can be performed inO(log(1")+log(H)+log log(C)) time by means of a binary search on the
values ofWd[i℄. The scheme reports the path betweens andd that corresponds toWd[i℄, which, by Theorem
4, is aŵ-weight constrained path betweens andd with an"-optimal cost. This path is not determined by the
first phase explicitly, but can be derived from its output, inO(jpj) operations5. Therefore, the second phase
incurs a total computational complexity ofO(log(1") + log(H) + log log(C) + jpj).
C. Discussion

We described a precomputation scheme for Problem RSP that provides"-optimal solutions within a compu-
tational complexity ofO((M+N logN)�H" logC) for the first phase andO(log(1")+log(H)+log log(C)+jpj)
for the second phase.

Compared with an alternative single-phase (i.e., “no precomputation”) scheme, our scheme allows to (sig-
nificantly) reduce the time required for establishing a new connection. Indeed, in a single-phase scheme5This requires a mild and straightforward modification of Algorithm RSP-GEN. For simplicity of exposition, the details are omitted here.

20

Problem RSP should be solved for each connection request, through a standard"-optimal approximation to
Problem RSP [12], which incurs a computational complexity of O(M H" log logC) for DAGs, andO((M +N logN)H" log logC) for general graphs6. Hence, the second phase of our scheme allows to identify an"-optimal path upon a connection request(logN � H" � log logC) times faster.

As previously noted, a precomputation scheme can be trivially constructed on the base of existing approx-
imation algorithms for Problem RSP, such as [12], by sequentially executing them for various cost values.
The computational complexity of this solution, for asingledestination, isO((M +N logN)H" log logC) for
general graphs. In order to perform the precomputation for ProblemRSP , this algorithm should be invokedO(logC") timesper destination, with a total complexity ofO((M + N logN) � H" log logC logC" N) for all
destinations, which is significantly (logC" N times) higher than that of our solution.

IX. CONCLUSIONS

QoS routing poses major challenges in terms of algorithmic design. On one hand, the path selection process
is a complex task, due to the need to concurrently deal with the connection’s QoS requirements, as well as
with the global utilization of network resources; on the other hand, connection requests need to be handled
promptly upon their arrival, hence there is limited time to spend on path selection. In many practical cases,
a precomputation scheme offers a suitable solution to the problem: a background process (the “first phase”)
prepares a data base, which enables to identify a suitable path upon each connection request, through a simple,
fast, procedure (the “second phase”).

While much work has been done in terms of path selection algorithms, the precomputation perspective
received little attention. As was demonstrated in this paper, simplistic adaptations of standard algorithms are
usually inefficient.

Accordingly, this study considered the precomputation perspective, focusing on two major settings of QoS
routing. First, we considered the (practically important)special case where the QoS constraint is of the “bot-
tleneck” type, e.g. a bandwidth requirement, and network optimization is sought through hop minimization.
For this setting, the standard Bellman-Ford algorithm offers a straightforward precomputation scheme. How-
ever, we showed that, by exploiting the typical hierarchical structure of large-scale networks, one can achieve
a substantial (O(HlogN)) improvement in terms of computational complexity. Then, we turned to consider the
more general setting of “additive” QoS constraints (e.g., delay) and general link costs. As the routing prob-
lem is NP-hard, we focused on�-optimal approximations, and derived a precomputation scheme that offers a
major (logC" N) improvement over a “standard” approach.

Some topics are the subject of ongoing research. These include: (i) precomputation schemes for the (NP-
hard) Problem RSP, which are based onLagrangian relaxationtechniques; (ii) precomputation schemes
for Problem RSP inhierarchical networks; (iii) establishing an algorithmic technique for(automatically)
partitioning a hierarchical network into the corresponding peer groups.

Finally, we note that, except for unicast path selection, there are many other networking problems, such as
flow optimization, spanning tree minimization, multicast tree optimization, etc., for which the precomputation
perspective offers a rich ground for future research.

REFERENCES

[1] Private Network-Network Interface Specification v1.0 (PNNI). ATM Forum Technical Committee, March 1996.
[2] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, T. Przygienda, and D. Williams. QoS routing mechanisms and OSPF extensions. Internet

Draft, December 1998.
[3] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, and S. Tripathi. Intra-Domain QoS Routing in IP Networks: A Feasibility and

Cost/Benefit Analysis.IEEE Network Magazine, 1999. To appear.
[4] G. Apostolopoulos, R. Guérin, S. Kamat, and S. Tripathi. Quality of service based routing: A performance perspective. InProceedings of

SIGCOMM, pages 17–28, Vancouver, Ontario, CANADA, September 1998.
[5] A. Bestavros and I. Matta. Load Profiling for Efficient Route Selection in Multi-Class Networks. InProceedings of IEEE ICNP’97, Atlanta,

GA, October 1997.
[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[7] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framework for QoS-based Routing in the Internet – RFC No. 2386. Internet RFC,

August 1998.6The last statement, regarding general graphs, does not appear in [12], but can be easily verified.

21

[8] M. R. Garey and D. S. Johnson.Computers and Intractability. Freeman, San Francisco, 1979.
[9] R. Guerin and A. Orda. Computing Shortest Path for Any Number of Hops. 1998. Unpublished manuscript.
[10] R. Guérin and A. Orda. QoS-based routing in networks with inaccurate state and metrics information.IEEE/ACM Transactions on Net-

working, 1999. To appear.
[11] R. Guérin, A. Orda, and D. Williams. QoS routing mechanisms and OSPF extensions. Internet Draft, December 1996. Also in Proceedings

of the 2nd IEEE Global Internet Mini-Conference, Phoenix, AZ, November 1997.
[12] R. Hassin. Approximation schemes for the restricted shortest path problem.Mathematics of Operations Research, 17(1):36–42, February

1992.
[13] D. H. Lorenz and A. Orda. QoS Routing in Networks with Uncertain Parameters.IEEE/ACM Transactions on Networking, 6(6):768–778,

December 1998.
[14] D. H. Lorenz and A. Orda. Optimal Partition of QoS Requirements on Unicast Paths and Multicast Trees. InProceedings of IEEE

INFOCOM’99, New York, NY, March 1999.
[15] Q. Ma and P. Steenkiste. Quality of Service Routing for Traffic with Performance Guarantees. InProceedings of IWQoS’97, Columbia

University, New York, NY, May 1997.
[16] A. Orda. Routing with End to End QoS Guarantees in Broadband Networks.IEEE/ACM Transactions on Networking, 1999. To appear.
[17] C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS Based Routing Algorithm in Integrated Services Packet Networks. InProceedings of

IEEE ICNP’97, Atlanta, GA, October 1997.
[18] Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting Multimedia Applications.IEEE JSAC, 14(7):1288–1234, September

1996.

