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Abstract

The notion of similarity between objects �nds use in many contexts, e.g., in search engines,

collaborative �ltering, and clustering. Objects being compared often are modeled as sets, with

their similarity traditionally determined based on set intersection. Intersection-based measures

do not accurately capture similarity in certain domains, such as when the data is sparse or

when there are known relationships between items within sets. We propose new measures that

exploit a hierarchical domain structure in order to produce more intuitive similarity scores. We

also extend our similarity measures to provide appropriate results in the presence of multisets

(also handled unsatisfactorily by traditional measures), e.g., to correctly compute the similarity

between customers who buy several instances of the same product (say milk), or who buy

several products in the same category (say dairy products). We also provide an experimental

comparison of our measures against traditional similarity measures, and describe an informal

user study that evaluated how well our measures match human intuition.

1 Introduction

The notion of similarity is used in many contexts to identify objects having common \charac-

teristics." For instance, a search engine �nds documents that are similar to a query or to other

documents. A clustering algorithm groups together gene sequences that have similar features. A

collaborative �ltering system looks for people sharing common interests [GNOT92].

In many cases, the objects being compared are treated as sets or bags of elements drawn from

a 
at domain. Thus, a document is a bag of words, a customer is a bag of purchases, and so

on. The similarity between two objects is often determined by their bag intersection: the more

elements two customers purchase in common, the more similar they are considered. In other cases,

the objects are treated as vectors in an n-dimensional space, where n is the cardinality of the

element domain. The cosine of the angle between two objects is then used as a measure of their

similarity [McG83]. We propose enhancing these object models by adding a hierarchy describing

1This material is based upon work supported by the National Science Foundation under Grant No. 0085896.
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Figure 1: Music CD Hierarchy

the relationships among domain elements. The \semantic knowledge" in the hierarchy helps us

identify objects sharing common characteristics, leading to improved measures of similarity.

To illustrate, let us look at a small 3-level hierarchy on the music CD domain, as shown in

Figure 1. Let us say customer A buys Beatles CDs b1 and b2, B buys Beatles CDs b3 and b4, and

C buys Stones CDs s1 and s2. If we were to use a similarity measure based on set intersections,

we would �nd that the similarity between any two of A, B and C is zero. The Vector-Space Model

would represent A, B and C as three mutually perpendicular vectors and, therefore, the cosine

similarity between any two of them is again zero.

However, looking at the hierarchy of Figure 1, we see that A and B are rather similar since both

of them like the Beatles, while A and C are less similar since both listen to rock music although

they prefer di�erent bands. The similarity between two CDs is re
ected in how far apart they are

in the hierarchy. In this paper, we develop measures that take this hierarchy into account, leading

to similarity scores that are closer to human intuition than previous measures.

There are several interesting challenges that arise in using a hierarchy for similarity computa-

tions. In our CD example, for instance, customers may purchase CDs from di�erent portions of the

hierarchy: e.g., customer D in Figure 1 purchases both Beatles as well as Mozart CDs. In such a

case it is not as obvious how similar D is to A or B or to other customers with mixed purchases. As

we will see, there are multiple ways in which the hierarchy can be used for similarity computations,

and in this paper we will contrast di�erent approaches.

Another challenge is handling multiple occurrences (multisets) at di�erent levels of the hierarchy.

For example, say we had another user E who buys a lot of Beatles CDs as well as a Mozart CD

m1 (see Figure 1). The question is: Which of D or E is more similar to A? Customer D bought

Beatles CD b1, just like A. On the other hand, customer E did not buy that CD, but did buy a

lot of other Beatles CDs. The traditional cosine-similarity measure favors multiple occurrences of
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an element. That is, if a query word occurs a hundred times in a document, the document is more

similar to the query than one in which the query word appears only once. If we use this approach

in our example, we would say that E is more similar to A than D is, because E buys 14 Beatles

CDs, while D buys just one.

Unfortunately, it is not clear that this conclusion is the correct one. E is probably a serious

Beatles fan, while A and D appear more balanced and similar to each other, so it would also be

reasonable to conclude that D is more similar to A than E is. Thus, measures like cosine-similarity

often do not provide the right semantics for inter-object similarity. This problem has, in fact,

been observed earlier in the context of inter-document similarity [SGM95]. In this paper, we study

various semantics for multiple occurrences, and provide measures that map to these semantics.

There has been a lot of prior work related to similarity in various domains and, naturally, we

rely on some of it for our own work. In Sections 2 and 6 we discuss prior work in detail, but here

we make some brief observations.

In our example we have seen that with traditional measures customers A, B and C have zero

similarity to each other because their purchases do not intersect. When objects or collections are

sparse, i.e., have few elements relative to the domain, intersections tend to be empty and traditional

measures have diÆculty identifying similar objects. There have been many attempts to overcome

this sparsity problem through techniques such as dimension reduction [SKKR00], �ltering agents

[SKB+98], item-based �ltering [SKKR01] and the use of personal agents [GSK+99]. We believe

that using a richer data model (i.e., our hierarchy) addresses this problem in a simple and e�ective

way.

Hierarchies, of course, are often used to encode knowledge, and have been used in a variety

of ways for text classi�cation, for mining association rules, for interactive Information Retrieval,

and various other tasks where similarity plays a role [FD95, HF95, SM98, SA95]. Inspired by such

prior uses of hierarchies, our goal here is to rigorously study how a domain hierarchy can be used

to compute similarity, independent of a speci�c application, and to explore, compare and evaluate

the various options that are available.

We believe that there are many domains in which hierarchies exist and can be exploited as we

suggest here. Just to name a few examples, the Open Directory [Ope] is a hierarchy on a subset of

pages on the web. Thus, we can compute the similarity of web users, for instance, based on a trace

of the web pages they visit. In the music domain, songs can be organized into a hierarchy by genre,

band, album, and so on. This hierarchy can then be used, say, to �nd Napster [Nap] users with
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similar tastes, and recommend new songs to them. In the document domain, we can use existing

hierarchies such as WordNet [MRF+90] to compute document similarity. In all of these cases, our

general-purpose extended similarity measures can be used to improve functionality.

In summary, the main contributions of this paper are the following:

� We introduce similarity measures that can exploit hierarchical domain structure, leading to

similarity scores that are more intuitive than the ones generated by traditional similarity

measures.

� We extend these measures to deal with multiple occurrences of elements (and of ancestors in

the hierarchy), such as those exhibited in A and E in Figure 1, in a semantically meaningful

fashion.

� We analyze the di�erences between our various measures, compare them empirically, and show

that all of them are very di�erent from measures that don't exploit the domain hierarchy.

� We report the �ndings of an informal user study to evaluate the quality of the various measures.

Figure 2 shows the evolution of the measures that we will discuss, and serves as a roadmap for

the rest of the paper. Section 2 describes traditional approaches to computing similarity. Section

3 introduces our First Generation measures, which exploit a hierarchical domain structure and are

obtained as natural generalizations of the traditional measures. Section 4 introduces the multiple-

occurrence problem, and evolves the measures into our Second Generation measures. Section 5 is

devoted to a comparison of these measures and their evaluation. Section 6 describes related work.

2 Traditional Similarity Measures

Given two objects, or collections of elements C1 and C2, our goal is to compute their similarity

sim(C1; C2), a real number in [0; 1]. The similarity should tend to 1 as C1 and C2 have more
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and more common \characteristics." There is no universal notion of which \characteristics" count,

and hence the notion of similarity is necessarily subjective. Here we will de�ne several notions of

similarity, and discuss how intuitive they are.

2.1 The Set/Bag Model

In many applications, the simplest approach to modeling an object is to treat it as a set, or a bag,

of elements, which we term a collection. The similarity between two collections is then computed

on the basis of their set or bag intersection. There are many di�erent measures in use, which di�er

primarily in the way they normalize this intersection value [van79]. We describe two of them here.

Let X and Y be two collections. Jaccard's CoeÆcient, which we denote simJacc(X;Y ), is

de�ned to be:

simJacc(X;Y ) =
jX \ Y j
jX [ Y j

Thus, in Figure 1, simJacc(A;D) = 1
2+2�1 =

1
3 . Dice's CoeÆcient, which we denote simDice(X;Y ),

is de�ned to be:

simDice(X;Y ) =
2 � jX \ Y j
jXj+ jY j

Once again referring to Figure 1, simDice(A;D) = 2�1
2+2 = 1

2 . Other such measures include the

Inclusion Measure, the Overlap CoeÆcient and the Extended Jaccard CoeÆcient [SGM00, van79].

2.2 The Vector-Space Model

The Vector-Space Model is a popular model in the Information Retrieval domain [McG83]. In this

model, each element in the domain is taken to be a dimension in a vector space. A collection

is represented by a vector, with components along exactly those dimensions corresponding to the

elements in the collection. One advantage of this model is that we can now weight the components

of the vectors, by using schemes such as TF-IDF [SB88]. The weight we assign to a dimension in a

vector can be determined both by the number of occurrences of the element in that collection (Term

Frequency TF ), and by the relative importance of that element (Inverse Document Frequency IDF ).

The Cosine-Similarity Measure (CSM) de�nes the similarity between two vectors to be the

cosine of the angle between them, which is identical to the normalized inner product of the two

vectors. This measure has proven to be very popular for query-document and document-document

similarity in text Retrieval [SB88]. Again referring to Figure 1, and using uniform weights of 1:
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simCos(A;D) =

�!
A � �!D
j�!A jj�!D j =

1� 1p
2
p
2
=

1

2

Collaborative-�ltering systems such as GroupLens [RIS+94] use a similar vector model, with

each dimension being a \vote" of the user for a particular item. However, they use the Pearson

Correlation CoeÆcient as a similarity measure, which is given by the formula:

c(X;Y ) =

P
j(xj � x)(yj � y)qP

j (xj � x)2
P

j (yj � y)2

where xj is the value of vector X in dimension j, x is the average value of X along a dimension,

and the summation is over all dimensions in which both X and Y are non-zero [RIS+94]. Inverse

User Frequency may be used to weight the di�erent components of the vectors. There have also

been other enhancements such as default voting and case ampli�cation [BHK98], which modify the

values of the vectors along the various dimensions.

There are many other distance and similarity measures which have been de�ned for a variety of

problems. Two of the most popular are edit distance and Earth-mover's distance. We will explain

why they are inapplicable to our speci�c problem in Section 6.

3 The First Generation

We now describe two new measures we developed, based fairly directly on the traditional measures,

that exploit a hierarchical domain structure in computing similarity. We �rst describe our model

formally, de�ne some associated concepts, and then proceed to develop the measures.

3.1 The Model

Let U be a rooted tree, with all nodes carrying a distinct label. We do not impose any restrictions

on the shape of U : It can be arbitrarily unbalanced, and its leaves can be at di�erent levels.

Let LU be the set of all labels in U . Let LLU be the set of all labels on the leaves of U . LLU

is the element domain, on which there is a superimposed hierarchy described by U . In our music

example, LLU = fb1; b2; : : : ; s1; s2; : : : ;m1;m2; : : : ; c1; c2:::g. A collection C is a bag whose elements

are drawn from LLU .

Let W be a function from LLU to the set of real numbers. W is an a priori weight function on

the leaves of U , which captures the relative importance of di�erent elements. There are many ways
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of deriving this weight function. It could be an Inverse User Frequency such as the one de�ned in

[BHK98]. It could also be corpus-independent, and be determined by attributes of the elements,

such as their cost (in monetary terms). Of course, the weight function also can be uniform.

Since there is a hierarchical structure imposed on LLU , a collection C induces a tree, a subgraph

of U that consists of the ancestral paths of each leaf in C. We refer to trees that are induced in

this manner as induced trees. Notice that, since C is a bag, the induced tree might have more than

one leaf with the same label. Figure 3 shows the induced trees for the collections A and B from

Figure 1.

As is conventional, the depth of a node in the hierarchy is the number of edges on the path

from the root of U to that node. Given any two leaves l1 and l2 in U , de�ne the Lowest Common

Ancestor LCA(l1; l2) to be the node of greatest depth that is an ancestor of both l1 and l2. This

LCA is always well-de�ned since the two leaves have at least one common ancestor|the root

node|and no two common ancestors can have the same depth. In Figure 1, LCA(b1; b2) = b, while

LCA(b1; s1) = r.

3.2 The Generalized Vector-Space Model

To illustrate how the Vector-Space Model can be generalized to take the hierarchy into account,

consider Figure 1 again. Let us say that the unit vector corresponding to a leaf l is represented by
�!
l .

Now, according to the traditional cosine-similarity measure, all leaf unit vectors are perpendicular

to each other, which means that the dot product of any two of them is zero. The dot product of a

unit vector with itself is equal to 1.

We have already observed that b1 is, intuitively, somewhat similar to b3 since they are both

Beatles CDs. Thus, if A buys b1 and B buys b3, we need to make this fact contribute something

to the similarity of A and B, i.e., we want
�!
b1 � �!b3 to be non-zero. In the vector space, we want to
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assert that
�!
b1 and

�!
b3 are not really perpendicular to each other, since they are somewhat similar.

We use the hierarchy to decide exactly what value to assign to this dot product. For example,

let us decide that
�!
b1 � �!b3 = 2

3 , since they have a common ancestor that is two-thirds of the way

down from the root. By a similar reasoning process, we let
�!
b1 � �!s1 be 1

3 . We let
�!
b1 � �!m1 continue to

be 0 since they are in di�erent sections of the hierarchy and don't really seem to have anything to

do with each other, except for the fact that they are both music CDs.

Formally, let LLU be the set fl1; l2; l3; : : : ; lng. Let CountA(li) be the number of times li

occurs in collection A. Then, collection A is represented by the vector
�!
A =

Pn
i=1 ai

�!
li , where

ai = W (li) � CountA(li) for i = 1::n. This usage of weights is identical to the standard Vector-

Space Model's. For any two elements l1 and l2, we de�ne

�!
l1 � �!l2 =

2 � depth(LCAU(l1; l2))

depth(l1) + depth(l2)

This de�nition is consistent, since the right side of this equation always lies between 0 and 1. Note

that the dot product is equal to 1 i� l1 = l2.

We continue to measure similarity by the cosine-similarity measure, except that we have now

dropped the assumption that the di�erent \components" of the vector are perpendicular to each

other. If collection A is represented by the vector
�!
A =

P
i ai

�!
li and B by the vector

�!
B =

P
i bi
�!
li ,

then:

�!
A:
�!
B =

nX
i=1

nX
j=1

aibj
�!
li :
�!
lj

Again, this equation is identical to the standard Vector-Space Model, except that
�!
li :
�!
lj is not equal

to 0 whenever i 6= j. Finally, the cosine similarity between A and B is given by the traditional

formula:

sim(A;B) =

�!
A � �!Bp�!

A � �!A
p�!
B � �!B

We call this measure the Generalized Cosine-Similarity Measure (GCSM).

3.3 The Optimistic Genealogy Measure

The Generalized Cosine-Similarity Measure from Section 3.2 is not the only, or even the most

intuitive, way to exploit a hierarchy for similarity. Next we present a second, more natural and

intuitive measure, and contrast it with GCSM. Intuitively, the Optimistic Genealogy Measure2

2The reason for the name becomes clear in the next section.
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computes a \similarity contribution" for each element in one collection, and then takes the weighted

average of these contributions to be the similarity between the two collections. The contribution

of an element is determined by how good a \match" it has in the other collection.

Let C1 and C2 be the collections to be compared and let T1 and T2 be their induced trees as

de�ned in Section 3.1. For any leaf l1 in T1, de�ne LCAT1;T2(l1) to be the ancestor of l1 of greatest

depth that is present in T2, i.e., the lowest of the LCAs that l1 shares with the leaves of T2. This

LCA provides an indication of how good the \best match" for l1 can be. For example, for the trees

in Figure 3, LCAA;B(b1) is Beatles, since it is present in tree B, and is the lowest ancestor of b1

that is present in B. (We abuse notation and let A and B refer both to the two collections and to

their corresponding induced trees.)

Now de�ne:

matchT1;T2(l1) = fl2 2 C2jLCA(l1; l2) = LCAT1;T2(l1)g

That is, matchT1;T2(l1) is the set of all leaves in T2 that can be the \best match" for l1. In Figure

3, matchA;B(b1) is the set fb3; b4g since both elements match b1 at its parent Beatles. Next, we

de�ne:

leafsimT1;T2
(l1) =

depth(LCAT1;T2(l1))

depth(l1)

The value leafsimT1;T2
(l1) measures how similar l1 is to its best match in T2. If l1 itself is present

in T2, then LCAT1;T2(l1) = l1, and therefore leafsimT1;T2(l1) = 1. On the other hand, if no an-

cestor of l1 except for the root is present in T2, we have depth(LCAT1;T2(l1)) = 0 and, therefore,

leafsimT1;T2
(l1) = 0. In Figure 3, leafsimA;B(b1) is

2
3 and leafsimA;B(b2) is also

2
3 .

Finally, for any two collections C1 and C2 with associated induced trees T1 and T2 respectively,

we de�ne the Optimistic Genealogy Measure (OGM) as:

sim(C1; C2) =

P
l12C1

leafsimT1;T2
(l1) �W (l1)P

l12C1
W (l1)

(1)

This is just the weighted average of the individual leafsim values of the leaves in T1. Note that

since C1 is a bag, the summation is over all members of the bag, and is not the set average. In our

example, sim(A;B) is also 2
3 , since the contributions from b1 and b2 are identical.

Note that OGM is, in general, asymmetric, i.e., sim(A;B) 6= sim(B;A). If we desire to compute

a symmetric similarity value between two collections C1 and C2, we could de�ne it to be the average,

the minimum, the maximum, or any other function of the two values, depending on what we desire.
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sim JC DC CSM GCSM OGM

A,B 0 0 0 0.8 0.67

A,C 0 0 0 0.4 0.33

A,D 0.33 0.5 0.5 0.65 0.67

B,C 0 0 0 0.4 0.33

B,D 0 0 0 0.52 0.5

C,D 0 0 0 0.26 0.25

Table 1: Comparison of the various measures

3.4 Discussion

Table 1 shows the similarity values computed by various traditional measures discussed in Section

2, as well as by GCSM and OGM, for the collections in Figure 1. JC stands for Jaccard's CoeÆcient

and DC for Dice's CoeÆcient. The values shown are symmetric similarity values, with the average

of the two asymmetric values being used for OGM. As motivated in Section 1, we would expect to

�nd that customers A and B are more similar to each other than A and C. C and D should be

even less similar. From Table 1, we see that both of our First Generation measures produce this

result, while the traditional measures do not.

Intuitively, it is not clear whether sim(A;D) should be higher than sim(A;B). There is a case

for saying that sim(A;B) is higher, since both A and B are \pure" Beatles persons. One could

also contend that A and D have a CD in common, while A and B have none, and, therefore, that

sim(A;D) ought to be higher. OGM gives them the same similarity values, while GCSM makes

sim(A;B) higher. The traditional measures claim that sim(A;D) is higher, since they do not

detect any similarity between A and B. GCSM and OGM can be tuned to adjust the conclusion

in cases such as these. We discuss how to achieve this tuning in section 4.5.1.

3.4.1 Contrasting GCSM with OGM

Having seen how the First Generation measures fare on our simple example when compared with

the traditional measures, we now examine the di�erences between GCSM and OGM in a little more

detail.

� GCSM uses many-to-many matches, while OGM uses many-to-one matches. In GCSM, the

similarity contribution of an element in one collection is gathered from all elements in the other
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collection that have a non-zero similarity to that element. On the other hand, OGM simply

uses the best similarity score it can �nd for each element.

� GCSM is a symmetric measure, which means that we will not get high similarity scores if one

collection is a subset of the other [SGM95]. OGM is an asymmetric measure, and conveys more

information that may help us identify di�erent semantic notions of similarity. For example,

if we wanted to �nd an \expert" for a particular user A, i.e., someone who is knowledgeable

about the things that A buys, we would look for a user B such that his purchases are close

to a superset of A's purchases. Thus, sim(A;B) would be very high, but sim(B;A) might be

fairly low.

� GCSM has worst-case complexity quadratic in the number of elements in the two collections.

OGM has complexity linear in the number of nodes in the induced trees of the two collections.

4 Dealing with Multiple Occurrences { The Second Generation

The Vector-Space Model's approach to multiple occurrences of elements is a consequence of its

origins in query-document similarity. The presumption is that, given a query word, a document

that has 100 occurrences of the word is more relevant to the query than a document that has

one occurrence of it. While this approach is reasonable for query-document similarity, it is not

completely satisfactory for inter-document similarity, or, more generally, inter-collection similarity.

To see the problem, imagine three people X, Y and Z. Let's say that X buys one unit of

some element e, Y buys 2 units of it, and Z buys 100 units of it (and all of them buy a few other,

more-or-less-similar elements). Intuitively, X and Y are more similar than X and Z, since X and

Y buy about the same number of units of e, while Z is quite di�erent from the two of them. This

conclusion is the exact opposite of that obtained by GCSM. OGM o�ers the same conclusion as

GCSM since it, too, uses simple many-to-one matches. While one may not expect people to buy

100 copies of the same CD, there are many domains where such a situation does arise.

More importantly, the use of a hierarchy exacerbates the problem, since we no longer insist on

exact matches. For example, let us look at Figure 1 and compute the similarity between A and

E. According to OGM, sim(A;E) is 0:75, while according to GCSM it is 0:89. Table 1 shows

that sim(A;D), according to the two measures, is 0:65 and 0:67 respectively. Thus, both measures

claim that sim(A;E) is higher than sim(A;D). In this example, we don't have multiple copies

of any one element, but we had a mismatch in the number of elements under the Beatles branch.
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i OGM GCSM PGM BGM(0:8) RGM

1 0.7 0.7 0.7 0.7 0.7

2 0.717 0.717 0.47 0.667 0.638

3 0.725 0.703 0.35 0.620 0.617

4 0.730 0.690 0.28 0.573 0.606

1 0.75 0.612 0.0 0.0 0.575

Table 2: Similarity between T1(i) and T2

Thus, multiple occurrences at any level in the hierarchy can prove to be a problem.

In the rest of this section we will use an abstract example, shown in Figure 4, to explain the

behaviour of the First Generation measures and the new measures that we propose. In this �gure,

we compare a family of collections represented by tree T1(i), for various i, to a collection represented

by tree T2. The weights of all leaves are taken to be 1. The right branch of T1(1) is identical to the

right branch of T2. As i increases, we add more and more leaves to the same branch of T1 at node

12. We wish to see how sim(T1(i); T2) changes as i increases.

Table 2 shows the (asymmetric) similarity values computed by the various measures as a function

of i. For example, the �rst column shows the behaviour of OGM. We see that the similarity value

progressively increases and converges to 0:75, which is what each additional leaf under node 12

contributes. According to our intuition, the similarity should decline as i increases, especially for

large values of i.

The second column shows the behaviour of GCSM. We see that the similarity value goes up

for a short while, and then eventually declines to 0:612. This pattern seems more promising but,

actually, it too is poor. The crucial fact to note is that this value of 0:612 is still dictated solely by

the contribution of each additional leaf, which is 0:75. But now, instead of the similarity simply
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being equal to this value (0:75), it is actually proportional to the square root of this value.

Intuitively, the reason for this behaviour is that the magnitude of the collection corresponding

to T1(i) also increases as i increases since T1(i) now has more \overlap" among its own elements.

This increase has the e�ect of trying to lower the cosine similarity, but it is not strong enough to

overcome the linear increase in the numerator of the formula for GCSM. We will provide a more

detailed comparison of the semantic implications of the various measures at the end of this section.

The rest of the columns in the table show the behaviour of the measures we will describe in the

remainder of this section.

4.1 The Balanced Genealogy Measure

OGM admits of a simple generalization that solves the multiple occurrences problem. The general

idea is to be less \optimistic" during similarity computation, and penalize many-to-one matches: if

more than one leaf in the �rst tree gets its best match from one leaf in the second tree, we lower the

similarity values that the duplicate matches contribute. Since we don't want to be too pessimistic

in our similarity computation either, like the traditional measures are, we call this measure the

Balanced Genealogy Measure (BGM).

BGM has a parameter �, a real number in [0; 1], which controls the rate at which similarity

decays with multiplicity of matches. To illustrate, consider the two trees T1(3) and T2 in Figure 5.

Each leaf of T1(3) is annotated with the leafsim value (recall Section 3.3) that BGM provides it.

To see how these values are obtained, let us start with leaf 13 in T1(3). This leaf scores a value of

1 since 13 also exists in tree T2. Next, we move on and try to �nd a match for leaf 14. The only

possible match for 14 is, once again, leaf 13. In OGM, we would have given this match a score of

0:75. But now, we want to penalize leaf 14, since it matches with a leaf that has been matched
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once already. So, we give it a score 0:75�. For leaf 15, again, the best match available for it in T2

is 13. Since 13 has been matched twice already, we give 15 a score 0:75�2. We then match leaf 6

with leaf 9 in T2, giving it a score of 0:4. Finally, as usual we take the weighted average of these

scores to arrive at an overall similarity score, which is 0.620 for � = 0:8.

The procedure we have outlined above is dependent on the order in which we examine the leaves

of T1. For example, if we had matched leaf 14 before leaf 13, leaf 14 would have received a score of

0:75 and 13 would have received a score 1 times �, thus lowering the overall similarity score. We

de�ne the similarity score produced by BGM to be the score generated by \optimal" matching,

i.e., by the matching that maximizes the overall similarity score. We explain how to compute this

score in the formal de�nition, next.

4.1.1 Formal De�nition

Say we want to compute sim(C1; C2), with C1 and C2 inducing trees T1 and T2 respectively. BGM

proceeds as follows:

For each leaf l1 in T1, visited in optimal order (to be de�ned later):

1. Find a match l2 in T2. Recall that l2 is a leaf in T2 that provides the best LCA for l1. If there

is more than one possible match, pick that l2 which has been matched the fewest times so far.

2. Increment l2's match count. (Initially, all match counts are zero.)

3. De�ne:

optleafsimT1;T2(l1) =
depth(LCAT1;T2(l1))

depth(l1)

and:

leafsimT1;T2
(l1) = optleafsimT1;T2

(l1)� �match count(l2)�1

The value sim(C1; C2) is computed as the weighted average of the individual leafsim values, just

as in OGM.

The optimal order is that order of visits of the leaves that leads to the highest possible similarity

score computed according to this algorithm. If C1 has n elements, the number of possible orderings

of leaves is n!. So, we cannot a�ord to investigate every possible order and then pick the best one.

Fortunately, it is possible to compute the similarity score according to the optimal order, with very

little computational overhead. We �rst illustrate a simple case where all leaves are at the same

depth and all leaf weights are equal.

The strategy we adopt is to look for matches in multiple phases. In the �rst phase, we look only
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for exact matches between leaves. In the second phase, we look for pairs of leaves with a common

parent; in the third phase, pairs of leaves with a common grandparent, and so on. This strategy

is guaranteed to produce the optimal score. To see why this strategy works, observe that we are

looking for matches in the decreasing order of their optleafsim value contribution. If we think of

BGM as being exactly identical to OGM, except that some of the optleafsim values are reduced,

we see that the strategy always attempts to reduce the smallest possible optleafsim at each stage.

For example, the match that produces the highest similarity score never gets reduced by �.

The strategy for the general case, where we have leaves at di�erent depths and di�erent leaf

weights, is a generalization of the strategy outlined above. The key idea is to generate leafsim

values in decreasing order of optleafsim �W , using a generalization of the multi-phase approach

that we outlined above. This order is computed in a preprocessing step, and does not have to be

generated for each individual similarity computation.

4.1.2 Computational Complexity

Let l1 and i1 be the number of leaves and internal nodes in T1, l2 and i2 the number of leaves and

internal nodes in T2, h the height of the hierarchy, and b the maximum branching factor in T2. Let

l = l1 + l2 and i = i1 + i2.

We noted earlier that OGM has complexity O(l + i). The computational complexity for BGM

is higher than for OGM because, for BGM, we need to maintain state in the leaves of T2 and use

this state while computing similarity. There is also a slight overhead associated with computing

the optimal order, because we need to examine l1h nodes in T1 instead of l1 + i1 nodes in the case

of OGM.

In order to maintain state eÆciently in T2, we use priority queues to order the children of all the

internal nodes. It can be shown that, due to the nature of updates to the various priority queues,

the worst-case computational complexity is O(lh(h + log b)).

In practice, log b would be much smaller than h which, itself, tends to be small in most domains.

Also note that this bound is the worst case, and is realized only when computing the similarity

between extremely dissimilar collections. In most applications, we would not be interested in the

exact similarity value between such dissimilar collections, and will be able to prune the computation,

thus achieving a much better computational complexity.
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Figure 6: The Recursive Genealogy Measure

4.1.3 Discussion

First, notice that setting � = 1 instantiates BGM to OGM. At the other extreme, setting � = 0

is a pessimistic evaluation of similarity where we insist that no leaf in T2 is matched more than

once. We call this extreme the Pessimistic Genealogy Measure (PGM). PGM and OGM provide

the lower and upper bounds respectively on the similarity values computed by BGM.

We now look at the similarity scores computed by BGM for the example in Figure 4 for two

di�erent � values, 0 (PGM) and 0:8. Table 2 shows these values. We see that similarity declines

to 0 in both cases, but it declines much faster with � = 0. This behaviour is no surprise, since �

controls the degree of optimism of the measure. The important observation is that the similarity

score actually does decline as i increases, which is what we set out to achieve.

4.2 The Recursive Genealogy Measure

Let us revisit the multiple occurrences problem. The problem, as we have seen, is that we tend to

be too \optimistic" in our similarity estimates, which is unwarranted when we have many leaves

in one tree matching just one leaf in the other tree. If we revisit the computation performed by

OGM, shown in Equation 1, we see that there are two ways of solving this problem. The �rst is

the approach adopted by BGM, namely lowering similarity for duplicate matches. Alternatively,

we could leave the similarity values alone and, instead, lower the weight that we assign to these

duplicate matches. This is the approach that we study now, called the Recursive Genealogy Measure

(RGM). In Section 4.3, we compare the semantic underpinnings of these two approaches.

We will, once again, use trees T1(3) and T2, shown in Figure 6, to explain RGM. The similarity
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computation consists of two phases. In the �rst phase, we simply compute leafsim values just as

in OGM. In Figure 6, they are the �rst element of the ordered pairs on the leaves of T1(3). To

compute the overall similarity value for the two trees, we use a bottom-up computation on T1(3)

to make the leafsim values 
ow to the top of the tree. The value that is obtained at the root node

is the similarity between the two trees. The value at an internal node stands for the similarity

between that subtree and the appropriate portion of T2.

In order to perform this computation, we �rst need to de�ne weights for the nodes in the two

trees. We will take the weights of all the leaves to be 1 in this example. Let us �rst look at T2.

Here, the weight of an internal node is simply the sum of the weights of its children. Thus, the root

has a weight of 2, while all others have a weight of 1 (shown in square brackets). The crux of the

measure is in the assignment of weights to the nodes in T1(3). Weights are de�ned in T1(3) just as

in T2, with one exception. If a node in T1 also happens to be in T2, and its weight is lower in T2,

we use this lower value as its weight in T1.

In the �gure, the weights of the nodes are shown as the second element of the ordered pairs

enclosed by [ ]. In the left subtree of T1(3), the weights are all simply 1. But in the right subtree,

the weight of node 12 is not 3. We notice that 12 has a lower weight of just 1 in T2. So, we assign

it a weight 1 in T1(3), too. Notice that this assignment of weights in T1(3) captures the multiple

occurrences. The fact that all leaves under 12 can match just a single leaf in T2 is captured by

assigning a weight of 1 to node 12.

Once these weights are assigned, we compute similarity by a simple bottom-up calculation. The

similarity at any internal node is the weighted average of the similarity at all its children. Thus, in

Figure 6, the similarity at node 12 is seen to be 1+0:75+0:75
3 = 0:833 (shown as the �rst element of

the ordered pair). The similarity we see at the root is the actual similarity value between the two

trees, which is 0:617 in this case.

4.2.1 Formal De�nition

For any tree T and any node n in T , let CT (n) be the set of all children of n in T . Let WT (k) be

the weight of node k in tree T . We will shortly explain how to compute WT (k), given our original

weight function W which is de�ned only for the leaves of trees.

Let C1 and C2 be the two collections under comparison, and let T1 and T2 be their associated

trees, as usual. We �rst de�ne the weights to be associated with all the nodes in tree T2. We then
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de�ne the weights for all the nodes in T1.

WT2(n) = W (n) if n is a leaf of T2

=
X

c2CT2 (n)

WT2(c) if n is an internal node of T2

= 1 otherwise

We have de�ned the weights of nodes not in T2 to be 1 for notational convenience.

WT1(n) = W (n) if n is a leaf of T1

= min(
X

c2CT2 (n)

WT1(c);WT2(n)) if n is an internal node of T1

= 0 otherwise

For any internal node in T1, its weight is determined both by the sum of the weights of its children

in T1, say p, and by the weight of the same node in T2, say q. Although we have chosen to use

min(p; q) as our weight, we could, in general, use any function, although functions that return a

value between p and q make the most sense. We discuss the e�ect of this choice in Section 4.3.

Let simT1;T2(n) denote the similarity value \at" a node n in tree T1. The similarity between

the two trees sim(T1; T2) is given by:

sim(T1; T2) = simT1;T2(root(T1))

For all nodes n in T1, we de�ne:

simT1;T2(n) = optleafsimT1;T2
(n) if n is a leaf (de�ned in Section 4.1.1 )

=

P
c2CT1 (n)

WT1(c) � simT1;T2(c)P
c2CT1 (n)

WT1(c)
if n is an internal node

4.2.2 Comparison

First, notice that the computational complexity of RGM is linear in the total number of nodes in

the induced trees of the collections under comparison. This complexity is the same as OGM and

better than BGM.

The last column in Table 2 shows the similarity values as computed by RGM for the trees

in Figure 4. We see that the similarity value declines as i increases, which is the e�ect that was

desired. We also notice that the similarity value declines slowly and does not eventually converge to

zero; instead, it converges to a value 0:575. At �rst sight, this behaviour seems to resemble GCSM,
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which also declines and converges to a non-zero value. But there is a big qualitative di�erence

between the values that they converge to, which we explain in Section 4.3. RGM is very di�erent

from GCSM as will also be seen from our experimental results in Section 5.1.

4.3 Summary and Discussion

The fact that we have proposed more than one measure, each of which handles multiple occurrences

in its own way, is a natural consequence of the di�erent possible interpretations of the idea of

similarity. Reconsider our original example in Figure 1, particularly the similarity between A and

E. Recall that A has two Beatles CDs, while E has 14 Beatles CDs and one classical music CD.

One way to look at the similarity of A and E would be to observe that a high percentage of E's

purchases are Beatles CDs. Therefore, we could treat E as a \Beatles person." Since A is also a

\Beatles person", we give them a very high similarity score. This interpretation is the one o�ered

by OGM. GCSM uses an interpretation that is almost identical, but with one important di�erence.

It observes that each of A's purchases is very similar to almost every one of E's purchases. The

high similarity score resulting from this observation is tempered by the fact that E's purchases are,

themselves, very similar to each other.

The BGM interpretation is in
uenced by the di�erence in size between A and E: The fact that

E has 14 Beatles CDs while A has just 2 makes them somewhat dissimilar according to BGM.

The fourth, and �nal, interpretation di�ers markedly from the �rst three. None of the �rst three

interpretations were in
uenced much by the fact that E bought a Mozart CD. All of them were

swayed primarily by the fact that the majority of the CDs bought by E were Beatles CDs. The

RGM interpretation localizes the e�ects of the Beatles CD purchases, and is in
uenced by the other

purchases of A and E as well.

It is not clear that one of these interpretations is always the \correct" interpretation. Quite

often, it depends on the nature of the domain, the nature of the collections, and the exact semantic

need. For example, if we knew that we wanted similarity of queries to documents, and we don't care

too much about overlap between query terms, we would settle for the �rst interpretation (OGM).

The second interpretation (GCSM) might be useful for longer queries, where we might take into

account the fact that two of the query words are describing related concepts. For example, if we

had both the words \car" and \bicycle" in a query, which also consisted of many other words, we

might want to take into account the relationship between these words.

Choosing between the third (BGM) and fourth (RGM) interpretations is dictated by the relative
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importance of the coverage and distribution of elements. For example, in Figure 1 we could choose

to ignore the fact that E bought a Mozart CD, as BGM does, as long as we care only about the

distribution of the elements. If coverage is important, we do want to factor in E's Mozart CD, and

the RGM interpretation permits us to do so. By suitably choosing the correct function to use in

computing weights in RGM, we can pick the desired balance between coverage and distribution.

4.4 Other Extensions

4.5 Other Extensions

There are other extensions to the model and the metrics that we have omitted for ease of description.

We provide a brief overview of some of them here.

4.5.1 Edge Weights

We can introduce edge weights into our tree model, assigning them a priori. Edge weights helps

capture the relative importance of a `concept leap' from a parent to a child. For example, the

`distance' between Aerosmith and Hard Rock may be smaller than the `distance' between Hard

Rock and Rock. Modifying the metrics to handle these edge weights is a straightforward exercise:

We use distances from the root instead of node depth, when computing leaf similarities.

4.5.2 DAGs

Several of these metrics can be extended to handleDAGs rather than just trees. We just rede�ne the

concept of the LCA to be that ancestor that provides the highest leaf similarity value. Generalizing

RGM to handle DAGs is rather more complicated, since it relies on a bottom-up computation

which we will have to generalize to DAGs.

4.5.3 Handling Weight Skew

In all our algorithms, we might be matching a leaf l1 with a high weight with a low-weight leaf, say l2.

When we compute the overall similarity in BGM by computing a weighted average, we have simply

used the weight of l1. But, there is a case for using a lower weight for l1 in the averaging process,

if the leaf it matched had a much lower weight. This problem is, in fact, identical in spirit to the

size skew problem. The simplest way to handle it is to introduce a new factor f(WT1(l1);WT2(l2)),

a value between 0 and 1 that will modify the leafsim value that we assign to l1.
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The Recursive Genealogy metric already handles the weight-skew problem in a correct fashion.

5 Evaluation

We now proceed to evaluate our measures empirically. There are at least three types of questions

one may pose:

1. How di�erent are the measures from each other and from the traditional measures in practice?

If all measures give roughly the same rankings, we might as well use the traditional measures.

But if there are di�erences, can we characterize when the di�erences occur?

2. How well does each of them match human intuition? Would a human agree with the similarity

rankings produced by our measures?

3. What measure is best or most appropriate for a given application?

In this paper we focus on the �rst two types of questions, since the third type is clearly application-

dependent and very hard to answer. However, we believe that if a particular measure matches

human intuition (item 2 above), it is likely to perform well in a variety of applications.

In Section 5.1, we provide detailed comparisons of the various measures, analyze where and how

much the measures di�er and, in the process, show that using a hierarchy produces results very

di�erent from those produced by traditional measures. In order to show that a hierarchy yields

more intuitive similarity results, we rely on a user study, as detailed in Section 5.2.

In our evaluation, we choose Jaccard's CoeÆcient as representative of the traditional measures,

and refer to it as the Naive measure. All of the traditional measures are extremely similar when

compared against our First and Second Generation measures, so Jaccard's CoeÆcient is a good

representative.

5.1 Experimental comparison of the di�erent measures

For the experiments reported in this section, we used transcripts of undergraduate CS majors at

Stanford as our data set. Each transcript is a collection of (course,grade) elements. The objective

is to compute how similar two students are, on the basis of the courses they have taken and the

grades they have obtained in those courses. There were a total of 403 transcripts, with an average

of about 41 (course,grade) pairs per transcript.

The hierarchy consists of 6 levels: department, course level, course subject, course number, and

a two-level grade classi�cation, in that order. Changing this order leads to di�erent hierarchies
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and, consequently, di�erent semantics for similarity. For example, placing the grade levels at the

top of the hierarchy would mean that we want to pay more attention to the grades that students

get, rather than the courses they take, in determining the similarity between two students. Thus,

the choice of the hierarchy re
ects the semantic need of the application.

5.1.1 The Distance Measure

Given a similarity measure M and any collection X, we can generate a ranked list of collections

LM (X), in decreasing order of similarity to X. In most cases, it is this ranked list that is impor-

tant, rather than the actual similarity values that we compute. Moreover, most applications only

care about the top portion of this list, say the Top K, whether it is in order to �nd the nearest

neighbors of a given collection, or whether it is to return the Top K matches to the collection. We

therefore de�ne a distance measure3 to compare similarity results on the basis of these ranked lists

of collections.

Let S be the set of all collections. Let rankM;X(A) be the rank of collection A in list LM (X).

Further, let LM(X)[i] refer to the collection that has rank i. Our distance measure compares the

ranked lists generated by two di�erent measures by imagining one of the measures as generating

an \ideal" ranking. We then measure how much each collection is displaced from its ideal ranking

by the second measure.

To illustrate, let us look at Figure 7. There are two measures, 1 and 2, that produce two di�erent

ranked lists of collections A;B;C;D and E, given some other collection X to compare against. We

now want to quantify the di�erence between these two ranked lists. First, we notice that A has

rank 1 in the �rst list, while it has rank 2 in the second. Thus, A contributes a displacement of 1

to the total distance between the lists. Next, we see that B has rank 2 in the �rst list, while it has

rank 1 in the second. This is an upward displacement and we do not count it, because it is already

captured by the fact that A;B;C and D are all pushed down a step by B's moving up. Similarly,

C contributes a displacement of 1, while D and E contribute nothing. Thus, the total distance

between the ranked lists is 2, and the average displacement is 2
5 = 0:4.

In the example above, we computed the distance over the whole list. Computing it over the

Top K is done in the same manner, except that we only consider the top K collections of the �rst

measure.

Formally, we de�ne the Top-K Distance between measures M1 and M2, when used to compute

3not to be confused with our similarity measures
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Figure 7: The Distance Measure
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similarity against collection X, as follows. (The _� operator yields 0 if the di�erence is negative.)

TopKDistM1;M2;K
(X) =

PK
i=1 rankM2;X(LM1

(X)[i]) _�i
K

We also de�ne a distance measure over a \window" of the ranked lists. This de�nition is identical

to the previous one, except that instead of looking at the Top K according to the �rst measure,

we look at collections in a speci�c window. In this case, we cannot omit downward displacements,

since omitting them would make windows in the lower segments of the list appear closer. For the

example in Figure 7, the average distance for a window of size 3, starting at position 2, i.e., covering

collections B;C and D, is given by 1+1+1
3 = 1. Formally,

WindowDistM1;M2;I;K(X) =

PI+K�1
i=I jrankM2;X(LM1

(X)[i]) � ij
K

This measure helps us analyze how well two measures agree in di�erent segments of the ranked lists

that they produce. Notice that the ranked lists we have seen so far have been generated by picking

an arbitrary collection X, and arranging all other collections by their similarity to it. Thus, in

order to be able to compare two measures, we average the distances we compute over all possible

choices for X.

Figure 8 shows the average rank displacement in the Top K list for various measures with

respect to RGM, as a function of K. Notice that the average displacement for the Naive measure,

even for the Top 10, is as much as 40, which is about 10% of the size of the entire corpus. This
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result means, informally, that the collections that RGM considers the top 10 would be, on average,

around the 40th or 50th position under the Naive measure, a very signi�cant di�erence! On the

other hand, all the Genealogy measures are bunched around the bottom of the graph, with even

their peak displacement being well under 20. In fact, for the Top 10 list, the average displacement

between RGM and OGM is just 1:42. This result means that RGM and OGM agree very well on

what the most similar collections to a target collection X are. For the BGM family, as the value

of � decreases, the displacement starts getting larger and larger, but it is still much smaller than

the displacement of GCSM, and that of the Naive measure.

It is important to realize that we can only compare measures with respect to RGM from this

graph. For example, the displacement between the GCSM and the Naive measure is not given by

the di�erence between the curves corresponding to them on this graph. Also notice that all the

curves have roughly the same shape, rising for a while before dropping o� again. This behaviour is

illustrated better by Figure 9(a), which shows the average rank displacement, in a sliding window

of size 10, of all measures with respect to RGM.

The shape of the curve tell us that, for all the measures, there is greater agreement at the

beginning and the end of the list than in the middle: there are a few collections which are clearly

the most similar and there are a few collections which are clearly the most dissimilar. These
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collections are more easily identi�ed by all the measures and, therefore, they agree more in the

beginning and the end.

Figure 9(b) plots a similar graph, this time comparing the various measures to OGM. Once

again, we notice that the Naive measure produces results that are extremely di�erent from the

results produced by OGM. For BGM, the distance from OGM gets larger as � decreases, which is

only to be expected since OGM has � = 1. But the rankings appear much less sensitive to � at

the beginning and the end of the ranked lists. We also see that the curve for RGM lies between

the curves for � = 0:6 and � = 0:8. This does not mean that the RGM behaves like the BGM with

� = 0:7. All it means is that RGM is as di�erent from OGM as the BGM with � = 0:7.

These graphs conclusively establish that using a hierarchy makes a big di�erence to the similarity

rankings that are generated. We also conclude that GCSM is rather di�erent from the Genealogy

measures, a fact that we attribute to GCSM's use of many-to-many matches. BGM is sensitive to

the speci�c choice of �, but the sensitivity is much lower at the top and the bottom of the lists.

Thus, the choice of � is not too critical, if one is trying to identify clearly similar or dissimilar

collections. RGM and OGM are extremely similar at the top of the list, which is to be expected in

this domain. Our data set does not have any multiplicity at the leaf level (there is multiplicity at

higher levels), since it was rarely the case that a student repeated a course and ended up with the

same grade.

5.2 Matching Human Intuition

In order to understand how well the various measures match human intuition, we performed an

informal user study. Some of the important issues in the design of the study were:

� The users needed to be familiar with the domain from which the collections were drawn. With

this in mind, we chose the supermarket domain, and each collection was a bag of grocery items.

� It was not reasonable to expect users to come up with absolute similarity scores between

collections. Instead we asked users to rank two collections according to their similarity to a

given collection.

� The collections needed to be reasonably small in order to keep the questions tractable. There-

fore, we used collections with a small number of distinct elements. Fortunately, these collections

proved suÆcient to test the validity of the premises underlying the di�erent measures.

The study was carried out on 33 people, all members of the Stanford Database Group. It

consisted of 10 multiple-choice questions such as the ones shown in Figure 10. The study was
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Carrots,
10 Snickers Candy Bars.

Carrots,
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Cheese Singles,CB

>
=
<

A

Apples,Ice Cream,Cookies,1 Snickers Candy Bar

(b)

(a)

Figure 10: Two Sample Questions

designed such that the answer to each question would be a vote for or against one or more measures.

Figure 10(a) shows a sample question from our user study. It shows three collections A, B

and C, and the user needs to determine whether sim(A;B) is greater than, equal to, or less than,

sim(A;C). If the user thought that customer C was more similar to A (than B was to A), say

because C and A appear to like health foods, then the user would circle the \<" symbol. In this

example, A and B have two elements in common, while A and C have just one element in common.

Thus, the traditional measures would report that sim(A;B) is higher. On the other hand, 75% of

the users decided that sim(A;C) is higher, which agrees with all the First and Second Generation

measures. We conclude that, in this case, the First and Second Generation measures perform better

than the traditional measures.

Figure 10(b) shows another sample question from the survey. In this case, OGM would predict

that sim(A;C) is higher. BGM predicts that sim(A;B) is higher (for most �), while RGM predicts

that B and C are equally similar. Of the 33 users, 28 agreed with either BGM or RGM, from which

we deduce that OGM does not match human intuition. The distribution of responses was not clear

enough for us to choose between BGM and RGM in this case.

We do not have space to report all our results, but brie
y, the following conclusions were drawn

from the survey:

� Using the hierarchy is de�nitely an improvement over a naive approach, and more intuitive

similarity results are obtained.
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� GCSM does not perform as well as the Genealogy measures in this domain, and cannot be

recommended as a general-purpose measure.

� There was a lot of support for both BGM and RGM, and the variance of the results ruled out

our being able to decide whether one was better than the other. In practice, one would need

application-speci�c experiments to determine which measure better matches the application

semantics.

� For BGM, it was established that � values of 0 and 1 are both unsatisfactory. Again, application

semantics would determine the exact value of � although the reasonably low sensitivity to �

in our experiments in Section 5.1 suggests that a � value around 0:5 is reasonable.

While the user study was fairly limited in its scope, we believe that its conclusions are nonethe-

less useful and generally acceptable in most domains. We provide more details on the user study

in the appendix.

6 Related Work

There have been attempts to improve traditional cosine similarity, as well as address data spar-

sity, using dimensionality-reduction techniques such as Latent Semantic Indexing [DDF+90]. This

technique actually shows some improvement in the quality of the similarity scores, since it tries to

infer latent relationships between dimensions. Such techniques have also been tried in collaborative

�ltering [SKKR00] but it appears somewhat unclear as to whether it actually improves recommen-

dation quality. Notice that using a domain hierarchy is actually an implicit form of dimension

reduction, since the hierarchy implies that all elements are not orthogonal to each other. On the

other hand, our techniques explicitly de�ne the relationship between the di�erent dimensions, while

LSI infers the relationships from the corpus.

There have been quite a few attempts to use word hierarchies such as WordNet [MRF+90] in

Information Retrieval. Rada et al. [RMBB89] de�ned the semantic similarity between two words as

the weight of the path between the words, which bears a lot of resemblance to our de�nition of the

LCA of two leaves. Lee et al. and Kim et al. [LK93, KK90] have also used this \conceptual distance"

measure for Information Retrieval. There are also other, information-based measures based on the

same hierarchy [Res95] which can be used for word similarity. Richardson et al. [RS95] compare the

eÆcacy of di�erent word-similarity measures in computing query-document similarity. All these

works are focussed on query-document similarity and do not generalize to inter-collection similarity.
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Richardson et al. [RS95] also discuss the issue of generating edge weights for the concept graphs,

which could �nd use in our work in generating edge weights for our hierarchy.

Scott et al. [SM98] have studied the use of a hypernym density representation instead of a bag-

of-words representation in text classi�cation and report improvements for corpora with a reasonable

amount of diversity. Rodriguez et al. [dBRGHDA97] also report improvements in text classi�cation

when using WordNet to enhance neural-network learning algorithms. But neither of these works

use a direct similarity measure based on the hierarchy. Concept hierarchies have frequently been

used in data mining. They have been used to mine multi-level association rules [HF95, SA95], and

to improve knowledge discovery in textual databases [FD95]. Neither of these two applications is

directly related to computing similarity using hierarchies.

There are also other classes of methods used to compute similarity between collections which

exploit the structure between collections. For example, [BLG98] uses the link structure of research

papers to compute similarity between them. Such methods are not directly related to our work,

except they may perhaps be used to solve the same overall problem.

Besides the similarity measures that we have described in Section 2, there have been a variety of

distance measures de�ned in various contexts. One such class of measures is edit distance, wherein

the distance between two structures is measured by the cost of the edit operations needed to

transform one structure to the other. Algorithms for �nding the optimal edit script exist for various

types of structures, and for various sets of edit operations. Computing the optimal edit distance

between unordered trees, even with simple edit operations, is NP-complete [SZ97]. In addition,

edit distance does not give us the freedom to deal with nuances of inter-collection similarity, such

as handling multiple occurrences.

Another distance measure, popular in a variety of domains, is Earth-mover's distance [RTG98],

which measures the distance between two collections of points in space by calculating the work to

be done in moving mounds of earth, located at points in the �rst collection, to �ll holes, located at

the points in the second collection. Once again, this model is not a good �t for the problem at hand

because it forces many-to-many match semantics and, again, does not handle multiple occurrences

well.
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7 Conclusions

We have proposed exploiting hierarchical domain structure to compute similarity between collec-

tions. We de�ned measures that use this hierarchy, shown why both these and traditional measures

often have unsatisfactory semantics, and suggested re�nements that provide good semantics for

inter-collection similarity. We have performed empirical comparisons of our measures with tra-

ditional similarity measures, and shown that using the hierarchy makes a large di�erence, both

in terms of the values that are produced, and in terms of ranked lists of collections similar to a

given collection. We have reported the �ndings of an informal user study to justify our belief that

our measures generate results that are closer to human intuition than the traditional similarity

measures.

We are currently in the process of building recommender systems using these measures, and us-

ing the hierarchy in other portions of the recommender system. Preliminary results are encouraging,

and seem to provide higher-quality recommendations than the simple Pearson-correlation-based,

nearest-neighbor approaches.
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Appendix A The User Study

The user study that we undertook is shown below. Nearly all the questions had more than 70% of

the users selecting one of the three choices. If this happened, the answer was considered to be the

\correct" answer. The questions were designed in such a fashion as to make the di�erent similarity

measures provide di�erent answers. Thus, identifying the \correct" answer to a question would

help us decide that some similarity measures are better than others.

The only questions for which we could not determine a \correct" answer were designed to choose

between BGM and RGM. Here, user votes were split between � and one of > or <. For example,

Question 5 had votes split between � (which is the answer suggested by RGM) and > (which

is suggested by BGM). We would have needed a more precise characterization of the similarities

involved, perhaps in terms of exact numerical values, in order to be able to draw conclusions on

the relative quality of RGM and BGM in these cases.

1. f Diapers, Fat-free Milk, Gerber Squash and Corn g
Baby Bee Apricot Baby Oil > Fat-free Milk

Gerber Green Beans � Diet Pepsi 6Pk.

1% Milk < Equal low calorie Sweetener

Miller Lite 6Pk.

2. fApples, Ice Cream, Cookies, 1 Snickers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

1 Snickers Candy Bar 2 Snickers Candy Bars

3. fApples, Ice Cream, Cookies, 1 Snickers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

2 Snickers Candy Bars 10 Snickers Candy Bars

4. f 1 gallon 1% milk g
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1 gallon 1% milk > 1 gallon 1% milk

1 gallon 2% milk � 1 gallon Orange Juice

<

5. f Apples, Ice Cream, Cookies, 1 Snickers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

20 Snickers Candy Bars 40 Snickers Candy Bars

6. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

1 Snickers Candy Bar < 2 Snickers Candy Bars

7. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

2 Snickers Candy Bars < 10 Snickers Candy Bars

8. f Apples, Whole Wheat Bread, 1% Milk, Carrots g
Whole Wheat Bread > Oranges

1% milk � Cracked Wheat Bread

Potato Chips < 1% milk

Pepsi Spinach

9. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

10 Snickers Candy Bars < 20 Snickers Candy Bars

10. f 2 gallons 1% Milk g
1 gallon 1% Milk > 1 gallon 1% Milk

1 gallon 2% Milk � 1 gallon Orange Juice

<
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