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Abstract

Meta-Game Playing (Metagame) is a new paradigm for research in game-playing in
which we design programs to take in the rules of unknown games and play those games
without human assistance. Strong performance in this new paradigm is evidence that
the program, instead of its human designer, has performed the analysis of each specific
game.����� -Metagame is a concrete Metagame research problem based around the class
of symmetric chess-like games. The class includes the games of chess, draughts,
noughts and crosses, Chinese-chess, and Shogi. An implemented game generator
produces new games in this class, some of which are objects of interest in their own
right.���	��
�
������

is a program that plays ����� -Metagame. The program takes as input
the rules of a specific game and analyses those rules to construct for that game an
efficient representation and an evaluation function, both for use with a generic search
engine. The strategic analysis performed by the program relates a set of general
knowledge sources to the details of the particular game. Among other properties,
this analysis determines the relative value of the different pieces in a given game.
Although

���	��
��
������
does not learn from experience, the values resulting from its

analysis are qualitatively similar to values used by experts on known games, and
are sufficient to produce competitive performance the first time the program actually
plays each game it is given. This appears to be the first program to have derived
useful piece values directly from analysis of the rules of different games.

Experiments show that the knowledge implemented in
���	��
��
������

is useful on
games unknown to its programmer in advance of the competition and make it seem
likely that future programs which incorporate learning and more sophisticated active-
analysis techniques will have a demonstrable competitive advantage on this new
problem. When playing the known games of chess and checkers against humans and
specialised programs,

���	��
��
������
has derived from more general principles some

strategies which are familiar to players of those games and which are hard-wired in
many game-specific programs.
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Chapter 1

Introduction

One reason why game-playing is an exciting activity for humans is that it couples
intellectual activity with direct competition: better thinking and learning generally
results in winning more games. Thus we can test out and refine our intellectual skills
by playing games against opponents, and evaluate our progress based on the results
of the competition.

The same motivation accounts for much of the interest in Computer Game-Playing
( ����� ) as a problem for Artificial Intelligence (AI): programs which think better,
should play better, and so win more games. Thus we can test out and refine differ-
ent theories of intelligence by writing game-playing programs which embody these
different theories, and then play the programs against each other, and consider the
more intelligent program to be the one which wins the most games. This thesis will
refer to that presumed link between winning games and intelligent behaviour as the
competitive performance metric for intelligence. Such a link would be advantageous
for research, because it would mean we would not have to resort to descriptive evalua-
tion measures and could instead use competition to evaluate research success. Many
AI researchers working on games have assumed that such a link does exist and have
focussed their energies exclusively on building strong game-playing programs.

Unfortunately, the use of such a link has proved problematic: we have been able to
produce strong programs for some games through specialized engineering methods,
the extreme case being special-purpose hardware, and through analysis of the games
by humans instead of by programs themselves. Consequently, it now appears that
increased understanding and automation of intelligent processing is neither necessary
nor sufficient for strong performance in game-playing. That is, it appears that we can
construct strong game-playing programs without doing much of interest from an AI
perspective, and conversely, we can make significant advances in AI that do not result
in strong game-playing programs.

This is a significant problem for AI researchers working on games, and it raises
the following questions:

� How can we evaluate good work in AI applied to games in the absence of per-

1



2 CHAPTER 1. INTRODUCTION

formance? Basic AI techniques such as learning, planning, and problem-solving
should be useful for something—but if not for improved performance, then for
what?

� How can we tell whether the performance of a program on some game is due
to the general success of the AI theory it embodies, or merely to the cleverness
of the researcher in analysing a specific problem? If the latter, we have little
reason to believe the technique will transfer to other problems.

� Is it possible to find some game for which improved performance on that game
would be linked necessarily to increased understanding and automation of gen-
eral intelligent processing?

1.1 Structure of the Thesis
The thesis is structured in three parts. Each part contains its own introduction
and summary, as does each chapter. This structure enables the thesis to be read at
several levels of abstraction, top-down or in sequence. The first part of the thesis
analyses the existing paradigm within which work in ����� is conducted and creates a
new paradigm that overcomes the limitations discovered through that analysis. The
second part constructs a specific research problem within the new paradigm, and the
third part documents progress to date in addressing that research problem.

1.2 Metagame Paradigm
The first part of this thesis addresses the use of games in AI. Most current approaches
within ����� –including those employing some forms of machine learning—rely on
previous human analysis of particular games. Human researchers do most of the
interesting game analysis, which makes it difficult to evaluate the generality and
applicability of different approaches. It also makes it difficult to demonstrate em-
pirically the success of research which emphasises generality (like work on learning
and planning), as the programs which result from such work are usually incapable of
performing well against special-purpose programs. This possibility undermines the
use of competition as a metric for evaluating progress in AI and poses methodological
problems for the field.

The fact that humans have specific knowledge of each game played by their pro-
grams makes it possible for humans, instead of the programs, to do the analysis nec-
essary for competitive performance. This observation is the basis for a new paradigm
for research on games called Meta-Game Playing, or Metagame, in which we design
programs to take in the rules of unknown games and play those games without human
assistance. Strong performance in this new paradigm is evidence that the program,
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instead of the human, has performed the analysis of each specific game. Playing
Metagame with increasingly general classes of games makes it possible to demon-
strate correspondingly general problem-solving ability.

1.3 SCL-Metagame
The second part of the thesis discusses the general issues involved in the construction
of concrete Metagame research problems and introduces a specific Metagame research
problem, called Metagame in symmetric chess-like games, or simply ����� -Metagame.
This problem is based around the class of symmetric chess-like games. The class
includes the games of chess, draughts, noughts and crosses, Chinese-chess, and Shogi.
An implemented game generator produces new games in this class, some of which are
objects of interest in their own right.

1.4 Metagamer
The third part of the thesis documents the construction of

���	��
��
������
, a program

that plays ����� -Metagame. The program takes as input the rules of a specific game
and analyses those rules to construct for that game an efficient representation and an
evaluation function, both for use with a generic search engine. The strategic analysis
performed by the program relates a set of general knowledge sources to the details of
the particular game. Among other properties, this analysis determines the relative
value of the different pieces in a given game. Although

���	��
��
������
does not learn

from experience, the values resulting from its analysis are qualitatively similar to
values used by experts on known games, and are sufficient to produce competitive
performance the first time the program actually plays each game it is given. This
appears to be the first program to have derived useful piece values directly from
analysis of the rules of different games.

Experiments show that the knowledge implemented in
���	��
��
������

is useful on
games that were unknown to its programmer in advance of the competition and make
it seem likely that future programs which incorporate learning and more sophisticated
active-analysis techniques will have a demonstrable competitive advantage on this
new problem. When playing the known games of chess and checkers against humans
and specialised programs,

���	��
��
������
has derived from more general principles some

strategies which are familiar to players of those games and which are hard-wired in
many game-specific programs.
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Chapter 2

Introduction to Part I

In mathematics, if I find a new approach to a problem, another mathe-
matician might claim that he has a better, more elegant solution. In chess,
if anybody claims he is better than I, I can checkmate him.

— Emanuel Lasker (quoted in [Hunvald, 1972])

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance ac-
counts, build a wall, set a bone, comfort the dying, take orders, give orders,
cooperate, act alone, solve equations, analyze a new problem, pitch ma-
nure, program a computer, cook a tasty meal, fight efficiently, die gallantly.
Specialization is for insects.

— Robert A. Heinlein

2.1 Introduction
This part of the thesis analyses the existing paradigm within which work in Computer
Game-Playing ( ����� ) is conducted and creates a new paradigm which overcomes the
limitations discovered through that analysis.

2.2 The Problem
The introduction to this thesis (Chapter 1) has already motivated a significant problem
currently facing the field of � ��� : on many of the games we have been using as testbeds
it has been possible to achieve strong performance without advancing the scientific
goals of Artificial Intelligence (AI). The challenge faced in this part is to explore that
problem in detail and, based on a new understanding of the problem, to provide a
solution to it. The questions faced in this part include the following:

7
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� How is it possible that programs based on more general and intelligent princi-
ples can fail to perform well in competition against programs which use sheer
computing power?

� What is interesting about games from an AI perspective anyway?
� Is it possible to find a game for which strong performance could be achieved only

by programs which are more interesting in some sense?

2.3 Overview
This part is divided into two chapters. Chapter 3 provides background and motivation
about analysing games and gives a survey of past work in � ��� as it relates to game-
analysis. Chapter 4 then analyses the methodological underpinnings of the field
and constructs a new paradigm which overcomes some problems with the current
methodology.



Chapter 3

Computer Game Playing

3.1 Introduction
Most current approaches within � � � –including those employing some forms of ma-
chine learning—rely on previous human analysis of particular games. Human re-
searchers do most of the interesting game analysis, which makes it difficult to evalu-
ate the generality and applicability of different approaches. It also makes it difficult
to demonstrate empirically the success of research which emphasises generality (like
work on learning and planning), as the programs which result from such work are
usually incapable of performing well against special-purpose programs. This possibil-
ity undermines the use of competition as a metric for evaluating progress in AI and
poses methodological problems for the field.

Examining and redressing this problem is the central concern of this part of the
thesis, and this chapter provides the background and motivation for what will follow.
The chapter is broken into two sections. Section 3.2 motivates by means of examples
what I mean by game-analysis, and argues that understanding and automating game-
analysis are two of the major goals behind studying intelligent game-playing in AI.
Section 3.3 substantiates the claim that much current work in � � � relies on humans,
instead of programs, to perform a good portion of this analysis. Section 3.4 summarises
the chapter and points out an important methodological problem confronting the field
of � � � which stems, in part, from the very possibility that humans are performing
some of the analysis instead of the programs.

3.2 Game-Analysis and Specialisation
Roughly speaking, game-analysis comprises the set of processes which operate on
an abstract representation of a given game, and lead to the development of a set of
specialised search methods, heuristics, and strategies specialised for that game. The
resulting strategies can provide humans and computers with a competitive advantage,

9
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relative to a group of other players who may use different strategies.

3.2.1 Fundamentals of Game Analysis

I will not attempt here to draw boundaries between what constitute search methods,
heuristics, or strategies. I will instead refer to them all as conceptual tools or just
concepts, which aid a reasoner in some aspect of playing the game. However, the terms
abstract representation and specialisation require further clarification. Also important
is a distinction between active and passive game-analysis. The next sections discuss
each of these in turn.

3.2.1.1 Abstract Representation

An abstract representation of a game is a set of rules which allow a player to play
the game legally, but which is more compact than the extensive representation of the
game. An extensive representation explicitly lists the transitions and outcomes for
each state in the state-space of the game. In contrast, an abstract representation
provides a generating function which defines the successors for each state in terms of
a set of changes to the state’s internal structure. It also defines goals using predicates
on states with internal structure. For example, a state-transition rule in an abstract
representation of chess dictates that states which contain a knight on a square have
as successors states in which that square is empty, a knight is on another square
relative to the first square, and all other squares are the same as in the first state. An
abstract representation of a game, then, is one which is smaller than the game-tree
generated by it.

This concept of abstract representation is basic to all work on games in AI. The
reason for stating it explicitly in the definition of game-analysis above is that it is
a prerequisite for all such analysis. That is, unless a game has an abstract repre-
sentation (whether or not a reasoner is aware of it), there is no possibility for the
specialised conceptual tools discussed above (strategies, heuristics, and so on) to con-
fer a competitive advantage on that game. In this respect, the approach of � ���

differs significantly from pure game theory [von Neumann and Morgenstern, 1944],
although they both deal with strategies in games.

Game Theory Game theory assumes that games are represented in a flat form, as
a matrix or tree. It also assumes that players have no resource limitations in terms
of time or space, so that they can keep the entire game tree in memory, and can
calculate all the possible consequences of each move. Given these assumptions, and
as long as we could conceive an algorithm which played the game perfectly in finite
time, the game would be effectively trivial. This means that the finite two-player



3.2. GAME-ANALYSIS AND SPECIALISATION 11

perfect-information games like Chess and Go are considered trivial to this field.
�

However, when we take into account the resource limitations of the players, it is
obvious that a player could never maintain the entire game tree (for a big game) in
memory, nor consider all possible consequences of each action. Thus a player must
consider possibilities and outcomes selectively, and make decisions based on less-than
perfect information.

�
This has also been observed by Botvinnik, who for this reason

placed games like chess into the class of inexact problems [Botvinnik, 1970]. As the
player cannot in general see the exact influence of a move on the final goals of the
game, it follows that her reasoning must be heuristic [Polya, 1945; Lenat, 1983].
That is, the reasoning must make reference to the structure encoded in an abstract
representation of the game.

The preceding discussion thus shows that game analysis, as I conceive of it here, is
crucially dependent on the existence of an abstract representation of the game. If an
agent had enough resources to manipulate the flat structure, no game-analysis would
be necessary: the game would be trivial. And if the game did not have an abstract
representation, no game-analysis would be possible.

�

Having clarified this aspect of game-analysis, I now turn to another aspect, spe-
cialisation.

3.2.1.2 Specialisation

Specialisation is a matter of degree, and a concept or conceptual tool is specialised to
the extent that its domain of relevance and utility is restricted to a class of objects.

I distinguish two types (or qualitative regions) of specialised concepts: game-
specific and game-assumptive concepts. In the context of chess, a game-specific search
method might be to examine checks (attacks against a king) before other moves. Some
game-specific heuristics might be that it is unfavourable to have one’s knight on the
edge of the board, and favourable to have a king surrounded by pawns. A game-
specific strategy might be to build up an attack against enemy pawns which cannot
be protected by other pawns.

These concepts are all game-specific, in this case specific to the game of chess
(chess-specific), in that they refer to syntactic elements of this one game, and they

�
The class of finite two-player games of perfect information is defined formally in Section 9.2.2.

Informally, this class contains all games in which all properties of a game situation are known to all
players, there are no chance occurrences, and the games cannot continue forever. Backgammon is an
example of a game of imperfect information, as the outcomes of the dice are unknown. Bridge is an
example of a game of incomplete information, as players do not know which cards are held by another
player. For more on game theory, see [von Neumann and Morgenstern, 1944].�

Thus estimating the consequences of a position is like estimating the millionth digit of � : in
principle it has just one value, but in practice our estimates vary with increased computation ([Good,
1977]).�

The comparison of representations in terms of abstractness or simplicity appears related to the
study of algorithmic information theory [Chaitin, 1987], which measures the complexity of a concept
in terms of the size of the smallest program which can characterise it.



12 CHAPTER 3. COMPUTER GAME PLAYING

would be meaningless in the context of another game. For example, it does not make
any sense to examine checks or attack weak pawns in the context of noughts and
crosses (tic tac toe). It is not a question of the concepts being less valid or useful, there
simply are no referents for these pieces.

Continuing in the context of chess, there are some concepts which would still be
interpretable outside the context of chess, but for which there is no reason to expect
them to be valid. For example, the strategy: “capture all the enemy pieces” is among
the most basic of chess strategies, and in fact is useful in some other games as well,
like checkers. However, for the game of lose-chess, in which the goal is to lose all your
own pieces, this concept is clearly not useful (it may in fact be counter-productive),
although it still is meaningful. This lack of utility, moreover, is not something that
needs to be discovered through practice; rather, it follows almost immediately from
the goals of lose-chess that it would not be useful. The reason for the failure of this
strategy to transfer between the games is that it is based on a set of assumptions about
chess. When applied to games in which the same assumptions hold (e.g. checkers), the
concept retains its utility, but when applied to games for which they do not hold (e.g.
lose-chess), the utility is lost. I call this type of specialised concepts game-assumptive,
then, because they assume without explicit statement some set of properties of the
game in order to be useful.

�

Game-assumptive strategies are related to domain-dependent search control infor-
mation, as discussed by [Ginsberg and Geddis, 1991]. In both cases, the conceptual
tools expressed in the language of the problem can be viewed as the result of a two-
step analysis. The first step observes that a problem has a certain structural property.
Ginsburg and Geddis call this a modal fact. The second step applies some problem-
independent conceptual tool to this modal fact. Caching both steps into one results in
knowledge which functions as a problem-dependent conceptual tool.

There exists a test to determine the extent to which any given concept is specialised.
Firstly, determining whether a concept is game-specific is straightforward: the concept
becomes meaningless even in a new game which differs from the original only by a
substitution of symbols. So, for example, in chess, changing “knight” to “horse” renders
meaningless all heuristics which refer to “knights”.

Testing game-assumptive strategies, on the other hand, is less straightforward.
The “capture all enemy pieces” strategy above, for instance, still has meaning after
relabelling the pieces. Instead, we must determine the assumptions upon which the
utility of the strategy depends. The way to do this is to make changes to the rules of
a game and observe how these changes affect the specialised concepts. Any time we
make meaningful changes to the rules and goals of a game, even to rules which appear

�

Another example of a game-assumptive concept in both chess and checkers is that of centre-control.
Current programs are given specific bonuses for controlling the squares in the geometric centre of the
board. If the topology of the board were changed to be on a cylinder, the relevant concept should change
to midline-control. This reveals an assumption about board topology implicit in the implementation of
game-specific centre-control heuristics.
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insignificant, strategies which were effective for the old game cease to be useful as
their assumptions become invalidated. New strategic possibilities arise to exploit the
differences, which thus further affect existing strategies for the game. This is why
people who play particular games are so concerned when even an innocuous-seeming
change to the rules is suggested. A contemporary example of this can be found in the
game of soccer.

Soccer The players and fans of the game of soccer are presently debating a change
which prohibits defenders from passing the ball back to the goal-keeper. This one
change will put defenders under more pressure, thus making attack more advanta-
geous, eliminate some of the major power of the goal-keeper, change the strategic
positioning of offensive and defensive players, and ultimately lead to a dramatic re-
structuring of soccer strategy. Among other points, this illustrates how soccer strategy
governing the relative effort devoted to attack and defence assumes certain relative
levels of difficulty for the two tasks.

3.2.1.3 Active and Passive Analysis

The above example showed how apparently small differences in rules can have major
impacts on strategies which are sensitive to them. It is also clear from this example
that many of these implications can be conjectured without having yet played or
observed a single such game. Clearly any soccer team which modified its strategies
passively, by waiting for its existing strategies to be defeated, would be at a great
disadvantage to those teams which actively analysed the rules in search of potential
for strategic advantage.

With this observation, I shall now distinguish these two types of game analysis.
The first type, active or eager analysis, produces specialised concepts in the absence
of experience with situations in the game in which the conditions related to the
concept have applied. This type of analysis is also often termed first-principles problem
solving. An example of active analysis in chess would be realising that it is probably
easier to checkmate the enemy king when it is on the edge of the board than when it
is in the centre (this is true because on the edge the king has fewer escape squares).
This analysis might then lead to a strategy to get the enemy king to the edge of the
board in order to checkmate it, or to keep one’s own king near the centre of the board
to counter such a strategy of the enemy.

The second type of game analysis is passive or lazy analysis, which produces con-
cepts in response to situations in which significant conditions have already been
achieved. This type of analysis is often termed learning from experience. Using the
example above, the same strategy may be produced in a passive fashion when attempt-
ing to learn from a situation in a contest in which a player’s king was checkmated
when it was on the edge of the board. The player suffering the loss might observe
that the shortage of escape squares was a disadvantage, and that this is true for all
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squares on the edge. As for the active case, this might then produce a strategy to force
the enemy king to the edge, or keep one’s own king off the edge. Unlike in the active
case, however, this analysis could only occur after the fact, and does not explain how
this situation (checkmate on the edge) would have come about in the first place.

Another example of a concept which could either be produced through active or
passive analysis is a specific type of fork, in which a player threatens to achieve two
or more goals simultaneously, not all of which can be blocked. As for the king-on-edge
strategy, a particular type of fork could be determined actively by construction, or
passively when extracted from a position in which it has been achieved.

�

As both forms of analysis could in principle produce the same specialised concepts,
it may seem that this distinction between active and passive analysis is not important.
In fact, as will be discussed in Section 3.3, recent research in � � � has tended to
focus on passive analysis (learning), with the apparent belief that this is sufficient to
explain the development of specialisation and strong performance in game playing.
However, there are important advantages to understanding active analysis as well as
passive. First, active analysis potentially provides a marked performance advantage
to reasoners who use it over those using only learning. As passive analysis only learns
after the fact, players who rely on it will develop specialised concepts later than active
analysers, generally after losing to the active analyser. In a long-term tournament,
then, we would expect players using active analysis to achieve much higher scores
than those who do not.

�

Second, only active analysis is sufficient to explain the achievement of goals (or
other learning situations) in the first place. As such goal achievement is sometimes
likely to occur only with the aid of specialised concepts, only active analysis can ex-
plain the development of such concepts (or knowledge origins). Another example from
chess may illustrate this issue. It is well known that obtaining a passed pawn may
increase one’s winning chances in some positions. An active analysis approach would
have a player discover this concept from first principles. A passive analysis (lazy
learning) approach would have a program discover this in response to a given situa-
tion, presumably following one player in the game creating a passed pawn, promoting
it to a queen, and going on to win the game. But since it requires many careful moves
to achieve the promotion of a pawn, this will generally not happen unless one player
is actively trying to do so. Now, two lazy learning programs competing against each
other will each try to gain their knowledge from their opponent. But since neither one

�

Active and passive analysis leading to the construction of chess strategies has been considered by
[Flann, 1992] and [Flann, 1990; Flann and Dietterich, 1989; Collins et al., 1991; Tadepalli, 1989b],
respectively (among others). Active and passive analysis leading to construction of forking strategies
has been considered by [Epstein, 1991; Allis, 1992; Collins, 1987; de Grey, 1985] and [Epstein, 1990;
Minton, 1984; Yee et al., 1990], respectively (among others).

�

Eventually, a game may become so well analysed that good imitation becomes more important than
innovation. In this case a passive analyser would in the limit score equally with a player who also
used active analysis. If the rules or the competitive context of the games changed periodically, the
advantage to active analysers would be more pronounced.
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has this knowledge yet, they are unlikely to observe it in practice, so neither is likely
to learn this concept.

�

Thus, active analysis is an important ability, with some advantages over passive
analysis in terms of both the use and development of specialised concepts. This is of
course not to say that passive analysis is not also important. Since it is grounded in
concrete situations, passive analysis does in fact have advantages over active anal-
ysis. First, it does not run the same risk of thinking about possibilities which may
never occur, or of neglecting details which render the more general conclusions to be
incorrect.

�

Second, the analysis might be be simpler in the context of a specific case,
rather than for the general case. To the extent that such specific cases tend to recur,
the passive approach can focus its efforts on more useful aspects of the game.

�

Finally,
there are some details of game-playing which cannot be known in advance, for which
a reasoner must adopt a “wait and see” attitude. An example of such a detail involves
the preferences and abilities of other players.

3.2.2 Examples of Game Analysis

The preceding discussion has defined and briefly illustrated some important concepts
related to game-analysis. To make these concepts even clearer and intuitive, this
section presents two more extensive examples.

3.2.2.1 Number Scrabble

Number-scrabble is an example of a game whose extensive representation would be
very large, but which has a small abstract representation which can be used to derive
a straightforward strategy. The rules are as follows (from [Banerji and Ernst, 1971]):

Number Scrabble: The nine digits, 1, 2, � � � , 9, are used to label a set
of nine blocks, which constitute the initial pool as follows:

�

This may not be the best example to prove this point. It is just about imaginable that a lazy
program would observe enough random cases of pawns promoting to queens and later winning that it
could work out the concept of passed pawns. Some clearer examples of strategies unlikely to be learned
passively are those in the version of Knight-Zone Chess with Rule 3 (see Section 3.2.2.2).

�

[Collins, 1987] discusses an example from American Football, where people develop a strategy for
the game at an abstract level before considering the physics of ball movements. They might then use
this strategy in practice, only to discover later that it is infeasible.

�

[Flann, 1990] and [Tadepalli, 1989b] make this point.
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7
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5
2

9
6
3

At his turn each player draws a block from the pool. The first player
able to make a set of three blocks that sum to 15 is the winner.

On the surface, this might seem to be a difficult game to analyse. Examining the
entire game tree would require considering all blocks the first player might choose,
then all the opponent might choose, and so on, requiring approximately ��� nodes.

���

However, it also seems clear that we should be able to exploit the compact represen-
tation of this game, to play it reasonably well without examining the entire tree.

In fact, some simple considerations on the relationship between the rules and the
goal do lead to a simple strategy for this game. First, all the moves (blocks) available
in a position, except for the move actually played, remain available to both players in
future positions. Second, a goal is achieved when some combination of unique moves
has been played. Thus, as a first approximation we can heuristically order alternative
moves based on the number of different goals they further for a player and/or block for
the opponent, specialising a maximise options heuristic, also described as a multiple-
goals or least-commitment principle. Ranking moves for the initial position, then, we
have Table 3.1.

Block Number of Goals
5 4
2, 4, 6, 8 3
1, 3, 7, 9 2

Table 3.1: Number of goals involving each block in Number Scrabble.

These heuristics thus break the different blocks into three classes, depending on
whether they form part of 2, 3, or 4 winning triples, and would thus suggest block 5
as the most valuable, as it participates in the greatest number of winning triples. In
effect, the goals here totally determine the relationship between individual moves.

� �

���
The figure is actually smaller because games will not continue past won positions, and also a

game-graph representation is smaller than the tree, due to transpositions.� �
This is always the case for games where one move does not affect the legality of another.
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After re-arranging the blocks so that we can connect winning triples by straight
lines, so as to use a more readily accessible visual representation, we arrive at the
following reorganisation, in which the blocks are now organised in a magic square:

4
3
8

9
5
1

2
7
6

As might be obvious from this representation, playing number scrabble by the
strategies of “multiple goals” and forking, combined with simple lookahead to block
threats, is equivalent to playing the basic strategy for tic-tac-toe. Although this game
is discussed in [Banerji and Ernst, 1971], it is used in that work to illustrate the point
that a program which realised that the number scrabble was isomorphic to noughts
and crosses could use the strategy from the latter to play the former. It is used here
to illustrate a different point, that the same more general analysis can independently
derive the specialised strategies for both of these games.

3.2.2.2 Knight-Zone Chess

Section 3.2.1.2 showed that it was possible to determine the assumptions behind
game-assumptive concepts by making a series of changes to the rules of the game and
observing how this affects the utility of these concepts. The following example applies
this test to the game-assumptive concept of piece values in chess. The example
also shows the ease with which active game analysis is possible, and the potential
competitive advantages such analysis could confer on players which use it.

A standard set of values are used by almost all chess programs, but rarely in
the computer chess literature is it explained why these values should be used.

� �
To

discover the assumptions upon which these values depend, we begin with the standard
rules for chess, and examine how these values would change under a sequence of rule
changes.

As all possible moves in chess are based on the presence of different pieces occu-
pying different squares, and as most pieces remain put after each move, a natural
way of evaluating a position is by attaching weights to the existence of certain pieces
on certain squares. One strategic concept which bears on this is that of mobility:

� �
The Oxford Companion to Chess [Hooper and Whyld, 1984, page 369] presents a history of “quasi-

scientific attempts” to establish piece values within the human chess community. Several of these
attempts were based on the ability of each piece to control squares on an empty board. The discussion
in this section is similar in spirit to past attempts, but the details are original to this presentation.
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other things being equal (ceteris paribus, as in [Wellman and Doyle, 1991]), the more
options we have in a position, the better off we are. Note that this is similar to the ap-
plication of the “multiple goals” strategy discussed in the previous example. Applying
just this simple concept to Chess, we might weigh each piece on each square by some
combination of the following, averaged over all board squares:
� immediate mobility: the number of moves immediately available to that piece

from that square, and
� eventual mobility: the number of other squares the piece could ever reach

from that square.

The second term takes into consideration the fact that a knight can reach every
square of the board eventually, while a bishop can reach only half of the squares (those
of the same colour the bishop starts on). Using the lowest-scoring piece, the pawn, as
reference, this calculation gives us values close to the classical chess material values,
which are [Hooper and Whyld, 1984, page 369]: pawn=1, knight=3, bishop=3.25,
rook=5, and queen=9. These or similar classical piece values are generally the most
strongly weighted components of all serious chess evaluation functions.

� �

Now, we can extend this standard game into Knight-Zone Chess, by adding the
following rule:

Rule 1 The board is extended by two on each side, the squares in this region are called
the knight-zone, as no piece is allowed to move into this zone except for the knight.

The effect of this new rule is illustrated in Figure 3.1. The central 8 by 8 region
in the dotted box is the original chess board, and the outer region is only available to
knights. One consequence of this new rule is that the position in in the Figure 3.1 is
actually checkmate. The � c11 attacks the � e10 which has no moves, and the � d10
cannot capture it as it is prohibited from moving into the knight-zone.

The same considerations which applied to give us material values in chess should
transfer to give us values for knight-zone chess. In fact, as this new rule did nothing
but increase the range of the knight (as nothing else could move there), and it increased
the potential for that one piece, the only difference must be an increased value for the
knight, relative to the other pieces. In fact, a more sophisticated analysis of chess
would have weighted the pieces based also on their ability to capture other pieces on
different squares, and perhaps on the ability to thwart such goals of the opponent by
moving a piece to squares inaccessible to such pieces. Thus a knight would increase
even more in relative value, as not only would it have more squares to travel to,
but it would be able to hide altogether from any attacking pieces except the enemy
knights. While this analysis does not provide solid quantitative values for this piece,

� �
Within the field of computer chess, [Hartmann, 1987] found that piece values were significantly

correlated with the outcome of grand-master chess games. This provides empirical evidence that the
piece values have practical utility as heuristics.
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A knight in the Zone.

Figure 3.1: A position in Knight-Zone Chess.
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it clearly suggests a qualitative shift in relative value toward the knight, without
having played a single match in this new game. From this one consideration, a set of
further strategic consequences also follow (changed priorities on capturing the knight,
strategies in which the knight moves to the zone to avoid capture, and so on).

Next, consider the addition of a second rule to the original game:

Rule 2 If a player moves any piece while his opponent has a knight in the knight-zone,
he wins the game immediately.

A little strategic analysis here reveals that the knight-zone is with this rule almost
entirely eliminated from importance in the game: no sensible player will ever move his
knights into this zone, and so the game effectively reverts back to standard chess.

� �

Note again that this conclusion operates on a level much more abstract than the
movement of pieces in particular positions, or more concrete still, individual state
transitions. Rather, it is almost a kind of theorem-proving on abstract propositions
about the rules of the game itself, and relies fundamentally on the abstractness of this
representation. If this game were represented as just a game-tree, we could never
make conclusions about the utility of achieving certain states without having seen all
the terminal positions under them.

Finally, suppose instead that we added the following rule to Knight-Zone Chess, in
place of Rule 2:

Rule 3 If a player moves a pawn while his opponent has a knight in the knight-zone,
he wins the game immediately.

An immediate conclusion would be that this has the same effect as the game
resulting from Rule 2: as a player can move a pawn in most positions, the knight will
be restricted from his region in most positions, and thus worth not much more than
in the original game. However, while it is true in chess that players usually have
pawns to move, the existence of this new rule offers players an incentive to eliminate
or block their enemy pawns, in order to make their own knights better. Still without
playing a single game, we immediately imagine situations in which a player might
sacrifice a piece to block his opponent’s last remaining pawn, in order to enable his
knight to travel into the knight-zone and become more powerful. In the case where
a player’s pawn is blocked and his opponent’s knight is in its zone, he might exploit
this situation by attacking the blocking piece, which is effectively pinned to his king,
as moving it would allow the enemy to move his pawn, thus winning the game.

From this analysis, we see that the interaction of Rules 1 and 3 creates a change in
the values of both knights and pawns, relative to the other pieces, that a complicated
pattern of strategies emerges from the introduction of these simple rules, and that

� �

Actually, there is still one situation in which a player would sensibly move a knight into the zone:
when it results in checkmate. Readers who spotted this might note that they did so by performing a
typical act of active game-analysis.
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as a consequence of this the resulting values for all the pieces in general might be
radically different from that of standard chess. However, we also observe that much
of chess strategy might remain in spite of these changes, as if all the knights were
removed from the board in the course of a game, the rules operative in the game would
be the same as those in standard chess, in which case pieces should clearly have their
original values. As a last note here, it should be clear that a player which did not apply
such first-principles reasoning as illustrated here, and instead relied only experience
to discover appropriate concepts, would be at a marked competitive disadvantage. In
fact, such a player might never discover the strategies which seemed to be so obvious
as soon as the rules were presented to us.

� �

3.2.3 Discussion
With these concepts now clarified, game-analysis is then the process by which con-
ceptual tools are produced which are expressed in the language of a specific game, or
rely on assumptions about some aspect of the game which may or may not transfer
to other problems. Investigation of the process of game-analysis is thus the attempt
to provide an answer to the question: where do the strategies, heuristics, features,
subgoals, preferences (and so on) come from, when initially there was just the bare
definition of the problem? Alternatively, it is the attempt to understand the source of
performance strength and competitive advantage across a wide variety of problems.

I summarise this section with a list of observations about the nature of game-
analysis and the specialised concepts which it produces, which follow from the exam-
ples already provided. In each case, I shall use the term strategy to stand in for the
set of conceptual tools discussed above.

1. Specialised strategies are dependent on the rules of the specific game to which
they apply.

2. Useful specialised strategies can be derived through the application of more
general principles or analysis to the rules of a given game.

3. This derivation process, and in fact the very possibility for the existence of useful
strategies for a given game, requires the game rules to have a compact represen-
tation, and that the game be played in a context with constrained resources.

4. An understanding of only passive game-analysis, without an understanding of
active analysis, is insufficient to explain the development of competitive strength
in game-playing.

� �

This discussion should not be taken to imply that passive analysis would not be useful or necessary
for strong performance in this context. It may in fact be the only way to refine strategies or to determine
which concepts tend to be more successful empirically. The important point is that passive analysis
alone is not sufficient for the discovery of these concepts.
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3.3 Automating Game Analysis?
Given the generality and ubiquity of the problem, it might seem obvious that � � �

would have as a primary focus the increased understanding of game-analysis. On the
contrary, this section will show that the focus has been on the use of the results of
game-analysis, rather than on the process itself.

3.3.1 The Gamer’s Dilemma
I begin with a thought experiment which I shall call The Gamer’s Dilemma:

Suppose that a researcher is informed that she will soon be given the
rules of a game, � , played by a group of humans and/or programs. They
all are considered to play � at a high performance level. The researcher
is given a fixed amount of time to produce a program which will compete
against random members of the group, but the researcher is not allowed
to communicate with members of the group beforehand. Finally, the re-
searcher will be paid based on the number of games the program managed
to win (or draw) out of some pre-specified total amount of games. The re-
searcher’s goal is, of course, to maximise the money she expects to receive
from her program’s play.

As practitioners in the field of Computer Game-Playing, the question now is: what
advice and tools might we give to assist this hypothetical researcher? Possible answers
to this question reveal the degree of specialisation inherent in existing game-playing
methods. Answers which require the researcher to perform game-analysis himself
reveal the extent to which the process of game-analysis remains to be investigated.

In what follows, I sketch the advice which might be offered from three main
approaches to ����� : knowledge engineering, database enumeration and machine
learning.

� �

3.3.2 Knowledge Engineering
Knowledge engineering approaches can be broken into game-specific approaches,
game-tree search, and knowledge-based search.

� �

Ideally, we would like to hand over a general game-playing program [Williams, 1972], which could
study any game for a while on its own (to use its time wisely), and which would become an expert
shortly after having encountered this group of players. Although it is unlikely we will ever have a
program which is totally general, it is useful to bear this ideal goal in mind.
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Game-Specific Engineering Approach An example of a game-specific answer
would be to enumerate a list of games and current champion programs which play
these games. This list might contain the following advice:

If the game is Chess, then use the latest version of Deep Thought.

If the game given to the researcher happens to be on this list, this advice would be
extremely helpful. Unfortunately, if the game falls outside the list, this advice would
be of little use. It is becoming a common perception in Artificial Intelligence that such
a list of advice is all that many researchers in � ��� have to offer.

� �

Game-Tree Search An answer which more accurately reflects the lessons learned
by current approaches advocates the use of a brute-force search method (e.g., minimax
with �

� pruning and singular extensions), combined with extremely fast routines for
updating board positions. This technique has proven effective on several games, and
some toolkits have been developed to make it easier to apply these techniques to a
variety of games (e.g. [Kierulf, 1990; Kierulf et al., 1990]). However, this approach
presupposes that the researcher has a good evaluation function, which requires specific
knowledge of the game.

The burden on game analysis thus shifts to the researcher, who must choose an
appropriate set of features and weights for this function. Although there are some
general approaches to learning weights (discussed in Section 3.3.4), this approach
has offered very little explicit advice about the construction of appropriate features.
However, we are now beginning to understand the importance of some features which
may be essential in a variety of games, such as mobility ([Donninger, 1992; Hartmann,
1987; Lee and Mahajan, 1988; Rosenbloom, 1982]).

Knowledge-Based Search We have learned that exhaustive search may not be
appropriate for all games. Therefore we may also advise our researcher as follows:
first, find some human who can analyse the game at expert level, then determine an
appropriate set of goals and subgoals, and priorities for these goals, and finally write
a knowledge-based search program which exploits these ([Wilkins, 1982]). But as in
game-tree search, we really have never said much explicitly about how to find useful
subgoals, so again the researcher must do the difficult game analysis on his own.

3.3.3 Database Enumeration
While knowledge engineering approaches rely on human analysis by definition, such
analysis might seem much less important when programs construct their own data-
base by enumerating a large set of possible positions. On the contrary, the human

� �

The theme of chess-engineering in AI is discussed further in a panel at IJCAI–91 ([Levinson et al.,
1991]).
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researcher must perform an extensive analysis of a game to determine at least the
following ([Allis et al., 1991b; Roycroft, 1990]):
� How to enumerate positions systematically?
� How to avoid generating impossible and symmetric positions?
� Given the above, are there enough resources to solve the problem?
By the time the human has answered these questions, it could well be argued that

all the game-analysis (if any) has already been done. Perhaps more importantly, this
method is applicable only to games that are small enough to be analysed in this way,
so the answer to the third question is likely to be negative.

3.3.4 Machine Learning
Machine learning methods for games can be broken into two classes, depending on
whether they presuppose the existence of good players.

3.3.4.1 Learning from Experts

Most game-learning methods are designed to enable a program to improve based on
watching or playing against knowledgeable opponents (e.g. [Samuels, 1967; Tadepalli,
1989a; Epstein, 1991; Collins et al., 1991; Lee and Mahajan, 1988; Levinson and Sny-
der, 1991; Callan et al., 1991; Tunstall-Pedoe, 1991; van Tiggelen, 1991]). Although
it is certainly important to understand how a program (or person) could learn from
good players, it is equally important to know how those good players became good in
the first place. This point was made extensively in Section 3.2.1.3. Until we have an
understanding of active game-analysis, progress in this type of machine learning will
not save us from having to preface advice to other researchers with the statement:
“first, find a human expert.”

3.3.4.2 Unsupervised Game-Learning

A much smaller proportion of learning work has considered how programs might
become strong players while relying neither on active analysis nor on experience with
experts. Most of these approaches can be considered as self-play [Samuels, 1959;
Angeline and Pollack, 1993; Epstein, 1992; Tesauro, 1993; Axelrod, 1987], in which
either a single player or a population of players evolves during competition on large
numbers of contests. A related technique, which can also be viewed as a form of self-
play, is that of Abramson [Abramson, 1990], who developed basic playing programs
which learned to predict the expected-outcome of positions if played by random players.
This was shown to be effective for constructing evaluation functions for some games.

In principle, approaches based on self-play could give fully satisfactory and general
advice to the hypothetical researcher, for example:
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Use an off-the-shelf self-training technique. When given the game rules,
choose an appropriate representation for states and strategies in the given
game. Have programs play against each other many times, and by the time
of real competition, select the strongest evolved program.

It would seem that this advice requires minimal game-analysis on the part of the
human. The major issues with this approach are as follows:

1. How much time is necessary to evolve a strong player?

2. How effective is the training method at developing good strategies on different
types of games?

3. How much game-analysis must the human perform in order to design an appro-
priate representation?

With respect to the first and second questions, these are at present unanswered.
While the methods appear useful for certain types of problems, Section 3.2 presented
several examples of important strategic concepts which appeared difficult to derive
without some active analysis.

Unfortunately, these questions are all very hard to answer, because the games,
representations, learning methods, and amount of knowledge engineering have varied
with each learning system. With respect to the third question in particular, [Flann and
Dietterich, 1989] discusses the “fixed representation trick”, in which many developers
of learning systems spend much of their time finding a representation of the game
which will allow their systems to learn how to play it well.

� �

[Tesauro, 1993] has
produced an extremely strong backgammon program using a training scheme which
is claimed to be “knowledge-free”, yet so far this method has been demonstrated only
for one specific game (backgammon), with which the author was familiar.

3.3.5 Why Specialisation is Bad
To summarise, focussing on particular games can be disadvantageous for the following
reasons:

� Labour: Much human effort is needed each time we develop a program to play
a different game, with limited advice on the real problems.

� Generalisation: It is difficult to say what we have learned from our research,
beyond performance on particular games.

� �

Note that this point is not restricted to the methods discussed in this section. It is a major problem
for evaluating learning systems in general.
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� Evaluation: It is difficult to evaluate research. Playing a particular game well
often means that the researcher, and not the program, has analysed the game
well. Conversely, a program which does a more general analysis may not play
well against highly-specialised machines.

� Game Analysis: We can write successful programs, even learning programs,
without understanding the ability actually to analyse games, possibly the most
interesting issue in game-playing, from an AI perspective.

Thus, despite our being a field full of experts on getting computers to play games,
and having developed world-champion-level game-specific programs, we are forced to
leave most of the real game analysis to be done by the human researcher, and not by
the computer program.

3.4 Summary
This chapter discussed Computer Game-Playing ( � ��� ) as a subfield of Artificial
Intelligence (AI). Section 3.2 discussed the importance of game-analysis, the process
by which general and flexible knowledge is applied to a specific new game to produce
specialised knowledge which yields competitive advantage on that game. The section
suggested that understanding and automating game-analysis are two of the major
reasons for studying intelligent game-playing in AI.

Section 3.3 showed that much current work in � ��� is centered around engineering
the results of human game-analysis into playing programs, and that this has left many
aspects of this important process largely un-researched. This aspect of current work
in computer game-playing is depicted schematically in Figure 3.2. Here, the human
researcher or programmer is aware of the rules and specific knowledge for the game
to be programmed, as well as the resource bounds within which the program must
play. Given this information, the human then constructs a playing program to play
that game (or at least an acceptable encoding of the rules if the program is already
fairly general). The program then plays in competition, and is modified based on the
outcome of this experience, either by the human, or perhaps by itself in the case of
experience-based learning programs.

In all cases, what is significant about this picture is that the human stands in the
centre, and mediates the relation between the program and the game it plays. As the
human researchers know at the time of program-development which specific game or
games the program will be tested on, it is possible that they import the results of their
own understanding of the game directly into their program. In this case, it becomes
extremely difficult to determine whether the subsequent performance of the program
is due to the general theory it implements, or merely to the insightful observations
of its developer about the characteristics necessary for strong performance on this
particular game. As a consequence of this, success of a game-playing program in
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Figure 3.2: Computer Game-Playing with existing games.

competition is no evidence that we have understood or automated any aspect of the
important process of game-analysis discussed in this chapter.

With this motivation, Chapter 4 will develop a new methodology for research on
games which will make it impossible for humans to mediate the relation between the
program and the specific games it plays. The development of competitive programs
within this new paradigm will require that future work attempt to understand better
the types of game analysis described in this chapter.
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Chapter 4

Metagame

How can we construct mechanisms that will show comparable complex-
ity in their behaviour? They need not play in exactly the same way; close
simulation of the human is not the immediate issue. But we do assert that
complexity of behaviour is essential to an intelligent performance–that the
complexity of a successful chess program will approach the complexity of
the thought processes of a successful human chess player. Complexity of re-
sponse is dictated by the task, not by idiosyncrasies of the human response
mechanism.

– Newell, Shaw, and Simon ([Newell et al., 1963], p. 40-41)

4.1 Introduction
Chapter 3 discussed the importance of game-analysis and demonstrated that the
current approach to � � � makes it possible to produce competitive game-playing
programs without achieving increased understanding or automation of the process of
game-analysis itself. This possibility undermines the use of competition as a metric
for evaluating progress in AI and poses methodological problems for the field.

This chapter examines the limitations of the current methodology in more detail
and presents a new methodology which overcomes these problems. Section 4.2 consid-
ers the methodological underpinnings of ����� as a subfield of AI. The section discusses
why use of the competitive performance metric is currently problematic and why its
abandonment is equally problematic.

Based on this discussion, Section 4.3 presents a new paradigm for conducting re-
search in ����� . Since the source of the difficulty is that humans have foreknowledge
of the specific games their programs play, one solution is to eliminate this foreknowl-
edge, and evaluate programs based on competition playing games which were not
known in advance to the human. This new paradigm is called Meta-Game Playing, or
simply Metagame. As the human must have some constraints on a problem in order

29
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to implement programs to solve it, the human is given a definition of only the class
of games that the program will play. Playing Metagame with increasingly general
classes of games (or problems) provides empirical demonstration of correspondingly
general problem-solving ability.

Section 4.4 considers versions of Metagame that do not require full autonomy,
which may ease the transition from the current approach (known games) to the new
one (unknown games). Section 4.5 briefly summarises the chapter.

4.2 A Question of Values
Given the discussion in the previous chapter, it seems that the field of � ��� is at an
impasse. The competitive performance metric, one of the most desirable properties
of games as a test-bed for AI, no longer seems applicable. In this section, we shall
conjecture why this problem has arisen, and in so doing, consider possible ways out of
this impasse.

4.2.1 Competitive Performance Metric, Revisited
To some extent, use of this competitive performance metric was motivated by the
belief that the complexity of a problem induces a corresponding complexity of any
system which can solve it. This view, which is illustrated by the quote from Newell
and Simon at start of this chapter, is in some ways liberating for AI: it gives us an
objective measure of intelligence, which is methodologically more desirable than many
more subjective measures, like similarity to human processing. Along this view, we
just have to develop programs which do the right thing, let them compete against each
other, and we can conclude that the better program has more relevant complexity, i.e.
it is more intelligent.

This methodological assumption, which allows us to direct our energies on de-
veloping a solution to the problem which maximises our evaluation criteria, can be
schematised by the desired (or assumed) relationship:

������� ���	��
	� ��
��� 


to be read: � is proportional to � of � and � , where � is our set of research goals,� is a problem we shall try to solve in order to further our goals, and � is the
evaluation criteria we will use in determining the extent to which a proposed solution
� was successful. In English, this equation says that the extent to which our goal
is advanced is proportional to the degree to which our proposed solution measures
on our performance criterion, given that we have chosen a particular problem as a
test-bed.

Unfortunately, this apparent proportionality, upon which much of Simon’s early
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methodology was based,
�

turned out not to be the case: better programs do not have
the required complexity we thought they would have to have, and in fact we are not
addressing many of the interesting issues we thought we would be required to address
in making a good game-player.

With this realization, the field is in a dilemma: meeting the performance criterion
of playing a game well is not necessarily related to approaching the goal of under-
standing intelligent behaviour. This is a problem for research (what should our goal
be), evaluation (how do we know if we achieved it, and to what extent?), generalisation
(given some research on a problem, and an evaluation of it, how can we generalise it
to other areas?), and focus (which game meets our goals the best?).

4.2.2 Changing Priorities
Seeing the breakdown of this critical assumption, we can attempt to restore the desired
proportionality by modifying any of the components appropriately, while preserving
the other two. In fact, we can place current research in game-playing into three main
camps, based on whether they differ from the original approach in terms of their
evaluation criteria, goal,or problem, while holding the others constant.

4.2.2.1 Change the Evaluation

The first approach, and the one which has been taken by most games researchers
in AI who consider themselves in AI proper, is to keep the research goal fixed (build
intelligent game-playing programs), keep the problem fixed (like chess), but change
evaluation metrics. Proposed solutions are then evaluated along dimensions such as
psychological feasibility, psychological similarity, whether the program uses rules for
reasoning, does learning, etc.

However, by making this move, this camp encounters problems: by shifting our
evaluation metrics, we lose the competitive performance criterion which made games
a good domain in the first place. These other dimensions are much harder to measure,
more subjective, and purely descriptive. In fact, although such research uses games
as a test-bed, it is not strictly proper to say that the resulting systems play games.
Nobody in AI proper would want to have their psychologically realistic model play
a game against Deep Thought: regardless of who might win, they would claim that
the psychological program is doing something interesting, while Deep Thought is not.
This does not, however, change the fact that the problem was chess, and Deep Thought
was the winner.

�

�
As illustrated in the quote at the start of this chapter.� � ��� ��� ([Levinson and Snyder, 1991]) is a psychological model of pattern learning in chess. While

the ideas behind the system are fascinating, at the moment its performance is extremely weak, and one
of the major difficulties with this research is to find a convincing way, in the absence of performance,
of showing that this system is really doing something intelligent. Similarly, �

� ��������
[Reznitsky and

Chudakoff, 1990] is a chess program which does not actually play chess competitively. The program is
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4.2.2.2 Change the Goal

The second approach, and the one which has been taken by the community which
calls itself computer game playing but not necessarily AI, continues to work on stan-
dard problems (like chess), continues to evaluate proposed research on the basis of
performance in competition, but no longer holds to the lofty goals of AI. Forget about
intelligence per se, they argue, and concern ourselves with building good programs to
do tasks which normally required intelligence for humans.

With this modified goal, playing better is definitely a sign of having developed
a better program to achieve a goal (by definition), so ����� � ���	��
 certainly holds.
This camp also stresses a similar approach for other fields (like theorem proving by
brute-force, etc).

However, there is still something highly unsatisfactory about this method of restor-
ing the proportion. This is that research in this area has little to do with AI anymore,
as the goals of intelligent processing, learning, generality, and flexibility, have been
eliminated wholesale from the statement of their research goals. Nor do they appear
in their evaluation criteria either.

In fact, the elimination of these goals, coupled with the raw performance criterion,
leaves us with a “no holds barred” philosophy in which winning is everything. There
is no reason to use general methods, in fact practitioners here do just the opposite.
There is, in fact, no reason at all to stop the human researcher from doing, in advance,
as much of the analysis of a particular game as he can do, in order that the program
may be as stupid but efficient as possible. But now we have really lost something,
as this kind of analysis was just the type of analysis much of AI was interested in
understanding in the first place.

Researchers in AI have become increasingly concerned that this is the approach
taken by games researchers, and that for this reason ����� should not be considered
a proper domain for AI research. This was the subject of a recent panel at IJCAI-
91 [Levinson et al., 1991], in which Jonathan Schaeffer summarised the problem as
follows:

An entirely new field of “computer chess” has evolved, with the em-
phasis on chess performance and chess research – not generally of much
interest to the AI community. � � � The unfortunate correlation between pro-
gram speed and performance encourages short-term projects (speeding up
a move generator) at the cost of long-term research projects (such as chess
programs that learn).

evaluated on the extent to which the analysis it provides for a given chess position is similar to that
performed by a chess master.
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4.2.2.3 Change the Problem

The third approach, and one which often winds up midway between the other two
camps, attempts to preserve all that was good about the lofty AI goals, and the rugged
performance criterion, by focussing on different problems which, unlike chess (given
our current understanding), really do seem to require intelligence.

If we could find a game such that any program to play it well is more likely to
be interesting for AI, then we could still evaluate programs to play it based solely
on performance, and direct our efforts toward optimising this performance, but rest
assured that in so doing we would not be straying from our scientific research goals.

So this approach remains part of mainstream AI, evaluation is easy, and the goal
is met if the problem matches the desiderata implicit in the goal. This leaves one
question outstanding: which problem?

4.2.3 How to Change the Problem
There are two ways to change the problem: we can find an existing problem or we can
design a new problem.

4.2.3.1 Finding an Existing Problem

The standard solution to this question is to find some other known game which has
not received much attention. This new game should be more difficult, with the im-
plicit hope that this will force the performance evaluation to be indicative of goal
achievement.

�

So, now that it appears clear that we can achieve extremely strong performance in
chess without addressing many of the important goals of AI, perhaps Go will become
the next game to be focussed on as a research testbed ([Berliner, 1978]) (it certainly
does look hard).

But this approach still is not fully satisfactory: it requires the hope that strong
performance on the game cannot be achieved by other means. This is because this
approach still keeps other evaluation metrics implicit, not quantifiable. If someone
manages to construct a strong player for our new game, but not in a generally inter-
esting way, what are we prepared to say?

4.2.3.2 Designing a New Problem

This all suggests that we may not necessarily have chosen the problem, and method
of evaluation, appropriately for addressing our research goals. Instead of keeping our
goals and assumptions implicit, an alternative approach is to make our goals explicit,

�
Of course, we could also use this new problem to explore other issues of representation, reason-

ing, etc., but this involves changing evaluation measures, the problems of which have already been
discussed.
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and design a problem with our goals in mind. We could expend significant effort
making sure it really has the properties we want, so that solving the problem well has
a better chance of being more interesting in terms of our explicit goals.

Of course, we might not be able to design the perfect problem for all our goals, but
at least designing it with the relation between G and E given P always in mind might
increase the chances that we will make good progress in attempting to solve it. Also,
when we see an obvious reason why ������ � ���	��
 , this also tells us useful information
about our goals; i.e. it clarifies our ideas and constraints on what we consider AI to be
about.

4.3 A New Methodology: METAGAME
To summarise, what we would really like to have is some kind of game for which
we can be more certain that playing it well really was evidence of more intelligent
processing. Then we could once again justify the use of performance in competition
as a way of evaluating good work.

But rather than attempting to find a game for which competitive strength is linked
apparently to progress in achieving AI goals, we would like to design a game for which
competitive strength would be linked necessarily to progress in achieving AI goals.
As suggested in Section 4.2.3.2, the first step in this approach is to state our goals
explicitly.

4.3.1 Evidence of General Ability
Thus, the crux of the difficulties with current methodology is the following:

AI is interested in the general ability to solve wide varieties of problems.
By definition, agents who can solve diverse problems better than others
must be those with greater general ability. However, to the extent that the
designer of an agent has information providing constraints on the problems
the agent will solve, the agent’s subsequent performance on such problems
is only evidence of ability to solve problems for which those constraints are
true.

Now this insight can be applied to game-playing, as follows. Chapter 3 has defined
game-analysis as the general process that exploits the abstract representation of a
specific game to produce competitive advantage on that game. The chapter showed
that the problems of � � � stem from the fact that, in all current work done in this
field, humans have full information about the rules of the games their programs play.
This makes it impossible to infer, even from strong performance on those games, that
the theories which the program embodies are applicable to anything but the specific
games the program has played. In particular, success on a known game is no evidence
that the program has performed game-analysis.
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4.3.2 Meta-Game Playing
This motivates the idea of Meta-Game Playing (Metagame), shown schematically in
Figure 4.1. Rather than designing programs to play an existing game known in
advance, we design programs (metagamers) to play (or themselves produce other
programs to play) new games, from a well-defined class, taking as input only the
rules of the games as output by a game generator. The performance criterion is still
competition: all programs eventually compete in a tournament, at which point they
are provided with a set of games output by the generator. The programs then compete
against each other through many contests in each of these new games, and the winner
is the one which has won the most contests by the end of the tournament.

Game
rules

Resource
bounds ^

Metagamer

Player

General
game

knowledge

Class of
games

Game 
Generator

Competitive
context

Figure 4.1: Metagame-playing with new games.

As only the class of games (as constrained by the generator) is known in advance, a
degree of foreknowledge is eliminated, and playing programs are required to perform
any game-specific processing without human assistance. In contrast with the role of
the human when playing existing games (as discussed in Section 3.4), in this new
context the human no longer mediates the relation between the program and the
games it plays. Success in competition would then become empirical evidence that a
program has performed some of the game specialisation that is potentially performed
by humans in the current approach.

4.3.2.1 Quantified Generality

Of course, the human in this new context still mediates the relation between the
program and the class of games it plays. This means that successful programs will
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only be evidence of a general ability to solve problems in the class of games. But by
making the class explicit, we are able to quantify the level of generality achieved.
Moreover, we can begin with classes which represent only moderate generalisations
over tasks we have already looked at, and gradually move to more general classes of
problems as scientific understanding develops.

4.3.2.2 Evaluating Success in Metagame

It is important to emphasise that the performance criterion is still competition:

For any given class, strength in competition is the sole metric for com-
paring different solutions.

This is one of the main benefits derived from designing the problem with an explicit
connection to the research goal. Since we only infer general ability relative to the
constraints known in advance, competitive advantage subject to these constraints
is necessarily correlated with general ability subject to the same constraints. For
example, if the class of games is known in advance to contain only chess, and the
human has no information about the opponents the program will play, it follows
trivially that better general chess-players will be stronger programs in this context.

�

If we want to claim that the theories embodied in one program (such as learning
or planning) are more generally interesting than those embodied in another in the
absence of competitive advantage, this can be tested by applying both theories to a
more general class of problems.

4.4 Competitive Contexts
The general idea of Metagame thus formulated would pit computer programs against
each other, and present them with a series of games to play. In fact, there are at
least three competitive contexts in which researchers can address the challenge of
Metagame:

4.4.1 Autonomous Metagame
This is the original problem, schematised in Figure 4.1, where we all make programs
which then must read and play the games on their own, without further human
intervention.

�

If there are sufficiently many (and varied) opponents that the human derives no benefit from
knowing the opponents in advance, this factor is not important. Otherwise, we would not be justified
in inferring general chess-ability from the competition, as the human may have performed some of the
opponent-analysis for the program.
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4.4.2 Mediated Metagame
This version can be viewed as a programming competition. At fixed points throughout
the period of the competition, a new game is generated and sent to the competitors.
Each competitor then has a fixed amount of time in which to produce a program to
play just that game, after which the programs play each other on that game. At the
end of the competition, a number of new games and sets of programs to play them will
have been produced, and the winner is the human who scored the most total wins.

This is interesting for several reasons. First, it is a much easier problem. There is
no longer any necessary reason to have the programs analyse the games, and humans
can have fun doing the game analysis, testing their ideas on their programs, etc.
There is every reason to make the programs as efficient and specialised as possible.
However, there is still the flavour of Metagame: programmers have very limited time
to produce each program, so they would be wise to bring as many pre-designed tools
as possible. Thus they will in effect be motivated to develop their own Metagame
workbench. By seeing the tools different players developed and how useful they
were, we will gain more of an understanding of the reasoning processes which go
into producing a program to play a particular game, and will also move game-playing
research to a more general level. Also, it will probably still pay to let programs tune
their own parameters while in competition, so there is still a real opportunity to have
learning methods result in significantly improved performance (something we are not
as likely to see on well-known games like chess or go).

4.4.3 Synergistic Metagame
As in the mediated version, humans will be given the rules and will have time to
produce whatever program they would like to bring with them to the competition.
Then the humans play against each other (or against Metagame-playing programs),
each able to consult with his program in any manner he chooses, or not at all. As
in the previous two versions, the goal is to win the most contests across all games
and opponents. However, this version allows the human to do even more work on the
game, playing it entirely on his own if he so chooses. But again, it is possible that
having certain tools will allow him to play it better. This again encourages automation
of certain types of reasoning, provides a forum in which learning might still help. It
seems likely that the resulting tools will again show us which aspects of analysis can
be automated, and to what effect.

4.4.4 Incremental Research
These different ways of playing Metagame show the utility of the idea, and provide
a way to move more slowly toward the fully-automated problem, also in a way which
may motivate more interest from humans. It is also interesting that both of the
more interactive approaches still encourage generality, flexibility, and transfer of
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responsibility for some of the game analysis from human to program, which are after
all the main goals of Metagame.

4.5 Summary
This chapter has considered a set of methodological problems currently facing the field
of computer game-playing ( ����� ), which in part explain why much of the important
process of game-analysis has yet to be understood. As a solution to these difficulties,
this chapter has introduced Metagame, a new paradigm for computer game-playing in
which humans can no longer mediate the relation between a program and the game it
plays. Within this new framework it becomes possible and necessary to address many
interesting and important questions about game analysis, which until now has largely
been performed by humans and built directly into programs. Meeting the challenge
of Metagame will shift the field of computer game-playing back from an engineering
to a scientific discipline, wherein winning a game would again be an indication that
the program, and not simply its programmer, is doing something intelligent.



Chapter 5

Summary of Part I

This part of the thesis analysed the existing paradigm within which work in Computer
Game-Playing ( ����� ) is conducted, and created a new paradigm which overcomes the
limitations discovered through this analysis.

Chapter 3 defined game-analysis as the general process that exploits the abstract
representation of a specific game to produce competitive advantage on that game.
The chapter showed that many of the problems of � ��� stem from the fact that, in
all current work done in this field, humans have full information about the rules
of the games their programs play. This makes it impossible to infer whether the
performance of a program playing a known game is due to the AI theories which the
program embodies, or due to human analysis and engineering of that specific game.

Chapter 4 introduced Meta-Game Playing (Metagame), a new paradigm for re-
search in game-playing in which we design programs to take in the rules of unknown
games and play those games without human assistance. Strong performance in this
new paradigm is evidence that the program, instead of the human, has performed the
analysis of each specific game.

It should be emphasised that Metagame itself is not a concrete research problem,
but rather a paradigm and a methodology within which concrete research problems
can be formulated and investigated. In order to construct a concrete Metagame
research problem, it is necessary to define a specific class of games to be played, to
develop a game generator to produce new instances from this class, and to analyse the
resulting problem with respect to a set of stated goals.

Part II of this thesis will construct a specific Metagame research problem, called
Metagame in symmetric chess-like games, or simply ����� -Metagame. This problem is
a useful area for research in its own right. Moreover, the construction of the problem
serves as an example of a practical application of the general idea of Metagame.
This should be useful for future research in the construction of different Metagame
research problems. Part III will then document progress to date in addressing the
new concrete research problem, ����� -Metagame, developed in Part II.
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Chapter 6

Introduction to Part II

6.1 Introduction
Part I of the thesis has introduced a new paradigm for research on games, called
Meta-Game Playing, or simply Metagame. This part of the thesis discusses both the
general issues involved in the construction of concrete Metagame research problems
and the construction of one specific Metagame research problem, called Metagame in
symmetric chess-like games, or simply ����� -Metagame.

6.2 The Problem
Although the abstract idea of Metagame is straightforward, a fair amount of work
must be done to develop a concrete problem that can actually be addressed. First,
we need to define a class of games for which performance will be linked explicitly to
our goals. Second, we need a game generator which produces new instances in this
class. Finally, we must analyse the resulting problem to ensure that performance
on this problem will be linked to progress on our stated goals. This section provides
some general ideas for addressing the issues of class definition and game generation,
and the remaining chapters in this part of the thesis provide an example of how the
various components have been addressed concretely.

6.2.1 Class Definition
Many different variants of Metagame can be played, depending on what class of games
it is based upon. Here we state a few desiderata for classes of games.

� Coverage: A good class should be large enough to include several games actu-
ally played by humans. This encourages us to generalise the lessons we learned
from working on the specific games included. Also, existing games have a known
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standard of performance and existing bodies of theory. These can be used to as-
sess the extent to which a metagamer’s game-analysis yields competitive perfor-
mance on specific games. If a metagamer is unable to derive important strategies
or is otherwise weak on a known game, this reveals areas for future research.
Note that the opposite of this does not necessarily hold. That is, a metagamer
that plays a set of known games well is not by virtue of that to be evaluated as
a strong Metagame-player. As the games are known in advance, it cannot be
proven that this strength does not derive from human analysis of those specific
games.

�

� Diversity: In addition to known games, a class should be diverse enough to
include arbitrarily many possibly different games, to discourage researchers
from exhaustively analysing each possible game and still building their own
analysis into the program.

� Structure: A class should still be small enough to represent the structure which
makes the individual games appear similar. While chess-like games and trick-
taking card games seem like appropriate generalisations of existing games, the
class of arbitrary theorem-proving games appears to be too general.

�

� Varying Complexity: The generated games should be of varying degrees and
dimensions of complexity, such as decision complexity and search complexity ([Al-
lis et al., 1991a]), so that different games afford different analysis methods. This
also enables interesting experiments to test the utility of alternative methods
with respect to varying degrees of complexity.

� Extensibility: It should be easy to generalise the class to increase the coverage
of known and unknown games. This makes it easy to conduct incremental
research, and reminds us that achieving strong performance in a fixed class is
not a stopping point, but rather an indicator that it may be time to move to a
more general problem. The knowledge that the next problem will be a small
generalisation of the current one encourages us to approach the current problem
in the most general manner still consistent with strong performance.

�

One type of game which has been studied extensively is positional games, in which
pieces are never moved or removed once they are played. This class of games has
been the domain for several general game-learning systems ([Epstein, 1991; Koffman,
1968]), and could easily serve as a Metagame class definition.

�
This point is crucial. One way to build a very strong game-player for a set of known games is

to combine specialised programs for each game into a monolithic program with switches to recognise
which game is being played, and thus which component program should be used to play it.�

The class of mathematical games ([Berlekamp et al., 1982]) is also fully general, which suggests
that this class might be inappropriate for Metagame in the near future.�

That is, if unnecessarily general techniques do not much hurt performance on the current class, it
pays to develop them, as this will prove advantageous when the class is later generalised.
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However, this class is both simple and regular (thus falling short on several desider-
ata), and there are well-researched games which fall outside this restricted class. In
particular, it would be interesting to play Metagame based on a class complex enough
to include the chess-like games which have received much of the attention thus far in� � � . The choice taken in this part of the thesis is to develop the necessary compo-
nents to play Metagame in the class of symmetric chess-like games.

6.2.2 Game Generator
Given a class of games, there are two ways to produce new instances within this class:
we can either use human-generated games, or program-generated games.

6.2.2.1 Human Game Generators

The easiest way of obtaining games would be to have some humans design a set of
games within the class. They must provide the games to the programs once the compe-
tition has begun, i.e., the developers of these programs can no longer help in the game-
specific analysis. This procedure has the advantage that the game designers could try
out their games in advance, and make sure that they are interesting and playable.
However, this also has a major disadvantage, in that it forces playing-program de-
velopers to predict which types of games these humans will actually produce. Since
human game designers may be very creative, they are an unknown variable from the
perspective of scientific experiments. Thus, while we would hope that our programs
could play human-generated games within a class, and we may even test our own
programs against games we design, the unknown human element may cloud research
issues, at least in the short term.

6.2.2.2 Programmed Game Generators

The alternative is to develop a program to generate new games within a class. If
the program is transparent and available to all researchers, this has the advantage
that everyone will know what kind of games to expect, which is more desirable from
a research perspective.

�

However, this also has a potential disadvantage, in that
the generated games may not actually be interesting. Three points may be made in
connection with this concern.

Intelligent Game Design First, this concern introduces an important and general
issue, for which there is no simple answer. This is that intelligent game design is an
interesting and difficult research issue in its own right. Games which survive ([Allis

�

Another way of stating this is that writing programs to play any games generated by humans may
result in researchers attempting to hit a moving target. A transparent generator is needed to make
the problem well-defined.
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et al., 1991a]) do so because they provide an intellectual challenge at a level which
is neither too simple to be solvable, nor too complex to be incomprehensible. Under-
standing the processes by which games are created and evolve, from a computational
perspective, would be a valuable complement to the analysis of strategies for playing
games which has been the focus of research in computer game-playing thus far.

�

Interestingness requires intelligence Second, although this will matter to hu-
man observers, it will not make much difference to the programs whether they are
playing interesting or boring games. In fact, if we could develop a program which,
upon consideration of a particular game, declared the game to be uninteresting, this
would seem to be a true sign of intelligence! So when this becomes an issue, we will
know that the field has certainly matured.

�

Fairness is simpler Third, it should be possible to develop a class and generator
in a manner which increases the chances that generated games within this class will
at least be fair for both players, so that the games will be more interesting to human
researchers. Chapter 7 addresses this goal by defining a class in which all the rules
are symmetric between both players.

6.3 Overview
With this motivation, Chapter 7 presents a definition for a class of games called sym-
metric chess-like games. Chapter 8 presents a generator for this class and discusses
an interesting new game produced by the generator, called Turncoat-Chess. Chapter 9
then analyses the class as constrained by generator to ensure that performance on
this new problem is linked necessarily to progress on our stated goals.

�

The link between game-evolution and game-playing may be even tighter than we imagine. Games
often change when strategic analysis has rendered them either too difficult or too boring, and each
change to a game introduces new opportunities for strategic analysis, so that games and their strategies
evolve together.

�

It would be interesting to allow programs to negotiate over draws, to avoid them playing out games
that neither player can win. However, this ability complicates the rules of competition, and so will be
left as an idea for the future.



Chapter 7

A Class of Games

A player can see the board and the pieces and comprehend the pattern.
But if a pawn – or, in fairy chess, a night-rider – could see the board from
the viewpoint of a player – what would be his reaction?

– Henry Kuttner, Chessboard Planet ([Kuttner, 1983])

7.1 Introduction
This chapter addresses the construction of a class to be used as a basis for Metagame-
playing. Section 6.2.1 provided several desiderata for a class for Metagame. Two of
these, coverage and structure, desire a class which generalises the problems which
have been the focus of current research, in a way that preserves enough of their
structure to render this research still relevant to the generalised class. To this end,
we have defined a class based around the chess-like games, like Chess, Checkers,
Chinese Chess, and Shogi.

�
In addition to having served as research test-beds, these

games share a perceivable structure. Moreover, there already exists another field of
research, under the name of Fairy Chess ([Dickins, 1971]), which has as a goal the
generalisation and analysis of precisely these types of games.

The varying complexity desideratum was that a class have a decent proportion of
problems which are different and difficult enough that they can serve as a basis for
comparing and evaluating different approaches. If too many of the games which the
programs play are heavily one-sided, to the extent that one of the players has enough
of an advantage that he can always and easily win (and such that no particular
insight is necessary to realize this), we would lose the precious performance criterion
which formed part of the motivation for Metagame, and which allows us to say that a
program really is better because it wins more games.

�
This chapter mentions several games which may be unfamiliar. Descriptions of these games can

be found in ([Bell, 1969]).
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This can be seen as placing a constraint either on the class itself (to ensure that
class instances are not too lopsided), or on the generator (to ensure that selected
instances are not too lopsided). As intelligent game generation is a difficult area of
research in its own right (see Section 6.2.2.2), a natural decision was to constrain
the class in a way which increased the chances that the games would be competitive,
so that the generator would need as little intelligence as possible. To this end, a
straightforward way to constrain a problem so that two aspects are comparable, is to
make those aspects in some way symmetric in the problem. This can be achieved in
games by ensuring that all the rules are somehow symmetric between the two players.

With this, then, we arrive at the basis for an appropriate class definition: symmet-
ric chess-like games. Section 7.2 provides an overview of the class at varying levels
of detail. This detail may be skipped over now, but will be referred to throughout the
rest of the thesis. A full grammar and formal semantics for this class of games are
provided in Appendix A.1 and Appendix B, respectively.

7.2 Symmetric Chess-Like Games
Informally, a symmetric chess-like game is a two-player game of perfect information,
in which the two players move pieces along specified directions, across rectangular
boards. Different pieces have different powers of movement, capture, and promotion,
and interact with other pieces based on ownership and piece type. Goals involve
eliminating certain types of pieces, driving a player out of moves, or getting certain
pieces to occupy specific squares. Most importantly, the games are symmetric between
the two players, in that all the rules can be presented from the perspective of one
player only, and the differences in goals and movements are solely determined by the
direction from which the different players view the board.

At the highest level, a game consists of a board, a set of piece definitions, a method
for determining an initial setup, and a set of goals or termination conditions. Each
of these components is defined from the perspective of the white player, who initially
places his pieces on the half of the board containing ranks with the lower numbers
(call this white’s half of the board). Unless they can move both forward and backward,
white’s pieces are generally forced to move toward black’s side of the board, and vice-
versa, which implies that there must be an inevitable point in the game when these
opposing forces come into contact.

7.2.1 Definitions
Before we can describe the rules for games in this class, we need a few definitions.

A board � is a finite two-dimensional rectangular array � � � ��������� � � � �
	������� , where
������� and 	������ are the number of files and ranks, respectively.

�

�
Ranks and files correspond to rows and columns, respectively.
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Each element of � is a square, an ordered pair which is denoted by its position in
this array: ��� ��� 
 .

A direction-vector (d-v), ��� � � � 	�� is a function which maps a square � � � 	 
 into a
square � �
	�� � � 	�	� 	 
 . If � 	���� , this is a forward d-v, and if � � ��� , this is a
rightward d-v.

A directional symmetry is a function which maps one d-v to another d-v. We define
three special symmetries:

����������� ������� � � � 	��
��
��� � ��� � 	�� �! ��"#����� � � � 	��

��
� � � � � � 	������$%�&$ "#����� � � � 	��

��
��� 	 � � �'�

A symmetry set, ��� , is a subset of ( ����������� � ,  )! ��" , ���*$%�+$ "-, .
An inversion is a function which maps one square to another square, and maps one

d-v to another d-v. We define two distinct inversions:

� ! �-./��0��21 � �3� �4� 
 �� � � ���� �5� 	 � � 	 ���� �5� 	 � 

� � �4� �

��
� �6� ���#� ������������ �7� �3� �4� 
 �� ��� � 	 ���� �� 	 � 


� � �4� �
��
� � ���6� �

Applying one of these inversions to a square or d-v thus produces the corresponding
square or d-v from the perspective of the other player.

A symmetric closure, ��� � �����48 
 of a d-v 8 under a symmetry set � � , is defined
inductively as follows:

1. 8:9 ��� � �����48 


2. ��9 ���<;�8 � 9 ��� � �����48 
=� � � �38 � 
=9 ��� � �����48 

3. Nothing else is in ��� � �����48 

Thus, a symmetric closure of a direction vector under a set of symmetries is the

set closure obtained by applying these symmetries to the direction vector. If the
symmetry set contained all three symmetries, then applying this set to direction � � ��> �
would yield all eight possible directions of a knight move in Chess. Keeping only the
side symmetry would yield the two possible moves of a Shogi knight ( � � �4> � and � � � �4> � ).

7.2.2 Global Symmetry
As symmetric chess-like games are totally symmetric, it is possible to present the entire
set of rules for a given game (movements, capturing, initial setup, and goals) from the
perspective of one player only. The rules also select one of the two inversions defined
in Section 7.2.1, and the rules for the other player can be determined by applying this
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inversion to every square and d-v mentioned in the rules for the first player. In what
follows, then, we define the rules only for the forward-moving player, illustrated by
the white player in Chess,

�
and refer to the inversion operative in a given game by the

symbol � , which we shall assume by default to be the diagonal inversion.
Thus, if the movement of a white piece of a certain type involves a direction vector8 , then the corresponding movement of the black piece of that type will involve instead

the vector � ( 8 ). Similarly, if white’s goal is to have his knight arrive at a given square
��� , then black’s goal will be to have his knight arrive at � ( ��� ). The same holds for
promotion ranks, as will be discussed in the next section.

An interesting effect of this global symmetry is that it allows a generator to produce
rules from the perspective of only the white (forward moving) player, and the global
symmetry automatically implies that white pieces travel forward and to the right,
and black pieces travel backward and to the left (from white’s perspective), so that
by default, opposing forces tend to move toward each other. If a piece movement has
both a forward and a side symmetry, however, then the piece will travel along the
same direction vectors for both players, because the inversion of a direction vector is
precisely the same as the result of applying a forward and then a side symmetry to
this vector.

�

7.2.3 Board
The dimensions of a board are declared by the statement: �����
	 � �������� 	 ����� .

A board has one of two types: planar and vertical-cylinder. The planar board is the
standard one used in almost all board games. The vertical-cylinder board is like the
planar, but the left and right sides of the board are connected to each other so that
pieces can wrap-around the side of the board.

�

Formally, for vertical-cylinders,

d-v ��� � � � � �=� �3� �4� 
 �� � �3� 	� � � � 
������ � ������ 
 	 � �4� 


For example, in Figure 7.1, the � b4 can capture the � h5.
A board also has a privileged rank, called the promotion rank, such that any piece

which, as a result of movement, arrives at or past this rank at the end of a turn must
then exercise its promotion power, if it has one (see Section 7.2.4.4). If this rank had
value 6 on a board consisting of 8 ranks, then white pieces would promote on reaching
any rank numbered 6 or greater, while by inversion, black pieces would promote on

�
Epstein ([Epstein, 1989b]) uses the terms player and opponent to refer to the two players in a game.

We shall here use these terms indexically, such that player refers to whichever player is to move.
�

It is thus possible to characterise the degree of symmetry in a particular game by the extent to
which movements are invariant under inversion. For example, Chess is almost totally symmetric
(every piece except pawns has all three symmetries), while Shogi is much less so.

�

The rules for vertical-cylinder boards are the same as for normal boards except for modular addition.
It is thus legal for a piece to wrap around a vertical-cylinder board back to its original square, effectively
passing the move to the next player.
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� � �

�

�

	

Figure 7.1: A vertical-cylinder board and capture movements

reaching rank 3 or less ( 	 ����� 	 � � 	 ). The set of squares at which a player can promote
pieces is that player’s promotion territory.

7.2.4 Pieces
A piece is defined by a power of moving, capturing, and promoting, and by an optional
set of constraints on the use of these powers.

7.2.4.1 Movements

A basic movement consists of a movement type, which may have associated movement
restrictions, a direction vector, 8 , and a symmetry set, � � . A piece with a given
movement can move to any square reachable from its current square, according to its
movement type, along 8 or any d-v in the symmetric closure ��� � �����48 
 .

Movement Types The simplest type of movement, called a leap, is that of taking a
piece from a square � directly to the next square along a particular direction vector8 , without regard for intervening squares. A piece which moves in this way is called
a leaper. Thus, a movement which takes a piece only one square forward (for white)
would be a ��� � ��� - 1 " ��� , which is the basic movement of pawns in Chess. Similarly, if
a Chess knight were restricted to moving one square to the right, and two squares
forward, this would be a � � �4> � - 1 " ��� .

The next type of movement, called a ride, allows a piece to continue for some
number of leaps along the same direction vector, as long as the squares on intermediate
leaps are empty. So a pawn which is allowed to continue indefinitely forward through
a line of empty squares (a pawn rider) would be a ��� � ��� - � ! ��" � . This is the basic
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movement of a lance in Shogi. This piece can be converted to a Chess rook by adding
rotation and one of side and forward symmetries.

�

The final type of movement, called a hop, is that in which we relax the constraint
on a rider that intervening (leap) squares must be empty, and insist instead that some
of these squares must be occupied by pieces.This type of movement is exemplified by
the capturing power of a man in Draughts or a cannon in Chinese Chess.

Movement Restrictions Since a leap is a direct movement from an initial square
to a final square, no other squares are considered. However, rides and hops pass
through a set of intermediate squares, and additional restrictions may apply to those
squares, as part of the rules for a particular piece’s movement. For example, the
cannon in Chinese Chess hops over any one piece owned by either player, with any
number of empty squares before and after it, and captures the first enemy piece it
lands on thereafter. However it is possible to restrict this piece further, by allowing
hops over certain pieces only (e.g., black knights), constraining the number of empty
squares before or after the hopped-over piece (called the cannon-support) to be within
some interval (e.g., less than 3, at least 2), and requiring a piece to hop over a specified
number of pieces matching a certain description (e.g., 2 pawns of either player).

To illustrate these restrictions, a constrained hopping movement might be defined
as follows:�����

	
�
	����	 ��
 � 	��

��
	���������������

	


���������� ��� 	


�����������	 ��
 ���
	


���� � !��"!#�"�$&%�"�'  )(�#�*�#��
� � �4> � � �

���
	��

� (�+�(�,-#/,

	���.
�����

	
�
	����

A piece with this movement would move in one of the directions � � �4> � or � � � �4> � (by
side symmetry). In a given direction, the piece would first leap zero or more times,
so long as each leap lands on an empty square. Then the piece would make two more
leaps along the same direction, with the condition that each square be occupied by
the opponent’s pieces. Then the piece would make 0, 1 or 2 further leaps (still along
the same direction), through empty squares. Finally the piece would make one last
leap along the same direction, landing on its final square. If any of these conditions
fail, the move is not legal. For example, in Figure 7.2, if � d1 were a piece with a
capturing power whose movement was as a hopper so defined, it could move along
direction � � �4> � to leap through 0 empty squares, then hop over the two enemy pieces/

e3 and � f5, then leap through 0 empty squares, and then make a final leap to land
�

Note that a 021436587 - 9;:=<?>�9 could move from @=AB3;CED to @=AB3GFHD , as long as @=AB3GIHD was empty, without regard
for squares @=AB3G5HD and @=AB3�A?D , as each leap along the way moves directly to the second square forward.
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� � �

� � 	

Figure 7.2: Example piece movements.

on
/

g7. However, � d1 could not make a similar movement along direction � � � �4> � to
land on

/
a7, as it cannot hop over the friendly piece � b5.

In a similar manner, a ride can be restricted to at least � leaps and/or at most �
leaps. A ride can also be restricted to the maximum number of available leaps (by the
presence of the keyword �

�
���
	 ��� in the riding movement definition). For example, in

Figure 7.2, if � h8 were a rook constrained to the longest ride in each direction for
purposes of moving, it could only move to a8 or h6. This constraint thus limits a piece
to one move in each legal direction. This restriction to longest ride is not applied on
vertical-cylinder boards, as it is not well defined for this case.

Disjunctive Movements In addition to the basic movements, we also allow dis-
junctive movements, which are the union of several basic movements. Thus, if we
have movements corresponding to a bishop and rook in Chess, then we can define the
movement of a queen as the disjunction of these two simpler movements. This is also
the method of definition of certain promoted pieces in Shogi.

7.2.4.2 Capturing

Capturing Movements The movements discussed above are used in defining both
the moving and capturing powers of pieces. While a normal movement is used simply
to move a piece from one square to another, with no effects on other pieces, a capturing
movement always results in some change to the status of other pieces. It is possible
(and even common) that pieces in chess-like games move in one way, and capture in
another. Examples of this are pawns in Chess, cannons in Chinese Chess, and all
pieces in Draughts.

�

�

As in the case of movements, a piece can also have multiple (disjunctive) capture powers.
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How To Capture In addition to special capturing movements, different pieces have
different methods of capture. The most common capturing method, called clobbering,
is when a piece ends its movement on a square occupied by another piece, and thus
captures it. A second method, applicable only to pieces which hop as part of their
capture movement, allows certain hopped-over pieces (see below) to be captured. The
final capturing method is retrieval, in which a piece moves directly away from another
piece, and thus captures it. A particular capture definition may allow different types
of capture at once, so a piece might hop over one piece and land on another, capturing
both.

�

Examples of these capturing methods are presented shortly.

What To Capture As in the case of restrictions on movements, there can be restric-
tions on what a piece can capture (e.g., any piece, opponent rook or queen), using a
particular capturing power. This allows some pieces to be capable of capturing any-
thing but a particular piece, for example. To be a legal use of a particular movement
for a capturing power, at least one piece must actually wind up being captured.

�

Effects of Capture Now, given that a piece can move in a certain way to capture
a piece (or set of pieces), and that this piece is of the kind that it can legally capture,
there are a number of possible capture effects, all of which remove the captured piece
from its present square. The possible effects are:

� Remove a piece from the game altogether.
� Player Possesses the piece, converts it to his own side (if necessary) and can place

it on any empty square, instead of making a normal piece movement, on one of
his turns later in the game (i.e., starting with his next turn). This is the capture
effect used in Shogi.

���

� Opponent Possesses the piece, converts it to his own side (if necessary), and can
place it on any empty square later in the game.

Here player and opponent are relative to whichever player has performed the
capture. So if white captures a black piece, the opponent possesses effect means that
black is then free to place this piece (still black) on any empty square later in the
game, while the player possesses effect means that white would be able to place a
white piece of that type later in the game. Examples of each type of capture effect,
with the corresponding notation, are presented in Section A.2.

�

A fourth common method of capture is coordination, in which some relationship between two or
more pieces determines an additional set of pieces to be captured. Examples are bracketing in Hasami
Shogi and Othello. This would be an interesting extension to the class presented here.

�

Note that a piece can be restricted to capturing only friendly pieces.���
Although Shogi restricts placement squares for some pieces (pawns cannot be placed on files where

the player has a pawn already), the class defined here makes no such restrictions.
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Examples of Capturing We can illustrate the capture methods and restrictions
using Figure 7.1. First, if pieces captured by clobbering, as in normal Chess, then
� b1 could capture � a1 or � e1 by landing on them. Second, if pieces captured by
hopping, then � c3 could capture � d4 by hopping over it to the empty square e5, and
� b1 could capture � e1 by hopping over it to f1. Third, if pieces moved as in Chess
but captured enemy pieces by retrieval, then � b1 could capture � a1 by moving away
from it to c1 or d1, and � f3 could capture � g1 by moving directly away from it to the
square e5.

Finally, suppose � b8 is a piece with a capture movement of hopping on straight
lines over any number and type of pieces, a capture restriction that it can capture
only enemy � ’s, and all three capture methods (i.e., clobbering, retrieval, and hopping
capture). Then in one move, it could move directly away from � a8, hopping over � d8
and � e8, to land on � g8. All three enemy queens ( � a8, � d8, and � g8) would be
captured and removed from the board, but � e8 would not be captured as this piece
can only capture enemy � s.

� �

7.2.4.3 Compulsory and Continued Captures

The above sections describe the conditions and effects of capturing moves. In addition,
there are two additional types of rules affecting the use of capture movements. The
first type of rule requires a capture move to be made in preference to an ordinary piece
movement. This is indicated by the presence of a ���)+B$���*�%� �$��
	�# constraint, which can
appear as both a global and a local constraint (attached to the game definition or to
the piece definition, respectively). As a global constraint, this indicates that if a player
is to move any piece (as opposed to placing a piece from his hand), and some piece has
a capture move available, he must play it. As a local constraint, this indicates that
if a player is to move a particular piece, and this piece has a capture move available,
he must play it. If the global version is present, any local versions are irrelevant. In
both cases, when multiple such captures are available, the player is free to choose any
one of them.

The second type of rule allows a player to make multiple capture movements within
a single logical move, and is indicated as a *���"�$�( "�� #���*�%� �$���	-# + constraint. This occurs
only in a local version, which allows multiple capture movements with the same piece.
Unlike the game 10x10 Draughts, captured pieces are removed immediately, not at
the end of a turn. Thus, a continued capture sequence is logically equivalent to one
player making a sequence of capture movements with a particular piece, while the
other player passes.

Finally, these two rules interact as follows: if at any point, both the �
��+B$���*�%� �$��	�#
and *���"�$�( "��!#��*�%� �$���	�# + rules are in effect, then the player must continue capturing if

� �
Note that if there had been a � at g8 instead of a � , this move would not have been legal, as a

piece can never land on an occupied square unless it does so using a clobbering capture power which is
restricted to pieces of a type consistent with the occupant.
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it is legal to do so. As the continue captures is only a local rule, only the piece which
just captured is constrained to continue capturing.

The game of Checkers (Figure 7.3) illustrates the use of these rules. In this game,
the ���)+B$���*�%� �$���	-# rule is global, meaning that a player must make a capturing move
if any of his pieces can capture, and the *���"�$�( "�� #���*�%� �$���	-# + rule is local to each piece,
meaning that a player is allowed to continue capturing with a piece which has just
made a capture movement. The interaction of these two rules means that a player
must capture if he can, and once he has done so, he must continue capturing with the
same piece until it cannot make any more captures.

7.2.4.4 Promotion

In addition to the normal moving and capturing powers attached to a piece, there is a
special power, called promotion, which allows the piece to be changed while remaining
on its final square. The rule applies when a player has moved a piece (possibly several
times if this piece made a sequence of captures), which finishes its movements on a
square which is in promotion territory for the player who moved it (see Section 7.2.3).

� �

In this case, one of the players (as specified in the definition of the piece) gets to
replace the promoting piece with any piece of his choice matching a certain description.
Thus, while in Draughts and Shogi pieces promote to a specific piece of the same colour,
pawns in Chess promote to any of a set of pieces of the same colour, as chosen by player.
Under the generalisation here, this choice could also be made by opponent. If so, the
opponent performs the promotion at the start of his next turn, before proceeding to
make his ordinary placement or transfer move.

7.2.5 Initial Setup
Given a board and a set of pieces, it is necessary to determine a method for setting up
an initial configuration of pieces. While some chess-like games begin with an arbitrary,
fixed initial state, others have the players alternate assigning either their own piece,
or their opponent’s piece, to any of a set of squares.

� �
A final possibility is that each

contest of a particular game could begin with a randomised assignment of a known
set of pieces to a known set of squares. Since these games are symmetric (subject to
a specified inversion), both the fixed and random configurations are guaranteed to be
symmetric. When players place their own pieces, however, there is no constraint that

� �
Note that moving from one square in promotion territory to another still qualifies a piece for

promotion, and also that promotion applies only to a piece which actually used a moving or capturing
power, as opposed to one which was placed on the board by one of the players.� �

This corresponds to the clause for % +�+�(���" ��#�"�$ ,-#�* (�+�( ��" in the grammar in Appendix A.1. Note
that  �(�#�*�# " % �)# + may contain duplicates, as a player may have multiple pieces of the same type (e.g.,
players have two knights each in Chess).
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such placement be symmetric.
� �

Finally, it should be noted that not all piece-types
are necessarily present at the start of the game, as some can only be obtained through
promotion (as in Checkers and Shogi).

7.2.6 Goals
So far we have described the method of determining the initial state, and the set of
operators, which characterise this class of games. The final component necessary to
describe any problem is the goal. As these games are symmetric, the goals, like the
initial setup and piece movements, are defined from the perspective of the forward
player. Thus, a goal definition simply defines those positions in which a player has
achieved a goal, and we define a position as a win for player if only player has achieved
a goal, a draw if both players have achieved a goal, and a loss if only opponent has
achieved a goal. Goals are evaluated, from the perspectives of both players, at the
start of each turn, when control is transferred from one player to another.

� �

Thus
either player might win at the start of each turn, if a goal is true from his perspective.

This class of games has three types of goals. First, a player achieves a stalemate
goal in a position in which a specified player (player or opponent) cannot legally make
any complete moves at the start of his own turn.

� �

Thus, white is stale-mated if he
begins a turn with no legal moves, and a player is not stale-mated if it is the other
player’s turn to move. Every game in this class must have a defined stalemate goal,
as the rules must cover positions in which a player cannot move. However each game
decides whether such an outcome is a win, draw, or loss for the stale-mated player.

Second, a player achieves an eradicate goal if, at the start of any turn after the
initial assignment stage, there are no pieces on the board which match a certain
description. Examples are goals to eliminate the opponent king (Chess, Chinese
Chess, Shogi), to eliminate all the opponent’s pieces (Checkers), or to eliminate all
your own pieces (Giveaway Chess). Note that a description might be complex, allowing
goals to eliminate the opponent’s knights and pawns. Note also that the description
might be of the form: � %�"�'  ���%�'!#�	���( " � � . Since any-player is symmetric for both
players, this implies that both players achieve a goal if there are no more kings on the
board. In other words, this outcome would be a draw.

Third, a player achieves an arrival goal if, at the start of a turn, a piece matching a
certain description occupies a certain square on the board. This allows goals such as
player getting his own knight to the square � � ��� 
 , or player getting opponent’s queen

� �

White places the first piece, and players alternate thereafter. During this phase there are no
captures or promotions. Also, the initial squares upon which pieces are placed typically comprise the
first � ranks for each player, so that the pieces always wind up assembled facing each other across the
board.� �

Note that under the opponent-promotes promotion method, a player begins a turn by promoting his
opponent’s piece (see Section 7.2.4.4), so goals are evaluated before he does this.� �

Note again that promoting an opponent’s piece does not constitute a complete move. In order to be
legal the player must also be able to move or place a piece on the board.
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to the square �3> ��> 
 . � �

7.2.6.1 Disjunctive Goals

An additional source of complexity in the rules of games in this class is that players
can have disjunctive, or multiple, goals, in which a player achieves a goal if any of a
number of conditions arise. For example, white may win the game if either someone
eradicates black’s knights, or white loses all his pieces. Such complex goals are
especially interesting when the separate goals interfere with each other.

� �

7.2.6.2 General Termination

The goals of a game define the primary ways in which a game can end. However, it
is possible that a game reaches a state in which neither player can (or knows how to)
win. To stop such games from continuing forever, two additional rules are assumed
for all games within this class. The first is an � -move rule, which says that the game
automatically ends in a draw after some number of moves have been played. Since
it is difficult to determine just how many moves any game in this class may require,
the choice of � is rather arbitrary. For now we shall leave � at 200 moves (i.e., after
black plays his 100th move, if neither player has won, the game is a draw).

A second rule is included to disallow endless cycles. Although this is not strictly
necessary (since games terminate after � moves anyway), we adopt a rule similar
to the triple repetition rule in Chess, which says that a game is a draw if the same
position has been reached a third time with the same player to move. By position, we
mean the contents of the board and hands of the players (i.e., they possess the same
set of pieces).

� �

7.2.7 Coverage of Existing Games
As an illustration of how chess-like games are defined in this class, Figure 7.3

presents a grammatical representation of the complete rules for American Checkers
as a symmetric chess-like game.

The definition of the class presented here has made continuous reference to existing
games which this class attempts to generalise. Chapter 9.2 discusses the extent to
which this class does in fact cover many existing games, and also provides a proof that

� �

In the absence of certain compulsions, like must capture rules, this effectively means that a rational
player will never move his piece to such a square, thus effectively adding a constraint instead of a goal
to the game. However, it is certainly legal for a program to play such a move, thus losing the game
instantly.� �

It is difficult to imagine a naive evaluation function which could automatically handle these dis-
junctive goals.� �

As no rules in games in this class make use of history, there is no need to discuss history in
determining repetition of position, as is done in Chess.
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GAME american checkers
GOALS stalemate opponent
BOARD SIZE 8 BY 8
BOARD TYPE planar
PROMOTE RANK 8
SETUP man AT ���������	�
��������������������������������������
���������

�������������� ��������� �������������
�������������� ����!
CONSTRAINTS must capture

DEFINE man
MOVING

MOVEMENT
LEAP"
������# SYMMETRY � side !

END MOVEMENT
END MOVING
CAPTURING

CAPTURE
BY � hop !
TYPE [ � opponent ! any piece]
EFFECT remove
MOVEMENT

HOP BEFORE [X = 0]
OVER [X = 1]
AFTER [X = 0]

HOP OVER [ � opponent ! any piece]"
�����	# SYMMETRY � side !

END MOVEMENT
END CAPTURE

END CAPTURING
PROMOTING

PROMOTE TO king
END PROMOTING
CONSTRAINTS continue captures

END DEFINE

DEFINE king
MOVING

MOVEMENT
LEAP"
������# SYMMETRY � forward side !

END MOVEMENT
END MOVING
CAPTURING

CAPTURE
BY � hop !
TYPE [ � opponent ! any piece]
EFFECT remove
MOVEMENT

HOP BEFORE [X = 0]
OVER [X = 1]
AFTER [X = 0]

HOP OVER [ � opponent ! any piece]"
�����	# SYMMETRY � forward side !

END MOVEMENT
END CAPTURE

END CAPTURING
CONSTRAINTS continue captures

END DEFINE

END GAME.

Figure 7.3: Definition of American Checkers as a symmetric chess-like game.
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the class is, in fact, extremely general, in that any finite two-player game of perfect
information can be represented as a symmetric chess-like game.

7.3 Summary
This chapter has defined a class of games to serve as a concrete basis for Metagame-
playing. The class generalises many features of the chess-like games, instances of
which have received much of the attention in � ��� , and represents games in a manner
which preserves the compact structure which makes them appear similar. In order to
increase the chances that arbitrary generated games within this class would be fair to
both players, all games in this class are constrained to be symmetric. This is achieved
by requiring the rules of any instance game to be defined from the perspective of one
player only. A global inversion function then produces the symmetric set of rules from
the perspective of the other player.

The discussion in this chapter has described the motivation and definition of the
class at varying levels of detail. While the detail in some cases may seem excessive, it
serves three main purposes. First, it highlights the considerations and details which
are involved in the process of constructing a class of games for Metagame-playing.
In this respect serves as an example for future research on Metagame problems
centred around different classes of games. Second, it provides the detail necessary
to enable this specific problem, Metagame in symmetric chess-like games, to be used
as a testbed by other researchers. To aid this effort further, a formal semantics of
this class of games is provided in Appendix B. Third, it provides background for later
chapters, which focus on the class of games presented here.

With the class of games fully defined, Chapter 8 will now proceed to develop a
method for generating new instances of this class of games without human assistance.



Chapter 8

Game Generation

Variable rules ... You may invent your own men and assign them ar-
bitrary powers. You may design your own boards. And you can have rule
games.

– Henry Kuttner, Chessboard Planet ([Kuttner, 1983])

8.1 Introduction
This chapter develops a general method for automatically generating problem defini-
tions, and applies this to the definition of symmetric chess-like games to produce a
game generator for this class. Section 8.2 presents the theory and implementation
behind the game generator. By means of example generated games, it is shown in
Section 8.3 that the generator produces a variety of interesting games. Section 8.4
summarises the discussion.

8.2 Game Generator
The goal of game generation, as shown in Figure 8.1, is to produce a wide variety of
games, all of which fall in the same class of games as described by a grammar. We also
want to be able to modify distribution of games generated by changing parameters,
often in the form of probabilities. Finally, the combination of grammar and probabil-
ities may not be enough to constrain the class according to our needs, in which case
the generator should be able to handle a set of constraints.

8.2.1 Stochastic Context-Free Generation
Generation can in general be done either at a syntactic level or a semantic level.
Semantic-level generation corresponds to producing English sentences from intended
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Grammar Probabilities Constraints

Generator

Problem
definition

Figure 8.1: Components of a Problem Generator.

meanings, in conjunction with a grammar which relates sentences to meanings, while
syntactic-level generation corresponds to producing English sentences either directly
from a grammar, or by filtering random strings of words through a grammar.

The approach which is most direct, in that it operates directly on the specification
to which it is to conform, but which requires the least understanding of the use to
which it will be made, is to generate directly from the grammar. This also has the
advantage of clarity, in that it is obvious where the grammar comes from (i.e. it is
provided), but it is not at all obvious where intended game rules might come from.
Thus, this is the approach I have taken here.

The method I have used to generate from the grammar is to attach a probability
to each nondeterministic choice-point, which corresponds to the probability that each
of the possible choices will be taken. This corresponds to generating from a stochastic
context free grammar ( ����� � ).

For example, the clause in the grammar defining movement types is as follows:

�����!# �)#�"�$��B$�'� # ���� ��#�%� # 	 � 	!(�,-# 	 ��� �� � !#�	
This states that a movement type can be either a leaper, a rider, or a hopper. The
probability distribution corresponding to these possibilities is defined as follows:

 !%�	 % �)#�$ # 	�� �)��� # �!#�"�$ $�'� !#	�
,!(�+ $�	 (�
���$�( �B"��-� ��#�%B # 	�� �	���� 	 (�,-# 	��-������ � �� � # 	�� �� ��������

This states the probability that the generator will choose each of these options, when
they are available.
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8.2.2 Constrained �������
A grammar also has associated a set of pre-terminals (pre-terms), in our case names
of pieces. If the generator selected a new symbol each time a piece was needed, we
would be unlikely to have an interesting, or even meaningful game produced. This is
because there are additional extra-grammatical constraints, which mediate between
the syntax and the semantics of the game. This is just the traditional problem that
syntax is always looser than semantics (not every grammatical English sentence has
a meaning, nor does every parse-able Pascal program).

To meet these constraints, the ������� generator is augmented in two ways. First,
it generates in advance the set of pre-terminals (piece-names) which will be used as
the supply of pre-terms of this type throughout generation. Whenever a preterminal
is required by the grammar, it is chosen randomly (or subject to some constraint) from
this set.

8.2.2.1 Interactivity

This method of sharing a set of pre-terminals among all the productions in a grammar
creates an automatic method for building complex patterns of interaction between the
different generated structures in a game. For example, the movement generator
might decide to generate a hopping movement. These movements have a restriction
component, which describes the set of pieces over which a particular hopper can hop.
The restriction component then chooses a subset from the set of piece names. Although
the specific details of the pieces in this subset are inaccessible to the generator, the
inclusion of the name of a particular piece in this restriction component causes the
two pieces to be closely related at a semantic level (in particular, as the hopper and
the piece it can hop over).

8.2.2.2 Constraints

Second, the generator allows the user to attach constraints on some of the choice
points. The constraints reject possible daughters, and generation is repeated until an
acceptable choice is generated. One constraint used in the current generator rejects a
generated piece movement definition if the direction vectors on the movement imply
that it could never be applicable on the current board. Another constraint only accepts
types of goals which do not make the game drawn or easily won. This constraint rejects
the following types of goals:
� Arrival goals predicated on pieces which are in the initial setup. Thus the

only generated arrival goals are those which require promotions in order to be
achieved.

� Eradicate goals predicated on pieces which are not in the initial setup. Such
goals are always achieved by both players at the start of the game, and would
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always result in draws if not rejected.
� Goals subsumed by previously generated goals. These add no information to the

game and would cause the number of distinct goals to be reduced.
� Goals to achieve the opposite of previously generated goals. These goals would

be uninteresting because their achievement would always result in a draw.
�

The constraints used by the current generator may exclude some games which
are nevertheless interesting. However, their addition increased the likelihood that a
generated game was not automatically drawn. Also, it would be possible in principle
to place constraints only on the game as a whole. However, it is computationally much
more efficient to attach constraints directly to the points in the grammar at which
they can first be checked.

8.2.3 Generator Parameters
The probabilities attached to the choice points, and the parameters which are used by
the subtree constraint testers, are thus the parameters of the generator. Interestingly,
they can be used (directly) to affect the distributions of syntactic structures generated
(like larger or smaller piece definitions), and also (indirectly) to influence semantic
aspects of generated games (like more or less constrained goals).

Rule Complexity One property of interest is the complexity (length) of the rules in
a game. This can be controlled by means of a small set of parameters in the genera-
tor which are consulted in order to choose between making a game component more
complex, or leaving it as it is.

�
This allows components to be generated with arbitrar-

ily long descriptions, though longer descriptions are exponentially less probable than
shorter ones. By varying these parameters, we can thus change the overall expected
complexity of the components to which they are associated. Examples of such param-
eters are those attached to the �)��� # ��#�"�$���, #�� and *�%� �$��
	 #���, #�� clauses, which control
the probability of adding another disjunct to these definitions.

Decision Complexity Another statistical property of a game which can be deter-
mined in this way is the degree to which a game allows players to make choices,
instead of assigning arbitrary values to these choices as part of the game definition.
For example, pieces in Shogi promote to exactly one type of new piece each, whereas
pawns in Chess promote to any one of a set of choices, to be decided by the player at
the time of promotion. This property can easily be varied to produce different types of

�
Recall that a draw results when both players have achieved a goal in a position (Section 7.2.6).�
More precisely, several rules choose between two possibilities, one of which is tail-recursive. As-

signing a probability � to choosing the non-recursive case means that the recursion will continue with
probability C���� .
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games, by modifying the distribution attached to the rule which decides, for example,
whether a promotion or initial-setup decision should be arbitrary or not.

Search Complexity A related statistical property of generated games is that of
search complexity, essentially the size of the search space in a particular game. This
can be adjusted, without affecting the rule or decision complexities discussed above,
by altering the probability distribution on board size, as larger board sizes will tend to
allow more possible movements for each piece, and thus more possible moves in each
position in the game. Of course, the parameters mentioned above (such as capture
complexity) also affect the size of the search space, such as increasing increasing the
probability that a piece has different types of movement available.

Certain parameters, in fact, have dramatic consequences on the search space. For
example, the presence of an �� � ��" #�"�$��� �	-� �!��$ #�+ rule, which allows the opponent to
make a promotion decision before starting his move (see section 7.2.4.4), multiplies
the number of possible moves available to him in such a position: if a player had 0
ordinary move movements in a position, but he first has to promote an opponent’s
piece to one of � other pieces, then the total branching factor for that position is �20 . If
he had also to promote whichever piece he moved to one of � pieces, the branching
factor would rise to � �20 .

At the opposite extreme of affecting search complexity, the presence of must capture
constraints has the effect of dramatically reducing the size of the search space.

Locality A final property of interest is locality, which determines the fraction of
a board which can be traversed by a piece in one leap, without regard for the other
squares on the board. The less locality, the more pieces on one side of the board can
directly affect the status of pieces on another side of the board. It is possible that
this affects the degree to which a program could reason about separate aspects of the
board individually. Locality is affected by the modules constraining the restrictions on
riders and hoppers, the module which generates direction vectors, and the 
!��% 	�, ��$�'� #
parameter, as a cylindrical board allows pieces to move from one side to the other with
a direct leap.

Game Complexity Metrics The preceding paragraphs discussed the manner in
which qualitative properties of a game are influenced by specific combinations of pa-
rameters. Our understanding of the generator could be improved by a more systematic
study of the relation between the low-level parameters and high-level properties. This
effort has not yet been undertaken, in part because of the difficulty of quantifying the
complexity of large games. For example, the length of the rules increase the potential
for obscure interactions between rules to influence strategies, but it is also possible
for a game with a long description nevertheless to be strategically simple. Even the
obvious metric on the size of the search-space of the game (e.g. the game tree) cannot
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necessarily be measured or even estimated reliably for large games. The development
of a useful set of game complexity metrics is an area for future work.

8.2.4 Consistency Checking
Deciding whether a generated game can possibly be won generally requires a level of
analysis beyond that implemented in the generator (in fact, the general problem is
NP-Hard, as proved in Section 9.3.1). However, the current generator does perform
a simple analysis to avoid some of the common problems which would otherwise
produce a high proportion of trivial games (see Section 8.2.2.2). Ultimately, it is up
to the programs to decide whether or not a game is trivial or even winnable, which is
indeed an aspect of game analysis traditionally left to humans.

8.2.5 Implementation Details
Including extensive comments, the code which implements the generator for symmet-
ric chess-like games amounts to 2500 lines of Prolog. Under Sicstus Prolog 2.1 patch
8 on a ��� ��� , generating a random game takes under one second.

8.3 A Worked Example
A recurrent point in this thesis has been that existing methods of computer game-
playing have left much of the interesting game analysis to the human researcher, and
that existing methods like minimax do not offer much advice on developing programs
to play a new game. Thus, I developed a class of new games, and a generator for it,
to highlight these issues and provide a test bed for addressing them. This section
provides an example game actually produced by the generator and discusses some
strategies which humans have discovered for this game.

�
Section 8.3.1 explains the

rules of the game. Section 8.3.2 provides my own initial analysis of this game. This
analysis was performed when the generator was first developed, before any programs
existed that could play Metagame. After I published this game and my analysis
of it [Pell, 1992], some other researchers extended my initial analysis to produce
more sophisticated strategies. Section 8.3.3 discusses one such strategy discovered
by another researcher. Section 8.3.4 draws two conclusions from this example. First,
although generated games often look silly at first, the complexity of the rules and
symmetric structure offer chances for interesting strategic analysis. Second, the kind
of game-analysis used to analyse these games does not appear easily amenable to a
naive and general-purpose evaluation function.

�
Appendix D.1 contains more examples of generated games, which were used in a Metagame tour-

nament discussed in Chapter 16.
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8.3.1 Turncoat-Chess
I generated a random game using the generator with parameters set to prefer small
boards and moderate complexity of movements, captures, and goals.

8.3.1.1 Generated Rules

The resulting game, as actually output from the generator, is presented in Figure 8.2
and Figure 8.3. I have replaced some internal symbols with more mnemonic names,
and named this game turncoat-chess.

As the rules of this game are fairly complex, I shall attempt to summarise them
in a more comprehensible form. For a full explanation of the meaning of particular
rules, such as movement powers, see Section 7.2.

8.3.1.2 Summary of Rules

Turncoat-Chess is played on a 5-by-5 planar board. There are three types of pieces:
slug, termite, and firefly. The initial setup is fixed, with pieces placed on the first rank
of each player, symmetrically across the board. Each player starts with one slug, two
termites, and two fireflies. Figure 8.4 shows a representation of the initial position for
turncoat-chess. Fireflies are represented by the symbols � and � , termites by � and/

, and slugs by � and � , for white and black pieces, respectively.
The pieces move and capture in different ways, discussed below, but all pieces can

capture any type or colour of piece, by landing on it, and the captured piece is then
permanently removed from the game. All pieces promote upon reaching the last rank,
at which point the player who owns the piece can replace it with any type of piece,
although for two of the pieces he must transfer ownership of it to the enemy after
promoting.

�

A player wins if he has no legal moves at the start of his turn.
The descriptions of pieces are broken into powers of moving, capturing, and

promoting.
�

Slug The first type of piece is a slug. The slug moves by continually leaping (i.e.
riding) to every second square along a particular rank or file, with the constraint that
for each direction, it must ride as far as it can.

�

A slug’s power to capture is very
restricted: if there are two consecutive fireflies (of any colour) along a file, it can hop
over any number of empty squares, then over the two fireflies, then over any number
of empty squares, and finally capture any piece it lands on. So in Figure 7.2 (Page 53),
if � h1 were a slug and � h4 and � h5 were fireflies, then � h1 could capture � h8,

�

Hence the name, turncoat-chess.
�

It should be remembered that a capturing power can only be used if it results in a piece being
captured.

�

A way to think of this is that it can’t stop riding along a line, until it is blocked.
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GAME turncoat chess
GOALS stalemate player
BOARD SIZE 5 BY 5
BOARD TYPE planar
PROMOTE RANK 5
SETUP termite AT � � ������������������!

slug AT � ����������!
firefly AT � ��� ���	�
���������!

DEFINE slug
MOVING

MOVEMENT
RIDE LONGEST"
������# SYMMETRY all symmetry

END MOVEMENT
END MOVING
CAPTURING

CAPTURE
BY � clobber !
TYPE [any player any piece]
EFFECT remove
MOVEMENT

HOP BEFORE [X ��� 0]
OVER [X = 2]
AFTER [X ��� 0]

HOP OVER [any player � firefly ! ]"
�����	# SYMMETRY � forward side !

END MOVEMENT
END CAPTURE

END CAPTURING
PROMOTING

DECISION player
OPTIONS [ � player ! any piece]

END PROMOTING
END DEFINE

DEFINE termite
MOVING

MOVEMENT
HOP BEFORE [X ��� 0]

OVER [X = 1]
AFTER [X ��� 0]

HOP OVER [any player � termite ! ]"
������# SYMMETRY � side rotation !

END MOVEMENT
MOVEMENT

RIDE LONGEST"
������# SYMMETRY all symmetry

END MOVEMENT
END MOVING
CAPTURING

CAPTURE
BY � clobber !
TYPE [any player any piece]
EFFECT remove
MOVEMENT

LEAP"
�����# SYMMETRY � forward side !

END MOVEMENT
END CAPTURE

END CAPTURING
PROMOTING

DECISION player
OPTIONS [ � opponent ! any piece]

END PROMOTING
END DEFINE

Figure 8.2: Turncoat-Chess, a new game produced by the game generator.
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DEFINE firefly
MOVING

MOVEMENT
LEAP"
������# SYMMETRY all symmetry

END MOVEMENT
MOVEMENT

HOP BEFORE [X ��� 0]
OVER [X = 1]
AFTER [X ��� 0]

HOP OVER [any player � termite ! ]"
������# SYMMETRY � side rotation !

END MOVEMENT
MOVEMENT

LEAP"
������# SYMMETRY all symmetry

END MOVEMENT
MOVEMENT

LEAP"
������# SYMMETRY all symmetry

END MOVEMENT
END MOVING

CAPTURING
CAPTURE

BY � clobber !
TYPE [any player any piece]
EFFECT remove
MOVEMENT

LEAP"
������# SYMMETRY all symmetry

END MOVEMENT
MOVEMENT

RIDE"
��� ��# SYMMETRY � forward side !

END MOVEMENT
END CAPTURE

END CAPTURING
PROMOTING

DECISION player
OPTIONS [ � opponent ! any piece]

END PROMOTING
END DEFINE
END GAME.

Figure 8.3: Turncoat-Chess (continued).

� �

� �

� ��
Termite� ��
Firefly	 ��
Slug

Figure 8.4: Initial board for turncoat chess.
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which is the first piece beyond the fireflies on the h-file. Finally, a slug can promote
to any other piece, and does not change colour on promotion.

Termite The second type of piece is a termite, which moves in one of two ways. First,
it can hop along a line forward, backward, or to either side, but must hop over a single
termite of any colour, though it can pass over any number of empty squares before
and after it. Second, it can move like a chess rook, in which case it makes the longest
ride in a given direction until it is blocked. A termite captures any piece at relative
coordinates � > ��� � , forward and backward, left and right (but not � � �4> � , which requires
rotational symmetry). Finally, a termite promotes to any type of piece, though it then
changes ownership (so a white termite promotes to any type of black piece).

Firefly The third type of piece is a firefly, which has many forms of movement and
capture (see Figure 8.3). Its simple forms of movement are leaping as a chess knight,
leaping 1 square orthogonally, or leaping to any square at relative coordinates � > ��� � or
� � �4> � , in any directions. Its more complicated form of movement is as a knight-hopper,
in which case it must hop over a single termite. For example, in Figure 7.2, a firefly
� f1 could hop over a termite

/
e3, and then land on either of the empty squares d5

and c7.
A firefly captures either by leaping to an orthogonally adjacent square, or leaping

to a square at relative coordinates � > ��� � , � �#> ��� � , � > ����� � , or � �6> ����� � . �

Finally, a firefly
promotes the same way as a termite.

8.3.2 A Quick Analysis
As the rules look extremely complex, it can be difficult for a human to remember
them, much less play a game using them. However, to illustrate the kind of simple
analysis which is typical of humans analysing games, I will give an example of my
own analysis of this game.

8.3.2.1 Envisioning a Win

In order to win, a player must begin a turn having no legal moves. Thus either he
must have no remaining pieces, or they must have no moves. The first case seems
easier to achieve. A player can remove his own pieces either by capturing them, or, in
the case of fireflies and termites, by giving them to the opponent via promotion. As a
player cannot give away a slug, he must either capture it with one of his own pieces,
or first promote it into a termite or firefly, and then promote that piece to give it to the
opponent. As the latter takes more moves, capturing a slug to start with seems the
simplest option.

�

According to the piece definition, it rides along these vectors, but on a 5 by 5 board there is enough
room for only 1 leap.
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8.3.2.2 A Naive Winning Plan

Thus, the simplest plan to win, ignoring opposition, is as follows: first, capture the
rest of one’s own pieces using one of the fireflies, then promote the final firefly, which
will take at least 2 more moves.

8.3.2.3 Two Counter Plans

However, this plan can easily be defeated with any opposition. First, it is not enough
for a player to get rid of his last piece, as the opponent might be able to give him a
piece back, and it is only stalemate if a player begins his turn without any moves.
Second, while a player captures all his pieces with a firefly, the opponent can advance
his own pieces to promotion range (after capturing his own slug first). Then when the
first player has only 1 firefly left, the opponent can promote each piece to give away
several slugs. Slugs are hard to promote, and have limited mobility, so the first player
should be so busy trying to promote the slugs back to fireflies, that the opponent can
capture or give his pieces away by promotion.

8.3.2.4 Initial Conjecture

So, this simple analysis reveals that it is at least possible to win this game, and there
are a set of straightforward plans and counter plans which must be traded off. In the
end, it is likely that one player will be overloaded with slugs, giving the other player
time to win, but the means by which this happens are far from trivial. Thus, while the
rules are strange and complex, the game could prove to be interesting, and certainly
does present some elements of strategic complexity.

8.3.3 Turncoat Chess Revisited
The preceding section was first drafted shortly after the generator was imple-

mented. Thus, I generated an arbitrary game and analysed it for 20 minutes, and at
that point had not yet played against an opponent.

Since that time, many actual Turncoat games have been played, by the author,
other researchers, and several programs. This has resulted in the development of
many interesting new strategies and insights for this game, which has proven itself
to be both interesting and challenging. As an illustration of the potential for strategic
analysis afforded by generated games, I will now discuss one of the most interesting
strategies for this game, discovered by Victor Allis. Allis’ analysis begins with my
initial conjecture above: that giving away pieces as quickly as possible might not be
the strongest strategy. In giving away pieces, I conjectured, a player would lose control
of the game, which could make it easier for the opponent to go on to win (see also the
discussion on mobility in Section 14.2.1, page 122). This was determined to hold for
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� �

� �

(a) Initial

�

�

(b) Before Capture

�
�

(c) Holding a Slug

�

(d) Reorganise

�

�

(e) About to Force

�

�

(f) Forced Capture

�

�

(g) Bad Parity

�

�

(h) Pre-Win

�

(i) Final Position

Figure 8.5: An advanced strategy for Turncoat Chess.
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Turncoat Chess by experience playing it. As this was the case, it appeared for a while
that there was no way to force a win in the game.

However, Allis discovered that under certain conditions it was possible to force the
opponent’s slug onto a square of the wrong parity, so that it could never thereafter go
on to promote. Once this situation has been set up, the player can then proceed to
capture all of his own pieces (with a firefly), and finally promote the firefly into a piece
of the opponent to win the game.

The stages in this strategy are shown in Figure 8.5. The actual positions are
taken from a game in which I used this strategy against

� 
��
, a random-aggressive

Metagame-player discussed in Chapter 13. Diagram (a) is the initial position for
Turncoat Chess. Diagram (b) shows a position after White has captured most of
Black’s pieces (remember that a player wins this game by having no moves, not by
dominating the opponent). Although Black has only to eliminate his last termite
(
/

e5), it is confined to the fifth rank. Since termites must ride as far as possible,
Black has no choice but to move the

/
e5 to b5 and back. While Black has moved back

and forth, White has now maneuvered his own termite to c2, which now captures the/
e5 and promotes to a black slug.

Diagrams (c) and (d) show White reorganising his pieces, all the while confining
Black’s slug to a few squares (remember that slugs must also ride as far as possible).
Diagram (e) is the key position for this strategy. White has set up a row of pieces on
the e-file, � e4, � e3, and � e2. He now plays � c5, moving his slug to take away the
last moving square for Black’s slug � e5 (see Diagram (f)). This is also interesting
because it demonstrated a function for the slug which was not considered in my initial
analysis of the game. I had assumed that slugs were the least valuable piece because
they could not promote directly to an opponent’s piece, but it turns out here that the
slug is valuable because it is the only piece which can move freely on the promotion
rank.

Diagram (f) is the resulting position. In this position, Black has no choice but to
use the restricted capturing power of a slug (to hop over two fireflies and capture a
piece), and is thus forced to capture the � e2 (see Diagram (g)). After making this
capture, however, the � e2 is on a square of the wrong parity for promotion. That is,
since a slug always moves ��� �4> � (with symmetries), and it is now on the second rank,
it can never reach the first rank in order to promote (unless White happened to line
its fireflies up again to facilitate this). As Black can no longer interfere by giving away
a piece, White now captures all the rest of his own pieces with one of his fireflies.
Diagram (h) shows the position after most of these captures have been made. White
now plays � e4x � e5, and promotes into a black slug. Diagram (i) shows the pre-final
position. Black has no moves which promote a piece into a white piece, so White will
start the next move with no legal moves, thus achieving his goal to stalemate himself
and winning the game.
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8.3.4 Discussion
This section presented a typical game produced by the game generator. The game was
not selected because it was in some sense interesting; rather, it was the first game
generated at the time the generator was written up. Like most games produced by the
generator, the rules are more complex and idiosyncratic than those of conventional
board games. Also like most generated games, the rules at first appeared complicated,
arbitrary, and uninteresting in general. However, the game nevertheless has a com-
pact representation which shares a degree of structure with chess-like games. The
game is also symmetric, so the balance of power is relatively fair. Most importantly,
the interaction between the pieces in terms of moving, capturing, and promoting,
presents ample opportunities for game-analysis.

After presenting the rules of the game, this section discussed some examples of
game-analysis applied to it, both by the author and by other researchers. While the
game appeared strange at first, it has proven itself to be interesting and challenging.
This may be the first case of a computer generating a game which proved to be of
interest to human players and researchers.

Finally, the game-analysis examples illustrate the kind of analysis humans per-
form when they are presented with a new game. Similar analyses for other games
can be found in specialist books on these games. Examples can also be found in many
papers on computer game-playing, in which the human begins by analysing the game
for significant features which could form the basis of an evaluation function. Thus far,
though, this type of analysis has been considered a prerequisite for computer game-
playing, and not a subject of research in its own right. Designing programs which can
compete well on arbitrary generated games without human assistance may require
researchers to transfer some of the responsibility for this analysis onto the programs
which actually will play the games.

8.4 Summary
This chapter developed a general method for automatically generating problem defini-
tions for instances of a class of problems. The method is called Constrained Stochastic
Context-Free Generation. It operates by making statistical choices at each decision
point in the grammar defining the class of problems. The probabilities of making
different choices are controlled by parameters, and the structures produced at each
choice point are rejected if they fail to pass user-imposed constraints. This method
of generation is primarily syntactic, in that the only knowledge about the meaning of
the structures is that input into the constraints.

This method of problem generation was used to implement a generator for sym-
metric chess-like games. This chapter discussed the details of this implementation,
which involved the specific parameters and constraints used for this class of games.
The chapter then illustrated the results of the implemented generator by means of an
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example game it has produced, which was later named Turncoat Chess. The discus-
sion showed that the generator is capable of producing games which are interesting
to humans, despite the apparent complexity and unfamiliarity of the rules. The
discussion also presented examples of strategies for playing Turncoat Chess which
were discovered by humans. The extent to which current techniques in ����� must
be extended to enable programs to perform the type of sophisticated game-analysis
demonstrated here is at present unknown.
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Chapter 9

Analysis of Class of Games

The idea ... is that Azad is so complex, so subtle, so flexible and so
demanding that it is as precise and comprehensive a model of life as it is
possible to construct. Whoever succeeds at the game succeeds in life; the
same qualities are required in each to ensure dominance.

– Ian Banks, The Player of Games ([Banks, 1988])

9.1 Introduction
This chapter analyses the class of symmetric chess-like games in detail to assess its
usefulness as a basis for Metagame-playing. Section 9.2 discusses the properties of the
real and theoretical games which this class contains, and provides practical examples
of the expressive power by means of representing some commonly-known games in
this class. Section 9.3 provides some results on the complexity of reasoning about
games in the class. The most important result of this section is that the class contains
games for which answering simple questions (such as whether a particular goal could
ever be achieved) can be combinatorially difficult. This suggests that strong playing
programs will have to analyse games individually, as the class is too general to be fully
analysed in advance. Section 9.4 reviews the analysis from this chapter and discusses
the extent to which this class fulfills the desiderata on classes for Metagame-playing
presented in Section 6.2.1. Section 9.5 summarises the chapter.

9.2 Coverage
Now that we have described the class of games in detail, we can discuss the general
coverage of this class.

77
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9.2.1 Empirical
As is discussed in Section 7.1, the class of symmetric chess-like games was deliberately
designed to be a generalisation which was restricted enough to preserve the structure
of some real games, while general enough to allow complex interactions and a variety
of games. This goal was assisted by drawing on research from the field of Fairy Chess,
as developed by T.R. Dawson ([Dickins, 1971]). This field specialises in developing
new variants and generalisations of Chess. Dawson’s Theory of Movements formed
the basis for the movement types (leap, ride, and hop) discussed in Section 7.2.4.1.
This allows the class defined here to capture the basic forms of movement encountered
not only in existing standard chess-like games, like Chess, Shogi, and Checkers, but
also to handle many of the variants developed in Fairy Chess.

Although this allows most of the basic movements to be represented in this class,
there are several aspects of common games which seemed too idiosyncratic to gener-
alise. For example, it is difficult to find a natural generalisation of the en passant or
castling rules in Chess, or of the rule in Shogi which prohibits a player from placing
a pawn on a file on which he already has a pawn. Thus, these rules cannot easily be
represented in the class defined here.

Another point about empirical coverage of this class is that players are allowed to
make moves which would lose the game instantly, since piece movements are separate
from goal criteria. For example, in Chess it is illegal to leave your king in check, and
the game ends if a player can make no legal moves. In the class defined here, it is legal
to move into check, but doing so would cause a loss of the game against any opponent
capable of finding a one-ply win.

�

9.2.1.1 Examples of Known Games

By using various representational tricks, it is possible to implement most of the rules
of many games, including the following:

� Chess
� Giveaway Chess
� Replacement Chess
� Chinese Chess
� Shogi
� Checkers
� Lose Checkers

�
Thus the distinction between checkmate and stalemate in Chess cannot easily be fully represented.
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� Tic Tac Toe
� Go-Moku
The encodings of several of these games as symmetric chess-like games are pre-

sented in Appendix D.

9.2.1.2 Challenges of Representation

While it seems natural that the various chess variations can be represented as sym-
metric chess-like games, it may seem odd that Tic Tac Toe can be so represented also.
The reason this is strange is that the goal of Tic Tac Toe, to have three of one’s pieces
in a row, does not correspond to any of the goals in this class. As discussed in Sec-
tion 7.2.6, a stalemate goal is true when a player has no legal moves at the start of his
turn, an arrival goal is true if a player has a piece matching a certain description on
a certain square, and an eradicate goal is true if a player has no pieces on the board
matching a certain description. The closest of these goals to the goal of Tic Tac Toe is
the arrival goal, but as goals in symmetric chess-like games are disjunctive, there is
no natural way to represent a conjunctive arrival goal.

The method by which Tic Tac Toe can be represented, then, illustrates that this
class of games is actually more flexible than one might have imagined.

The initial board of Tic Tac Toe, when represented as a symmetric chess-like game,
is displayed in Figure 9.1, Diagram (a). The central 3 by 3 region is the main playing
board, and the top and bottom regions contain two types of pieces, marked � and � ,
for man and dummy, respective. A � moves by leaping exactly four squares forward
(backward) for player (opponent), which corresponds to placing a piece on the board
in the original game. Now, for reasons explained above we cannot easily represent
the concept of a player winning when he has three in a row. However, we can use
the capturing movements to define a situation where a player can make a winning
move (arriving a piece to a certain square) exactly in those positions in which he could
achieve three pieces in a row.

To this end, Figure 9.2 displays the definition of a piece which has been moved
onto the board, which is marked in Figure 9.1 as a

�
. The capturing definitions

ensure that whenever a player has two pieces in a line with the third point on the
line empty (Diagram (b)), there exists a capture movement which allows that player
on his next turn to claim a win (Diagram (c)). Thus, this game would seem to be
strategically isomorphic (in the sense of [Banerji and Ernst, 1971]) to tic-tac-toe,
although it superficially looks very much different. Developing a program which
could perform the reasoning necessary to realize that this game was equivalent to
the standard representation of Tic Tac Toe, would be an interesting area for future
research.

�

�
While the ride capture movements in this representation apply only to the case where two pieces

are in a line, a similar technique can be used for games with goals to have at least N pieces in a row. The
method makes use of hopping movements and continue-capture constraints, and is straightforward.
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�
� �
�

� �

	 	
�

� �
�

(a) Initial

� �
�

� �
�

	 	
�

� �
�

(b) Pre-Win

� �
�

� �
�

	 	
�

� �
�

(c) Win

� ��
Man	 ��
Dummy� ��
Onboard� ��
Win

Figure 9.1: Boards for Tic Tac Toe as a symmetric chess-like game. A � hops 4 forward
(backward for black) and promotes into a

�
. A

�
can capture another

�
to promote

into a � (and win the game) exactly when the player could have made 3-in-a-row. The
� s stop the

�
s from hopping off the main board. The full encoding of this game is in

Appendix D.2.1.
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DEFINE on_board
capturing
capture by ( clobber ,
type [ ( player ,6( on_board , ]
effect remove
movement
ride min 2 max 2
<1,0> symmetry ( rotation ,

end movement
movement
ride min 2 max 2
<1,1> symmetry ( side ,

end movement
end capture

capture by ( retrieve ,

type [ ( player ,�( on_board , ]
effect remove

movement
leap
<1,0> symmetry all_symmetry

end movement
movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting promote_to win
end promoting

end define

Figure 9.2: Piece definition for Tic-Tac-Toe as a symmetric chess-like game.

9.2.2 Theoretical
The Tic Tac Toe example above showed that the class of symmetric chess-like games
covers more games than might have appeared from its (intentionally) restricted syn-
tax. Given that some games are more naturally represented, and some less so, an
obvious question is: ultimately, what can be represented as a symmetric chess-like
game? In this section we prove that at the level of game trees, the class of symmetric
chess-like games contains all the finite two player games of perfect information.

We begin with a few definitions:

9.2.2.1 Definitions

Following Banerji and Ernst ([Banerji and Ernst, 1971]), we shall define a game as
follows:

A two-person game is a 5-tuple �
����� �	� ��� � � � . S is the set of game situations.� is the legal move relation:  � $ if and only if $ is the result of making a legal move

from situation  . � is the set of situations in which the first player (henceforth called
� 1 � � " � ) is to move. � is the set of situations in which � 1 � � " � has achieved a goal, and
L is the set in which � � �/�)0 " 0 $ has achieved a goal. We define 8 to be � � � , the set
of drawing positions, and shall say that � � 8 and � � 8 are winning, and losing
positions, respectively.

Finally, two-person games must satisfy the following postulates:
� G0: � ��� � ���

� .
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� G1: Dom( � ) � � � ��� �

� G2:  � $�� �  9 ��� $ �9 � 


G0 indicates that the terminal positions are in fact positions in the game.
G1 requires that there are no legal moves from a position in which at least one player
has achieved a goal.
G2 ensures that there is strict alternation between players.

A game is a perfect information game if both players can distinguish all situations
in S (they know perfectly which state they are in), and if R is deterministic (if sRt and
a player chooses t, the resulting position will be the current state of the game).

A game is finite if S is finite (thus a finite game might never end, but it is finite
because the players will visit only a finite set of positions).

9.2.2.2 Coverage Theorem

With these definitions, we now present the following theorem:

Theorem 1 For every finite two player game of perfect information � there exists a
corresponding symmetric chess-like game � such that � and � have the same game
tree.

Proof:
Suppose � is a finite two player game of perfect information. Then � can be

represented as a finite graph, where the nodes represent positions, and a directed
edge exists between two nodes 0 � and 0 > just in case the player to move in 0 � can
choose to move to 0 > .

We shall now represent � as a symmetric chess-like game � . For each position.
	 in � we define a corresponding piece  	 in � , such that the piece  	 can promote to
���� � ��"!#�"�$  �� � exactly when there is a legal move from position .	 to position . � , and � is the piece corresponding to . � .

For each position .�� in win(player) we make a corresponding goal to arrive �� ���%�' # 	 � � on the board, and conversely for �� � ��"!#�"�$ .
There is now a 1-1 correspondence between positions. The same player is to move

in any pair of corresponding positions, and a player wins in a position in the finite
two-player game of perfect information just in case the same player would win in the
corresponding position in the symmetric chess-like game corresponding to it. Thus
the two games have the same game tree.

���

�
Actually, they have the same game graph, which implies they have the same tree.
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9.2.2.3 Discussion

This result is provided more for completeness than actual utility: while theoretically
possible, it is clearly impractical to represent a game of reasonable size by explicitly
encoding its game tree.

A more interesting result would be one characterising the class of games which
can be represented as symmetric chess-like games using an abstract representation,
in the sense of Section 3.2.1.1. For example, one conjecture might be as follows:

Conjecture 1 Any game with rules representable as a Prolog program � has a rep-
resentation as a symmetric chess-like game whose size is polynomial in the size of� .

This particular conjecture does not seem likely at present. For example, the game of
Go has a small representation as a Prolog program, but it is not clear how any game
isomorphic to Go could be represented as a symmetric chess-like game. One problem
is that the capture method used in Go, that of surrounding a set of connected pieces,
is different from any of the capture methods in this class. Although there might be a
symmetric chess-like game in which the players are forced to make a series of moves
which have the net effect of removing a captured group, such a construction has yet to
be suggested. Also useful, of course, would be to find a counter-example which refutes
a conjecture like the above. This would help to place tighter constraints on the games
compactly representable in this class.

A second type of useful result would characterise the games which are contained
in this class under different assumptions about the strategic abilities of the players.
For example, the version of Tic Tac Toe discussed above was not strictly isomorphic
to the original game. Our version forces players to play immediately winning moves
whenever possible.

�

However, this means that there are positions reachable in Tic
Tac Toe proper that are not reachable in our encoding of it.

�

The same consideration
applies to our representation of chess (see Appendix D.2.2), which does not legally
prohibit a player from leaving his king in check. However, if a player is doing one full
ply of lookahead, he will certainly never leave his king so threatened. Thus, he will
play effectively the same game as he would have with the check rule in operation.

9.3 Complexity of Reasoning about the Games
The previous section discussed the generality of the class of symmetric chess-like
games, in terms of which types of games could be represented in it. In this section we
consider the computational complexity of determining certain properties of games in
this class.

�

If players are not forced to take wins when available, there are positions in which a player constructs
three-in-a-row without winning by the game definition.

�

The interested reader is invited to construct such a position.
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The first question we are interested in is the complexity of deciding whether a
player could possibly achieve, as opposed to force, a particular goal. This question
came up in the design of the generator, as it would have been desirable to have the
generator or a playing program simplify game definitions by removing goals which
could not possibly be achieved (see Section 8.2.4). One type of goal is that of eradicating
a piece of a certain type � . It happens that generated games contain such eradicate
goals, even though it is clear that they could never be achieved. For example, if there
are no pieces which are defined to be able to capture pieces of type � , and pieces of
type � promote to themselves, then it is obvious that once there is a piece � on the
board, it will remain there forever (i.e. it is invariant).

9.3.1 Possible Wins is NP-Hard
It turns out, as again might have been expected, that this question is not easy to
answer in the general case:

Theorem 2 The question: “Given a symmetric chess-like game G, can a player possibly
win G?” is NP-hard.

Proof: (by reduction from 3SAT).
We show that an arbitrary instance of the domain 3SAT [Garey and Johnson, 1979,

page 46] can be transformed into an instance of this question in a polynomial number
of steps. 3SAT is a restricted version of the Satisfiability problem which is often used
to prove NP-Completeness. For full definitions of 3SAT and NP-Completeness, see
[Garey and Johnson, 1979].

The basic idea of the proof is that we can represent assignments to propositional
variables by choice of promotion for the corresponding piece. Thus, for each proposition� 	 in a 3SAT problem, we define a corresponding piece � �21 	 , which moves onto the main
board (as in our representation of Tic Tac Toe in section 9.2) and promotes to either$%��� " 	 or � � 1  " 	 .

This gives us a way of generating any possible total truth assignment (tta) on this
set of propositions. Now we will be done if we can make a goal in our language such
that we can achieve this goal if and only if some tta satisfies the set of constraints.

Let the constraints in an instance of 3SAT be � � �
� � �

� ��� . For each constraint � � �
���
	���

� � � , define a corresponding piece $ "  $ 	 , which can move left or right as it likes
(thus choosing a proposition which will satisfy it), and only moves forward by hopping
over the piece representing one of its disjuncts instantiated correctly, like [ ( player ,
( $%��� "�� � ���21  "�� � � � , ]. After hopping, let it promote to a piece called constrained, which
can move around the region, to clear room for other constraints to hop through also.

We also start the game with a satisfier piece, who sits leftmost on the row where the
propositions move to. The satisfier’s only move is to hop forward over 0 constrained
pieces (with no empty squares before or after) where 0 is the number of constraints.
After hopping, it promotes to a piece called satisfied.
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Now let the goal of a symmetric chess-like game be to arrive a satisfied on that
final square. In order to achieve the goal (i.e. win the game), we must do the following:

1. Find a fixed assignment of propositions such that each constraint will be able to
hop over one of its component propositions.

2. For each constraint: (a) Hop over a proposition which satisfies it. Finding such
a proposition takes at worst O(P) time where P is number of propositions. (b)
Move the constraint to clear room for others. The simplest method is to require
that the 0 th constraint move to square(1,N+1).

3. When all 0 constraints are lined up in front of the satisfier, it can then hop over
them to win.

As this is our only goal to win the game, the game can be won if and only if we have
a satisfied on the board. This happens only when 0 constrained are lined up in front
of a satisfier. The only way we increase the number of constrained pieces anywhere is
when we promote a constraint into a constrained. Since this number is monotonically
increasing (constrained pieces do not promote into anything else), we will have 0 of
them only when we have promoted all 0 constraint pieces.

We can only promote a constraint piece when the total assignment at that time
satisfies it. Thus we can only promote all of them when, at successive states, the tta
at that state satisfies each constraint in order.

Since pieces corresponding to propositions never move once they are on the board,
the tta is also monotonic, in that earlier ttas are always generalisations of later ttas,
so that any later tta would satisfy any constraints that all earlier ones did. Thus, the
same (and final) tta satisfies all the constraints.

Thus, the set of constraints is satisfiable if and only if the game can be won.
Therefore, if we had a program to determine, in polynomial time, if an arbitrary

symmetric chess-like game could be won, we could use this program to solve, in
polynomial time, any 3SAT problem, so it is at least as hard as 3SAT. Therefore, the
symmetric chess-like game winnability problem is NP-hard.

�

Discussion This theorem showed that determining whether a symmetric chess-like
game game could possibly end in a win for one player is NP-hard. An open question
is whether this problem is also in NP, and thus NP-Complete. At present we do not
have an answer to this question.

The difficulty in answering stems from the fact that the problem is not necessarily
in NP, because solution sequences to arbitrary symmetric chess-like games may be of
length exponential in the size of the game description. This means we could not verify
a proposed sequence in time polynomial in just the game description.

�

For example,
consider a game on a million by million board, where a player wins if a piece can reach

�

I am grateful to Carl Witty for this observation.
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a square on the opposite side of the board. As the board size is represented in decimal
notation in the game description, the board size component of the game description
is only 7 digits long, while the maximum solution length is an exponential function of
this.

We note in passing that the questions (a) is a given move legal from a given
position, and (b) is a goal is achieved in a given position, can both be answered in
time polynomial in the length of the game description. These observations can be
determined by inspection from the domain theory for symmetric chess-like games
provided as Appendix B. From this it follows that the question would be in NP if it
were possible to determine a polynomial bound on the length of the shortest move
sequence to achieve a goal from a given position. At present the existence of such a
bound does not appear likely.

9.3.2 Forced Wins is NP-Hard
Before we complete this section, we present two more results about the complexity of
determining if a player could force a win in an arbitrary game:

Theorem 3 The question: “Can a player force a win in a symmetric chess-like game
from a given position?” is NP-hard.

Proof: this problem must be at least as hard as determining whether a game could
possibly be won at all.

9.3.3 Forced Wins is PSPACE-Hard
Finally, this problem is also PSPACE-hard:

Theorem 4 The question: “Can a player force a win in a symmetric chess-like game
from a given position?” is PSPACE-hard.

Proof: this follows from the similar result on NxN checkers ([Fraenkel et al., 1978]),
and the fact that checkers can be represented as a symmetric chess-like game (Fig-
ure 7.3).

9.4 Desiderata Revisited
Section 6.2.1 stated some desiderata for good classes of games to be used in a given
application of the general idea of Metagame. Section 4.2.3.2 suggested that a signifi-
cant effort could be devoted to ensuring that a given research problem is appropriate
for the goals it is supposed to further. In this section we restate these desiderata and
discuss the extent to which we have observed the class of symmetric chess-like games
to fulfill them. The desiderata were as follows:



9.4. DESIDERATA REVISITED 87

� Coverage: A good class should be large enough to include several games actually
played by humans.

� Diversity: A class should be diverse enough to include arbitrarily many possibly
different games, to discourage researchers from exhaustively analysing each
possible game and still building their own analysis into the program.

� Structure: A class should still be small enough to represent the structure which
at first blush makes the individual games appear similar.

� Varying Complexity: The generated games should be of varying degrees and
dimensions of complexity, so that different games afford different analysis meth-
ods.

� Extensibility: It should be easy to generalise the class to increase the coverage
of known and unknown games.

These desiderata are generally informal, and serve more for motivation than as
rigid constraints. However, following the discussion in this chapter and in Chapters
7 and 8, it should now be clear that the class of symmetric chess-like games measures
favourably on each criterion.

9.4.1 Coverage
In terms of coverage, Section 9.2.1 has shown empirically that the class does include at
least most of the rules of many games actually played by humans. Some rules, which
appear to be details of these games, are not included in our current representations
of them. Section 9.2.2 has also shown that the entire class of finite, two-player games
of perfect information are included in the class, although this does leave open the
question of whether all such games could be compactly represented. Types of games
that cannot be compactly represented are exponentially unlikely to be produced by a
generator.

9.4.2 Diversity
As for diversity of this class, Section 9.2.1 has shown empirically that this class
contains a variety of qualitatively different games, including many which do not on
the surface seem even chess-like (like Tic Tac Toe). Section 9.3 has also shown that
the class contains games corresponding to all logic satisfiability problems, for which
answering even simple questions can be combinatorially difficult. As a consequence,
humans could not in advance analyse all possible games unless they could do the same
for all NP-complete problems.

It should be pointed out that the discussion of the class in this chapter does not
demonstrate conclusively that the current game generator with a particular setting
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of parameters does in fact generate such diverse problems with high likelihood. Al-
though practical experience with the generator does indicate that the generated games
are diverse in some sense, a more thorough analysis of the game generator could make
this more convincing.

9.4.3 Structure
This class of games was explicitly designed to represent games in a manner preserving
their structure. The success in this respect is shown by the compactness with which
real games have been encoded as instances of this class. For example, the definitions
of checkers and Tic Tac Toe as instances require one page each, and chess requires
only two. This means that we can expect to benefit from previous work on known
games since we have maintained the structure which past work exploited. We can
also expect that a small generalisation of current game-specific methods will enable
programs to play automatically a large set of games with similar structure to the
games for which the original methods were developed.

9.4.4 Varying Complexity
As discussed in Section 8.2.3, the generator parameters can be modified to change
the distribution of generated games having various degrees and types of complexity.
For example, modifying the mean board size corresponds to increasing the average
branching factor, while modifying the mean number of pieces increases the complexity
of the rules and piece interactions. Thus the class and generator can be used to explore
the effectiveness of different analysis and search methods on different distributions
of problems.

9.4.5 Extensibility
The current class of games is itself the generalisation of several earlier, more restricted
classes. It is easy to generalise the class by adding new types of movements, captures,
promotion, capture effects, goals, and so on.

For example, the class could be extended to cover (compactly) games like Othello
�

by adding a bracket capture-method, a conversion capture-effect, and a goal type based
on the relative number of pieces owned by both players at the end of the game.

�

�

It is possible that a game isomorphic to Othello could be compactly represented in the current class.
Because all captures in the present class have the effect of removing the pieces from the board, it is
hard to see how the effect of in-place piece conversion used in Othello would be represented.

�

The changes just mentioned will make sense to readers familiar with Othello. Describing them
formally here would be unnecessarily detailed.
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9.5 Summary
This chapter has analysed the class of symmetric chess-like games in detail to assess
its usefulness as a basis for Metagame-playing. Section 9.2 characterised the games
which are instances of this class. The section showed that most of the rules of many
games which have been studied in the literature can be represented compactly as
instances of this class. For some rules which are highly idiosyncratic, it is not clear
that they can be represented compactly in this class. The section also proved a theorem
which stated that all finite two-player games of perfect information can be represented
in this class, but it is an open question precisely which of these could be represented
compactly. Section 9.3 addressed the computational properties of games which can be
represented compactly in this class. One interesting result proved in the section is that
deciding whether an arbitrary instance game could end in a win for one player (even if
both players cooperated) was combinatorially hard (i.e. NP-hard). Finally, Section 9.4
assessed this class of games with respect to each the desiderata for Metagame-classes
layed out in Section 6.2.1. The section showed that the class measures reasonably well
in terms of coverage, diversity, structure, varying complexity, and extensibility. This
implies that the problem of ����� -Metagame is a good instance of a Metagame research
problem, and that competitive performance on this new problem will be evidence of
increased general ability in game-playing.
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Chapter 10

Summary of Part II

This part of the thesis has discussed both the general issues involved in the con-
struction of concrete Metagame research problems and the construction of one spe-
cific Metagame research problem, called Metagame in symmetric chess-like games, or����� -Metagame.

Chapter 7 defined a class of games to serve as a concrete basis for Metagame-
playing. The class generalises many features of the chess-like games, instances of
which have received much of the attention in � ��� , and represents games in a manner
which preserves the compact structure which makes them appear similar. In order to
increase the chances that arbitrary generated games within this class would be fair to
both players, all games in this class are constrained to be symmetric. This is achieved
by requiring the rules of any instance game to be defined from the perspective of one
player only. A global inversion function then produces the symmetric set of rules from
the perspective of the other player. The chapter provided the detail necessary to enable
this specific problem, ����� -Metagame, to be used as a testbed by other researchers.
The definition consisted of a formal syntax in which game rules will be encoded and a
formal semantics in which the rules will be interpreted.

Chapter 8 developed a general method for automatically generating problem defini-
tions for instances of a class of problems. The method is called Constrained Stochastic
Context-Free Generation. It operates by making statistical choices at each decision
point in the grammar defining the class of problems. The probabilities of making
different choices are controlled by parameters, and the structures produced at each
choice point are rejected if they fail to pass user-imposed constraints. This method
of problem generation was used to implement a generator for symmetric chess-like
games. The generator has produced games which are objects of interest in their own
right, despite the apparent complexity and unfamiliarity of the rules.

With the class and generator fully instantiated, Chapter 9 analysed the class of
symmetric chess-like games in detail to assess its usefulness as a basis for Metagame-
playing. The chapter analysed the coverage and computational properties of the class
and then assessed the class of games as constrained by the generator with respect to
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each the desiderata for Metagame-classes layed out in the introduction to this part
of the thesis (Chapter 6). The chapter showed that the class measures reasonably
well in terms of coverage, diversity, structure, varying complexity, and extensibility.
The conclusion from this is that the problem of ����� -Metagame is a good instance of a
Metagame research problem, and that competitive performance on this problem will
be evidence of increased general ability in game-playing.

Thus, the work in this part of the thesis offers a new research challenge, ����� -
Metagame. This problem was designed with the explicit intention that strong per-
formance on the problem should correlate with increased generality, flexibility, and
autonomy. Having spent substantial effort assuring ourselves that the class of sym-
metric chess-like games satisfies our desiderata, one logical next step is to construct
programs to play ����� -Metagame. Part III will now document progress to date in
addressing this new research problem.
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Chapter 11

Introduction to Part III

11.1 Introduction
Part II of the thesis has introduced a new research problem, called Metagame in
symmetric chess-like games, or simply ����� -Metagame. The problem is to design
programs to play unknown games in a large but well-defined class, as output by a
game generator. This part of the thesis discusses both the general issues involved
in the construction of Metagame-playing programs and the specific directions which
have been taken in the development and implementation of the first programs to
address this new problem.

11.2 The Problem
As shown in Figure 11.1, repeated from Chapter 4 (page 96), the rules of specific
games will only be generated after the program is entered in competition with other
programs, at which point the human is no longer able to modify the program in any
way.

Because of this, any game-specific optimisations and analysis must be performed
by the program, although the human is still free (and even encouraged) to exploit all
information available in advance of competition. As indicated in the figure, the fol-
lowing sources of information can be exploited when constructing a playing program:
� the definition of the class of games
� the details of a game generator
� general game knowledge
� resource bounds

Now, given the above sources of information, the following questions must be
addressed as we try to develop a playing program:
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Game
rules
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bounds ^
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Class of
games

Game 
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context

Figure 11.1: Metagame-playing with new games (repeated from Figure 4.1).

Generality: How do we make a program general enough to play legally all the games
in the class without human assistance (regardless of playing well)?

Efficiency: Does generality necessarily imply inefficiency, or can the program make
itself more efficient once given the rules of a particular game?

Search: Is it easy to build a strong player for this whole class using just game-tree-
search and a naive evaluation function, or are more sophisticated techniques
necessary?

Knowledge Acquisition: How do we find general knowledge and strategies that
might be useful for many games in this class, when at present we have only
knowledge and strategies that are useful for specific games within the class?

Knowledge Representation: How can we represent general knowledge to a playing
program without knowing the details of specific game rules?

Competitive Advantage: Does the knowledge and search provided to the program
actually provide it with a competitive advantage on games unknown to its pro-
grammer in advance of the competition?

11.3 Overview
These questions are discussed in turn in the following chapters. Chapter 12 addresses
the linked issues of generality and efficiency, and shows that it is possible to achieve



11.3. OVERVIEW 97

both of these goals to some extent by shifting some of the work of building special-
purpose programs onto the program itself. Chapter 13 observes that several aspects
of game-tree-search need special consideration in this more general context, but that
standard methods can still be used to construct a search engine which enables a pro-
gram to search as deeply as resource bounds allow, on any game in the class. However,
the chapter does point out that the search engine requires a good evaluation function
for each game the program plays. In order to provide such a function, Chapter 14
considers the issue of knowledge acquisition. The chapter presents several meth-
ods which have been useful in generalising existing game-specific knowledge and in
analysing by hand the details of the class in order to isolate important general strate-
gies. Chapter 15 then discusses how some general strategic processing motivated by
the preceding analysis has been implemented in a program, called

��� ��
��
������
. When

presented with the rules of a specific game,
��� ��
��
������

analyses the game to convert
the general strategies into a game-specific evaluation function which can then be used
by the search engine to play the specific game without human assistance. Chapter 16
discusses experiments which assess the extent to which the knowledge encoded in���	��
��
������

provides it with a competitive advantage across games unseen before the
time of competition. Chapter 17 provides examples of

���	��
��
������
playing the known

games of chess and checkers against humans and specialised programs in order to
identify areas for improvement. Finally, Chapter 18 concludes this part of the thesis.
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Chapter 12

Representation and Efficiency

12.1 Introduction
Of particular importance in developing more general problem solving systems, such
as a Metagame-playing program, are the linked issues of representation and efficiency.
As discussed in [Russell and Wefald, 1992], AI is concerned with making reasonable
decisions with limited resources. If we neglect time concerns, then all the games in this
class can be seen, from the pure game-theoretic perspective, as “trivial”, in that their
value can be calculated perfectly [von Neumann and Morgenstern, 1944]. If we take
time resources into consideration, however, it is clear that programs which perform
their basic computations (such as move generation) more efficiently than others have
a marked competitive advantage, other factors being equal. This explains why much
current research in ����� focusses on extremely efficient implementations of the basic
computations, to the extent that each idiosyncrasy of the rules of a particular game are
optimised in advance by the designers of the playing program (for example, [Ebeling,
1986]).

However, an approach relying on a highly-efficient but special-purpose represen-
tation encounters difficulties when applied to developing a ����� -Metagame-player.
First, as the class itself is fairly general (see Section 9.2), it is difficult to see a way
of hand-optimising the entire class of games in advance. Second, we would like to
represent the rules in a general and declarative fashion, so that the program can
explicitly reason about them for a variety of purposes.

A natural way to reconcile these two opposing goals to some extent is to automate
the process by which a general program is specialised to handle specific sets of prob-
lems. Two well-understood techniques for doing this are partial evaluation [Sahlin,
1991; van Harmelen and Bundy, 1988] and abstract interpretation [Cousot and Cousot,
1977; Cousot and Cousot, 1992]. Using these techniques, we can represent the seman-
tics of the class of games in a general and declarative way, but then have the program
transform this representation into a more efficient version once it is presented with
the rules of a new game. Consistent with the philosophy of Metagame, this process

99



100 CHAPTER 12. REPRESENTATION AND EFFICIENCY

can be viewed as moving some of the responsibility for game analysis (that concerned
with efficiency) from the researcher to the program itself.

The rest of this chapter elaborates on the issues of representation and efficiency
in our construction of a Metagame player. Section 12.2 discusses our representation
of the semantics, and Section 12.3 illustrates the methods used to specialise this
general representation into one more optimised for particular games. Section 12.4
summarises the chapter.

12.2 Declarative Representation
The input to a playing program is a game definition in the grammar of Appendix A.1 .
The program must interpret this game as an instance of symmetric chess-like games,
and then play it according to its interpretation of these rules. There are essentially
two straightforward ways to bring this about.

One approach would be to write a program to convert the grammatical game
definition directly into a program in some language which plays according to the
interpretation of that definition. Another approach, and that taken here, is to view
the class itself as a meta-game: the class represents the total set of possible moves
which could be made in any position, in any game which is an instance of it. A legal
move (or any other property) in a position in a particular game � , then, can be seen
as an instance of all the possible moves (or other properties) such that � satisfies the
conditions on the game which validate that move (or property). This has the advantage
over the first approach, in that the relationship between all particular games in the
class is here specified declaratively, in addition to the relationship between positions
in a particular game. This might facilitate analogical reasoning across games (see
[Collins and Birnbaum, 1988]).

12.2.1 Game description language
To this end, we have represented the rules for the entire class of games in a game
description language (gdl). The syntax and semantics of this language is very similar
to Prolog, with the addition of constructs which access an implicit current state, current
player, and current game. These constructs are as follows:
� $�	 �!# �



� : � is a state-dependent property, which is true in the current state of

the game.
� %�,�,��



� : add state-dependent property � to the current state.

� , # � �


� : delete state-dependent property � from the current state.

� *���"�$�	-� � �


��%�'!# 	 � : true if Player is the player on move in the current state of the

game.
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� �!% ��#��


	-#�, : � � " � is a game-dependent property, which is true of the current game,

from the perspective of the current player.
�

� $�	-%�"�+ �!#�	 *���"�$
	 � � : transfers control from the player currently in control to the
opponent.

As an example, Figure 12.1 displays a portion of the domain theory for symmetric
chess-like games, as represented in gdl. Our encoding of this theory represents a
legal move as a sequence of legal sub-moves, or  �+ # � , ������ # 	 %�$ ��	!+ , and the rules in
the figure are a subset of those defining a moving portion of a move (see the discussion
on moves in Section A.2). Thus, these rules say that if the current game has a global
���)+B$ *�%� �$���	-# rule, the current player must make a capturing movement if he has one
available, or a non-capturing movement if not. Otherwise, he can make a locally-
constrained move, which allows him to move a piece of his choice, and then capture or
move normally based on local constraints on the piece. A full semantics of the class of
games using gdl is presented in Appendix B.

The important point to note about this representation is that all the rules are
expressed without explicit reference to the current game or to the current state, i.e. the
game and state do not appear as arguments in any of the rules. In some ways, this is
syntactically cleaner than representations which have state as an explicit argument in
their domain axioms (for example, the situation calculus [Flann and Dietterich, 1989;
Genesereth and Nilsson, 1987; Hölldobler, 1992]), as we can transform from implicit
to explicit representation quite easily, whereas the opposite direction requires giving
a particular argument of certain predicates (the state predicates) a special status
throughout any routines which operate on a theory so expressed.

In our representation, the meanings of these indexical predicates are expressed in
the interpreter for this language. This interpreter has explicit arguments for these
predicates and interprets indexical expressions in gdl by binding these variables
appropriately.

The gdl meta-interpreter is displayed in Figure 12.2. The first six clauses are
standard for implementing a Prolog interpreter in Prolog, and the rest (starting with
the case for $
	��!# � � �B" � ) define the special constructs used for gdl, as discussed above.

12.2.2 Flexibility
One advantage to this declarative representation of the interpreter and indexical
predicates, as well as the rules defining the class, is that they can all be processed
and modified by a program in a variety of ways, and it is easy to use different state
representations for different purposes. For example, implementing $
	��!# (B" , %�,�, (B" ,
and ,-# � ( " as relations between bags of properties corresponds to a ��� ��� � � -like

�
Recall that the rules for the opponent are the result of applying a symmetric inversion to the rules

from player’s perspective (Section 7.2.2).
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� �����
	
�
 !#�	 %�$!� 	 �� � � ������
!% � ���)+B$���*�%� �$���	-# 	�� ��#�� %�" ,  ��%�'!# 	 *�%�"�*�%� �$��	-#	� $ � #�" � # ����+ $ � �

$ � #�	���(�+�#��  ���%�'!#�	 *�%�" ����� #&%�"�'  �( #�*�#	� + � 
�� #�*�$&$!��
����*�% � ����+ $���*�%� �$��
	�# *���"�+B$
	 % (B"�$)+ 

 �+�# � ,-������ �� �)��� # �


(�#�*�#	�



��%B'!#�	�� ����� � ��� ��� � ��� �

*���"�$�	-� � �


��%B'!# 	�� �

( ��� �!% ��#�� ������
 % �� ���)+ $���*�%� �$��
	�#	�
������
!% ���� �	�#�� # 	
��*�%� �$��
	�# �
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(�#�*�#	�



��%B'!#�	�� ����� � ��� ��� �	

������
!% ���� 
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��%�' # 	 � ������� ����� � ���-�

( ��� *�%� �$��
	!( " ���
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Figure 12.1: Some rules expressed in the Game Description Language
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gseval((A,B),SIn,SOut,Game) :- !,
gseval(A,SIn,S1,Game),
gseval(B,S1,SOut,Game).

gseval((A;B),SIn,SOut,Game) :- !,
( gseval(A,SIn,SOut,Game)
; gseval(B,SIn,SOut,Game)).

gseval(if(Cond,Then,Else),SIn,SOut,Game) :- !,
if(gseval(Cond,SIn,S1,Game),

gseval(Then,S1,SOut,Game),
gseval(Else,SIn,SOut,Game)).

gseval((not Goal),SIn,SOut,Game) :- !, SIn=SOut,
not gseval(Goal,SIn,_,Game).

gseval(setof(X,Test,Xs),SIn,SOut) :- !, SIn=SOut,
setof(X,

S1ˆseval(Test,SIn,S1),
Xs).

gseval(XˆTest,SIn,SOut,Game) :- !,
Xˆgseval(Test,SIn,SOut,Game).

gseval(true(GIn),SIn,SOut,_) :- !, SIn=SOut, true_in(GIn,SIn).

gseval(add(GIn),SIn,SOut,_) :- !, add_in(GIn,SIn,SOut).

gseval(del(GIn),SIn,SOut,_) :- !, del_in(GIn,SIn,SOut).

gseval(control(P),SIn,SOut,_) :- !, SIn=SOut, in_control(P,SIn).

gseval(transfer_control,SIn,SOut,_) :- !, transfer_control(SIn,SOut).

gseval(game:Pred,SIn,SOut,Game) :- !,
in_control(Player,SIn),
player_game(Player,Game,GameP),
true_for_game(Pred,GameP),
SIn=SOut.

gseval(H,SIn,SOut,Game) :- H ==> B,
gseval(B,SIn,SOut,Game).

gseval(GIn,SIn,SIn) :- operational(GIn), call(GIn).

Figure 12.2: A Meta-Interpreter for the Game Description Language
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representation, whereas implementing them as situational fluents corresponds to a
situation-calculus representation [Genesereth and Nilsson, 1987].

12.2.3 Bidirectionality
In addition, these predicates are all logical, in that state is represented as a relation
between two variables, ��$!%�$ #�� " and ��$!%�$!#

�
��$ , instead of a global structure which is

changed by side-effects (as in a current board array used in many traditional playing
programs). This enables a program to use the predicates in the domain theory in both
directions. For example, by constraining �

�
��$ in Figure 12.2 instead of � �B" , a program

can determine possible predecessor states, thus using the rules “in reverse” to find all
the positions which would have been legal before a given move.

12.3 Automated Efficiency Optimisation
Given this declarative representation of the domain theory for symmetric chess-like
games, we created a program which can thus take as input the grammatical specifica-
tion of a particular game, and play the game by interpreting the rules for legal moves
and goal achievement with respect to this particular game. This program is the initial
Metagame-playing program.

Unfortunately, this generality of representation does have its costs in terms of
efficiency. First, there is a high overhead to interpreting a theory instead of using a
compiled version of a theory. Second, it is inefficient to consider possibilities which
have no connection to the definition of a given game. For example, in interpreting the
game of chess, which has no �
��+B$ *�%� �$��
	 # rules at all, there is no need for a program
to spend any time checking for the presence of these rules when playing a game: it
would be preferable if they could somehow be eliminated altogether when the program
is playing chess.

Fortunately, both of these problems can be overcome by standard techniques from
logic programming. Since both the interpreter and the domain rules are declaratively
expressed, it is possible to write a program to transform them automatically into a
much more efficient version of the same theory, specialised to the particular game.

12.3.1 Partially-Evaluating Game-Specific Properties
Partial evaluation is a technique for specialising a logic program to run more efficiently
on a class of queries which is a constrained subset of those on which the program is
defined. As this technique is well described in the literature (for example [Sahlin,
1991; van Harmelen and Bundy, 1988]), we will here only illustrate its application to
specialising a playing program for a particular game.

As noted in Section 12.2.3 above, our meta-interpreter is defined in a general
manner to handle any modes of instantiation in its variables (e.g. , � �B" could be



12.3. AUTOMATED EFFICIENCY OPTIMISATION 105
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Figure 12.3: Specialised chess domain theory after partial evaluation.

ground, �
�
��$ un-instantiated, or vice versa). However, when playing a particular

game, we know that the � % �)# variable, for example, will always be instantiated to a
particular value upon invocation, so we can propagate this information by symbolic
execution. By this method, each rule in the domain theory which depends only on
the current game (i.e. not on any properties of the current state) can be executed at
compile-time, after which we replace (a copy of) the existing rule with the results of
that execution. In the simplest case, if the rule � fails to apply to the particular game,
we can be sure that any other rules ��� , which are conditional on � succeeding, will
not be called. Thus, this entire conditional branch can be eliminated from the theory
(for this particular game).

Figure 12.3 shows the results of applying this simple example of partial evaluation
to the part of the domain theory in Figure 12.1. As the global and local �
��+B$ *�%� �$��
	 #
predicates both fail when applied to the definition of chess, these predicates, and those
which are only called after their success, can be entirely removed from the specialised
theory. As the number of goal reductions is dramatically reduced, the result is a much
more efficient program.

12.3.2 Folding the Interpreter into the Domain Theory
Although this partial evaluation has greatly simplified the domain theory, a play-
ing program using even the new theory so far would still be inefficient, due to the
overhead of interpreting the theory. However, it is in fact possible to eliminate this
interpretation overhead altogether, by folding the meta-interpreter directly into the
clauses in the domain theory.

This transformation rewrites the now game-specific domain theory of Figure 12.3
into the Prolog program in Figure 12.4. It works by replacing the primitive constructs
of Section 12.2.1 (like $�	�� # �



� and %�,�,�� � �B" � ) with their interpreted counterparts from

Figure 12.2 (like $�	 �!# ( "��


� � �B" � and %�,�, ( "��



� � �B"�� �

�
��$ � ), and threading the ��� " and

�
�
��$ variables through all defined (i.e. non-primitive) goals which possibly require

them.
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Figure 12.4: Optimised chess-specific program after abstract interpretation.

Thus, in Figure 12.4, the goal * � # +�+��� )+�# � , �����B is converted into a new goal which
contains both an input and output state, as some of its subgoals can change state.
Those defined goals which, if called, could possibly lead to calling a subgoal which
tests state, but not to one which could possibly change it, get extended by a SIn
variable only.

12.3.2.1 Abstract interpretation for state-dependency analysis of domain
predicates

In performing this transformation, it is necessary to know, for each defined goal,
whether it has a recursive subgoal that could possibly change, or at least test, state.
This is a question which partial evaluation alone does not answer, as it is concerned
with specialising a theory, not gathering information about it. However, this question
can be answered using abstract interpretation [Cousot and Cousot, 1977; Cousot and
Cousot, 1992].

Abstract interpretation is a technique by which we “generalise” a program to make
a new approximate program. It consists of mapping the objects in a program into
abstract objects, mapping the operators into abstract operators, and then executing
the program, over all abstract inputs, in the abstract space defined by these mappings.
As a result of this abstract execution, we will have an approximate characterisation
of its behaviour.

An example of abstract interpretation, from [Cousot and Cousot, 1977], is the use
of the rule of signs to determine that the result of � >�� ����� � � ��� is negative, without
actually doing the multiplication. In this rule, we replace integers with � � � , � , ��� � , and
ANY, and replace the multiplication operator with a table of how it maps pairs of
these abstract objects into new ones. Two entries from this table would be:

� 	 
�� �%� 
 �� �%� 

�%� 
 � � � 


�� � � 
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The abstract execution � >�� ��� � � � ��� � � � 	 
�� � � 	 
 � � � 	 
���� � 
 � � �%� 
 proves that
� >�� ��� � � � ��� is a negative number. Although this example is simple, the method is very
powerful, and has been used in applications ranging from data-flow analysis to mode
inference in logic programs [Warren, 1992]. As this technique, like partial evaluation,
is thoroughly described elsewhere, we shall not discuss the formal foundations here,
but shall instead detail its application to the game analysis problem concerning us in
this section.

Abstract Space Thus, our program needs to know the state-dependency of each
defined goal in the domain theory. This depends on the definition of that goal, which
will either be one of the primitive constructs of Section 12.2.1, an operational goal,
another defined goal, or a compound structure relating two or more goals (this is just
a summary of the language defined by the meta-interpreter for gdl in Figure 12.1).
In the framework of abstract interpretation, we thus take the concrete objects in our
theory to be the primitive constructs and operational goals, and the concrete operators
in our theory to be the defined and compound goals. Our abstract space groups objects
into classes based on their state-dependency requirements, and thus consists of the
following three abstract objects, with the associated abstract interpretations:

2 : we know that calling this goal could possibly lead to calling a goal which
changes state.

1 : we know that calling this goal could possibly lead to calling a goal which tests
state, but not to one which possibly changes state.

0 : we do not know that calling this goal could possibly lead to calling a goal which
tests or changes state.

Abstract Objects In terms of this abstract space, it is easy to define the mapping
� from concrete objects to abstract objects:

� � $�	 �!# �

 
 ��

� � �
� � %�,�, �


 
 ��
� > �

� � , # � �

 
 ��

� > �
� � *���"�$�	-� � �


 
 ��
� � �

� ��$�	-%�"�+ �!#�	 *���"�$
	 � � �

 
 �� � > �

� � �
��

� � � � for operational(G)
This mapping formalises the notion that primitive goals which are quantified solely

upon ��� " have abstract value [1], those quantified on �
�
��$ as well, have abstract value

[2], and operational predicates, which are state-independent, have abstract value [0].
Note that we do not need to define a mapping for � % �)#��



	 #�, , as by this point all such

predicates have been partially evaluated away.
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Abstract Operators We then map our concrete operators, the defined goals and
logical constructs, into abstract operators. We shall denote an abstract operator as

�
��� � 
 . These abstract operators are then defined as:

�
� � � � � 
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These abstract operators represent the fact that a compound or defined goal can
possibly cause any of its components or subgoals to be called, in which case their
abstract value is the maximum of any of their components. Note that in the case of
the logical operators "!��$ and + #�$!��� , these would never lead to the state being changed,
even if their arguments could cause a modified state to be envisioned. Thus they never
map to an abstract value greater than 1.

Abstract Execution Now that we have defined the relation between our abstract
program and the concrete program, we can execute the abstract program in order to
determine the abstract values of each of our defined goals. Our analysis proceeds in a
sequence of iterations. We start in the most abstract space, in which we know nothing
about the abstract values of any of our defined goals, and execute the program in
this abstract space, to determine if we necessarily gain any information which forces
us to move to a less abstract space. If the execution in an abstract space leaves
us in the same space, then clearly all further executions will leave us in this space
also, implying that we have reached a least fixed point in our approximation. At
this point we are finished with the abstract interpretation, and by the construction of
our abstract mapping we are guaranteed that we have correctly classified all of our
defined goals in terms of their state-dependency number (a proof of this can be found
in [Cousot and Cousot, 1977]).

An Example In case the above description was too abstract, this analysis can be
interpreted algorithmically, as follows: we begin by assuming that all defined goals
have state-dependency (henceforth stativity) 0, which means we know nothing about
their stativity. At each iteration, we update our assumptions on stativity for each
defined predicate based on our assumptions from the previous iteration.

For example, our theory might consist of the rules:
�

�
� � � � ��
 � (12.1)



12.3. AUTOMATED EFFICIENCY OPTIMISATION 109

� �
� $%��� " � ��
 � (12.2)

�
�
� 8

� (12.3)8
�
� � �+� � � 
 � (12.4)

We would begin our analysis assuming that all predicates ��� � � � and 8 have
stativity 0. Based on this knowledge, our first iteration reveals that � has stativity 1
(as calling � immediately calls a $�	�� # �



� , which performs a test on state), and 8 has

stativity 2. As we assumed at the start that all predicates had stativity 0, at the end
of this first iteration we have not determined anything new about � or � . Then on
the next iteration, from ( � � � and � � � ) we conclude that � is at least 1. And from8
�
> , we conclude that � �

> . On our third iteration, from ( � � � and � �
> ), we

conclude �
�
> . On our fourth iteration, we gain no new knowledge (our assumptions

about all the goals stays the same), which means that every further iteration will
have the same result. Thus, our final knowledge of the stativity of this theory is:
( � �

> � � � � � � �
> ��8

�
> ), which is correct.

The result: A chess-specific program Having completed the state dependency
analysis, the program then transforms the theory to eliminate the interpreter, thus
yielding the final efficient and specialised Prolog chess program in Figure 12.4. As
all of the transformations performed here were logic-preserving, this program is still
logical and bidirectional, but is now optimised to generating moves and evaluating
goals only in chess positions: most of the inefficiency due to the general representation
has been eliminated automatically.

Thus, the net result of all this optimisation can be viewed as a game-specific
program generator which takes as input the rules of any game within the class of
symmetric chess-like games and, by analysing the rules of this game as an instance
of the general class, produces a special-purpose, efficient program to play just that
game.

12.3.2.2 Implementation Details

Under Sicstus Prolog 2.1 patch 6 on a ��� � � � � � � ����� , finding all the legal moves
in the initial position of Chess under the original (general) representation takes 314
seconds. On the specialised representation resulting from the processing discussed
above, the same computation takes 1 second. This speedup enables the current pro-
gram to search 5 half-ply deep in chess in 45 minutes. It should be noted that this
is still very slow by the standards of specialised game-playing programs. Further
efficiency improvement is a major area for future work.

Although these optimisations eliminate overhead and conditionality, the underly-
ing state representation used by the current program is still inefficient. For example,
a board is represented as a tree instead of a constant-time array. Because of this,
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checking the occupancy status of each square on a chess board (8x8) requires 16 steps
instead of 1.

I anticipate further speedup from other optimisations using the automatic partial
evaluator in � ��� � � � � � ��� ��� � [Sahlin, 1991]. As this is one of the largest applica-
tions of � ��� � � � to date, more work on it appears necessary before it can be applied
usefully to this domain theory [Sahlin, 1992].

12.4 Summary
This chapter dealt with the initial issues involved in realizing a ����� -Metagame-
playing program, given the rigorous definition of the problem developed in Part II. As����� -Metagame is a more general problem, it is natural that one of the most pressing
issues in the construction of a program to address this problem should be the tradeoff
between the representational goals of generality and flexibility, on the one hand, and
the operational goals of specialisation and efficiency on the other.

While these goals seemed incompatible at first, the chapter showed that it was
possible to achieve them both to some extent, by shifting some of the work of build-
ing special-purpose programs, normally the task of the human researcher, onto the
program itself. It is interesting to note that this was achieved by first developing
a naive game player which was extremely general, flexible, and inefficient, and only
then automatically transforming this program into a more efficient specialised player
of a particular game.

To summarise, the approach taken in this chapter to realize a practical ����� -
Metagame-player consisted of the following steps:

1. gdl: design a general-purpose language for describing games, and represent the
entire class of games as one big meta-game, where a legal move is one which
could be legal in any possible situation in any game in the class.

2. gseval: implement a naive player as a declarative and flexible meta-interpreter
for this language.

3. peval: partially evaluate this interpreter to specialise (a copy of) the domain
theory for a specific game.

4. stativity: use abstract interpretation to determine the state-dependency re-
quirements of the predicates in the specialised domain theory.

5. transform: use the results of this interpretation to fold the interpreter into
the specialised domain theory, to eliminate the overhead of meta-interpretation.
The result is an efficient Prolog program to play a specific game, without the
inefficiencies due to the generality of the class definition or the flexibility of
meta-interpretation.
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In concluding this chapter, it is interesting to observe that the issue of efficient
representations in game-playing systems is often seen as an engineering concern
which is somehow separate from the scientific work of playing the game in a given
representation. However, the issue of automatic efficient change of representation is
a very important scientific problem [Benjamin, 1990]. This chapter has shown how
techniques from logic programming can greatly assist in this endeavour.
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Chapter 13

Basic Metagame Players

Elephants don’t play chess – Brooks

Chess is not skittles – Kasparov

13.1 Introduction
This chapter discusses how the basic game-playing components produced by the game-
specialiser in Chapter 12 can be put together to construct a variety of basic Metagame-
playing programs using only game-tree-search and minimal evaluation functions. To
begin with, Section 13 develops some simple players which play mostly randomly.
These serve as baselines against which to compare later players, and also demonstrate
that it is at least possible to play legally any game in this wide class of games.
Section 13.3 then develops a general search engine based on standard game-tree-
search techniques used in � ��� and discusses some difficulties of using search on this
class of games. Section 13.4 summarises the chapter and discusses the performance
of the search engine using a minimal evaluation function.

13.2 Baseline Players
The baseline players developed here are extremely simplistic. They only make use of
the legal move generator and goal detector for a given game, and beyond this perform
no analysis of the game rules. The first few players are based on making random
moves. The final basic player has a simple evaluation function which counts the
number of possible moves and the number of pieces.

13.2.1 Random Players
The simplest possible player, called random, ignores goal detection altogether, and
uses the move generator to choose a random legal move. Although the moves it

113
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plays are all legal, games played by the random player are obviously of extremely low
quality.

A slightly more sophisticated random player, called random-cautious, incorporates
goal detection into level move selection. This player plays a random move so long as
the resulting state is not a lost position. As expected, random-cautious performs
much better than random on games where it is possible to play a move which loses
immediately (like losing chess), but their performance is equal (i.e. both random) on
games where this is not possible (like chess).

Continuing the progression, random-aggressive plays a move which wins immedi-
ately if one exists, and cautiously otherwise, and random-aggressive-defensive (

� 
 �
)

defends against immediate threats to win while playing random-aggressive when
there is no such threat.

Each refinement has consisted in adding more search to the random program,
which basically results in producing a program which plays randomly in general, but
somewhat more intelligently in near-terminal positions. The best player out of this
set,

� 
 �
, actually makes a decent opponent for a human when playing new games;

while the human has much better ability to search, the program has the advantage
of understanding and remembering the rules perfectly! In fact, when time limits are
taken into account, it appears that

� 
 �
is one of the most efficient possible defensive

programs; it performs no search but that which is is necessary to ensure the best
possible outcome when evaluating near-leaf nodes. Thus, any program which spends
time evaluating non-terminal positions must gain a tangible advantage for this effort,
otherwise it will be at a time-disadvantage against

� 
��
. Furthermore, for programs

which are not able to evaluate more than the first ply,
� 
��

may actually be a stronger
player, as it will never play a move which enables a winning response unless it is forced
to do so. These considerations become important during the Metagame tournament
in Chapter 16.

13.2.2 A Minimal Evaluation Function

After developing this sequence of random players, the next step was to attempt to
provide a program with some minimal knowledge, in the form of an evaluation func-
tion, and implement a search engine. As suggested in Chapter 4, implementing any
knowledge at all turned out to be much harder to do in the context of Metagame than
in the context of a particular game. For example, even the most basic Chess programs
are provided with a material feature, which weights each piece differently. But since
the program will be playing brand new games, we do not even know in advance the
names of the pieces that will be used, much less their powers and relative values.
Thus, as a start, I implemented an evaluation function with two terms which can be
determined to apply without any specific consideration of the rules of a given game.
These general features are defined as follows:
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� �!#�"!# 	-% � ����
�( � (B$�' , ( � � # 	-#�"!*�# : the total number of moves available to player,
minus the total number available to opponent, in the current position. Here
the value for the player not on move is computed in a hypothetical state where
the player on move has passed.

� �!#�"!# 	-% � ��%�$!# 	 (�% � , ( � � # 	-#�"!*�# : the total number of player’s pieces on the board,
minus those of opponent.

An associated question was how to weight these terms (remember that we are not
using a learning system yet). For purposes of experimentation, these weights were
left as parameters.

13.3 Search Engine
The search engine incorporates several standard search techniques from the game-
playing literature (see [Rich, 1983; Frey, 1983; Levy and Newborn, 1991; Kierulf,
1990]). It is based on a Prolog implementation of the minimax algorithm with alpha-
beta pruning, as presented in [Bratko, 1986, page 366]. In order to cope with the
dual issues of time limits and varying search spaces, this basic algorithm is extended
with iterative deepening [Korf, 1985]. That is, the engine performs a search down to
1 ply, then 2 ply, and so on, until it has run out of time. As is common with iterative-
deepening searches, the search engine uses the principal continuation heuristic, which
orders the moves in the principal continuation (the best set of moves and responses
found at the previous iteration) above the others. This serves two purposes in our
case. First, it increases the benefits of pruning by ordering the most promising move
first. Second, it ensures that a program which runs out of time within an iteration
will fall back on the move it would have made after the last full iteration, unless it
has fully explored another move during the final incomplete iteration which received
a higher evaluation.

As there is nothing particularly new about the search engine, we shall not discuss
the details of the implementation in the main text. The interested reader is referred
to the literature mentioned above for a more thorough explanation of the general
concepts involved in game-tree search. The following sections mention some fine
points regarding the search engine as applied to Metagame in symmetric chess-like
games.

13.3.1 Using Partial Iterations
The issue of failing within an iteration is particularly relevant to Metagame programs.
Many game-specific programs check before starting the next iteration whether the
program has enough time to search it fully. However, given the wide variety of
games in this class, it is common that a program does not have enough time even
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to evaluate all moves at the first ply. In this case, the programs at least select the
highest-valued choice among those they have evaluated. This technique also allows
the programs to benefit from partial iterations after the first, with observable benefits
(see Section 17.4).

13.3.2 Game-Assumptive Search Methods
In addition to the heuristics currently used by the search engine, a number of other
standard search heuristics could all in principle improve the performance of the
search engine. Additional heuristics include windows, singular extensions, conspir-
acy search, killer heuristics, quiescence search, and hashing Some of these have not
been implemented due to time constraints, and others have not because their use is
game-assumptive (in the sense of Section 3.2.1.2).

For example, quiescence search is a technique in which unstable positions (i.e.
those whose estimated value is likely to change after further search) are searched
more deeply. A common application is that a position is always expanded when piece
captures are possible. The problem with applying this to symmetric chess-like games
is that it assumes that captures are infrequent. On the contrary, several games
have been generated in which every move is a capture. Applying such a heuristic
to these games would thus result all positions appearing non-quiescent, rendering
the quiescence search ineffective. However, one way around this problem might be
to have the playing programs decide for themselves whether the assumptions behind
such game-assumptive search methods actually held of a given game, in which case
improved performance could result. This is an idea for future work.

13.3.3 Move Ordering
When expanding a position during search, the search engine uses the legal-move
generator for the given game (described in Chapter 12) to produce a list of moves
possible from that position. As the efficiency of alpha-beta search is improved by
better move orderings, a standard technique in ����� is to use heuristic ordering
functions at this point [Levy and Newborn, 1991, page 172]. The current search
engine chooses one of two possible orderings, depending on the value of an internal
parameter (called � 	�, # 	 (B" � ):
fixed Uses the moves in the order in which they are generated. This is in general

arbitrary, and depends on the game definition, the gdl encoding of symmetric
chess-like games, the order of Prolog clause selection, and the process of game
compilation (Chapter 12).

random The move order is randomised.
In either case, if one of the possible moves is on the principal continuation based on
the previous iteration of search, that move is then moved to the front of the list.
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In the experiments reported in this thesis, the random ordering is used. The point
of this is as follows: if the program does not have enough time to evaluate even the first
ply, or if it found several nodes equal in value to it but not better, choosing its current
best move will result in a random choice being made, instead of the first generated
move. This can be important in Metagame matches, as otherwise two programs with
indiscriminant evaluation functions or strict time controls wind up playing the same
game every match. As an example in Section 17.4 shows (see the discussion following
Diagram 9, page 174), using a random ordering may be suboptimal if the move on the
principal continuation is bad. Experimenting with different general move-ordering
schemes is another area for future work on the search engine, and could considerably
improve the performance of future Metagame-playing programs.

13.3.4 Time Management
Time limits are an important part of the competitive context. Different limits may be
specified which constrain any or all of the following:

move-time-limit: The maximum amount of time within which a player must make
each move.

game-time-limit: The amount of time allotted to a player to play the entire game.

tournament-time-limit: The amount of time allotted to a player to play an entire
tournament.

Effective time management [Hyatt, 1984; Markovitch and Sella, 1993] is an impor-
tant and difficult topic even within the context of a specific game known in advance.
The importance lies in the fact that a player who spends less time thinking about easy
positions in order to spend more time on hard positions

�
has a significant advantage

over a player who allocates time uniformly across positions within a contest. While
this type of decision is hard enough, an additional complication is that the length of
the game is often variable, which means that in addition to guessing how important a
move is relative to others, a player must also estimate the number of moves remaining
to be played in the game. To make matters worse, the number of moves remaining
may in general depend on the quality of move chosen, which depends in turn on the
amount of time allocated to the present move.

These considerations, which are difficult enough for playing known games, are even
harder to manage effectively in the context of a Metagame tournament on games not
known in advance. Whereas for a known game players can begin with a reasonable
estimate of game-length, even this information is unavailable when playing a new
game. Observing this, it appears that most present time-management strategies are
game-assumptive, which implies that so far humans have performed this important

�
Of course, what constitutes an easy or hard position is a difficult question in itself.
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aspect of game-analysis instead of programs. Metagame thus presents a challenge,
and a necessity, to understand and automate this style of reasoning.

�

The current search engine assumes that time-management decisions have already
been made by the players using it. The players thus invoke the search with a specified
maximum amount of time to spend on the search. The search engine uses all time
allotted, with the exception that it stops early when one of the following two conditions
hold:

1. A move is forced in the root position (there is only one legal move).

2. The search has determined the true value of the root position (by reaching the
end of the game).

In the future, more responsibility for time management may be transferred to the
search engine. To bypass this issue until later developments, the games and tourna-
ments played in this thesis take place within a competitive context which sets a limit
only on the maximum time-per-move.

13.4 Summary
This brief chapter has discussed the development of some baseline ����� -Metagame
players and a general search engine, using the basic game-playing components pro-
duced by the game-specialiser in Chapter 12.

Initial experiments using the search engine with the minimal evaluation functions
(and similar functions) over a variety of games yielded some interesting results. Many
of the moves chosen by the programs made a lot of sense. For example, a program
using search with this evaluation function automatically prefers putting some pieces
in the centre of the board, moving riding pieces onto long open lines, and capturing
opponent pieces with greater mobility. However, none of the programs were capable
of long-range planning.

As was also expected, a set of weights to the minimal features which was good on
one game often tended to be poor on another game. For example, some weights should
have a positive sign when the goal is to stalemate the opponent, and a negative sign
otherwise. Unfortunately, as will be discussed in Section 14.2, heuristics as simple as
this are insufficient for weight adjustment in the general case.

Before moving on to more sophisticated Metagame-players, we can summarise a
few tentative conclusions from the early experience with search and minimal evalua-
tion functions applied to ����� -Metagame.

�
[Markovitch and Sella, 1993] presents an algorithm which learns resource allocation strategies by

observing the change in performance when different types of moves are allocated additional resources.
One limitation of the work is that it assumes that the number of moves to be played in the game is
known in advance. There is certainly much to be done in this area.
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Value of Mobility First, the minimal evaluation function combined with deep
search performed significantly better than the random players on some games, and
thus appears to contain some strategic value with respect to this class of games. In
particular, mobility appears to be a very useful heuristic for this whole class of games,
even for those games where a player’s goal is to have no more moves available. While
we found the general notion of material (number of pieces) to be an important feature
in almost every game, its sign and value naturally varied from game to game. No
fixed function combining these simple terms performed best on all games.

Lacking Goal Direction Second, a real problem with these players was that they
were not goal-directed, and for many games these simple features were not powerful
enough to guide them to forcing a win, even from positions in which a human would
have been able to win easily. For example, the immediate mobility information was
not enough to enable programs to checkmate, as they offer no guidance when a player’s
mobility is maximised.

Human Analysis Uses Abstraction Third, and related to this last point, a recur-
rent observation when watching humans play new games against these programs is
that humans do not get immersed in the details of the rules, nor do they even attempt
to consider all possible moves even at the first ply. Instead, they focus on just those
rules which are relevant to achieving their goals. For example, if the goal of the game
is +B$ % ��# ��%�$!#  ��%�'!# 	 , a typical method of analysis is to determine which pieces are
relevant to achieving this goal, and effectively ignore the rest.

Deep Search May Still Win Finally, it is important to stress that these initial ob-
servations have not ruled out the success of a brute-force approach to ����� -Metagame.
It might seem obvious in any case from the analysis of the class performed in Chap-
ter 9 that deep search alone will not be useful because of the combinatorial nature of
some of the games in the class (see Section 9.3, page 83). However, those results could
be interpreted to mean that no programs are likely to perform well on many games
in the class, in which case it is possible that a program based solely on deep search
would at least be better than other competitors.

Thus, the issue is largely empirical, and to address it properly might well require
a significant effort to construct special-purpose machines to provide a search-engine
with maximum efficiency, as has been done for chess [Ebeling, 1986]. However, the
observations in this chapter indicate at least that it is not easy to apply deep search to
this problem without having access to a reasonable evaluation function, and that no
good evaluation function seems available without a more sophisticated analysis of the
class of games, either by a human or a program. The construction of a good evaluation
function for this class of games is the subject of the next chapter.
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Chapter 14

Metagame-Analysis

14.1 Introduction
With the search engine in place, using the optimised primitive operations, we have a
program which can search deeply (subject to resource constraints) in any position in
any game in this class. However, in order to play successfully, the program requires
a good evaluation function for each game the program plays. Moreover, the human
programmer cannot possibly create an evaluation function for a specific game, as the
rules of specific games are only presented to the program at the time of competition.
The question facing us, then, is: what can we do, using the information we have in
advance of competition, to enable the program to construct an evaluation function
using the information it will have at the time of competition? In all cases, our goal is
to have the program win as many games as possible in the competition.

The reader may at this point notice that this is almost identical to the challenge
faced in the gamer’s dilemma considered in Section 3.3, and that we are now in the
position of the hypothetical researcher considered in that section! The difference is
that we know that the game the program will play is an instance of a well-defined
class of games, about which class we have full information.

As suggested in that discussion, the field of ����� offers a number of different
approaches to this problem, including knowledge-engineering, machine learning, and
self-play. Unfortunately, the section noted that most current approaches, even those
using learning, rely on a great deal of human analysis of specific games, which is in
our case impossible. But as discussed above, we do have a major source of information
that we can analyse if we choose: the definition of the class of games as constrained
by the generator.

As this is the first attempt at addressing this new problem, it is interesting to see
just how far traditional approaches can be applied here. Thus, I shall attempt to apply
traditional � � � techniques, in which the human, instead of the program, analyses
the problem, to ����� -Metagame. But unlike in traditional work in � ��� applied to
known games, in this new context I do not know the rules of the game in advance,

121
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but know instead only that the game is in the given class of games. So, instead of
performing game-assumptive knowledge-engineering, I am forced to perform class-
assumptive engineering, or what I will call Metagame-analysis. As I will not know the
details of specific games in advance, I will perform my analysis of the class with an
aim to determine how the program can perform analysis of each specific game.

This chapter discusses the general techniques and detailed analysis which has
been useful in this effort. Several of the resulting considerations have influenced
the construction of advisors and analysis-tables for

���	��
��
������
, the program I have

developed to play ����� -Metagame (see Chapter 15). In those cases, the relevant com-
ponents are indicated in boldface. The proposed game changes have also revealed
some game-assumptive properties of current work on specific games, as discussed in
Section 3.2.1.2. It should be noted that the analysis presented here is not intended
to be complete or definitive. Rather, it provides the motivation for the current imple-
mentation, and also furthers this case-study in Metagame-analysis performed by a
human. Most importantly, the questions asked and the broad nature of the responses
highlights the difficulties encountered when attempting to analyse in advance a class
of unknown games.

Before proceeding, it should be noted that this problem turned out to be very hard
to approach well by human analysis alone, which indicates that the construction of
the problem is successful in this respect.

14.2 Generalising existing features
The first and most obvious approach to finding class-wide knowledge for chess-like
games was to examine the knowledge currently used by programs which play specific
games in the class. By isolating the assumptions relevant to a game-assumptive
concept, it was in some cases possible to generalise the concept to apply to the class
as a whole. Three significant and general features emerged in this way: mobility,
centrality, and promotion.

14.2.1 Mobility
The concept of mobility is used in some respect in almost all game-playing programs.
The common factor in most mobility features is that they compute a set of properties
which are necessary, but not always sufficient, for a player to have a legal move in
a position.

�
Both chess and checkers programs contain terms in their evaluation

�
[Rosenbloom, 1982] developed a set of mobility-related features for the game of Othello. [Fawcett

and Utgoff, 1992] showed how many of these features could be derived automatically through a process
of transformations on the game rules. The sequence of transformations starts with the necessary and
sufficient conditions for making a legal move, and then drops conditions. The result is an abstract
indicator of mobility, which is necessary but not sufficient. [de Grey, 1985] independently developed a
similar approach, and used it to derive automatically mobility-related features in several other games,
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functions which count the moves available to each piece owned by each player in the
current position. Note that this is not sufficient to guarantee that the player really
has those moves available. One example comes from checkers: although many pieces
have possible movements, a player might be forced to capture an enemy piece, in
which case he may in reality have only one legal move. Another example comes from
chess: a player may be credited with a large number of queen moves, although none
of them might actually be legal if the player’s king were in check.

When trying to develop a general concept of mobility which could be used in this
class, it was necessary to determine whether mobility was always desirable, all else
being equal, or if its validity assumed some properties of the game. For example, in
both chess and checkers, a player wins by capturing all of the enemy pieces. Thus it
seemed possible that for positive goals of this form, in which a player wins by weak-
ening the enemy, mobility might be useful. In negative goals, in which a player wins
by weakening himself, it seemed that mobility might be detrimental. One example of
such a negative game is lose-chess. In this game, each player must make a capture
whenever possible, and the goal is to have no more moves ( + $!% ��# �)%�$ #�� ��%�' # 	 , in the
language of symmetric chess-like games). Another negative game is the ordinary
version of Othello, in which a player wins by having the most pieces on the board at
the end of the game, but mobility often decreases with each piece a player captures.

After examining successful strategies in both the win and lose versions of these
games, the opposite conclusion was reached. That is, mobility appears to be valuable
for either type of goal, all else equal. Some evidence for this is that in both win
and lose versions of chess and Othello, the openings are almost identical regardless
of the final goal. That is, both players strive for increased mobility in the opening,
as this gives them greater control. With greater control, they then go on to achieve
later goals. Conversely, it turns out that attempts to reach the final goal in spite
of reduced mobility often result instead in early defeat. For example, a player who
immediately tries to give away all pieces in lose-chess quickly winds up with only a
few moves available. Although this means the player has almost achieved the final
goal, the opponent is then in such control of the game that he can force the first player
to capture all of the opponent’s remaining pieces. These points have been illustrated
in the strategy for Turncoat-Chess in Section 8.3.3.

14.2.2 Centrality and Eventual Mobility
The concept of mobility as used by current chess and checkers programs can be termed
immediate dynamic mobility. That is, it is assessed by counting for each piece the
number of moves immediately available to that piece in the present position. The
effect of this is to encourage programs to place pieces on squares where they have
many moves, and to restrict the moves available to enemy pieces. However, this
concept alone is insufficient for strong performance in two respects. First, it provides

including checkers. None of this work was applied to games unknown to the researchers.
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no guidance when a player has reached a square which maximises immediate mobility.
For example, a chess king has the same immediate mobility on any non-edge square
(namely, 8 moves). Longer-term strategy requires placing pieces on squares from
which they can reach a large number of squares quickly, whether or not they reach
them on the very next move. Thus a king in the centre of a chess-board can reach
every square within four moves, while a king on the edge may take 7 moves to reach
squares on the opposite edge.

To help programs distinguish squares and pieces having the same value in terms
of immediate mobility, they are often provided with piece-square tables or centrality
bonuses [Hartmann, 1987] which provide bonuses for having pieces on more central
squares. As our programs will play unknown games, it was necessary to enable
them to construct and use similar tables directly from the rules of the game. This
resulted in the eventual-mobility advisor and table, which are discussed in more
detail later. These concepts are also illustrated in the Knight-Zone chess example
in Section 3.2.2.2. One important consequence of including the eventual-mobility
advisor is that it enables a program to force checkmate in chess endgames, whereas
the immediate mobility advisor alone does not. The reason is that the program first
centralises its own pieces, and then forces the enemy pieces to move to squares from
which it would take more moves to reach other squares (in chess this results in forcing
them first to the edge of the board, and then to the corner).

Static Mobility A second problem with the traditional use of mobility is that it is
solely dynamic, based on the present position. If this is used as the sole basis for
determining the value of having a piece on a square in a position, it leads a program
to dramatically underestimate the value of pieces which are blocked in a particular
position. Thus if an enemy knight attacks a program’s queen which has only one
available move, a program using only dynamic mobility would not move the queen
to its safe square. The reason is that in the position under consideration, the queen
would be worth only one point of mobility, while the knight would be worth several
more. This problem was solved by the addition of a static-mobility advisor, which
credits a piece on a square with the number of moves it would have from that square
on an otherwise empty board. Using this advisor, a program would defend its queen
against the attack as it realises that the pieces blocking the queen may eventually
move, after which the mobility of the queen would be worth more than that of the
knight.

Constrained Mobility A further complication in mobility considerations is that
while it may be legal for a piece to move from one square to another, this may in some
cases always lead to immediate loss. This came up when representing Knight-Zone
Chess and Chinese-Chess as instances of this class. In both of these games, pieces
are excluded from a portion of the board by rules declaring that the opponent wins
whenever such a piece reaches one of the excluded squares. A program which did
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not take this into account when making mobility calculations would attribute much
more mobility to restricted pieces than they could ever have when playing the game.
This problem was solved by having the procedures which compute piece transitions
eliminate those transitions which would never be played by a player without losing
immediately (constrained-matrix).

14.2.3 Promotion
Similar to centrality-bonuses discussed above, many programs for existing games
have promotion-bonuses which encourage the program to move pieces on the path to
promotion. For example, chess programs calculate the distance a pawn is from the
promotion rank, and give points as that distance is reduced. In those games, however,
there are no pieces which can continue promoting into new pieces after they have once
promoted, no pieces for which the opponent gets to promote them instead of the owner,
and no pieces which promote into enemy pieces. These issues force us to generalise
the treatment of promotion, and are discussed in more detail in Section 14.4.

14.3 Step Functions
The second approach attempts to encode knowledge which would allow a program to
achieve its goals using only one-ply of search (i.e. considering only the possible moves
in the current position). The idea is that under very tight time-constraints, a program
should still be able to make progress against a random player. An example of an
advisor motivated by this thinking is arrival-distance, which measures in abstract
terms the progress a player has made toward achieving an arrival goal. Using only
this advisor, a program is guided to clear the destination square of any friendly or
hostile pieces, and to move the goal piece to the destination square from any other
location. The result of this is that a player could achieve goals which require thousands
of moves by making only immediate decisions.

The static analysis table constructed for this purpose (distance-matrix) was mo-
tivated by a dynamic version of the same computation developed by [Botvinnik, 1970]
and later extended by [Church and Church, 1979] and [Snyder, 1993]. Two systems
exist which derive step functions directly from problem specifications: Zenith [Fawcett
and Utgoff, 1992] and CINDI [Callan and Utgoff, 1991]. An important area for future
work would be to apply these automatic methods to the formal class definition for
symmetric chess-like games provided in Appendix B.

14.4 Game-variant analysis
Given the class of games and chess as an instance, I thought about how various
parts of the definition could change to produce new games. If the current evaluation
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function was insensitive to these differences (i.e. gave the same suggestions as before),
this suggested a gap in knowledge and/or built-in assumptions. I then tried to think
what additional information could allow discriminations. Either (a) changing some
existing knowledge, or (b) realizing that there was a conflicting goal. If (b), I added
a new advisor with intention that program could someday work out the tradeoff for
itself.

For example, arrival and mobility are important (sub)goals, but in some ways
conflict. The arrival advisor encourages a player to get a piece to a destination as
quickly as possible. The mobility advisors encourages a player to put the piece where
it has many options. When the two give conflicting advice, a gap in knowledge exists.
This could be corrected in one of two ways. One way would be to assume that a weight-
learning program could eventually modify weights for existing advisors to make the
tradeoff more appropriately based on experience with a given game. For example,
a program might find that mobility considerations tend to dominate in a particular
game, and thus weigh mobility more heavily. The second correction would be to locate
special conditions under which the advisors conflict, and make separate advisors
which respond to those situations only, and which serve to patch the differences. This
type of goal conflict is particularly apparent between self-eradicate goals and mobility
goals, as illustrated by the discussion on win and lose versions of chess.

14.4.1 Hypothetical Chess Variants
Some examples of games in which some properties or rules are changed from an
existing game (in this case, chess) follow. The question in each case is: other things
staying equal, how should strategies change if the following rule change were made
to the game of chess?

� If queens could not capture knights?
� If players have two kings instead of one in the initial position and win by cap-

turing both enemy kings?
� If a player has an alternative goal to eradicate his own knights?
� If rooks must capture whenever possible (or not move at all)?
� If a player wins by eradicating everything but the opponent’s king?
� If knights additionally travel in a special zone outside the original board?
� If pieces captured by pawns are player-possessed instead of removed?
� If knights capture by moving away from instead of onto a piece?
� If pawns capture like queens?
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� If queens capture like pawns?
� If the game is played on a wrap-around board?
� If a player has an alternative goal to arrive her own knight at a8?
� If knights can promote to pawns when reaching the penultimate rank?
� If the opponent decides how a player’s pawn is promoted?
� If some combination of the above changes are made?

In the following, I shall discuss some intuitive answers to these questions.
If queens could not capture knights? In chess and checkers, all pieces can capture all
enemy pieces. An evaluation function which did not differentiate pieces on the basis of
what they could capture would be insensitive to this change in rules. This property is
obviously significant, however. Relative to the other pieces, it would seem to diminish
the value of the queen, as it can no longer achieve the same effects as the other pieces
(victims). Also, it would seem to increase the value of the knight, as it is safer from
capture than other pieces (immunity). Finally, it would lessen the value of the pawn,
whose value is influenced by its ability to promote into a queen (promote).
If players have two kings instead of one in the initial position and win by capturing
both enemy kings? Chess programs have two values for kings [Hooper and Whyld,
1984]: one when used as an ordinary piece and another when considered during
piece exchanges. In the first case the king is similar in value to a knight (based
on mobility). In the second case the king is given almost infinite value, to ensure
both that a program never tries to exchange it, and that a program never leaves its
king attacked. When we consider games with goals to eliminate more than one such
target, this special treatment in the second case must be changed. We can no longer
attach absolute importance to each such target. For example, a player should probably
exchange one of his kings for an enemy queen if the chance arises. Instead, it seems
that the importance of each target piece in terms of exchanges should be inversely
proportional to the number of such pieces remaining (vital). When only one piece
remained, this treatment would naturally reduce to that in current chess programs.
If a player has an alternative goal to eradicate his own knights? Recall that in a game
where players cannot capture their own pieces, a player may eradicate his own pieces
by forcing his opponent to capture them, or by promoting them into pieces owned
by the opponent (see the discussion on strategy of Turncoat Chess, Section 8.3.2,
page 70). In chess and checkers there is no intrinsic disadvantage to capturing any
enemy piece, so the naive strategy “capture all enemy pieces” is viable. The above
change renders this strategy inapplicable. Also, it implies that both players will have
at least one knight on the board throughout the game. One consequence of this is
that, at least for purposes of exchange, a knight should be worth less to the player
who owns it (eradicate). Another consequence is that a player should ignore threats
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against his last remaining knight. Also, a player need not consider whether pieces
attacked by his last knight are defended, as is the case in chess (potent).
If rooks must capture whenever possible (or not move at all)? With this constraint
placed on rooks, their relative value decreases dramatically. For example, an enemy
rook may be effectively immobilised by placing a defended pawn under its attack. The
rook would not have to capture it, because the player may still move other pieces.
Also, the rook would still control the other squares it can move to, since if the enemy
moved an undefended piece to one of these squares the rook could capture that piece
instead. But the rook would be restricted from serving any active function until it
had no captures available.

�
Exactly how these considerations should be used by a

playing program is at present unclear. One implication is that it may be useful to own
pieces which can be captured by our own pieces, as these may provide extra mobility
for otherwise restricted pieces (giveaway).
If a player wins by eradicating everything but the opponent’s king? In this exam-
ple game the player need not eradicate the king, i.e. there is no penalty if she also
eradicates it. In this game it would seem that all other pieces should increase in
value relative to the king. That is, beyond the value derived from the other functions
performed by each piece, the presence of a piece has value for a player merely because
the opponent derives value from eliminating it (eradicate and vital).
If knights additionally travel in a special zone outside the original board?

This is the first version of Knight-Zone chess, discussed already in Section 3.2.2.2).
The knight should clearly increase in value as it now has additional squares to move
to. The intuitiveness of this conclusion shows that piece value derives not only from
the squares a piece could reach in one move (immediate-mobility), but also from
the squares it could reach in several moves (eventual-mobility). It also shows that
board topology must be taken into account when determining piece values, rather than
the structural definition of the piece in isolation. Finally, when this extra freedom
for the knight is represented as restrictions on all the other pieces, it becomes clear
that such restricted squares should not be taken into account in mobility calculations
(constrained-matrix).
If pieces captured by pawns are player-possessed instead of removed?

As discussed in Section 7.2.4.2, the possess capture-effects allow a designated
player to possess the piece upon capture, after which they can place the piece on any
square on the board at any later turn (possess). This change makes pawn-captures
more lethal, and thus increases both the offensive and defensive value of pawns. This
means they should increase in overall value relative to the other pieces (victims).
For example, pieces protected by pawns can no longer be safely captured by enemy
pieces of the same type. When the enemy makes the capture, the player’s piece is
removed, but when the player recaptures, he would in effect win an additional piece.
Just the opposite considerations apply if the effect were instead that the opponent

�
One way the attack could be cancelled is to use friendly pieces to block the attack, which might

give rise to some interesting strategies.
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would possess the captured piece, in which case the piece would almost never be
used for capturing (unless it were forced to capture, of course). This also shows that
calculations of the value of threats should take into consideration the effects of the
threat (potent). The fact that work on chess and checkers assumes a uniform capture
effect has also made it difficult to transfer some of that work toward the development
of Shogi programs.
If knights capture by moving away from instead of onto a piece?

In chess, all pieces capture by landing on (clobbering) a target piece. This means
it is possible in chess to focus on a particular square when determining the extent to
which a piece is attacked or defended, or to which a square is controlled. For example,
it can be determined statically that a pawn defends a piece because it could capture
any enemy piece on the same square as the defended piece, and this replacement
necessarily occurs whenever the enemy captures the defended piece. This property
is exploited by several strategic chess programs [Church and Church, 1979; Botvin-
nik, 1970; Snyder, 1993]. However, the assumptions behind this approach become
clear when we consider pieces with capturing methods other than clobbering. In this
changed game, it is no longer correct to assume a pawn defends a piece just because
it could capture an enemy which replaced the piece. In this case, a knight could move
away from the defended piece to capture it. This greatly increases the difficulty of
determining the consequences of threats without exploring full moves and responses
(potent).
If pawns capture like queens?

This change must increase the relative value of pawns, which now control as many
squares as a queen. The change in value becomes even more clear when we imagine
a piece which moves like a pawn but can capture a piece on any other square. It
is tempting to conclude that the latter piece would be worth more than a queen,
and that this shows that capturing mobility determines piece value independently
of moving mobility. However, while this increases the pawn’s ability to attack other
pieces, it does not alter its ability to get out of danger. Unless the pawn can capture
another piece safely, it is an easy target to capture due to its limited moving mobility.
Moreover, while the new pawn may at any time attack as many squares as a queen,
it cannot suddenly attack as many new squares as a queen. This corresponds to
the distinction between immediate and eventual mobility. In this case, however, the
important property is not having a piece on a square, but having an attack against a
piece from a square.
If queens capture like pawns? This is the converse of the preceding question. This
should reduce the relative value of a queen. It is hard to assess the relative value of
(a) a queen which captures like a pawn, and (b) a pawn which captures like a queen.

In general terms, the question is whether it is intuitively better to have a piece
with limited moving mobility than to have one with limited capturing mobility. This
issue does not arise in chess (or Shogi), in which each piece moves and captures with
the same movements. It does arise in checkers. But as kings are more mobile than
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men both in terms of moving and capturing, this issue has not been important in that
context either.

In pre-computing the static-value of each type of piece, our current advisors do not
capture this distinction, as they base all static mobility considerations on the moving
powers of each piece, not on the capturing powers. A dynamic advisor (capturing-
mobility) does enable a program to make this distinction to some extent, as it awards
pieces points for each other piece they could capture from the current square.
If the game is played on a wrap-around board?

As discussed in Section 14.2.2, most game-playing programs have a concept of
centre control which favours attacking and occupying the squares in the physical
centre of the board. If the topology is changed to a wrap-around board, the importance
of the physical centre is replaced by the logical centre, which contains all squares near
the midline of the board. As our programs determine centrality in terms of eventual-
mobility, changing board topology automatically results in changes of piece values and
piece-square values.
If a player has an alternative goal to arrive her own knight at a8?

This should increase the relative value of knights, which can now fulfill an ex-
tra function (arrival). Exactly how much it should increase in value is difficult to
determine in advance. It should also increase the dynamic value of a knight depend-
ing on which square it is on, as squares fewer moves from the goal should be worth
more (arrival-distance). Interestingly, it might also increase the value of a pawn,
by virtue of its ability to promote into a knight which could then achieve this new
goal (promote). It is unclear whether pawn value should in fact increase, as the
value may be predicated already on the best piece into which it could promote (i.e. the
queen), rather than on a sum of values corresponding to each promotion option. In
any case, pawns on the a-file should increase in value as they get closer to promotion,
as promoting to a knight would immediately achieve the goal (promote-distance).
If knights can promote to pawns when reaching the penultimate rank? While a pawn
in chess derives some value from the ability to promote directly to a queen, the knight
in this context may derive similar value indirectly (promote). It is not obvious how to
quantify such indirect value. An added complication is that the knight in effect must
demote into the pawn before it can promote to a queen. In the meantime, the player’s
mobility would be greatly reduced.
If the opponent decides how a player’s pawn is promoted? A pawn in ordinary chess
has four possible promoting options (knight, bishop, rook, and queen), but in practice
the queen is almost always the best option. This suggests that value derived from the
possibility of promotion is related to the maximum of the value of the options. If the
opponent, instead of the player, gets to decide which of those pieces are chosen, he will
almost always choose the knight, which suggests the value in this case is the minimum
of the values of the options. This should be taken into account when determining piece
material values (promote) and dynamic positional values (promote-distance). Also,
when statically evaluating a position where the opponent is about to initially-promote
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an enemy piece, a player could anticipate the results of this promotion (init-promote).
If some combination of the above changes are made?

Each of the above changes in isolation suggested factors which should influence an
evaluation function for symmetric chess-like games. In each case the change revealed
some difficulty for extending chess-specific work to a more general class of games.
When several changes are made simultaneously, it becomes increasingly difficult to
determine an appropriate structure for an evaluation function. One reason for this is
as follows. In the case of single changes, the new evaluation function could be seen as
a change to a chess-specific evaluation function. In the case of multiple changes, the
changes begin to influence each other non-locally.

A particularly difficult instance of this interaction concerns the value of pieces as
they relate indirectly to the value of other pieces. For example, a type of piece gains
value by its potential ability to capture other piece types, and it would seem that it
should get more value based on the value of the pieces it captures. If one type of pawn
could only capture rooks while the other could only capture knights, it would seem
that the first type should be slightly more valuable. But the value of the captured
pieces in turn may be indirectly influenced by the value of other pieces. For example,
the knights may be those which can promote into pawns in one of the examples above.
An appropriate method of handling this type of circular influence remains an open
issue with this approach.

14.4.2 Generated Games
The method of game-variant analysis presented above can be viewed as active analysis.
I also used a passive form of this analysis, where instead of designing hypothetical
games to focus my analysis, I considered randomly generated games, observed how my
programs did on them, and applied the methods discussed in this chapter to analyse
the results.

14.5 Summary
This chapter has addressed the issue of knowledge-acquisition for Metagame-playing
in general, and for ����� -Metagame in particular. The approach taken in this chap-
ter has been to determine how strong a player could be designed using a knowledge
engineering approach, without having the program use learning or analyse the se-
mantics of the class of games itself. The intention of this was (a) to determine how
far traditional methods could be applied to this new problem, and (b) to construct a
competent challenger against which to test the more general methods in the future.
The approach to developing a metagamer by having the human analyse the class of
games was called Metagame-analysis.

This chapter discussed several techniques which were used for this analysis. The
techniques can be summarised as follows:
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Generalising Existing Features: Several features (heuristics) used in existing game-
playing programs were generalised to this new context. This process revealed
some of the assumptions implicit in these heuristics, which had to be made
explicit in order to apply them to this more general problem.

Step Functions: In order to enable programs to achieve long-range planning be-
haviour, it was necessary to have them pre-compile tables which measure progress
on goals which may not be achieved for many moves.

Game-Variant Analysis: This is an original knowledge-acquisition technique for
constructing general programs to play a class of games, using a known game
as a basis. We begin with a known game and an evaluation function which is
effective on that game. We represent the known game as an instance of the class
of games, and generalise the evaluation function slightly so that its language
applies to the class instead of the specific game alone. We then consider ways in
which the grammatical definition of the game could change. For a given change,
we consider the behaviour of the evaluation function on the resulting game. If the
evaluation function has not changed but our analysis of the new game suggests it
should change, this reveals a new source of knowledge (or an assumption within
current knowledge) with which to modify the evaluation function.

Generated Games: Instead of imagining game variants, we generate instances and
apply the preceding methods on the instance games.

This analysis serves a case study in Metagame-analysis, which may be useful for
future work on this class or different classes of games.

As the details of the specific games to be played are not known in advance, it
is necessary to transfer some of the detailed game-analysis onto the program which
will play unknown the games. The following chapter (Chapter 15) discusses how the
results of this analysis have been incorporated into a program,

��� ��
��
������
, which

produces its own game-specific evaluation function when given the rules of a new
game.



Chapter 15

Metagamer

15.1 Introduction
This chapter discusses the architecture and strategic knowledge implemented

���	��
 �
��
������

, a sophisticated ����� -Metagame-player which embodies the results of the anal-
ysis in Chapter 14. This program takes as input the rules of any game in the class and
analyses those rules to produce a set of game-specific analysis tables. Those tables
are then used by a set of general knowledge sources which do not mention the rules of
any specific game. Together these components form a game-specific evaluation func-
tion, without requiring any human contact with the rules of the specific game. This
evaluation function is used by the search engine in the standard manner.

Section 15.2 discusses the architecture of
��� ��
��
������

, and is followed by sec-
tions which discuss the particular components of this architecture along with their
implementation. Section 15.3 covers the general knowledge sources used by the
program. Section 15.4 discusses the game-specific analysis tables produced by the
program which are used by those knowledge sources. Section 15.5 addresses the im-
portant issue of setting weights for the advisors. Section 15.6 provides examples of the
game-analysis performed by

���	��
��
������
on several games discussed in this thesis.

Section 15.7 summarises the chapter.

15.2 Overview of Metagamer
In order to represent knowledge in a general and flexible fashion, I have used an
approach similar to that used already in Chapter 12. That is, I represent knowledge
for use with the evaluation function in a game-independent form which does not refer
to the details of any game.

�
When given the rules of a specific game, the program

�
It should be remembered that, by construction of the

�����
-Metagame problem, it impossible to

encode knowledge which is game-specific, because the program is given the rules of specific games only
before competition, at which point the human is no longer allowed to modify the program.

133
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using this evaluation function first performs a pre-processing stage during which
it specialises some of the general knowledge to take account of the details of each
game it is given. In this way, some of the responsibility for game-specific analysis is
transferred onto the program.

The architecture of
��� ��
��
������

is rather sophisticated, and is shown schematically
in Figure 15.1 and Figure 15.2.

Game Analyzer

Static Analysis

Tables

Rules

Game
WeightsParameters

Figure 15.1: Game-Analyzer of
���	��
�
������

.

When presented with a set of game rules, the game-analysing component of
���	��
 �

��
������
(Figure 15.1) constructs a set of static analysis tables based on the rules of that

game. When later evaluating a position, while playing that game, the evaluation-
function component (Figure 15.2) takes as input these static tables and the rules of
the game. The program then constructs a set of dynamic analysis tables, based on
the current position. The dynamic tables, along with the static tables, the position,
and the game rules, are then used by a set of advisors, each of which may provide
specialised advice to be used in evaluating the position. The whole set of advice is
then passed to a mediator, which combines it into a global evaluation of the position.

�

This evaluation is a number, which is the estimate of the position from the perspective
of the white player. This number is used by the search engine in the standard manner.

15.2.1 Overview of Advisors
Following the approach used in � ��� � � [Epstein, 1989b], we view each component of
the evaluation function as an advisor, which encapsulates a piece of advice about why

�
In the current system, the mediator returns just a weighted sum of the advice, where each piece of

advice is weighted according to the weight attached to the advisor who offered it.
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Figure 15.2: Evaluation Function of
���	��
��
������

.

some aspect of a position may be favourable or unfavourable to one of the players. The
advisors recognise aspects of a position which are favourable for one of the players,
other things being equal, and express their observations in the form of numerical
values (advice).

Local and Global Advisors There are two types of advisors: local and global.
Local advisors comment on the value derived from having a particular piece on a
particular square of the board, or a particular relation holding between a set of pieces.
An example of a local advisor is local-threat, which awards points to a position in
which a piece threatens to capture an enemy piece. Global advisors comment on
global properties of a position, often returning the maximum of the values of a set
of local advisors. The corresponding example of a global advisor is global-threat,
which awards points to a position based on the most valuable threat by a player. As
suggested by this example, the arrows between the advisors in the figure indicate that
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some advisors refer to other advisors in making their assessments.

15.2.2 Representation of Advisors
In terms of the representation of the advisors, I follow an approach similar to that
used in Zenith [Fawcett and Utgoff, 1992], in which each advisor is defined by a non-
deterministic rule for assigning additional value to a position. The total contribution
(value) of the advisor is the sum of the values for each solution of the rule. This
method of representation is extremely general and flexible, and facilitates the entry
and modification of knowledge.

15.3 Advisors
This section briefly explains the advisors currently implemented for

���	��
��
������
.

It should be noted that this set is not final, and there are several important general
heuristics which are not yet incorporated (such as distance and control [Snyder, 1993]).

The advisors can be categorised into four groups, based on the general concept
from which they derive.

15.3.1 Mobility Advisors
The first group is concerned with different indicators of mobility. These advisors
were inspired in part by [Church and Church, 1979] and [Botvinnik, 1970], and are
motivated in Section 14.2 and Section 14.4.
� , '�"!% � ( *�� �)��
!( � ( $�' � counts the number of squares to which a piece can move directly
from its current square on the current board, using a moving power.

�

� +B$ %�$)(�*�� ����
�( � ( $�' � a static version of immediate-mobility, this counts the number of
squares to which a piece could move directly from its current square on an otherwise
empty board, using a moving power.
� *�%� �$��	 (B" ��� �!��
�( � ( $�' � counts the number of captures each piece could make in the
current position, regardless of the usefulness of the capture. It does not even distin-
guish whether the victim is a friendly or enemy piece. There is no static version of
this advisor. For future work, one way to approximate the potential capturing ability
of a piece might be to play random games and count the pieces attacked by each piece
in each position.
� #�� #�"�$�!% ��� �)��
�( ��(B$�' � measures the total value of all squares to which a piece could
move eventually from its current square on an otherwise empty board, using a moving
power. The value of each square decreases (by a parameter-controlled function) with
the number of moves required for the piece to get there. Thus while a bishop has 32

�
I may elsewhere in this thesis refer to this as immediate-mobility or moving-mobility.
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eventual moves and a knight has 64 from any square, the bishop can reach most of its
squares more quickly, a fact captured by this advisor.

15.3.2 Threats and Capturing
The second group of advisors deals with capturing interactions (in general, threats
and conditions enabling threats):
� ����*�% ���$ � 	 #�%B$ � for each target piece which a piece could capture in the current posi-
tion, this measures the value of executing this threat (based on the other advisors),
but reduces this value based on which player is to move. Thus a threat in a position
where a player is to move is almost as valuable for that player as the value derived
from executing it (i.e. he can capture if he likes), but if it is the opponent’s move it is
less valuable, as it is less likely to happen. Thus attacking an enemy piece while leav-
ing one’s own piece attacked (if the pieces are of equal value) is a losing proposition,
but if the threatened enemy piece is worth much more this may be a good idea. The
value of these threats are also augmented based on the effect of the capture.
�  !��$ #�"�$���$ � 	 #�%B$ � this extracts from the local-threat analysis just those threats which
are obviously potent. A threat is potent for the player on move if the target is either
undefended or more valuable (based on the other advisors) than the threatening piece.
A threat is potent for the non-moving player only if the attacker is less valuable than
the target and the moving-player does not already have a potent threat against the
attacker.
� � ����
!% ���$ � 	 #�%B$ � The two threat advisors above exist in both local and global versions.
The local version credits a player for each threat she has in a position, while the global
version credits the player with only the maximum of those local threat values.
�  !� +�+�# +�+ � In a position where a player has a piece in-hand, the player is awarded
the dynamic value (using the local advisors) that the piece would receive, averaged
over all empty board squares. Note that if the maximum value were used instead of
the average, a program searching one-ply would never choose to place a piece on the
board once possessed.

�

15.3.3 Goals and Step Functions
The third group of advisors is concerned with goals and regressed goals for this class
of games.
� ��( $!% � � this measures dynamic progress by both players on their goals to eradicate
some set of piece types. As a given goal becomes closer to achievement, exponentially
more points are awarded to that player. In addition, if the number of such remaining

�

This analysis would have to be improved substantially to capture the complexities of possessed
pieces in games like Shogi.
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pieces is below some threshold, the remaining pieces are considered vital, in which
case any potential threats against them automatically become potent.
� %�	�	 (��!% ����,!(�+B$ %B"!*�# � this is a decreasing function of the abstract number of moves it
would take a piece to move (i.e. without capturing) from its current square to a goal
��"  $ ! 0��+$ ! �)0 on an otherwise empty board, where this abstract number is based on
the minimum distance to the destination plus the cost/difficulty of clearing the path.
This applies only to destinations for which the game has a defined arrival-goal for a
piece-type consistent with the piece, and succeeds separately for each way in which
this is true.
�  �	 � ����$!#���,!(�+ $!%�" *�#�� for each target-piece that a piece could promote into (by the
player’s choice), this measures the value of achieving this promotion (using the other
advisors), but reduces this value based on the difficulty of achieving this promotion, as
discussed for arrival-distance above. The result is the maximum net value (to player)
of the discounted promotion options, or the minimum value if the opponent gets to
promote the piece instead.

�

� ( "�( $��� 
	 � ����$ # � This applies in a position where a player is about to promote the
opponent’s piece (on some square) before making a normal move. For each promoting-
option defined for that piece, this calculates the value that option would have on the
given square in the current position. The value returned is the maximum of the values
of the options, from the perspective of the promoting player (and thus the minimum
from the perspective of the player who owned the piece originally).

15.3.4 Material Value
The final group of advisors are used for assigning a fixed material value to each type of
piece, which is later awarded to a player for each piece of that type he owns in a given
position. This value does not depend on the position of the piece or of the other pieces
on the board. As a player’s score from these material values does not change whenever
the piece makes an ordinary move, the effect is that the program is especially sensitive
to moves which change the material balance. In chess and checkers, these changes
are captures (as pieces are removed from the board) and promotions (as the type of a
piece changes).

One global advisor, ��%�$ # 	 (�% � , computes a set of material values for each type of
piece in a given game, after the static analysis tables used by all the other advisors
have been constructed. The material value for a piece is a weighted sum of the values
returned by the advisors listed in this section. Note that white rook and black rook
are viewed as different types of pieces during the computations below.

�

�

If we take the sum instead of the maximum here, a piece with many promotion options could be
more valuable than its combined options, and thus it would never be desirable to promote it. For
example, a pawn on the seventh rank would sit there forever enjoying all its options, but never cashing
them in.

�

Thus if a piece gets one point for each piece it can possibly capture, and there are 5 distinct piece
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� �)%���� +B$ %�$�( *�� �)��
 � The maximum static-mobility for this piece over all board squares.
� %�� ��� + $!%�$)(�*�� �!��
 � The average static-mobility for this piece over all board squares.
� ��%�����#��!#�"�$�� % ��� �!��
 � The maximum eventual-mobility for this piece over all board
squares.
� %�� ����#��!#�"�$��!% ��� ����
 � Theaverage eventual-mobility for this piece over all board squares.
� #�	 %�,!(�*�%�$ #�� Awards 1 point for each opponent goal to eradicate pieces which match
this type, and minus one point for each player goal to eradicate our own piece matching
this type.
� �)(�*�$)( � + � Awards 1 point for each type of piece this piece has a power to capture (i.e.
the number of pieces matching one of its capture-types). A bonus is provided for the
effects of each capture, as discussed for the local-threat advisor above. It would be
interesting to have a dynamic version of this which gave preference to pieces which
could capture other pieces actually present in a given position.

�

� ( ���
��"�( $�' � Awards 1 point for each type of enemy piece that cannot capture this piece.
� ��(�� #�% �!%�' � Awards 1 point for each type of friendly piece that can capture this piece.
� + $!% ��# �)%�$!# � This views the goal to stalemate a player as if it were a goal to eradicate
all of the player’s pieces, and performs the same computation as eradicate above.
� %�	�	 (��!# � Awards a piece 1 point if the player has an arrival goal predicated on that
type of piece. It awards � � 0 points if the piece can promote to an arrival-goal piece in0 promotions. Values are negated for opponent arrival goals.

�

�  �	-� �)��$!# � This is computed in a separate pass after all the other material values. It
awards a piece a fraction of the material value (computed so far) of each piece it can
promote into.

Section 15.6 provides concrete examples of the application of these advisors to the
rules different games discussed in this thesis.

15.4 Static Analysis Tables
Many of the advisors draw on information which would be extremely slow to compute
dynamically at each position to be evaluated. For example, it would be wasteful
to determine in each position the number of squares a piece could eventually reach
on an otherwise empty board. Chapter 12 showed how some wasteful computation
in the primitive search components could be eliminated through a pre-compilation
stage. A similar approach is used here to overcome inefficiency in the evaluation

names, it is possible to score 10 points if the piece can capture all pieces.
�

A more sophisticated version of this feature, not fully implemented yet, takes into account the
value of each victim, as determined by other static advisors.

�

The net effect of this is that pieces which help a player to achieve arrival goals receive positive
points, and those which help the opponent receive negative points.
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function. To this end, the program compiles a set of tables after it receives the rules of
each game, and then uses those tables thereafter. As the tables encode the results of
analysis applied to a specific game, the advisors can be written in a game-independent
manner. Another advantage of this game-specialisation beyond efficiency is that after
receiving the game rules, the program can take advantage of the rules to fold some of
the goal tests directly into the tables.

As an example, one of the most frequently used tables is the Constrained-
Transition table. This table is used by all the static mobility advisors, and records for
each piece and square, the other squares the piece could move to directly on an other-
wise empty board. However, the table excludes all transitions from this set which can
easily be shown either to be impossible or immediately losing for the player moving
that piece. A transition is impossible if the starting square is one in which an arrival
goal would already have been achieved when the piece first arrived at the square. A
transition is immediately losing if the player would necessarily lose the game when-
ever his piece arrives on the destination square. While these considerations do not
obviously apply to any known games, they prove highly relevant in generated games.

15.4.1 List of Tables
This section describes in more detail the actual tables constructed by the current
system.

��	-%�")+�(B$)(���"
� ��%B$
	 ( � � This contains all tuples of the form � � � � � � � � � � � such that � is
a piece-type in the game, � � � and � � � are squares on the board, and � could use a
moving power in the current position to go in one move from � � � to � � � , based on the
definition of legal moves applied to the rules of this game.


 ��"�+ $�	 % (B" #�,
� �!%�$�	!( � � This removes from the transition matrix all tuples of the form
� � � � � � � � � �6� such that the player who owns � would lose the game if he ever had a
piece on � � � . This thus gives all transitions which would ever happen without losing
the game (continued-capture sequences are not relevant here, since we are looking
only at moving moves). We also remove all triples where � � � is a losing square but not
in promotion region (as those squares in promotion region may allow us to promote
into a new kind of piece).

.�(�+B$ %�"!*�#�� �!%�$�	 ( � : Based on the constrained-matrix, this matrix contains the solution
of the all-pairs-shortest-paths (APSP) problem [Aho et al., 1983] to determine for each
piece � and pair of squares � � � � � � � �6� , the number of moves � would take to move
from � � � to � � � . This is constructed in � � �

� 
 time, where � is the number of squares
on the board.
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�
��
�( � (B$�'�� �!%�$�	 ( � : This is based on the distance-matrix, and contains all quadruples
� � � � � � �

� � � such that piece � could move from square � � to � different squares, each
in minimum � moves. For example, a rook in chess can move from any square to 14
different squares in one move, and to 49 other squares in two moves.


	-� �)��$!#���
	�%�"�+�( $!(���"
�

�
%B$
	!( � � Maps each piece � to the set of pieces � ! " ��" � such that� could promote directly into � ! " ��" � , by player’s choice. This table for now ignores

the cases where the opponent has the choice, as this is complicated.


	-� �)��$!#��.)(�+B$!%B" *�#��

�
%�$�	 ( � � The APSP solution to the promote-transition-matrix, anal-

ogous to the case for the distance matrix above.


	-� �)��$!#����� �!% 	�#�

�
%�$�	!( � � For each � � 1 � � " � �	� ! " �*" � � � � � triple, contains the minimum

distance in moves that � ! " ��" on � � � would have to travel to reach the closest square
in promotion region for � 1 � � " � . This is based on the promote-distance matrix above.
An extension to this table also contains the next square on this path.
�
%�$!#�	!(�% ����� %�
���# � This table contains the pre-computed material values used by the

advisor called material (see Section 15.3.4).

15.4.2 Static vs. Dynamic Advisors and Tables
There are two types of advisors and tables used, depending on whether the information
they use is based on the present position, or on a more abstract one.

Static advisors are based on tables built when the program is given the rules of a
new game. They are constructed on the assumption of an empty board, and thus give
a kind of abstraction or relaxation from a particular position.

Dynamic advisors are based on the current board, and are more expensive to
compute. In principle, all of the static tables could also be based on the current
position, but in practice with the current implementation this would take prohibitively
long to construct (table construction for checkers takes 7 seconds on a

� 
 �
�
� � 
�� � � ��� ,

for chess it takes 50 seconds).
Empirical studies show that both static and dynamic versions of these tables could

lead to much improved performance. For example, a chess queen which has no moves
in the current position (0 dynamic mobility) is still very valuable (high static mobility),
and the squares a piece could reach in N moves in a blocked position (dynamic-n-
mobility) may be dramatically different than those it could reach on an empty board.
Certainly the shortest paths vary based on the position.

It is possible to construct these tables in parallel in short enough time to be useful
for real-time search. Future work will explore this possibility further.
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15.4.3 Use Of Tables

The way the various advisors make reference to these tables is straightforward given
their description. The static mobility advisors simply refer directly to the correspond-
ing tables, while the dynamic mobility advisor interprets the rules on the current
position. Arrival-distance uses the distance matrix and some reference to the current
board for those squares on the path. Promote-distance uses the promote-distance-
matrix to determine the possible pieces a certain piece could promote into (and the
number of promotions necessary to achieve this), and the promote-square matrix to
determine the number of moves necessary to reach promotion region in the first place.
Then the critical squares along this path are examined dynamically (i.e. with reference
to the current board).

�

The threat analysis at present determines captures dynamically, based on the
current position. It is thus rather slow, almost as slow as performing another ply of
search. However, as this feature measures all the threats available, it is more abstract
than counting the number of enemy pieces in resulting positions. Empirical testing
has shown that using the threat feature more than pays for the time necessary in
terms of performance. That is, a program using threats performs better than a
program which does not use threats, when given the same amount of time per move.
This is thus a clear case where expensive knowledge is more valuable than cheap
search, observed on a wide variety of games.

���

15.5 Weights for Advisors

The last major issue concerning the construction of the strategic evaluation function
involves assigning weights to each advisor, or more generally, developing a function
for mediation among advisors [Epstein, 1989a]. While this issue is already difficult
in the case of existing games, it is correspondingly more difficult when we move to
unknown games, where we are not even assured of the presence of a strong opponent
from which to learn.

15.5.1 Constraints on Weights

By the construction of some of the advisors, we can determine at least a few significant
constraints on their possible weights.

�

In the current implementation, only the final promotion square is inspected dynamically, due to
efficiency considerations.���

Berliner [Berliner, 1984] discussed at length this issue of the tradeoff between knowledge and
search in game-playing programs.
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15.5.1.1 Regressed Goals are Always Fractional

First, for advisors which anticipate goal-achievement (promote-distance and threats),
it seems that their weights should always be at most 1. The reason is that the value
they return is some fraction of the value which would be derived if the goal they antic-
ipate were to be achieved. If such an advisor were weighted double, for example, the
value of the threat would be greater than the anticipated value of its execution, and
the program would not in general choose to execute its threats. This type of constraint
is commonly used when tuning weights for chess programs, as otherwise a pawn on
the seventh rank may be seen as more valuable than the queen into which it could
promote.

� �

15.5.1.2 Advice is Always Constructive

Second, the philosophy behind the advisors suggests that weights should never be
negative. The knowledge represented in each advisor recognises properties of a posi-
tion which should be valuable to a player, other things being equal (sharing the view
of goals advocated in [Wellman and Doyle, 1991], see also Section 3.2.2.2). Aspects of
a position which are bad for a player are designed to be recognised as aspects which
are good for the opponent, and so need not be recognised separately. In this way the
advisors can be viewed as being always constructive: they never tell a player that
some aspect is bad for the player, but they sometimes point out that an aspect is good
for the opponent.

15.5.2 Internal Consistency is Weight-Independent
It should be emphasised that the problem of finding good weights for the advisors for
use in a specific game is different from the problem of finding weights for game-specific
features such as material or positional piece values.

� �
Since one set of weights is used

to determine the values for all of the pieces in the game, this imposes an internal
consistency on the resulting piece values. A concrete example will illustrate the point.

The victims advisor awards a piece 1 point for each type of piece it can capture,
while avg-static-mob awards points based on the average mobility the piece has
on an empty board. The raw numbers returned by these advisors are obviously on
different scales, and the issue of finding weights for them on a specific games involves
determining the relative impact of differences in capturing ability as compared to
differences in mobility. In chess, where all pieces capture the same number of pieces,

� �
The chess-master Tartakover (quoted in [Hunvald, 1972]) said, “A threat is more powerful than its

execution.” But he did not mean by this that a player should prefer to have threats against pieces than
to have captured them for free.� �

These concepts have already been discussed, but I will state them here to avoid ambiguity. A
material value is a value of a piece independent of any board position. A positional value is the value
from having a piece on a square, independent of the rest of the board position.
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the differences in weights will have no impact on the relative values of the pieces
determined by the material advisor relying on these advisors. Moreover, for any
game in which two pieces capture the same number of pieces but one has higher
mobility than the other, there is no possible assignment of positive weights to only
these two advisors that will result in the program valuing the lower-mobility piece
over the higher-mobility one. As a consequence of this, it can be seen that even a
random setting of weights to advisors (subject to the constraints discussed above)
should still result in a competitive advantage over a player that assigned random
weights directly to the game-specific features (assuming that the general encoded
knowledge is useful at all).

Abramson [Abramson, 1990] found a similar result when learning weights for base-
level features in chess: a program using a random assignment of weights for chess
pieces (i.e. material values) performed significantly better than a program which
assigned random values to positions as a whole. The meta-level knowledge in our
case constrains evaluations even more than in the case of base-level features, so we
should expect to gain even more advantage over using random weights.

It is of course possible that a parameter-learning system would find some advi-
sors to be negatively correlated with success, and that negating those weights could
produce improved performance. This would suggest that other things were not, in
fact, equal, and should motivate a program (or its designer) to search for an advisor
which recognised the aspects which become favourable for the opponent as a player
increases the value of the negatively-correlated advisor. These issues were discussed
more fully in Section 14.2.1 and Section 14.4.

15.5.3 Summary of Weights
One way to summarise the discussion above is with the observation that the advisors
are in effect feature-generators, which serve to modularise more general knowledge.
When applied to a specific game, the advisors yield values which function in the same
way as the base-level features of a game-specific program. But since a small number
of general advisors generate a large number of specific values, it is clear that the
game-specific values produced by the advisors are much more constrained than the
corresponding values in a game-specific program.

� �

But even given the constraints and modularity imposed by these advisors, it is
still the case that for different games, some sets of weights may lead to performance
which is dramatically stronger than other sets of weights. This will be demonstrated

� �
There is an important connection here to the subfield of linguistics called universal grammar

[Chomsky, 1965] or more recently principles-based parsing [Fong, 1991]. Rather than writing detailed
parsers for specific languages, this field develops general linguistic principles. Given a set of parameters
which affect the principles, and a high-level grammar for the specific language, the principles are
compiled to produce a parser for the specific language. A more detailed discussion of relation between
the use of linguistic principles and the use of advisors is beyond the scope of this thesis.
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empirically in the experiments in Chapter 16. The issue of finding weights for advisors
used by

���	��
��
������
is thus an important area for future research (see Section 19.4.1).

In the meantime, I have experimented with
���	��
��
������

with a variety of weight
settings. As will be shown in the next section and in Chapter 17, even setting all
weights equally leads to reasonable performance.

15.6 Examples of Material Analysis
This chapter has discussed the advisors and analysis tables used by

���	��
��
������
,

which were motivated by the analysis discussed in Chapter 14. One important aspect
of
���	��
��
������

’s game analysis, which was discussed in Section 15.3.4, is concerned
with determining relative values for each type of piece in a given game. This type
of analysis is called material analysis, and the resulting values are called material
values or static piece values. This section illustrates the results of

���	��
��
������
’s

material analysis when applied to some of the games discussed in this thesis. In all
cases,

���	��
��
������
took as input only the rules of the games as encoded in the text

(see Appendix D).
In conducting this material analysis,

���	��
�
������
used the material advisors shown

in Table 15.1, all with equal weight of one point each.

Advisor Weight
dynamic-mobility 1
capture-mobility 1
global-threat 1
eventual-mobility 1
promote-distance 1
eradicate 1
vital 1
material 1
victims 1
max-static-mob 1
max-eventual-mob 1
eradicate 1
stalemate 1
arrive 1
giveaway 1
immunity 1

Table 15.1: Advisor weights for material analysis examples.
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15.6.1 Checkers
Table 15.2 lists material values determined by

��� ��
��
������
for the game of checkers,

given only the encoding of the rules as presented in Figure 7.3, page 59. In the table,� stands for � ! 02. , and � stands for �
��0 .

Material Analysis: checkers
Piece

Advisor K M
max-static-mob 4 2
max-eventual-mob 6.94 3.72
avg-static-mob 3.06 1.53
avg-eventual-mob 5.19 2.64
eradicate 1 1
victims 2 2
immunity 0 0
giveaway 0 0
stalemate 1 1
arrive 0 0
Total 23.2 13.9

Table 15.2: Material value analysis for checkers.
���	��
�
������

concludes that a king is worth almost two men. According to expert
knowledge,

� �

this is a gross underestimate of the value of a man. The reason that men
are undervalued here is that

���	��
��
������
does not yet consider the static value of a

piece based on its possibility to promote into other pieces (see Section 15.3.4). When
actually playing a game,

���	��
��
������
does take this into consideration, based on the

dynamic promote-distance advisor.

15.6.2 Chess
Table 15.3 lists material values determined by

���	��
�
������
for the game of chess,

given only the encoding of the rules as presented in Appendix D.2.2, page 247. In the
table, the names of the pieces are just the first letters of the piece names in the game
definition.

As discussed for checkers above, pawns are here undervalued because
���	��
�
������

does not consider their potential to promote into queens, rooks, bishops, or knights.
According to its present analysis, a pawn has increasingly less eventual-mobility as

� �

I am thankful to Nick Flann for serving as a checkers expert.
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Material Analysis: chess
Piece

Advisor B K N P Q R
max-static-mob 13 8 8 1 27 14
max-eventual-mob 12 12.9 14.8 1.99 23.5 20.2
avg-static-mob 8.75 6.56 5.25 0.875 22.8 14
avg-eventual-mob 10.9 9.65 11.8 1.75 22.4 20.2
eradicate 0 1 0 0 0 0
victims 6 6 6 6 6 6
immunity 0 0 0 0 0 0
giveaway 0 0 0 0 0 0
stalemate 1 1 1 1 1 1
arrive 0 0 0 0 0 0
Total 51.7 45.1 46.9 12.6 103 75.5

Table 15.3: Material value analysis for chess.

it gets closer to the promotion rank. Beyond this, the relative value of the pieces is
surprisingly close to the values used in conventional chess programs, given that the
analysis was so simplistic.

15.6.3 Fairy Chess

Table 15.3 lists material values determined by
��� ��
��
������

for some fairy-chess pieces
[Dickins, 1971], which are useful for comparison with the standard chess pieces. The
definitions for these pieces are presented in Appendix D.2.3, page 250. In the table,8 is short for � ! � . 1 " ��� , a piece which can move only one square diagonally. � is
short for ���*$��/�-1 " ��� , a piece that moves one square orthogonally. A chess king is thus
a piece which moves as either of these two pieces. � � , � � , and � � are short for
knight-bishop, knight-queen, and knight-rook. These pieces have movement powers of
a knight disjoined with a bishop, queen, or rook, respectively. A normal chess queen
can be viewed as a bishop-rook, for comparison.

One interesting point to note from this is that
���	��
��
������

’s values are fully consis-
tent, in the sense that giving a piece an additional moving movement (like turning a
queen into a combined knight and queen) results in a corresponding increase in piece
value.
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Material Analysis: fairy-chess
Piece

Advisor D NB NQ NR O
max-static-mob 4 21 35 22 4
max-eventual-mob 6.94 22 25.5 22.2 7.91
avg-static-mob 3.06 14 28 19.2 3.5
avg-eventual-mob 5.19 19.7 23.8 21.6 6.26
eradicate 0 0 0 0 0
victims 5 5 5 5 5
immunity 0 0 0 0 0
giveaway 0 0 0 0 0
stalemate 1 1 1 1 1
arrive 0 0 0 0 0
Total 25.2 82.7 118 91.1 27.7

Table 15.4: Material value analysis for fairy-chess.

15.6.4 Knight-Zone Chess
Table 15.5 lists material values determined by

���	��
��
������
for the first version of

knight-zone chess with Rule 1. This game was discussed in Section 3.2.2.2 on page 18,
and the definition input to

���	��
��
������
is listed in Appendix D.2.4. The only difference

between this game and chess is that the board is extended by two on all sides, and
other pieces are restricted from landing on the outside squares except for the knight.
This restriction is represented as a goal in which the opponent wins if a player ever
puts a piece other than a knight in that zone.

It is interesting to observe that given this change to the rules of normal chess,���	��
��
������
concludes that a knight is now worth a small amount more than a

rook. This also provides a good example of the importance of using the constrained-
matrix when determining mobility instead of the ordinary transition-matrix. The
transition-matrix alone would have indicated that rooks, for example, could move to
every square of the board and so would have higher mobility than the knight. The
constrained-matrix folds the goal conditions directly into the move transition analy-
sis, and enables the program to determine statically that the knight is the only piece
which can travel in this outer zone.

15.6.5 Turncoat Chess
Table 15.6 lists material values determined by

���	��
�
������
for the game of turncoat

chess. This game was produced by the game generator and is discussed in Section 8.3
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Material Analysis: knight-zone chess
Piece

Advisor B K N P Q R
max-static-mob 13 8 8 1 27 14
max-eventual-mob 12 12.9 23.1 1.99 23.5 20.2
avg-static-mob 3.89 2.92 6.11 0.389 10.1 6.22
avg-eventual-mob 5.42 4.84 17.3 1.33 10.5 9.56
eradicate 0 1 0 0 0 0
victims 6 6 6 6 6 6
immunity 0 0 0 0 0 0
giveaway 0 0 0 0 0 0
stalemate 1 1 1 1 1 1
arrive -1 -1 0 -1 -1 -1
Total 40.3 35.7 61.4 10.7 77.1 56

Table 15.5: Material value analysis for knight-zone chess.

on page 66.���	��
�
������
here values a firefly (F) as the best piece by far, and considers the

termite (T) and slug (S) to be approximately equal in value, with the termite only
slightly better. This example reveals how simplistic the current analysis is, when
compared to the sophisticated strategy for this game discussed in Section 8.3.3.

15.6.6 Discussion
This section has provided some examples of the game analysis produced by

���	��
 �
��
������

after receiving just the rules of a set of games discussed in this thesis. In
all examples,

���	��
�
������
used the same set of weights for its advisors, and all ad-

visors were weighted equally. Despite its simplicity, the analysis produced useful
piece values for a wide variety of games, which agree qualitatively with the assess-
ment of experts on some of these games. This illustrates that the general knowledge
encoded in

���	��
��
������
’s advisors and analysis methods is an appropriate generali-

sation of game-specific knowledge, which was the point of the analysis presented in
Chapter 14.

This appears to be the first instance of a game-playing program automatically
deriving material values based on active analysis when given only the rules of different
games. It also appears to be the first instance of a program deriving useful piece values
for games unknown to the developer of the program. The following sections compare���	��
��
������

to previous work with respect to determination of feature values.
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Material Analysis: turncoat-chess
Piece

Advisor F S T
max-static-mob 12 4 4
max-eventual-mob 10 4 4
avg-static-mob 8.96 2.4 3.2
avg-eventual-mob 8.8 2.56 3.24
eradicate 0 0 0
victims 6 6 6
immunity 0 0 0
giveaway 3 3 3
stalemate -1 -1 -1
arrive 0 0 0
Total 47.8 21 22.4

Table 15.6: Material value analysis for turncoat-chess.

15.6.6.1 Expected Outcome

Abramson [Abramson, 1990] developed a technique for determining feature values
based on predicting the expected-outcome of a position in which particular features
(not only piece values) were present. The expected-outcome of a position is the frac-
tion of games a player expects to win from a position if the rest of the game after that
position were played randomly. He suggested that this method was an indirect means
of measuring the mobility afforded by certain pieces. The method is statistical, com-
putationally intensive, and requires playing out many thousands of games. On the
other hand, the analysis performed by

��� ��
��
������
is a direct means of determining

piece values, which follows from the application of general principles to the rules of
a game. It took

���	��
��
������
under one minute to derive piece values for each of the

games discussed in this section, and it conducted the analysis without playing out
even a single contest. This same consideration also applies to other work on self-play,
which was discussed in Section 3.3.4.

15.6.6.2 Automatic Feature Generation

There has recently been much progress in developing programs which generate fea-
tures automatically from the rules of games [de Grey, 1985; Callan and Utgoff, 1991;
Fawcett and Utgoff, 1992]. When applied to chess such programs produce features
which count the number of chess pieces of each type, and when applied to Othello
they produce features which measure different aspects of positions which are corre-



15.7. SUMMARY 151

lated with mobility. The methods operate on any problems encoded in an extended
logical representation, and are more general than the methods currently used by���	��
��
������

. However, these methods do not generate the values of these features,
and instead serve as input to systems which may learn their weights from experience
or through observation of expert problem-solving. While

���	��
��
������
’s analysis is

specialised to the class of symmetric chess-like games, and thus less general than
these other methods, it produces piece values which are immediately useful, even for
a program which does not perform any learning.

15.6.6.3 Evaluation Function Learning

There has been much work on learning feature values by experience or observation
(e.g. [Samuels, 1967; Lee and Mahajan, 1988; Levinson and Snyder, 1991; Callan
et al., 1991; Tunstall-Pedoe, 1991; van Tiggelen, 1991]). These are all examples of
passive analysis, and are not of use to a program until it has had significant experience
with strong players. This issue is discussed in detail in Section 3.3.

15.6.6.4 Hoyle
� � � � � [Epstein, 1989b] is a program, similar in spirit to

��� ��
��
������
, in which general

knowledge is encapsulated using the metaphor of advisors. � ��� � � has an advisor
responsible for guiding the program into positions in which it has high mobility.
However, �

���
�
�

does not analyse the rules of the games it plays, and instead uses the
naive notion of immediate-mobility as the number of moves available to a player in a
particular position. The power of material values is that they abstract away from the
mobility a piece has in a particular position, and characterise the potential options
and goals which are furthered by the existence of each type of piece, whether or not
these options are realised in a particular position. As � � � � � does not perform any
analysis of the rules or construct analysis tables as does

���	��
��
������
, it is unable to

benefit from this important source of power.

15.7 Summary
This chapter discussed

���	��
�
������
, a first-principles game-playing program for the

class of symmetric chess-like games. The program takes in the rules of the specific
game and builds a set of analysis tables specialised for that game which are used as
the basis for a game-specific evaluation function. These tables determine such factors
as the short-term and long-term mobility each piece has from each board square, the
number of moves it takes a piece to move between any pair of squares on an empty
board, and which pieces can promote into which other pieces.

When the program later plays a game, these tables are used by the features in the
general evaluation function, which are called advisors. Thus the overall architecture
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of the evaluation function is divided between (a) a set of game-independent knowledge
sources, and (b) a set of analysis methods which construct game-specific tables based
on the rules of the game. When actually playing a specific game, the program functions
as if its knowledge were specialised to just that specific game. The overall process is
a form of knowledge-compilation [Flann, 1992], as general knowledge is specialised to
a particular problem.

Section 15.5 discussed the important issue of weights for advisors. The section
showed that the advisors can be viewed as feature generators which produce specific
features with weight settings, and that any setting of weights for the advisors still
imposes an internal consistency on the base-level features which result from their use
with a specific game (via table construction). This means that the successful perfor-
mance of a program using the advisors is not as dependent on the weights of those
advisors as a game-specific program would be dependent on the weights of its game-
specific features. In other words, a random setting of weights to advisors (subject to
constraints discussed in the section) is still expected to perform significantly better
than a random setting of weights to base-level features. A concrete example was pro-
vided which showed that all settings of weights to advisors that were consistent with
the constraints discussed in that section would still result in

���	��
��
������
preferring

a piece with more mobility over one with less, other factors being equal.
However, the section also observed that a better setting of weights to advisors for

a given game would still result in a competitive advantage, and that no one set of
advisor weights appeared likely to be good for all games in the class. The general
problem of learning advisor weights was suggested as an important area for future
research.

Section 15.6 grounded the discussion of advisors, weights, and analysis by pro-
viding some examples of the game analysis produced by

���	��
��
������
after receiving

just the rules of a set of games discussed in this thesis. In all examples,
���	��
��
������

used the same set of weights for its advisors, and all advisors were weighted equally.
Despite its simplicity, the analysis produced useful piece values for a wide variety
of games, which agree qualitatively with the assessment of experts on some of these
games. This illustrates that the general knowledge encoded in

���	��
��
������
’s advisors

and analysis methods is an appropriate generalisation of game-specific knowledge,
which was the point of the analysis undertaken in Chapter 14. The section pointed
out that

���	��
��
������
appears to be the first instance of a game-playing program auto-

matically deriving material values based on active analysis when given only the rules
of different games.

The game specialiser, search engine, and class-wide strategic evaluation function
together comprise

���	��
��
������
, a first-principles ����� -Metagame-player. Chapter 16

will now examine the success of the knowledge encoded in the program within a
context of competition on generated games.
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A Metagame Tournament

16.1 Introduction
This chapter discusses the results of an experiment in which a set of different versions
of
��� ��
��
������

competed against each other and against some baseline programs on
a set of games which were generated only at the time of competition. The experiment
assessed the performance of

���	��
�
������
against a set of baseline players, the com-

petitive advantage derived from different weights for advisors, and the potential for
future work on learning to provide programs with a competitive advantage relative to
those which do not learn. In all cases, the results were positive and significant.

16.2 Motivation
The preceding chapter developed

���	��
��
������
, a ����� -Metagame-playing program

which plays arbitrary generated games from the class of symmetric chess-like games
without human intervention. The general strategies implemented in

���	��
��
������

were derived by generalising some of the strategies implemented in traditional spe-
cialised game-players, and also by extensive human analysis of the semantics of the
class of games as a whole. As will be shown in Chapter 17,

���	��
��
������
performs

reasonably well on a variety of known games, which indicates that the knowledge it
embodies is in some sense an effective and efficient generalisation of some strategies
used in specific games. However, the real task for which

���	��
��
������
was designed,

and the task on which it must be evaluated, is ����� -Metagame: the only criterion is
its performance on unknown games within the class of symmetric chess-like games,
as generated only at the time of competition.

The ultimate test will come when other researchers construct programs to play����� -Metagame also, at which point it will be possible to compare the programs, and
the theories they embody, in a context of competition. But even in the absence of
strong opponents, it is important to assess whether

���	��
�
������
is at all successful on

153
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this extremely difficult problem:

� Does any setting of weights for
���	��
��
������

actually give it a competitive advan-
tage against the baseline players on generated games?

Although the analysis which motivated the strategies, architecture, and implemen-
tation of

���	��
��
������
seemed sound, there are several reasons why the performance

of
���	��
�
������

might be no better (perhaps even worse) than random on new games.
Among other reasons, the knowledge as implemented in

���	��
��
������
may be incom-

plete, incorrect, or inefficient:

incomplete: The knowledge may be useful for games similar to known instance
games from which it was derived, but still too incomplete to give useful guidance
on games actually generated.

incorrect: The knowledge may actually be misleading on generated games.

inefficient: The knowledge may be broadly applicable and strategicly sound, but
nevertheless too inefficient to be useful under strict time constraints. In other
words, the time taken to apply the knowledge during problem-solving may be
better spent searching more deeply instead. This problem has been called the
utility problem [Minton, 1990], and the tradeoff between knowledge and search
has been considered in depth within both the game-playing and problem-solving
communities [Berliner, 1984; Callan, 1993; Fawcett and Utgoff, 1992].

Moreover, it could also be possible that the generator produced only drawn or
hopelessly complicated games, in which case

���	��
��
������
could not demonstrate an

advantage even if its knowledge was correct and efficient.
On the other hand, if it turned out that some version of

���	��
��
������
is a worthy

competitor, then it is of interest to answer the following additional questions:

� Can success be attributed to just a few simple advisors (such as static mobility),
or do more advisors increase performance strength?

� Are different combinations of weights for advisors more effective on different
generated games?

An affirmative answer to the second question would indicate that learning could
result in a competitive advantage in ����� -Metagame.

To address these questions, I conducted an experiment in the form of a ����� -
Metagame-tournament.
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16.3 Experimental Procedure
The procedure used in the experiment was as follows. I began by choosing settings of
the generator which would further the goals of the experiment. I then decided on the
layout of the tournament, in terms of the number of players, the number of generated
games, the number of contests per game against each opponent, the maximum game-
length before a draw is declared, and the time-constraints under which a given contest
was played. Then I chose a set of players to play whatever games were later generated.

Once the entire format of the tournament was specified, all of these details were
fixed thereafter. That is, I did not change the details of any programs or their param-
eters, alter any generated games in any way, or experiment with different time-limits:
I ceased to play a role in the process. The games were then generated and the rules
fed directly to the programs, which then played the tournament without human inter-
vention. It should be noted here that none of the players modified themselves, either,
in the course of the tournament (except for building analysis tables when presented
with the games). That is, no passive learning took place.

It is important to emphasise the order of the decision made, and the extent of
human involvement, as it is fundamental to the concept of ����� -Metagame in the
autonomous context (see Section 4.4) that the human has no contact with the rules of
the games before the programs actually play them, and that they then do so without
human interaction.

The details of competition are discussed in the following sections.

16.3.1 Generator Constraints
I chose settings of the generator which would further the goals of the experiment. I
set the parameters and constraints on the generator to favour medium-sized boards
(5 or 6 squares per axis) and moderately complex rules, and added a constraint which
rejected games having only one goal, of the form stalemate-player. The reason for
this is that my programs are not in general capable of achieving these goals, nor are
the random players, so games which had this as the only goal would always result in
draws and so provide no useful information.

�
The resulting games produced by the

generator (i.e. those games actually used in the experiments in this chapter) are listed
in Appendix D.1.

16.3.2 Players
I selected a set of six ����� -Metagame-players, which consisted of two baseline players
and four versions of

���	��
��
������
with different weight settings. The baseline players

�
Recall that the full definition of the generator is always available to the humans in advance of

the competition. No claims of generality are made beyond the class as constrained by the particular
generator known in advance of the competition.
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were random and random-aggressive-defensive (
� 
 �

), as defined in Chapter 13. The
different versions of

���	��
��
������
are shown in Table 16.1.

Tournament Advisor Weights
Player

Advisor 3 4 5 6
dynamic-mobility 0 0 0 1
capturing-mobility 0 0 0 1
global-threat 0 0 0 1
vital 0 0 0 1
eventual-mobility 0 1 1 1
possess 0 0 1 1
arrive-distance 1 0 1 1
promote-distance 1 0 1 1
init-promote 0 0 1 1
material 0 1 1 1
max-static-mob 0 1 1 1
max-eventual-mob 0 1 1 1
eradicate 0 1 1 1
victims 0 1 1 1
immunity 0 1 1 1
giveaway 0 1 1 1
stalemate 0 1 1 1
arrive 0 1 1 1

Table 16.1: Advisor weights for versions of
��� ��
��
������

in tournament.

The players can be summarised as follows:

1. Random

2. Random-aggressive-defensive (
� 
 �

)

3. Arrival and promotion only

4. Eventual-mobility and material value
�

5. Player 3 + Player 4 + possession and init-promotion
�
Recall from Section 15.3.4 (page 138) that the material advisor relies on a set of advisors. As seen

from Table 16.1, all players using material had the same values for all the advisors upon which it
depends.
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6. Player 5 + dynamic mobility, capturing-mobility, global-threats, and vital.

In the above description, the notation Player A + Player B is shorthand to indicate
that the player uses all the advisors with non-zero weights used by Player A or
Player B.

For a full discussion about the function of the basic players, see Section 13.2.1.
For a full discussion about these advisors and their motivation, see Section 15.3 and
Chapter 14, respectively. Note that not all advisors were used in the tournament,
and also that advisors with weight 0 are not evaluated and thus incur no cost in the
evaluation function. Thus Player 6 takes longer to evaluate each position than does
Player 5, and as a consequence gets to examine fewer positions.

16.3.3 Tournament Format
Each of the programs played each other program in a match of 20 contests (10 as
white, 10 as black) on each of the 5 generated games. With 15 pairings, 5 generated
games, and 20 contests per game, there were thus a total of 1500 contests. Each
contest was declared a draw if 200 moves were played without a goal achieved, and
programs were given 30 seconds (0.5 minutes) to make each move. The programs were
not constrained as to game-time-limit or tournament-time-limit (see Section 13.3.4).
Thus the maximum time for running the entire tournament (if every game was a
draw) was � � � ��� > �-��� � � � � � � � � �-� � minutes, or > � � � hours of cpu-time.

The experiments were divided among 50 machines (DEC-Station 2500’s) running
in parallel, giving a maximum total time of 50 hours per machine. In practice the
time was on average 25 hours per machine since at least half the games ended in a
player winning.

A note on time-limits Although the versions of
���	��
��
������

were constrained to
a move-time-limit of 30 seconds per move, the random players were not constrained.
The random player responds instantly, but

� 
 �
sometimes exceeded the time-limit

dramatically, taking in some cases 5 minutes to move. This is because some positions
in the generated games had branching factors of several hundred, and

� 
 �
may do a

full two-ply search in order find an otherwise random move which does not allow a
winning response. As all versions of

���	��
��
������
were restricted in their time, it can

be seen that defeating
� 
 �

may be a formidable challenge, especially in positions in
which the branching factors are high enough that the players do not have time even
to evaluate all first-ply options.

16.3.4 Significance Testing
All results discussed in this experiment have been tested for significance using a
one-sided t-test for comparing two samples from binomial populations [Huntsberger
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Game 1
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 7.0 8.5 5.5 6.5 5.0 32.5
2 13.0 — 11.5 7.5 7.0 3.5 42.5
3 11.5 8.5 — 7.0 5.5 7.5 40.0
4 14.5 12.5 13.0 — 8.5 7.5 56.0
5 13.5 13.0 14.5 11.5 — 7.5 60.0
6 15.0 16.5 12.5 12.5 12.5 — 69.0

Table 16.2: Results of tournament on Game 1.

and Billingsley, 1981, pages 321-322]. Unless indicated otherwise, the results are
significant at the .01 (1%) level. In using this test, draws have been absorbed into the
total outcomes such that two draws are considered equivalent to one win and one loss
(this absorption was also used by [Abramson, 1990]).

16.4 Results
The results of the competition on each game are presented in Table 16.2–Table 16.6.
Table 16.7 summarises the results of the competition between each pair of players
summed across all 5 games. Table 16.8 summarises the results of each player on
each game. For each entry in the tables, players were awarded 1 point for a win,
0.5 points for a draw, and 0 points for a loss on each contest. As a match between
two players on a game consisted of 20 games, the maximum score per match was
20 points. As each player played 500 contests, the maximum possible score over the
whole tournament was 500 points, and the minimum possible score was 0 points. For
presentation purposes, the tables list only the total score, but full tables indicating
the breakdown between wins and draws can be found in Appendix E.

16.5 Discussion
The results of the experiment provide direct answers to the questions in which we
were interested.

Does any setting of weights for
���	��
��
������

actually give it a competitive
advantage against the baseline players on generated games? As the overall
results of the tournament across all games show (Table 16.7), all players performed
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Game 2
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 0.5 0.0 0.0 0.0 1.0 1.5
2 19.5 — 11.0 15.0 7.0 8.5 61.0
3 20.0 9.0 — 15.0 11.0 16.0 71.0
4 20.0 5.0 5.0 — 7.0 7.0 44.0
5 20.0 13.0 9.0 13.0 — 10.0 65.0
6 19.0 11.5 4.0 13.0 10.0 — 57.5

Table 16.3: Results of tournament on Game 2.

Game 3
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 0.0 0.0 0.0 0.0 0.0 0.0
2 20.0 — 12.0 9.5 4.0 4.5 50.0
3 20.0 8.0 — 17.0 2.5 3.5 51.0
4 20.0 10.5 3.0 — 8.0 0.5 42.0
5 20.0 16.0 17.5 12.0 — 8.5 74.0
6 20.0 15.5 16.5 19.5 11.5 — 83.0

Table 16.4: Results of tournament on Game 3.

Game 4
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 0.0 1.5 1.0 0.0 0.0 2.5
2 20.0 — 16.0 11.0 10.5 6.5 64.0
3 18.5 4.0 — 5.0 3.0 3.0 33.5
4 19.0 9.0 15.0 — 18.0 6.5 67.5
5 20.0 9.5 17.0 2.0 — 6.5 55.0
6 20.0 13.5 17.0 13.5 13.5 — 77.5

Table 16.5: Results of tournament on Game 4.
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Game 5
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 0.0 0.0 0.0 0.5 0.5 1.0
2 20.0 — 7.5 4.0 4.0 5.0 40.5
3 20.0 12.5 — 4.0 5.5 4.0 46.0
4 20.0 16.0 16.0 — 11.5 10.0 73.5
5 19.5 16.0 14.5 8.5 — 9.0 67.5
6 19.5 15.0 16.0 10.0 11.0 — 71.5

Table 16.6: Results of tournament on Game 5.

Overall Results: by Opponent
Score vs. Opponent Total

Player 1 2 3 4 5 6 Score
1 — 7.5 10.0 6.5 7.0 6.5 37.5
2 92.5 — 58.0 47.0 32.5 28.0 258.0
3 90.0 42.0 — 48.0 27.5 34.0 241.5
4 93.5 53.0 52.0 — 53.0 31.5 283.0
5 93.0 67.5 72.5 47.0 — 41.5 321.5
6 93.5 72.0 66.0 68.5 58.5 — 358.5

Table 16.7: Overall results of tournament against each opponent.

Overall Results: by Game
Score on Game Total

Player 1 2 3 4 5 Score
1 32.5 1.5 0.0 2.5 1.0 37.5
2 42.5 61.0 50.0 64.0 40.5 258.0
3 40.0 71.0 51.0 33.5 46.0 241.5
4 56.0 44.0 42.0 67.5 73.5 283.0
5 60.0 65.0 74.0 55.0 67.5 321.5
6 69.0 57.5 83.0 77.5 71.5 358.5

Table 16.8: Overall results of tournament on each game.
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significantly better than the random player (Player 1). More importantly, all versions
of

���	��
��
������
except for Player 3 also scored significantly better than

� 
��
. As

discussed in Section 13.2.1 and restated in Section 16.3.3 above, this is actually a non-
trivial accomplishment, as the only way to win against

� 
 �
is to achieve a position in

which all moves it makes are losing.
One possible reservation to the above interpretation of the results might be that

it was the search engine used by the versions of
���	��
��
������

that gave them an
advantage, rather than their knowledge. However, the results also indicate that this
was not the case. For two of the five games (Game 1 and Game 4), Player 3 played
using essentially a random evaluation function. This is because the only advisors
it used (promote-distance and arrival-distance) were inapplicable since these games
have no arrival goals. The fact that the other players defeated Player 3 so decisively on
these games is thus evidence that the knowledge in their advisors is at least superior
to a random evaluation function.

�

Can success be attributed to just a few simple advisors (such as static mobil-
ity), or do more advisors increase performance strength? The results of the
tournament demonstrate convincingly that additional advisors provide competitive
advantage in terms of total score over the whole tournament. Player 4, Player 5, and
Player 6 differ only in the successive addition of more advisors, and each addition
accounts for a significant improvement in overall tournament score (see Table 16.8).
The player with all advisors active, Player 6, won the overall tournament convinc-
ingly and had the highest score on 3 of the 5 games (Game 1, Game 3 and Game 4, all
significant at the 0.1 (10%) level). These results demonstrate that, in terms of general
performance summed over all games in the tournament, additional advisors pay for
their cost in computation and provide useful guidance to players using them.

Are different combinations of weights for advisors more effective on differ-
ent generated games? While additional advisors resulted in significant improve-
ment overall, no one combination of weights (in this case no one set of active advisors)
performed best on each game individually. The most striking example of this is in
Game 2 (Table 16.3), in which the overall champion (Player 6) performed significantly
worse than Player 3, both in terms of score over all opponents (.025 level) and in head-
to-head competition (the score was 16-4 in favour of Player 3, which is significant at
the .0001 level).

The explanation for this particular result is interesting. Game 2 (see Appendix D.1)
has an arrival goal which can be achieved relatively quickly unless the opponent takes
precautions. The game also has a high branching factor, which meant that the versions
of
���	��
��
������

did not manage to search much of the second ply (if they even got that
�
Note that the search engine in these experiments used a random move-ordering (see Section 13.3),

so that this behaviour cannot be attributed to a bad default move-ordering either.
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far). As Player 3 focussed only on arrival goals (these were the only advisors it had),
every move made progress toward this goal, while Player 6 deliberated about each
position, examining and valuing mobility and threats as well as arrival goals. While
Player 6’s broad-generality paid off overall in the tournament, in this particular case
Player 3’s single-mindedness gave it a marked advantage.

Could learning produce a competitive advantage in ����� -Metagame? This
above result provides concrete evidence that learning could indeed result in competi-
tive advantage. If Player 6 had been able to vary its combination of strategies across
different games (for example, to play like Player 3 on Game 2 and like Player 4 on
Game 5, its overall score might have been much higher. This statement must remain
only suggestive, however, because the entire structure of the tournament might have
been different if players learned while playing. At the very least, though, if Player 6
had played like

� 
 �
against Player 3 on Game 2, it might have increased its score by

7 points. This also suggests a competitive improvement could be obtained by learn-
ing which strategies to use against specific opponents in addition to learning which
strategies to use on specific games.

Game Generator The fact that different versions of
���	��
�
������

were the best on
different games also attests to the variety of games produced by the generator. If
all games had been largely similar in some sense, we would have expected the same
results on each game. On the contrary, the rank ordering for each game is qualitatively
different.

16.6 Summary
This chapter has assessed the performance of

���	��
��
������
against a set of baseline

players, the competitive advantage derived from different weights for
���	��
��
������

’s
general knowledge, and the potential for future work on learning to provide programs
with a competitive advantage relative to those which do not learn. These issues
were investigated by means of an experiment which took the form of a Metagame-
tournament. In the experiment, several versions of

���	��
�
������
with different settings

of weights for their advisors played against each other and against baseline players
on a set of generated games which were unknown to the human designer in advance
of the competition. The rules were provided directly to the programs, and they played
the games without further human intervention. The main results of the experiment
can be summarised as follows:

� Several versions of
���	��
��
������

performed significantly better than the baseline
players across a set of generated games.
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� The version of
���	��
��
������

which made use of the most knowledge clearly out-
performed all opponents in terms of total score on the tournament. This is true
in spite of the added evaluation cost incurred when using more knowledge.

� No single version of
���	��
�
������

(as defined by weight settings) performed the
best on each individual game.

These results support the following main conclusions:

� The knowledge implemented in
���	��
��
������

provides it with efficient and effec-
tive guidance across a variety of generated games unknown to its designer in
advance of the competition.

�
���	��
��
������

represents the state-of-the-art in ����� -Metagame and is a useful
starting point against which to test future developments in this field.

� Future programs that incorporate learning and more sophisticated active-analysis
techniques will have a demonstrable competitive advantage on this new problem.

At a meta-level, these results also attest to the success of the problem itself:

� ����� -Metagame is a new and challenging research problem which can be practi-
cally addressed. It fulfills its desiderata as a concrete instantiation of the idea
of Metagame.
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Chapter 17

Examples on Known Games

There were other human players in the Culture who could beat him –
though they were all specialists at the game, not general game-players as
he was – but not one of them could guarantee a win, and they were few and
far between, probably only ten in the whole population.

– Ian Banks, The Player of Games ([Banks, 1988])

17.1 Introduction
One of the advantages of playing Metagame with a class containing known games
is that we can assess the extent to which the general theories implemented in our
programs are sufficient to explain the development of strategies for games with which
we are familiar. If the program does not play known games well, we gain an under-
standing of what may be general limitations and directions for improvement. But
unlike in traditional game-playing on known games, in Metagame we do not interpret
strong performance on known games as evidence of more general ability, although we
can take such performance as encouragement.

This chapter provides examples of
���	��
��
������

playing the known games of chess
and checkers against human and computer opponents. Section 17.2 discusses the
manner in which the examples should be interpreted. With that motivation, Sec-
tion 17.3 then comments on games played against a specialised checkers program,
and Section 17.4 provides examples of

��� ��
��
������
playing chess against a specialised

chess program and against a human novice. Section 17.5 summarises the chapter.

17.2 Using Known Games
As pointed out in Section 6.2.1 (page 43), playing Metagame in a class which contains
known games has several advantages. It is helpful to quote directly from that section:

165
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Existing games have a known standard of performance and existing bodies
of theory. These can be used to assess the extent to which a metagamer’s
game-analysis yields competitive performance on specific games. If a meta-
gamer is unable to derive important strategies or is otherwise weak on a
known game, this reveals areas for future research. Note that the opposite
of this does not necessarily hold. That is, a metagamer that plays a set
of known games well is not by virtue of that to be evaluated as a strong
Metagame-player. As the games are known in advance, it cannot be proven
that this strength does not derive from human analysis of those specific
games.

This is the spirit in which the examples to follow should be interpreted. Examples
in which

���	��
��
������
plays well using its own analysis are encouraging, but should

not be taken as any indication whatsoever of generality beyond these specific games.
Chapter 14 has already discussed how the knowledge implemented in

���	��
��
������

was derived by attempting to generalise strategies and organisation used in known
games, and it is likely that

���	��
��
������
is already in some sense optimised toward

exactly these known games as a consequence of this (whether or not this optimisation
was performed consciously). On the other hand, examples which reveal weaknesses
of
���	��
�
������

in competition against strong opponents can be useful. If these weak-
nesses can be corrected in a general way, it might help to improve the performance on
unknown games which share some structure with the known games under consider-
ation.

With that said, the following sections provide anecdotal evidence regarding the
performance of

���	��
��
������
on some known games. I have provided my own analysis

of the games, and have attempted to point out some of the more indicative strengths
and weaknesses of

���	��
��
������
. Ultimately, the examples should enable the readers

to draw their own conclusions about
��� ��
��
������

’s performance on known games, and
these examples are not intended to establish any claim to the success of

��� ��
��
������

on the tasks for which it was designed. Extensive experiments which do establish
such a claim have been discussed already in Chapter 16.

17.3 Checkers

When playing checkers, the version of
���	��
�
������

used was Player 6, the program
that won the Metagame tournament in Chapter 16 (see Section 16.3.2, page 155).���	��
��
������

played after being given the rules of checkers as listed in Figure 7.3, and
after it analysed the rules for 30 seconds (on a

� 
 �
�
� � 
�� � � ��� ). The program then

played the game with a move-time-limit of one minute.
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17.3.1 One Man Handicap against Chinook
The following game is a typical instance of a small set of handicap games played
between

���	��
�
������
and Chinook [Schaeffer et al., 1991]. Chinook is the world’s

strongest computer checkers player, and the second strongest checkers player in gen-
eral.

As it is a highly optimised and specialised program, it is not surprising that
���	��
 �

��
������
always loses to it (on checkers, of course!) when playing an even game, even

when Chinook plays on its easiest level and responds virtually instantly, and with-
out its opening or endgame database. However, to get a baseline for

���	��
�
������
’s

performance relative to other possible programs when playing against Chinook, I
have evaluated the programs when given various piece handicaps (number of men
taken from Chinook at the start of the game), in order to determine the size of the
handicap necessary to draw with Chinook on its easiest level. The results were that���	��
��
������

competes evenly with the weakest possible Chinook (without opening or
endgame databases, searching 5-ply, and responding almost instantly) when given a
handicap of one man. This is compared to a deep-searching greedy material program
(i.e.

���	��
��
������
’s search engine using the minimal evaluation function with only the

feature for general material difference, as discussed in Section 13.2.2) which requires
a handicap of 4 men, and to the random player, which requires a handicap of 8 men.

These experiments were by no means thorough, and are only provided to indicate
that drawing with Chinook with a one-man handicap even on its easiest level is by no
means easy.

�

In the following game, Chinook plays white, without one man.
���	��
��
������

plays
well to maintain the material advantage throughout the game, eventually reaching a
won endgame with two kings against king. Unfortunately,

���	��
�
������
is unable to

win the endgame because it lacks a strategy to force Chinook’s king out of its double-
corner hiding place, so the game ends in a draw. I am not a checkers expert, but I did
not find a serious mistake in any move played by

���	��
��
������
throughout the game.

�
Nick Flann [personal communication,1993] has pointed out that giving up one man in checkers is a

significant handicap which, between players of roughly equal standards, would always result in a loss
for the player offering the handicap.
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Diagram 1 Initial Position.

8

7

6

5

4

3

2

1

a b c d e f g h

1. a3-b4 d6-c5���	��
�
������
calculates that this move

helps it to centralise its pieces quickly and
increase mobility.

2. b4-d6 c7-e5
3. h2-g3 e7-d6
4. c3-d4 e5-c3
5. b2-d4

Chinook follows a similar strategy.
5. � � � f6-e5
6. d4-f6 g7-e5
7. a1-b2 b6-c5���	��
�
������

has so far chosen not to
move any of its back-men. This is a well-
known strategy in checkers, as moving the
back men makes it easier for the opponent
to promote his pieces. This behaviour is
typical when it plays checkers. It turned
out that this strategy emerged from the
promote-distance advisor, operating de-
fensively instead of in its “intended” offen-
sive function to encourage a player to pro-
mote pieces when the destination squares
are vacant. In effect,

���	��
��
������
realised

that by moving its back men, it made the
promotion square more accessible to the

opponent, thus increasing the opponent’s
value, and decreasing its own.

8. b2-c3

Diagram 2 After 8. b2-c3.

8

7

6

5

4

3

2

1

a b c d e f g h

White sets a trap, as 9.e3–d4, c5–e3;
10.f2–d4–f6, threatens to win a man un-
less Black can recapture (if 11. � � � , f8–g7;
12.d2–e3, g7–e5; 13.e3–d4 wins the piece).

8. � � � f8-e7

One of the few defences.
���	��
�
������

searched to a depth of 4-ply to find this
move, before which it preferred 8. � � � , a7–
b6. A trace of

��� ��
��
������
as it made

this move is presented in Appendix C.1
It is also interesting that

���	��
��
������
was

forced to move one of its back men, which
it would have resisted doing otherwise.

9. e3-d4 c5-e3

10. f2-d4-f6
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Diagram 3 After 10. f2-d4-f6.

8

7

6

5

4

3

2

1

a b c d e f g h

This was the position evaluated at 4-
ply above.

���	��
��
������
knew it would not

be a piece down here, as its threat analy-
sis revealed that it would win a piece on
the next move.

10. � � � e7-g5
11. g3-f4 g5-e3
12. d2-f4 a7-b6
13. e1-d2 h8-g7

Now
���	��
�
������

moves the corner
man from the back row, as (a) it esti-
mates that the opponent could promote
on f8 anyway (the promotion advisor at
present focusses only on the final square,
not on the accessibility to it), and (b) it
determines that the increase in mobility
is worth the cost. The idea of moving the
corner piece but keeping the other back
men in place is a refinement on the naive
strategy of not moving back men, and is
used by checkers experts.

�

14. g1-h2 b6-c5
15. d2-e3 g7-f6
16. c1-b2 f6-g5
17. b2-a3 b8-c7

18. c3-d4 g5-h4
19. d4-b6 c7-a5
20. e3-d4 h4-g3
21. d4-e5 g3-f2
22. e5-c7 d8-b6
23. f4-e5

Diagram 4 After 23. f4-e5.

8

7

6

5

4

3

2

1

a b c d e f g h

Guided by its promote-distance advi-
sor,

���	��
��
������
has brought a man to the

point of promotion. Chinook will be able
to promote soon also.

23. � � � h6-g5
Instead of promoting the man on f2,���	��
��
������

prefers to bring the man at
h6 closer to promotion. It is searching into
the sixth ply here.

24. h2-g3 g5-f4
25. g3-h4 b6-c5
26. e5-d6 f4-e3
27. d6-c7 e3-d2

Having brought the other man close to
promotion also,

���	��
��
������
finally pro-

motes into a king.
28. c7-b8(k) f2-e1(k)
29. h4-g5 e1-f2
30. b8-c7 f2-e3

�
I am grateful to Nick Flann for this observation.
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31. c7-b6 c5-d4
32. g5-f6 d4-c3
33. b6-c5 c3-b2
34. c5-d6 e3-d4
35. d6-e5 d4-c5
36. f6-g7 a5-b4
37. g7-f8(k) b4-c3
38. e5-d6 c5-e7
39. f8-d6 d2-e1(k)

Diagram 5 After 51. � � � , d2-e1(k).

8

7

6

5

4

3

2

1

a b c d e f g h

After promoting this king,
���	��
�
������

will now centralise it, while Chinook hides
in the double-corner.

40. a3-b4 e1-f2
41. b4-a5 c3-d2
42. a5-b6 f2-e3
43. d6-e5 b2-c1(k)
44. b6-c7 c1-b2
45. c7-b8(k) b2-c3
46. b8-a7 e3-d4
47. e5-d6 d4-c5

48. d6-b4 c3-a5
49. a7-b8 a5-b6
50. b8-a7 b6-c5
51. a7-b8 d2-e1(k)
52. b8-a7 e1-d2
53. a7-b8 c5-d6
54. b8-a7 d2-e3
55. a7-b8 e3-d4
56. b8-a7 d4-e3
57. a7-b8 e3-d4
58. b8-a7 d4-e5
59. a7-b8 d6-c5
60. b8-a7 c5-d6
61. a7-b8 e5-d4
62. b8-a7 d6-c5

Diagram 6 After 62. � � � , d6-c5.

8

7

6

5

4

3

2

1

a b c d e f g h

��� ��
��
������
has maximised its own

mobility while confining Chinook’s king to
the corner, but does not know how to win
this won endgame. Thus the game ended
in a draw.

17.3.2 Discussion of Checkers Games
In this game

���	��
�
������
appeared to play well, and used several well-known checkers

strategies which all followed from its application of the general advisors to the specific
rules of checkers. The significant advisors in this game were material, dynamic-
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mobility, global threat analysis, and promote-distance. One obvious limitation of���	��
��
������
revealed in this game is that it cannot win in the final position. This is

actually a difficult position for checkers programs in general, and many have evalu-
ation functions specifically tuned to guide it to win positions like this. In fact, the
version of Chinook used in the experiment (without opening or endgame databases)
required 15-ply of search to find the winning sequence.

It would be an interesting area for future work to develop a general reasoning
method which could be applied to checkers and similar games to solve problems like
this. One possibility would be a generalisation of work on using knowledge and plans
to control search [Wilkins, 1982; Campbell, 1988; Tadepalli, 1989a]. Another possi-
bility is to add an advisor to

���	��
��
������
which is able to construct simple endgame

databases, perhaps generating first those which are simplest and most common. A
general method for achieving precisely this task was developed by Flann [Flann,
1992], and has been applied to construct databases for chess and checkers end-games
using only a logical representation of the rules for those games.

17.4 Chess
This section discusses the results of two games of chess played by

���	��
�
������
when

given as input only the rules of the game. The encoding given to the program is listed
in Appendix D.2.2 (page 247). The first game is against a strong specialised program,
and the second is against a human novice. In both games,

���	��
��
������
played with 60

seconds per move on a
� 
 �

�
� � 
�� � � ��� . It played with the same settings of advisors as

Player 6, the best overall player in the experiments in Chapter 16 (see Section 16.3.2,
page 155), with two exceptions: promote-distance was set to 0, and capture-mobility
was set to 5. The full set of advisors with their weights is shown in Table 17.1.

These changes in setting resulted from my own experience observing
��� ��
��
������

play chess, and are thus the result of a small amount of hand-tuning of the program
to improve its performance on this game. As indicated in Section 15.5, a major area
of future work is to have the program optimise its own weights for each game, and it
seems straightforward to implement the same kind of tuning as I performed in order
to develop this behaviour automatically.

It may be of interest to describe briefly the reasons I changed these two weights.
First, capture-mobility was set to 5 points per attack because when it was set to 1
the program preferred not to attack the enemy, in order to maximise the dynamic-
mobility of its pieces. Setting it to 5 instead was my first try at correcting this,
and yielded much stronger performance. Second, using promote-distance on chess
increased the time to evaluate each position by a significant amount. This is because
my current implementation of this advisor considers, for each piece which can promote,
the dynamic value (using the rest of the advisors, as discussed in Section 15.3) of each
possible promoting option on the final square in the promotion-region. In chess, this
meant that the program evaluated the potential of each pawn on the board to promote
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Advisor Weight
dynamic-mobility 1
capturing-mobility 5
global-threat 1
vital 1
eventual-mobility 1
possess 1
arrive-distance 1
promote-distance 0
material 1
max-static-mob 1
max-eventual-mob 1
eradicate 1
victims 1
immunity 1
giveaway 1
stalemate 1
arrive 1

Table 17.1: Advisor weights in
���	��
��
������

chess games

into four different pieces, so even in the initial position it was in effect considering
the dynamic value of 64 additional pieces. Although the resulting knowledge was
useful, the cost of evaluating it dramatically reduced the total number of positions���	��
��
������

could consider.
After making these two small changes, it will be seen in the following chess games

that the resulting set of advisors provide
���	��
��
������

with a reasonable degree of
chess skill, when given as input just the rules of the game.

17.4.1 Knight’s Handicap against GnuChess
The following game is a typical instance of a small set of handicap games played
between

��� ��
��
������
and GnuChess. GnuChess is a strong publicly available chess

program, winner of the C Language division of the 1992 uniform Platform Chess
Competition. GnuChess is vastly superior to

���	��
��
������
(at chess, of course!), unless

it is handicapped severely in time and moderately in material.
In this game, GnuChess (black) played on level 1 with depth 1. This means

it searches 1-ply in general but can still search deeply in non-quiescent positions.���	��
��
������
(white) played with the settings and time-control already described.

The initial position for this game, shown in Figure 7, was generated by randomly
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permuting the pieces on White’s first rank, generating Black’s setup by symmetry, and
removing a random knight from Black’s position. The pawns are placed on the third
rank instead of the second to ensure that the game is played without double pawn-
moves or the en-passant rule, as these rules are absent from the encoding of chess
as a symmetric chess-like game (see Appendix D.2.2). The position was permuted
randomly because this was one of a small set of matches between the two players at
various handicaps.

Diagram 7 Initial Position.
� � �

� � � �

� � � �

� 	 � �

1. d3–d4
Opening a diagonal for the � f1, attack-

ing a6, and increasing the mobility of � d1.
1. � � � d6–d5

Black seems to have the same idea.
2. f3–f4

Opening a diagonal for the � h1, at-
tacking d5, and giving a good square on
which to develop the � g1.

2. � � � � f8–d6
3. � a1–a2

Increasing the mobility of the rook.
3. � � � � b8–d7
4. � f1–d3

Developing the bishop, and attacking
g6.

4. � � � � e8–f7
5. a3–a4 � c8–b7
6. � h1–g2 a6–a5

7. � g1–f3
Developing the knight to a good

square.
7. � � � f6–f5

Diagram 8 After 10.f5.
�

� � �
� � �
� �

�
� � � �

	 �
� 	

Black’s last move creates a weakness on
e5.

8. � f3–e5��� ��
��
������
plants its knight on this

weak square. Although this move was
played without considering all responses
at the second ply,

���	��
��
������
’s potent

threat advisor determines that the knight
is safe on that square, in that any one
piece that can capture it could be recap-
tured by a pawn. In addition to being a
central location for the knight with high
eventual mobility, from this square the
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knight attacks four pieces, giving a high
capture-mobility.

8. � � � � d7 � e5
9. f4 � e5 � d6–e7

10. � g2–f3
This move clears White’s second rank

for the � a2. It also increases White’s
capture-mobility by adding another at-
tacker to f5, although that square is se-
curely under Black’s control.

10. � � � � e7–g5
11. � b1–a3 � h8–f8
12. h3–h4

Forcing Black’s bishop to retreat from
its aggressive location.

12. � � � � g5–e7

Diagram 9 After 12. � � � , � e7.
�

� �
� � �
� �

�
� � �

	
	

Black now threatens to capture the � a3.
13. � a3–c2

After an iteration of search at ply 1,���	��
��
������
’s best choice move (13.h5),

did not defend the knight, as its po-
tent threat analysis indicated incorrectly

that the knight was already defended.
It was defended against any single cap-
ture (as the rook can recapture), but the
threat analysis does not continue beyond
that point.

���	��
��
������
then reconsid-

ered the search at ply 2, starting with
the preferred variation from the previ-
ous iteration, 13.h5, at which point it
saw the response 13. � � � , � � a3. At that
point the threat analysis revealed (now
correctly) that Black would have won a
piece (14. � � a3, � � a3). Eight other 1-
ply moves were then considered in ran-
dom order (out of a total 44 choices), the
best of which was 13. � c2, before

���	��
 �
��
������

ran out of time. It is important
to note that as only 3 out of 44 moves
for White in this position avoid the loss
of a piece, and

���	��
��
������
was in effect

sampling a random 9 moves in the time
it had left (as the principal continuation
was not good),

���	��
�
������
got somewhat

lucky to have found a non-losing move.
This also explains why, when faced with
the same choice two moves later,

���	��
 �
��
������

makes a different decision.
�

13. � � � � f8–g7
14. � c2–a3 � g7–f8
15. � a3–b1

This time
���	��
��
������

makes a differ-
ent choice, as discussed above.

15. � � � � f8–g7
16. c3–c4

A good move.
��� ��
��
������

increases
the mobility of its � e1 and clears the
square c3 for its � b1.

16. � � � d5 � c4
17. � d3 � c4

�
In general, if there are � options, of which � are good, and a random � -subset are considered, the

probability of considering a good choice is @�� ���?D�� @�� ��� D��
	 @�� ��� ��� D��
��� . In the present context
( �� A8AB3��� I 3����� ), this means

���	��
�
������
had a 49.4% chance of even considering a saving

move at ply-2.
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���	��
�
������

recaptures with the � d3
instead of the pawn as this puts pressure
on Black’s pawn at e6.

17. � � � � a8–c8
18. � e1–c3 � b7–a7
19. � a2–h2 � g7–h7
20. h4–h5 ?!

If 18. � � � , g � h5,
��� ��
��
������

views the
position as favourable because it will have
two pieces attacking the pawn at h5, thus
giving 10 points of capture-mobility, and
giving up the � � points Black received for
attacking the pawn when it was on h4. The
net difference of 15 points is worth more
than the pawn. This does not seem like a
good move, though, and probably reflects
an over-estimate of the value of attacking
defended pawns.

20. � � � g6 � h5
21. � c1–c2 � d8–g8
22. � b1–d2

Diagram 10 After 21. � d2.
� �

� �
� �

� �
� �
� �

�
	

22. � � � � g8–g4
On 21. � � � , � � g3; 22. � � g3, f4+;

23. � d3, f � g3; 24. � � h7, g � h2 does not
lead to anything. It easily might have,
though, and

���	��
��
������
could benefit

from having discovered attacks added to
its current threat analysis to anticipate
such possibilities.

23. � d1–e1 � e7–g5
24. � e1–a1 � h7–h8
25. � h2–h1 � h8–f8
26. � c4–d3

Clearing c4 for the � d2.
26. � � � � f8–h8
27. � d2–c4 � h8–h7
28. � c4–d6

Diagram 11 After 24. � d6.
�

� �
� �

� �
� �
� � �

�
	

���	��
��
������
, as White, has achieved a

dominating position. All its pieces are
well-placed on active squares, with Black
rendered passive due to White’s strong
centre.

28. � � � � c8–g8 ?
A strange choice for the rook, as it

leaves c6 undefended.
29. � c2–d2

Sadly,
���	��
��
������

does not seize the
opportunity to ply 28. � � c6, which threat-
ens 29. � b7 mate immediately and forces
a win within a few moves (e.g. 28. � � � ,

� g6; 29. � b5+, � a6; 30. � � a5 (threat-
ening 31. � � a6 mate), � b8 (if 30. � � � ,
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� � a5; 31.b4+, � a6; 32.a5, followed by
33.a � b6 mate); 31. � � b6, � � b6; 32. � c7
dbl+, � a7; 33. � a8 mate). Instead,

���	��
 �
��
������

prefers to keep g3 defended and
further centralise its king. (Remember
that

���	��
��
������
is searching only a lit-

tle more than one ply here).
29. � � � � f7–g6
30. � d2–c2 � g6–f7
31. � c2–d2 � f7–g6

32. � d2–c2 � g6–f7
33. � c2–d2 � f7–g6
34. � d2–c2 � g6–f7

GnuChess sees nothing better to do
than wait. But since

���	��
��
������
sees nei-

ther the winning line above beginning
� � c6, nor other any way to improve its
position on the next move, both players
just move back and forth. Thus the game
is drawn by repetition.

17.4.2 Even Match against Human Novice
In the following game,

���	��
��
������
played Black with the same settings as in Sec-

tion 17.4. White was played by a human novice (unrated) chess-player. The players
played two contests, one as each colour, and

���	��
��
������
won both games. As dis-

cussed in Section 17.4, the pawns are placed on the third rank instead of the second
to ensure that the game is played without double pawn-moves or en-passant, as these
rules are absent from the encoding of Chess as a symmetric chess-like game (see
Appendix B).

�

Diagram 12 Initial Position.
� � � �

� � � �

� � � �

� � � 	

1. h3–h4 d6–d5
2. d3–d4 � f8–d6
3. a3–a4 � a8–a7

��� ��
��
������
likes to increase the mo-

bility of the rook, just as in the game
against Gnuchess.

4. � f1–d3 a6–a5

5. e3–e4 � c8–a6

6. � d3 � a6 � b8 � a6
�

The initial position also has king and queen starting on the wrong squares, to remind the novice
that castling was not an option in the current encoding of chess as a symmetric chess-like game (see
Appendix D.2.2).
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Diagram 13 After 6. � � � , � � a6.
� �

� � � �
�

� �
� �

� � 	

So far the game is pretty ordinary. White
now advances in the centre.

7. e4–e5 f6 � e5
8. d4 � e5 � d6–c5���	��
�
������

places the bishop on its
best square.

9. � g1–h3 � e8–f7
Developing the queen and attacking f3.

10. f3–f4 � f7–f5

Diagram 14 After 10. � � � , � f5.
�

� � � �
� �

�
� �

� � 	

���	��
��
������
has established a strong po-

sition and has a marked advantage in de-
velopment.

11. b3–b4 ?
This is a bad move which loses a pawn.

It is funny because it is the kind of move���	��
��
������
sometimes plays using lim-

ited threat analysis: before the sequence
of captures the pawn is twice defended.

11. � � � a5 � b4
12. c3 � b4

Diagram 15 After 12.cd. �

� � � �
� �

�
�

� � 	

Black can now win the b pawn.
12. � � � � c5–d4

Instead of winning the pawn immedi-
ately,

��� ��
��
������
attacks � a1. It calcu-

lates that the pawn is still hanging after
the forced response 13. � c3, as moving the

� a1 loses to 13. � � � , � � b1.
13. � b1–c3

Forced.
13. � � � � a6 � b4 ?

Now Black captures the pawn. 13. � � � ,
� d3+ instead would have won a piece (if
14. � d2, � � c3, and if 14. � d2, � � c3 wins
as the � d2 is pinned).

��� ��
��
������
was

unable to search this deeply.
14. � e1–d2
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White does not give Black a second
chance to play � d3+.

Diagram 16 After 15. Qd2
�

� � �
� �

�
�

� 	

14. � � � � b4–d3 ?
Black penetrates with the knight. This

misses 13. � � � , � g4+; 14. � e1, � xg3+ fol-
lowed by 15. � � � , � � c3, winning a piece.
Deeper search would really be helpful
here!

15. � h1–f1 ?
This allows Black to play 16. � � � , � � h3;

17. � � d3, � � c3; which wins a piece as
18. � � c3, � xf1+.

15. � � � � d4 � c3���	��
�
������
thinks that after the

forced response 16. � � c3 the � h3 is still
hanging (it is, but only because Black can
play 16. � � � , � � c1 first; 16. � � � , � � h3 al-
lows 17. � � d3, and it is not looking that
far ahead).

16. � d2 � c3
Forced.

16. � � � � g8–e7 ?
Missing the line discussed above.���	��
��
������

only examined 7 other
choices at the second iteration (out of 42

total possibilities); if it had searched the
entire ply it would have seen that 16. � � � ,

� � c1 wins the piece. Still, this move is
not bad, as it develops another piece.

17. � f1–g1 ?
White is not searching very deeply ei-

ther, so it seems like a fairly even match!
According to White, this move prepares
17.g4, attacking � f5 and blocking the at-
tack on � h3. 16. � a3 here would have
avoided the chance to lose a piece.

17. � � � � d8–d7 ?
Still missing the win of a piece.

This time
���	��
�
������

examined 10 other
choices, out of 40 possible. The move it
played brings the king toward the centre
and increases the mobility of the � h8.

18. g3–g4
White carries out his plan and at last

defends the � h3.
18. � � � � f5–e4

Forced, as any other move loses the
� d3.
Diagram 17 After 18. � � � , � e4.

�
� � �
�

� � �
� �

�

19. � c1–a3 ?
This loses the pawn at a4, but creates

complications. White is starting to get ac-
tive now.
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19. � � � � a7 � a4
20. � a3 � e7 � d7 � e7
21. � d1–d2

Connecting rooks, and threatening to
win the � d3. White’s position is improv-
ing.

21. � � � � a4 � a1
22. � g1 � a1 � d3–c5

Retreating the threatened knight and
blocking White’s attack on c6.

23. � a1–a7 +

Diagram 18 After 23. � a7+.

� � �
�
� �

�

A strong move, putting Black on the de-
fensive.

23. � � � � e7–d8 ?
As

���	��
�
������
is still only searching

part-way into the second iteration, it is
unable to see that this move loses a rook.
To see this would require searching well
into the third ply, even with

���	��
��
������
’s

potent-threat analysis. Although
���	��
 �

��
������
prefers to keep its king centralised,

it does not like 23. � � � , � d7 at 1-ply be-
cause it leaves the c6 pawn hanging.

24. � a7–a8
White doesn’t miss the opportunity.

24. � � � � d8–e7

25. � a8 � h8
White has now won a rook. His king is

somewhat exposed, but he should be able
to win from this position.

25. � � � h6–h5��� ��
��
������
thinks this defends the h-

pawn.
26. � h3–f2 ?

White tries to bring the knight into the
action and attack Black’s queen, but there
were better ways to do this. This loses at
least a pawn.

26. � � � � e4 � f4 +
Black takes the free pawn with check.

Although White is still up a rook, with
these players the game can still go either
way.

27. � d2–e1 h5 � g4
Black misses 27. � � � , � � f2; 28. � � f2,

� e4+, which wins back a piece. The move
played is still reasonable.

28. � c3–a3 ?

Diagram 19 After 28. � a3.

� � �
�

�

White prepares 29. � a7+, which would
win the game, but he misses something
� � �

28. � � � � f4 � e5 +
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Black forks White’s king and rook, win-
ning back the rook!

29. � f2–e4 ?!
An interesting move. White explained

that he was trying to distract
���	��
�
������

from taking his rook.
29. � � � � e5 � h8

Black is not distracted, and now cap-
tures the rook.

30. � a3–a7 +

Diagram 20 After 30. � a7+.

� � �
�
� �

White hopes Black will play 30 � � � ,. � d8
or � e8, after which 31. � a8+ would win
Black’s queen in the same way as White
won Black’s rook after the position in Di-
agram 18.

30. � � � � c5–d7
This time

���	��
��
������
defends with

the knight. Whereas in Diagram 18 de-
fending with the knight left a pawn at-
tacked, this time it even defends the b6
pawn.

31. � a7–a3
White just wants to keep checking.

31. � � � � e7–f7
31. � � � , c5 is much better, but

���	��
 �
��
������

sees that move as increasing

White’s capture-mobility by 2, as the c-
pawn would be attacked both by � a3 and

� e4. This shows that the current use of
capture-mobility is naive.

32. � e4–d6 + � f7–e7
This allows a discovered double check,

but white has nothing to threaten on the
next move.

33. � d6–f5 + � e7–f7 ?
33. � � � , � f6 seems safer. Now White has

a very dangerous attack.
34. � a3–e7 + � f7–g8

Black’s response is forced.

Diagram 21 After 34. � � � , � g8.
�

�
� � �
� �

�

35. � xe6, winning the pawn with check,
now wins a piece (35. � � � , � f8; 36. � d6+,

� g8; 37. � � g6+, � f8; 38. � d6+ � g8;
39. � � d7).

35. � e7–e8 +?
White misses the sequence above, and

Black gets a chance to defend.
35. � � � � d7–f8

This is the right move.
���	��
��
������

re-
jects 35. � � � , � h7 at the first ply because
it sees the � d7 hanging. It should also
be noted that

���	��
��
������
could move its

king into check given the encoding of chess
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as a symmetric chess-like game (see Ap-
pendix D.2.2). The reason it never does,
even when searching only 1-ply, is because
the vital advisor detects the possible loss
of a piece which would achieve an eradi-
cate goal for the opponent.

36. � f5–e7 + � g8–g7���	��
�
������
preferred this move over

36. � � � , � h7 because it keeps its king more
centralised and does not cut off the mobil-
ity (and attack on h4) of the � h8. White’s
attack has now been repulsed.

37. � e8 � c6 ?
White grabs a pawn, but this loses a

piece. In any case, White cannot defend
the pawn at h4, he will be down 6 pawns,
and his king is totally exposed.

Diagram 22 After 37. � � c6.

� � �
�

�

37. � � � � h8 � h4 +

Black captures a pawn with check,
forking and winning the � e7.

38. � e1–d2 � h4 � e7
Black captures the knight. White’s po-

sition is now hopeless. He tries to at-
tack black but quickly gets overwhelmed.���	��
��
������

is now searching into the
third-ply, as the position is now simplified.

39. � c6 � b6 e6–e5
40. � b6–b3 � e7–c5
41. � b3–b7 � g7–f6
42. � b7–b8 � f8–e6
43. � b8–h8 � f6–f5

White resigned.
���	��
��
������

as Black
has now centralised its king and will
checkmate shortly.

Diagram 23 Final Position.

� �
� �

�

17.4.3 Games against Chess Material Function
For purposes of comparison, a version of

���	��
��
������
with only a standard hand-

encoded material evaluation function (queen=9, rook=5, bishop=3.25, knight=3, and
pawn=1) [Botvinnik, 1970; Abramson, 1990] played against the versions of

��� ��
 �
��
������

and GnuChess used in the example games here. The result was that the
material program lost every game at knight’s handicap against GnuChess, and lost
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every game at even material against
���	��
�
������

. This showed again that
���	��
 �

��
������
’s performance in the example games illustrated here was not due to its search

abilities, but rather to the knowledge in its evaluation function.

17.4.4 Discussion of Chess Games
These games have demonstrated the applicability of

���	��
��
������
’s general advisors

to the known game of chess. We have seen the program develop its pieces quickly,
place them on active central squares, put pressure on enemy pieces, make favourable
exchanges while avoiding bad ones, and restrict the freedom of its opponent. In all,
it is clear that

���	��
��
������
’s knowledge gives it a reasonable positional sense and

enables it to achieve longer-term strategic goals while searching only one or two-ply
deep. This is actually quite impressive, given that none of the knowledge encoded in���	��
��
������

’s advisors or static analyser makes reference to any properties specific to
the game of chess—

���	��
��
������
worked out its own set of material values for each of

the pieces (see Section 15.6, page 145), and its own concept of the value of each piece
on each square.

On the other hand, the most obvious immediate limitation of
���	��
��
������

revealed
in these games is a weakness in tactics caused in part by an inability to search more
deeply within the time constraints, by a lack of quiescence search, and also by the
reliance on full-width tree-search. One way to address this problem might be through
a tactics analyzer as developed by Berliner [Berliner, 1974] or a knowledge-based
planner as developed by Wilkins [Wilkins, 1982]. These would need to be extended to
games beyond just chess.

To summarise
��� ��
��
������

’s performance in chess, it’s play is reasonable and it
looks like it has a basic understanding of some chess strategy. With its current
inability to search more deeply, it performs similarly to a human novice. It seems
likely that a small improvement in search ability (either through improved efficiency,
quiescence search, or more sophisticated search techniques) would enable it to compete
evenly with GnuChess on its easiest level.

17.5 Summary
One of the advantages of playing Metagame with a class containing known games
is that we can assess the extent to which the general theories implemented in our
programs are sufficient to explain the development of strategies for these games
with which we are familiar. This chapter has discussed the performance of different
versions of

���	��
��
������
on the known games of chess and checkers. Three example

matches were analysed in detail. Against specialised programs in chess and checkers,���	��
��
������
played reasonably well to draw when given a significant handicap in time

and material. Against a human novice in chess,
���	��
��
������

won both of two games
(one of which was discussed), but in general the players appeared evenly matched.
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The discussion of the example games illustrated some of the strengths and weak-
nesses of

���	��
��
������
on these games, which can be summarised as follows:

�
���	��
��
������

has a reasonable positional sense for both games. It uses some
strategies which are familiar to players of those games and which are hard-
wired in many game-specific programs.

�
���	��
��
������

is weak in tactics compared to the specialised programs, and also
weak in deductive problem-solving and planning.

In drawing conclusions from the discussion on known games in this chapter, two
important points should be noted. First, there is nothing unusual about a program
playing chess or checkers if it is given an evaluation function for each of those games.
What is unusual here is that

���	��
��
������
has no knowledge specific to any one of

these known games (no mention of kings, pawns, or men), and plays these games with
some degree of success given just the rules (and an alteration of two weights in the
case of chess). In reading through the games, it is easy to assume that

���	��
��
������

is a specialised checkers-player or a specialised chess-player, whereas in fact it is
essentially the same program (exactly the same in the case of checkers) which was the
winner of the Metagame-tournament in Chapter 16. This appears to be the first case
of a program taking in the rules of two games as complicated as chess and checkers
and playing both of them with some degree of skill.

The only other program which can play multiple games like this at all is � ��� � �

[Epstein, 1989b], but there is no evidence to date that � ��� � � ’s advisors give it any
useful guidance on these games. Moreover, �

� �
�
�

is designed to learn from a strong
opponent, whereas

���	��
�
������
plays these games after analysing the rules, without

relying on any help from a human or a good opponent.
All of this notwithstanding, the second important point to note is more fundamen-

tal, and has been made already in Section 17.2 and throughout Part I of the thesis:
any apparent success of

���	��
��
������
on these known games is actually no evidence

of general ability beyond those specific games. As I knew the games in advance, it is
possible (and even likely) that I modified the program consciously or unconsciously
until it played exactly these known games reasonably well. This is the methodolog-
ical problem identified in part I, and this is the problem which is solved by the new
paradigm of Metagame. The performance of

���	��
�
������
on these known games has

been encouraging and has indicated several areas for improvement, but the real evi-
dence of general ability over the class of games was presented in Chapter 16, in which���	��
��
������

with all its advisors significantly outperformed a set of opponents across
a set of games unknown to its programmer in advance of the competition.
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Chapter 18

Summary of Part III

This part of the thesis has discussed both the general issues involved in the construc-
tion of Metagame-playing programs and the specific directions which have been taken
in the development and implementation of the first programs to address this new
problem.

Chapter 12 dealt with one of the most immediate and pressing issues in designing
more general problem-solvers: the tradeoff between the representational goals of
generality and flexibility, on the one hand, and the operational goals of specialisation
and efficiency on the other. While these goals seemed incompatible at first, the chapter
showed that it was possible to achieve them both to some extent, by shifting some
of the work of building special-purpose programs, normally the task of the human
researcher, onto the program itself. This was achieved by first developing a naive
game player which was extremely general, flexible, and inefficient, and then applying
techniques from logic-programming to automatically transform this program into a
more efficient specialised player of a particular game.

Chapter 13 discussed how the basic game-playing components produced by the
game-specialiser developed in Chapter 12 can be put together to construct a vari-
ety of basic Metagame-playing programs using only game-tree-search and minimal
evaluation functions. The chapter pointed out that several techniques used in conven-
tional game-tree-search relied on detailed knowledge of specific games, and suggested
that applying these ideas to ����� -Metagame will require transferring some of the re-
sponsibility for finding appropriate search strategies onto the programs themselves.
Experiments with the search engine on a variety of generated games indicated that
deep search using a naive evaluation function was not enough for strong performance
across this class of games.

Motivated by the need for a more sophisticated evaluation function, Chapter 14
addressed the issue of knowledge-acquisition for Metagame-playing in general, and
for ����� -Metagame in particular. The approach taken in that chapter was to analyse
by hand the semantics of the class of games in order to discover general strategies
which could be used by a playing program to construct its own specialised evaluation

185
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function when given the rules of a game. This approach was called Metagame-analysis.
The chapter found several techniques to be useful in this analysis. These included
(a) generalising existing features used in game-specific programs, (b) searching for
knowledge in the form of step-functions which would guide a program to achieve
long-term goals while using only one-ply of search, and (c) game-variant analysis,
in which we represent a known game as an instance of the class of games and then
systematically make rule changes to discover the class-specific structure upon which
the strategies for known games may operate.

Chapter 15 then discussed how the results of the analysis in Chapter 14 were
embodied in a program, called

���	��
��
������
. This program takes as input the rules of

a specific game and a set of parameter settings (or weights), and analyses the rules
to construct its own evaluation function for that game. The analysis performed by
the program relates a set of general knowledge sources (called advisors) to the details
of the particular game in a manner which can be viewed as a form of knowledge-
compilation. Among other properties,

���	��
��
������
’s analysis determines the relative

value of the different pieces in a given game, and for each piece the relative value of
placing it on different board squares. Although

���	��
��
������
does not learn from expe-

rience, the values resulting from its analysis are qualitatively similar to values used
by experts on known games, and are sufficient to produce competitive performance
the first time the program actually plays each game it is given. This appears to be
the first time a program has derived useful piece values directly from analysis of the
rules of different games.

This was possible because the process of combining the general knowledge with
the specific game-analysis imposes internal consistency on the values of the base-level
features, independent of the weights assigned to the general knowledge itself. While
traditional specialised chess programs must be told, for example, the relative value
of bishops and knights,

���	��
��
������
instead must be told, for example, the relative

value of immediate and long-range mobility. From this high-level tradeoff, the values
for specific pieces follow from first-principles. Of course, programs which make better
tradeoffs in terms of the general knowledge may have a competitive advantage over
those with worse priorities on different games, so determining or learning these high-
level tradeoffs was suggested as an important area for future research.

Chapter 16 then assessed the performance of
���	��
��
������

against a set of baseline
players, the competitive advantage derived from different weights for

���	��
��
������
’s

general knowledge, and the potential for future work on learning to provide programs
with a competitive advantage relative to those which do not learn. These issues
were investigated by means of an experiment which took the form of a Metagame-
tournament. In the experiment, different versions of

���	��
��
������
played against each

other and against baseline players on a set of generated games which were unknown
to the human designer in advance of the competition. The rules were provided directly
to the programs, and they played the games without further human intervention.

The significant results of the experiment were that (a) several versions of
���	��
 �
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��
������

performed significantly better than the baseline players across a set of gen-
erated games, (b) the version of

��� ��
��
������
which made use of the most knowledge

clearly outperformed all opponents in terms of total score on the tournament, and (c)
no single version of

��� ��
��
������
(as defined by weight settings) performed the best

on each individual game. The main conclusions derived from these results were that
(a) the knowledge implemented in

���	��
�
������
is useful on games unknown to its

programmer in advance of the competition, (b)
���	��
��
������

represents the state-of-
the-art in ����� -Metagame and is a useful starting point against which to test future
developments in this field, and (c) future programs that incorporate learning and
more sophisticated active-analysis techniques will have a demonstrable competitive
advantage on this new problem.

While the experiments in Chapter 16 established
���	��
��
������

’s success on the task
for which it was designed (playing new games), Chapter 17 examined the performance
of
���	��
�
������

on the known games of chess and checkers, when playing against hu-
mans and specialised programs. One of the advantages of playing Metagame with a
class containing known games is that we can assess the extent to which the general
theories implemented in our programs are sufficient to explain the development of
strategies for games with which we are familiar. If the program does not play known
games well, we gain an understanding of what may be general limitations and direc-
tions for improvement. But unlike in traditional game-playing on known games, in
Metagame we do not interpret strong performance on known games as evidence of
more general ability, although we can take such performance as encouragement.

With this difference noted, the discussion of the example games in the chapter
illustrated some of the strengths and weaknesses of

���	��
�
������
on these games. A

main strength was that
���	��
��
������

has a reasonable positional sense for both games.
It uses some strategies which are familiar to players of those games and which are
hard-wired in many game-specific programs. However,

��� ��
��
������
is weak in tactics

compared to the specialised programs, and also weak in deductive problem-solving
and planning. These are therefore promising areas for future work. The discussion
of known games concluded with an important caveat about drawing conclusions from
known games. The performance of

���	��
�
������
on these games looks general and

is encouraging, but any apparent success of
���	��
��
������

on these known games is
actually no evidence of general ability beyond those specific games. As the games
were known in advance, it is possible (and even likely) that

���	��
�
������
was modified

consciously or unconsciously until it played exactly these known games reasonably
well. This is the methodological problem identified in part I, and this is the problem
which is solved by the new paradigm of Metagame. The performance of

���	��
��
������

on these known games has been encouraging and has indicated several areas for
improvement, but the real evidence of general ability over the class of games was
presented in Chapter 16, in which

���	��
��
������
with all its advisors significantly

outperformed a set of opponents across a set of games unknown to its programmer in
advance of the competition.
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Chapter 19

Conclusion

Difficult problems hypothesis: There are too many ways to solve simple
problems. Raising the level and breadth of competence we demand of a
system makes it easier to test—and raise—its intelligence.

– Lenat and Feigenbaum, “On the Thresholds of Knowledge” ([Lenat and
Feigenbaum, 1991], p. 188)

19.1 Introduction
This chapter concludes the thesis. Section 19.2 provides a high-level summary of the
thesis, Section 19.3 outlines the major contributions, and Section 19.4 points out some
limitations and areas for future work.

19.2 Summary of the Thesis
Game-analysis is the general process that exploits the abstract representation of a
specific game to produce a competitive advantage on that game. It is the process which
relates structure to power in game-playing, and is of central importance to Artificial
Intelligence (AI) as a science of intelligence. Some of the problems currently faced by
the field of Computer Game-Playing ( � ��� ) stem from the fact that, in all current work
done in this field, humans have full information about the rules of the games their
programs play. This makes it impossible to infer, even from strong performance on
those games, that the theories which a program embodies are applicable to anything
but the specific games the program has played. In particular, success on a known
game is no evidence that the program, and not its programmer, has performed game-
analysis. Therefore, success on a known game is not evidence that the program is
interesting from an AI perspective.

These problems are alleviated by working within the new paradigm of Meta-Game
Playing (Metagame). Rather than designing programs to play an existing game known

189



190 CHAPTER 19. CONCLUSION

in advance, we design programs (metagamers) to play new games, from a well-defined
class, taking as input only the rules of the games produced by a game generator.
The performance criterion is still competition: all programs eventually compete in a
tournament, at which point they are provided with a set of games produced by the
generator. The programs then compete against each other through many contests in
each of these new games, and the winner is the one which has won the most contests
by the end of the tournament. While humans still have full information about the
generator and thus can still perform analysis instead of the program, the details of
the specific games must be treated by the program alone. The class can also be made
more general in a controlled manner as scientific knowledge advances.

Metagame in symmetric chess-like games, or simply ����� -Metagame, is a concrete
Metagame research problem based around the class of symmetric chess-like games.
The class generalises many features of the chess-like games, instances of which have
received much of the attention in � ��� , and represents games in a manner which
preserves the compact structure which makes them appear similar. The class has
been defined in sufficient detail necessary to enable ����� -Metagame to be used as a
testbed by other researchers.

New games for this class are produced by a generator based on a new method of
problem generation called Constrained Stochastic Context-Free Generation. It oper-
ates by making statistical choices at each decision point in the grammar defining the
class of problems, as controlled by a set of user-defined constraints. The generator has
produced games which are interesting to humans as objects of interest in their own
right, despite the apparent complexity and unfamiliarity of the rules. Analysis of the
class of games as constrained by the generator showed that it measures reasonably
well in terms of coverage, diversity, structure, varying complexity, and extensibility.
The conclusion from this is that the problem of ����� -Metagame is a good instance of a
Metagame research problem, and that competitive performance on this problem will
be evidence of increased general ability in game-playing.

The results of an extensive human analysis of the class of games have been em-
bodied in a program, called

���	��
��
������
, which plays ����� -Metagame. The program

takes as input the rules of a specific game and a set of parameter settings (or weights),
and analyses the rules to construct (a) a more efficient representation of the general
semantics of the class of games, specialised to just the input game, and (b) its own
evaluation function for that game, for use with a generic search engine. The strategic
analysis performed by the program relates a set of general knowledge sources (called
advisors) to the details of the particular game in a manner which can be viewed as a
form of knowledge-compilation. Among other properties,

���	��
��
������
’s analysis deter-

mines the relative value of the different pieces in a given game, and for each piece the
relative value of placing it on different board squares. Although

���	��
�
������
does not

learn from experience, the values resulting from its analysis are qualitatively similar
to values used by experts on known games, and are sufficient to produce competitive
performance the first time the program actually plays each game it is given. This
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appears to be the first time a program has derived useful piece values directly from
analysis of the rules of different games.

An extensive experiment was carried out to assess the strength of different versions
of
���	��
��
������

across a set of unknown games produced by the generator. The conclu-
sions from the experiment were that (a) the knowledge implemented in

���	��
�
������

is useful on games unknown to its programmer in advance of the competition, (b)���	��
��
������
represents the state-of-the-art in ����� -Metagame and is a useful starting

point against which to test future developments in this field, and (c) future programs
that incorporate learning and more sophisticated active-analysis techniques will have
a demonstrable competitive advantage on this new problem.

Examination of the performance of
���	��
�
������

on the known games of chess and
checkers, when playing against humans and specialised programs, suggested that���	��
��
������

has a reasonable positional sense for both games. It derives from more
general principles some strategies which are familiar to players of those games and
which are hard-wired in many game-specific programs. However,

���	��
��
������
is weak

in tactics compared to the specialised programs, and also weak in deductive problem-
solving and planning. These are therefore promising areas for future work.

19.3 Contributions
The contributions from the three parts of the thesis are here listed separately.

The major contributions of Part I were the following:
� A characterisation of game-analysis.
� An assessment of past and present research in � � � as it relates to game-

analysis.
� An analysis of the methodological underpinnings of ����� . This analysis revealed

a set of difficulties with the present methodology.
� The creation of a new research paradigm for � � � , called Meta-Game Playing (or

Metagame), which overcomes the difficulties revealed by the preceding analysis.

The major contributions of Part II were the following:
� The definition of a class of games to serve as a basis for Metagame-playing. The

class is called symmetric chess-like games. The definition consisted of both a
formal syntax and semantics for the class, and provided sufficient detail that the
problem could be addressed by other researchers.

� A general method for automatically generating problem definitions for instances
of a class of problems. The method is called Constrained Stochastic Context-Free
Generation.
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� The application of this general method to the class of symmetric chess-like games,
resulting in the implementation of a game generator for this class. The resulting
generator has produced interesting games which have been studied by humans
as objects of research in their own right.

� The analysis of the class of games, as constrained by the implemented generator,
with respect to the explicit goals of Metagame-playing.

Together, the work in this part makes two additional high-level contributions:
� The construction of a specific research problem, ����� -Metagame, designed specif-

ically to encourage and enable researchers to generalise work on chess-like
games. This problem overcomes some of the methodological limitations of exist-
ing work.

� A case-study of the construction of concrete Metagame problems. This involves
the definition of a class, implementation of a game-generator, and analysis of
those two components with respect to a set of desiderata. The approaches taken
in this part should be useful for constructing different Metagame research prob-
lems in the future.

The major contributions of Part III were the the following:

� The application of logic programming techniques (partial evaluation and abstract
interpretation) to increase the efficiency of game-playing systems.

� The construction of the first programs to play ����� -Metagame legally. These
serve as baselines against which to compare future work.

� The introduction and application of game-variant analysis, a knowledge-acquisition
technique for generalising game-specific strategies to apply to a class of games.

� A case study in strategic analysis of the class of symmetric chess-like games.
This may be useful for future work on this class or different classes of games.

� An architecture for general game-playingprograms based on knowledge-compilation,
in which general knowledge is related to the rules of a specific game by a process
of game-analysis.

� The implementation within this architecture of what appears to be the first
program to derive useful material values for games by active analysis of the
game rules.

� An experimental demonstration of the effectiveness of a game-playing program
across a set of games unknown to its designer in advance of the competition.
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� An analysis of the performance of a program playing a set of known games
(chess and checkers) against human and computer opponents, using its own
active analysis of the rules.

Together, the work in this part makes three additional high-level contributions:
� The construction and establishment of the state-of-the-art in ����� -Metagame

programs.
� A generalisation of previous work in computer game-playing.
� An empirical confirmation of the diversity of games produced by the generator

developed in Part II.

One additional contribution which resulted from the work in this thesis is the de-
velopment of a general platform which supports research in Metagame. This platform
contains the formal class specification expressed in gdl (see Appendix B), the symmet-
ric chess-like game generator, interpreters, baseline players, efficiency optimisation
routines, a generic search engine, a library of game definitions, and most of the code
implementing

���	��
�
������
. This platform has been made publicly available, under

the name Metagame Workbench.
�

The reception to this workbench, and to the idea of
Metagame, has been favourable. It was used as part of a course on computer game-
playing, and is currently being used as a testbed by a small number of researchers.
At present,

���	��
��
������
has no competition—will any readers of this thesis rise to the

challenge and put their generality to the test?

19.4 Limitations and Future Work
Part III of the thesis has demonstrated that ����� -Metagame can be practically ad-
dressed and that doing so necessitates increased understanding and implementation
of many aspects of the process of game-analysis. However this work is just the start,
and virtually everything that was done here opens an interesting area of research,
with the advantage that increased understanding should translate directly into com-
petitive advantage. Three areas for future work are apparent from the performance
of
��� ��
��
������

as observed in Chapter 16 and Chapter 17. These areas are learning
weights for advisors, deriving new advisors automatically from the class definition,
and more advanced search techniques.

�
The Metagame Workbench has been placed on the world chess ftp server and can be retrieved from:
��$� �� * � # +�+	 � � ��" � 	��#�, � �  ��
���* � # +�+��� �	 ���-#�*B$)+�� ��#�$ % � % ��#��

It has also been stored on the Prime Time AI CD-Rom, and can be retrieved from:
��$� �* +	 * ���� #�, � � ��+�# 	���%�(���+�����$ �!% 	-#�� �!% �)# +�� ��#B$!% � % �!#	�
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19.4.1 Learning Weights
Chapter 15 emphasised that the current version of

���	��
��
������
does not perform any

active or passive adjustment of the weights to its advisors. While Chapter 16 and
Chapter 17 demonstrated that even weighing all advisors equally results in compet-
itive performance across a variety of games, those chapters both presented results
which indicated that programs that can modify their general weights based on anal-
ysis or experience with a particular game will have a marked competitive advantage
over those which do not. The issue of finding weights for advisors used by

��� ��
��
������

or similar programs is thus an important area for research.
One idea for future research would be to apply temporal-difference learning [Sut-

ton, 1984] and self-play [Tesauro, 1993] to this problem. It would be interesting to
investigate whether the “knowledge-free” approach which was so successful in learn-
ing backgammon [Tesauro, 1993] also transfers to these different games, or whether
it depends for its success on properties specific to backgammon.

Another idea would be to use a genetic approach with competition among a pop-
ulation of players with different weights (subject to the constraints on weights listed
in Section 15.5). One interesting recent approach to weight learning [Angeline and
Pollack, 1993] has a population of programs compete repeatedly in a knockout tour-
nament, in which winners advance to the next round and losers play against each
other. This appears to be a more efficient method to extract information and compare
programs than the format used in the Metagame-tournament in Chapter 16, as the
losing programs get weeded out of the competition early so that more effort can be
focussed on the stronger programs.

19.4.2 Deriving New Advisors
While

��� ��
��
������
performs its own analysis of the rules of each game it plays, the

analysis methods and the knowledge which draws on them were both the products of
a human analysis of the whole class of games. The result is that the analysis methods
implemented in

���	��
��
������
are still very simplistic and are only linked indirectly to

the semantics of the class of games. As a consequence, for a wide variety of gener-
ated games

���	��
��
������
’s analysis offers no useful guidance. For example, all static

analysis at present is based on the assumption of an otherwise empty board. Pieces
which move only by hopping over other pieces are determined to have no mobility by
this measure. One consequence of this is that the program would have no success
on games which correspond to constraint satisfaction problems (see Section 9.2.2). In
short, while the advisors are well-motivated by the analysis in Chapter 14, it would
be desirable and competitively advantageous to have a more systematic method of
deriving new general advisors directly from the semantics of the class definition.

One approach to this problem would be to extend the techniques used for efficiency
specialisation in Chapter 12 to derive useful subgoals and invariant properties for a
given game by abstract interpretation. It might also be possible to apply knowledge-
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based feature construction [Callan, 1993; Fawcett and Utgoff, 1992] directly to this
problem, as it is designed to extract functional features from a logical encoding of
problem definitions.

19.4.3 Advanced Search Techniques
Chapter 17 noted that while

���	��
�
������
’s analysis of each game seemed to give it

a basic understanding of strategy, it is noticeably weak in tactics. This weakness is
caused in part by an inability to search more deeply within the time constraints, by a
lack of quiescence search, and also by the reliance on full-width tree-search. Almost
any improvement should produce a markedly better player. One way to address this
problem might be through a tactics analyser as developed by Berliner [Berliner, 1974]
or a knowledge-based planner as developed by Wilkins [Wilkins, 1982]. These would
need to be extended to games beyond just chess.

Another approach would be to apply some of the recent developments in rational
game-tree search [Russell and Wefald, 1992; Baum and Smith, 1993; Good, 1968]
to ����� -Metagame. These methods appear to be powerful and general tools, but
within the traditional approach to games it has been impossible to demonstrate their
advantage against programs which have already been carefully engineered by humans
to play a single game well. It would be exciting to apply these techniques to this new
context, where programs are required to perform game-specific optimisations without
human assistance.
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Appendix A

Grammars for Symmetric
Chess-Like Games

This appendix presents the formal grammar in which symmetric chess-like games
are encoded. A formal move grammar has also been defined to enable programs to
communicate on games in this class, and this is listed in Section A.2.

A.1 Class Definition
This grammar for symmetric chess-like games is presented in an extended-BNF nota-
tion. Capitalised and quoted words are terminal symbols, except for �B. 	���� �B� ��	


and

���
�
� 	

, which stand for any identifier and any number, respectively. Text in unquoted

braces is optional. The grammar is not case-sensitive, so that game definitions may
use uncapitalised words for clarity.

Comments can appear within game definitions. Comments begin with percent
symbols ( � � � ) and end with the start of a new line.
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A.2 Move Grammar
In order to have programs communicate directly on games unknown to humans in
advance of a competition, there must be a defined language, in which to express
a player’s choice of moves, which will be adequate and unambiguous for any game
within the entire class. This section discusses the move grammar for symmetric
chess-like games. The grammar is based on the standard notations for moves used in
Chess and Shogi, but extended to describe unambiguously all the changes which can
happen as part of a move in this class. As the move grammar should be clear, we will
only provide a few example descriptions of different types of moves.

Basic Movements and Captures The basic movement of a piece � from square�3� � �4� � 
 to square ��� > �4� > 
 is written:

 �3� � ��� � 


� �3� > �4� > 
  If this move had the
capture effect of removing a piece � at square ��� � �4� � 
 , the full move would be (replacing
symbols for squares):



+�� �

�
+��-� ��� +�����

Possession If the effect of a given capture were player possesses instead of removal,
the captured piece � would then be in the possession of the player who moved. If white
had just moved, this would be denoted:



+�� �

�
+��-� ��� +���� � � � � (B$ # �	 If the

effect were instead opponent possesses, the captured piece would go to the opponent.
The above move thus would be:



+�� �

�
+��-� ��� +���� � � 
���%�* � �	
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Multiple Captures A single capture movement can result in the capture of several
pieces. For example, a piece may hop over one piece to land on another, thus capturing
both. Such multiple captures are denoted by listing each piece and square captured:

+ � �

�
+�� � ����+�� �


+ ���  If the effect were player possesses instead of remove,

such a move would be denoted:


+ � �

�
+ � � ��� + � �


+�� � � � � (B$ # ��

Placing a Possessed Piece A player in possession of a piece can at any later move
place this piece on any empty square, instead of making a normal piece movement.
So if the piece captured and possessed on  � � in the last move above was � , a later
move for white, placing this piece on square  � , would be: � � � � ( $!# �

�
+�� 

Promotion by Player The notation for a move which promotes a piece includes
the square the piece is on, the player who will now own the piece,

�
and the piece-type

being promoted to. If white moves piece � to  � > in his promotion territory, � has a
��( �!#�, or  ���%�'!#�	  
	 � ����$ # + promotion power, and white decides to promote it to a king,
this would be denoted:



+�� �

�
+��-� �  �	-� �)��$!#&+��-� � � (B$!# �)(B" � 

Promotion by Opponent When a player must begin his turn by promoting a piece
which has just been moved by the opponent, the notation for this promotion precedes
the notation for the rest of the move. For example, suppose a move by white moves a
piece � from  � � to  � > , capturing some piece � on  � � , with the �� � ��"!#�"�$  !� +�+�# +�+�# +
capture effect, and also that  � > is in promotion territory for white, and that piece �
has the �� � ��"!#�"�$  �	-� �)��$!# + promotion power. As this promotion is not denoted in the
player’s move (he makes no choice here, so it can be inferred), the notation for white’s
move would be:



+�� �

�
+ � � ��� + � � � 
 ��%�* � ��

White’s turn would then end, and black would then have to promote white’s moved
piece into some piece � > consistent with its promotion power, and then make a normal
move (suppose he places the captured piece � from his hand on square  � � ). Black’s
move would then be denoted:
 
	 � ����$ # + � �



� � � � 
 ��%�* � �

�
+ ��� 

Continued Captures This sequential notation (with the semicolon) is also used
when a player continues capturing (see section 7.2.4.3). For example, a continued
captures move in Checkers might be written:

� � ( $!#
�
%�" �8% � �

�
�H* ��� � � 
�� �

�
� � ( $!#

�
%�" �8* ���

�
�H#�� � � � , � �	

Summary of Move Grammar This notation is complete and unambiguous, and
thus allows humans and programs to communicate their moves in any game in the
class of symmetric chess-like games.

�
Recall that promotion may involve a change of ownership.
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Appendix B

Formalisation of Symmetric
Chess-Like Games

A general overview of the class of symmetric chess-like games is provided in Chapter 7.
The game grammar given in Appendix A.1 defines the syntax of a game definition.
This Appendix provides a formalisation of symmetric chess-like games, in which the
semantics is represented using the Game Description Language presented in Chap-
ter 12.

It should be noted that there are many possible representations of this theory,
each of which may have different implications for efficiency and flexibility when used
by a playing program. The particular representation presented here is intended to
convey the semantics clearly, and in places differs in implementation details from the
encoding used by the playing programs discussed in the thesis.

When documenting procedures, Prolog convention is used to indicate the intended
mode of arguments, where � , � , and � indicate that the argument functions as input,
output, or either, respectively.

The details of game-specific predicates (such as �!% ��# �� �( #�*�#�� � %�+ � �!��� # ��#B"�$ ), which
primarily access the data structure corresponding to the parsed game definition, are
straightforward and have thus been omitted from this presentation.

B.1 Overview
The following theory provides the representation of initial state, goal achievement
and complete legal moves for symmetric chess-like games. When interpreted using
the Game Description Language meta-interpreter on a given game, these routines
form the skeleton of the game definition, defining three procedures:

1. legal-move(Move,Player,StateIn,StateOut,Game): True when Move is legal for
Player in StateIn, and Produces StateOut, in Game.

203
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2. game-outcome(FinalState,Outcome,Game): Outcome is the final outcome of Game,
which ends in FinalState. Outcome is either player, opponent, or draw.

3. start-game(InitState,Game): True when InitState is set to a valid start state for
a run of Game.

Any 2-player game must provide at least these procedures in order to be fully
defined, and an interface which relies on these is thus capable of playing legally all
2-player games.

The rest of this chapter provides the domain theory for each of these items in turn.

B.2 Legal Moves
We first provide an overview of the basic move sequence, and then present the encoding
of this in the Game Description Language.

B.2.1 Overview of Basic Move Sequence
Each individual legal move is itself composed of a sequence of pseudo-operators, each
of which are applicable in different stages of the move sequence. The pseudo-moves
applicable at each stage are as follows:
� Assignment: If the game begins with a decision-assignment stage (where play-

ers place pieces on the board before moving anything), the only legal move for
each player is to assign a piece and end his move. When there are no more pieces
to assign, the stage is set to move.

� Init-promote:: If the last player moved a piece into promotion region, and the
piece has an opponent-promotes promotion power, then this move begins with
the player now in control init-promoting the piece on its square, after which the
stage is set to move.

� Move: In an ordinary move, a player decides whether to place or move a piece.
The two operators, either of which can be selected, are as follows:

– Place a piece: If a player has a piece in-hand (i.e. one given to him as
a result of an earlier possession capture-effect), he can now place it on an
empty square of his choice. This ends the move.

– Move a piece: A piece is moved from one square to another, possibly
enabling some capture effects. For games which have a global must-capture
constraint, if some capturing moves are available, any one of them can be
made; otherwise the player is free to make any non-capturing move. For
games which have only local must-capture constraints, any piece can be
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moved, subject to the constraint that if it moves and has some capture
choices, it cannot make a non-capturing move. In this case, unconstrained
pieces can make either capturing or non-capturing moves.

� Capture: If the movement chosen ended in some pieces being subjected to
capture effects, these are now executed. There are two types of effect, which
may apply to many pieces as a consequence of a given move:

– Removed pieces just disappear.
– Possessed pieces go to the hand and colour of the possessing player.

� Continue captures: If a piece that just captured is permitted to continue-
capturing, a next capture movement for it may be chosen (but only if this really
captures), after which the stage goes back to capture. If the piece is required to
continue capturing (when it is both permitted to continue, and forced to capture
whenever it can), then if it can do so, it must. When a player cannot continue
capturing, or decides to stop (unless forced to continue, of course), the stage
transfers to promote.

� Promote: If a piece has just finished being moved (as opposed to being placed),
and is now on a square in promotion territory for the moving player, the promo-
tion effect is then executed. There are two types of promotion effects:

– player-promotes: the moving player selects a valid piece to promote into
(which depends on the piece definition), which replaces the original piece on
its final square. The player’s turn then ends, and control transfers to the
opponent, whose move will begin in the move stage.

– opponent-promotes: the piece is removed from the board, and the player’s
turn ends. The opponent will begin the next move in the init-promote stage,
and will thus start the next turn putting a valid promoted piece on the
indicated square.

The set of legal moves available to a player in a position is thus the set of all
possible sequences of legal pseudo-moves available to that player which terminate in
a transfer of control to the other player.

B.2.2 Legal Move Domain Theory
legal move(?Move,?Player): A move begins with one of the players being in control,
after which a sequence of sub-moves is made, which ends in transfer of control to the
other player. A move-count is tracked throughout the game.
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B.2.2.1 Pseudo-Operators

Initial Assignments For games in which players begin placing pieces on the board,
the interpreter program should have already put the correct pieces in the hand of each
player. At this point there are two operators.

� assign: Place a piece on an assignable square, ending the move. Opponent will
start next turn still in assign stage.

� end assign: Nothing to place, so proceed to move stage.
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Opponent Promotion When a piece, owned by a player, has finished a move by mov-
ing into that player’s promotion region, the player designated in the piece’s definition
gets to promote it to some piece matching the defined description, and then continue to
the movement stage.
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Placement Operator Unlike in the assignment stage, a player can place a piece in
his possession on any empty square. This ends his move.
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Move Operator Make a capturing or non-capturing movement, subject to global or
local must-capture constraints. Movements begin by selecting a piece on the board to
move, and taking it off the board before considering where to move it. For capturing
moves, we will also note the capture effects.
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Capture Operator Executes the capture effects for whichever pieces were noted to
be captured during the movement stage. The next stage will give the moving piece a
chance to continue capturing.
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Continue Captures After making a capture, a piece may be permitted or forced to
continue capturing as part of its definition. The results determine whether the resulting
pseuo-operator is another capture movement, or a decision to end the captures now.
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Optional continued captures: The piece can either make another capture, and
move back to the capture stage, or end the capture sequence and move to the promote
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stage.
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Forced continued captures: If the piece is forced to continue capturing, and has
some capture movements available, it must take one of them, in which case we first
note that the this square is no longer the destination square of the piece. Otherwise,
the sequence ends.
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Promoting Pieces When a piece, owned by a player, has moved into that player’s
promotion region, the player designated in the piece’s definition gets to promote it to
some piece matching the defined description. In any case, the promoted piece (the
original one if it does not now promote) is now put down on the final square, as thus
far it was only noted that it had moved there.
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promote if1(+OldPiece,+Promoting,+Player,+Sq,-NewPiece): If the promotion
is simple (i.e. only one choice), it gets done now. Otherwise there will be a selection.
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promote role(+Promoter,+Player,+OldPiece,+Sq): If the piece is to be promoted
by the player who owns the it, transfer to the promote-select stage. If the opponent is to
promote it, then record this fact and end the move.

 �	-� �)��$!#� 	-� ��# �


��%�' # 	��



��%�' #�	�� �	� � � ���-�

$
	 %�")+ � # 	
� + $!% � # �E �	-� �!��$ #	�G �	-� �!��$!#�� +�# ��#�*�$ � 
 �	-� �)��$!#� 	-� ��# �

�
 � !��" #�"�$��



��%�' # 	��

�
��,


(�#�*�# � ��� � ���-�

�� � !� +�( $!#���	�� ��# �


��%�'!# 	 �

�
 � ��"!#B"�$ � �

� % ��# �� )(�#�*�#��� 
	�� ���B$)(B" � �
�
��,


(�#�*�#	�



	�� ���B$)(B" � � �

 
	 � �)��$)(B" ������ �$!(���"!+ �


	-� ����$!( " ��� .!#�+�* 	 � �

%�,�,��8�� � !��" #B"�$��B �	 � �)��$ # + �
�
��,


(�#�*�# � ��� �G. # +�* 	���� �

,-# � � �����!#�, ����"�$ � �
�
��,


( #�*�#	� ������. # +�* 	 � � �

$
	 %�")+ � # 	
� + $!% � # �E �	-� �!��$ #	�H( ")(B$
�� �	�� �!��$!# � �
$
	 %�")+ � # 	
��*���"�$�	 � �	

Promote-Select Operator The player promotes the piece to a valid piece matching
the description in the definition of the promoting power for that piece. The record of
this piece movement is deleted, and the piece is placed on its final square, as the move
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sequence is now finished. This ends the turn, and the next player’s move will start in
the move stage.
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B.2.3 Moving and Capturing Powers
Pieces have separate powers of moving and capturing. A moving power defines a
disjunctive set of movements, each with a disjunctive set of directions, based on
the symmetries attached to the base direction of the movement. A capturing power
defines a disjunctive set of capture definitions, each containing a set of movements,
capture-methods, and capture effects.

The main difference between using moving and capturing powers is as follows:

Moving Powers: Find a final square SqT such that there is a path from the current
square SqF to SqT using one of the defined movements within the moving power
definition, and SqT is presently empty.

Capturing Powers: Find a similar path, but using a movement within the capturing
power definition, and after determining the captured pieces based on the defined
capture-methods for this capturing movement, something must get captured and
SqT must become empty if it was not empty already.

B.2.3.1 Moving Powers

moving(?Piece,+Player,?SqF,?SqT): True when player owns a piece and there is
some valid moving-power defined for that piece, a movement within that power, and
a direction within the symmetry-set for the movement, which can be used to move the
piece from SqF to SqT, without capturing anything. This routine does not require that
the piece is on the board, as presumably it has already been lifted. The moving piece
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will not be placed after this movement, but we note that this piece has moved to a
square, with the state predicate �����!#�,
����"�$ � �
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If the movement selected is a riding movement with the longest-ride property, and
the board for this game is planar, the piece is constrained to ride as far as possible
in the selected direction. Otherwise, any movement is ok. As this is not a capturing
movement, the final square must be empty.
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B.2.3.2 Capturing Powers

capturing(?Piece,+Player,?SqF,?SqT): True when player owns a piece and there
is some valid capturing-power defined for that piece, a movement within that power,
and a direction within the symmetry-set for the movement, which can be used to move it
from SqF to SqT, capturing at least one piece. As in the case for using moving-powers,
this routine does not require that the piece is on the board, or place it back at the end.
Capture effects are not executed here, but the captured pieces and the capture effect are
noted with the state predicate #�� � #�*�$)+ � 	 � � #�*B$�� 
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captures(+Piece,+Player,+SqF,-SqT,-Effect,-Captured): True when Piece, from
SqF, could use a capture power to move to SqT, making the list of captures in Captured,
with capture effect Effect.
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If the movement selected is a riding movement with the longest-ride property, and

the board for this game is planar, the piece is constrained to make the longest riding
movement in the given direction which results in a capture. Otherwise, any capturing
movement is ok. In determining the captured pieces resulting from this movement, it
is ensured that the final square would be empty.
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B.2.4 Piece Movements
There are three types of movements, characterised as follows:
� leap: The piece moves to the next square along a given direction vector.
� ride: The piece moves along an open line of squares along a given direction

vector.
� hop: The piece leaps through a number (possibly 0) of empty squares, then

through a number (possibly 0) of squares occupied by certain types of pieces, and
then through a number (at least 1) of empty squares.

Leaping movement: The piece moves to the next connected square along the selected
direction. This is equivalent to a ride of distance 1.
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Riding movements: Traverse in the given direction at least the minimum number,
and at most the maximum number of empty squares starting from our current square.
Then leap one further to the final square (which need not be empty). A separate
definition applies to longest-ride movements.
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A hopping movement has constraints on the number of squares traversed before and
after any hopped-over pieces, and a constraint on the number of hopped-over pieces as
well. The constraints are of the form: *�� �  % 	 # �

�
 ��
�
% � � , where Op is �!#�� , #�� , or ��#�� ,

and Val is an integer. The meaning is that the number of leaps must be at least N,
equal to N, or at most N, respectively. The set of hopped squares is returned.
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Longest Rides The piece tries riding the maximum distance in the given direction.
If this is not legal, it tries one less, and so on. The routine fails when the distance
would be closer than the minimum defined for this movement. When making the
longest moving ride, the farthest empty square is selected. When making the longest
capturing ride, the farthest empty square is selected which would result in the capture
of a piece.
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B.2.4.1 Open Lines

open line(SqF,Dir,Min,Max,Cond,Squares,SqT): Traverse between Min-1 and
Max-1 leaps along Dir, starting after SqF, where each such square traversed satisfies
COND (either ’empty’ or a piece description). Then take one more leap, which brings us
to SqT (not necessarily empty). The difference between an open and a constrained
line (below) is as follows: an open-line finishes with a step, so we first decrement the
min and max counters, as we know we will take one leap at the end.
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constrained line(SqF,Dir,Min,Max,Cond,Squares,SqT): True when N squares,
starting with the square after SqF, satisfy Cond, where � ! 0 � � � � � � � � . The set
of squares are collected in the variable � � � ��� "  .
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Crossable(+Descr,?Sq): If Descr is Empty, then true if square is empty. If a piece
description, then true if the piece on the square matches.
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B.2.4.2 Determining Captured Pieces

A capture definition for contains some some set of capture methods, which determine
the pieces might be captured following a given capture-movement. The candidate
targets for each method and a given movement are as follows:

� clobber: Selects the destination of the movement as a target square to be
captured.

� retrieve: Selects the square adjacent to the starting square but in the opposite
direction of the movement.

� hop: Selects any of the pieces which were hopped-over if the movement was a
hopping movement.

Having determined the set of selected candidate squares, the pieces actually cap-
tured are those on any selected square which match the capture-type defined for the
capturing movement.

captured pieces(SqF,SqT,Capturing,Dir,Hopped,-Captures): Given the capture
type and method, determines the set of



(�#�*�# � ��� �!% 	�# entries which will be captured.

For the capture to be valid, something must be captured, and the destination square
SqT must wind up empty.
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A square will be empty if it is already empty, or if the piece now on it will be

captured.
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Capture Methods The three capture methods are clobber, retrieve and hop.
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matchers on squares(+Hopped,+Type,-Matchers): Matchers contains those Hopped-
over pieces which match Type, and will thus be captured. Each element of Matchers is
of the form:
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B.2.5 Matching Piece Descriptions
MATCHES(?Descr,?Piece): A Piece matches a Description if both the player and
type in the description are at least as general as those of the piece.
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Note that a generalisation of a piece-type must be either %�"�'��� )(�#�*�# or a list of
piece-names in the current game, not a singleton piece-name.
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B.2.6 Low-Level Representation
B.2.6.1 Data Structures

Piece Descriptions, Pieces, Squares, and Directions are represented as structures.
A piece-structure has fields for the Player who owns the piece and the name of
the piece. A piece-description has fields for the player-generalisation and piece-
generalisation which match the description. A square-structure has fields for the
X and Y coordinates of the square. A direction has fields for the X and Y offsets
definining the slope of the vector.
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B.2.6.2 Support Predicates

The following procedures define support routines which are used throughout the do-
main theory.

Player Roles The two roles are player and opponent. These are opposite roles.
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A square is empty if it is a valid square in the current game, and if there is no piece
currently on that square.
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Transferring from one stage to the next means deleting the fact that the move is in
one stage, and adding the fact it is in the next.
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B.3 Goals and End of Game
Symmetric chess-like games have three types of goals:

Arrival: Achieved when a piece matching a description has arrived on one of a set of
square.

Eradicate: Achieved when no pieces matching a description are currently on the
board (even though they may be in the hands of a player). This only applies after
the assignment stage has passed, otherwise all such goals would be true at the
start of games which have initial-assignment stages.

Stalemate: Achieved when a player is in control (on move) but has no legal moves.

Goals are evaluated immediately before each player makes a move. A game ends
when either of the following is true:

1. Some player (possibly both) has achieved a goal, or

2. The game-specific maximum number of moves have been played.

When the game is over, the outcome is then based on which players have achieved
one of their goals, or is a draw if the game-specific move limit has been exceeded.
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The goals for each player are checked separately, and the outcomes are combined to
yield one of player, opponent, or draw. Note that a player achieves a goal if any of
the defined goals for that player are true.

 ���%�' # 	
��� ��$ *�� �!# �


��%B'!# 	��

�
��$ *�� ��# � ���-�

( ��� � ��% ����%�* � (�#��!#�,��


��%B'!# 	 � ��

��$!*�� �)# � '!# + �



222 APPENDIX B. FORMALISATION OF SYMMETRIC CHESS-LIKE GAMES
�
��$!*�� �)# � "!� ��

� ��$!*�� ��# �E' #�+ �G' # + �E,	�%�� � 
� ��$!*�� ��# �E' #�+ �G" ���� ���%B'!# 	 ��
� ��$!*�� ��# �E" � �G'!#�+ ���� � ��"!#B"�$ � 
�!��% ���%�* � ( #��!#�, �



��%�' # 	�� ��� �

� % ��# �� ��%�' # 	
� � % +�� � ��% � �


��%B' # 	�� � ��% � � �

� ��% ���$
	��!# � � ��% � �	
�!��% ���$�	 �!# �;% 	�	 ( � # ��. # +�* 	 � ��� � % 	 #�+ � � ���-�

�)# � 
 # 	�� ��� � ��� � % 	 #�+ � �
$
	��!# �H��"��



(�#�*�# � ��� � � �

�)%�$!* � # + �E. #�+�*�	��


(�#�*�# ��

�!��% ���$�	 �!# �;# 	 %�, (�*�%�$ # �E. # +�* 	 ��� ��� �
" ��$ + $�( � ����% +�+�( ��"!( " ���
" ��$ #���(�+B$�+ �E. #�+�* 	 ��

�!��% ���$�	 �!# �H+B$!% ��# ��%�$ # �


��%�' #�	 � � ��� �

*���"�$
	 � � �


��%�' # 	�� �

" ��$ ��# � % ��� ����� # � �
�
�


��%B'!# 	 ��

+B$)( � ����% +�+�( ��"�( " � ���-�
+ $!% � # �8% +�+�( ��" � �
( "�� � %�" ,�� �



(�#�*�#	� �



��%B' # 	��	

#��)(�+ $�+ ��.!# +�* 	�� ��� �
$
	��!# �H��"��



(�#�*�# � ��� � � �

�)%�$!* � # + �E. #�+�*�	��


(�#�*�# ��

B.4 Board Topology
There are two types of boards in symmetric chess-like games, planar and vertical-
cylinder. Both are two-dimensional grids, and in the cylindrical case the x-axis has
wrap-around connectivity. These issues are discussed fully in the main text, but the
implementation of these topologies in the Game Description Language is provided as
a convenience to the reader.

connected(?S1,?S2,?Dir): True when S1 and S2 are Squares, Dir is a direction-
vector, Dir maps (directly) S1 to S2, given the board definition for the current game.
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B.5 Initial Setup
Before play of a symmetric chess-like game commences, it is necessary to determine
the initial configuration, based on the definition of the current game. There are two

�

types of initial setup:

Arbitrary: the game specifies which of player’s pieces begin on which squares.

Decision: the game specifies the sets of pieces and squares, and both players begins
either with their own or their opponent’s pieces in hands, after which play begins
in the assign stage as they place these pieces on valid squares.

In both cases, the initial state is first changed for player, and then for opponent
(by calling the same setup routine but with control transferred).

�
A third type of setup, random-setup is converted to an abritrary setup after the random decision is

made each time the game is played. Thus it is declared in the game definition, but not in the domain
theory.
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B.6 Global Symmetry and Inversion
As discussed in the main text, each game is defined from the perspective of player
(white), and a specified global inversion is used to determine the definition of the game
from the perspective of opponent (black). The two game definitions are then used
indexically within the gdl interpreter, the white version provided whenever player
calls a game-dependent routine, and the inverted version provided whenever black
calls one.

The following Prolog code implements the global inversions.

invert(?Term1,?Term2,+Game): True when Term2 is Term1 inverted to the per-
spective of opponent, given Game.
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Each game definition specifies whether to use diagonal or forward inversion (de-
scribed in the main text). These give different results for inverting squares and direction
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vectors, as a forward inversion reflects only about the X axis, while a diagonal inversion
reflects about both axes.
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Appendix C

Metagamer in Action

C.1 Metagamer Playing Checkers against Chinook
The following output is extracted from a trace of the checkers game between

���	��
 �
��
������

and Chinook as discussed in Section 17.3. The position is that after Chinook’s
eighth move, and

���	��
��
������
finds a the non-losing move at its fourth-ply of search.���	��
�
������

played with a move-time-limit of 60 seconds, while Chinook played
with search depth 5 (its easiest level, responding almost instantly) and no opening
or end-game databases. Chinook gave

���	��
��
������
a piece handicap of one man. For

more details of the game from which this sample was taken, see Section 17.3, page 166.
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Appendix D

Game Definitions

This Appendix contains the game definitions for games discussed in the main thesis,
represented as symmetric chess-like games. These listings are fully grammatical
game definitions (according to the grammar presented in Appendix A.1), and are
input and processed directly by the Metagame players.

Definitions of checkers and turncoat-chess are presented in full in the main text,
and thus are not included here.

D.1 Generated Games in Tournament
The following games are those generated by the game generator, and played in the
Metagame Tournament discussed in Chapter 16. Note that all symbols, including the
piece names, are exactly as produced by the generator.

�

D.1.1 Game: game1
game game1
goals stalemate opponent

board_size 6 by 6
board_type planar
promote_rank 6
setup
decision player assigns
( albino badger casket
dumbo fairy handler ,

to ( (a,1) (b,1) (c,1)

(d,1) (e,1) (f,1) ,
end decision

DEFINE albino
moving

movement
ride
<3,3> symmetry all_symmetry

end movement
end moving

�
The table of possible piece names used by the generator can be customised by the user. The current

set was produced very late one night, and should not be taken as a statement about the psychological
balance of the author.

231
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capturing
capture by ( clobber ,
type [ ( opponent ,

( badger casket jester , ]
effect player possesses
movement
hop before [x>=0]

over [x=1] after [x<=6]
hop_over [ ( opponent , any_piece]
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision player

options [ ( player , any_piece]
end promoting
constraints must_capture

end define

DEFINE badger
moving

movement
leap
<3,3> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve clobber ,
type [ ( player , any_piece]
effect player possesses
movement
hop before [x=0]

over [x>=1] after [x>=0]
hop_over [ ( player ,
( albino badger casket dumbo
fairy handler jester lover , ]

<1,1> symmetry all_symmetry
end movement

end capture
end capturing
promoting decision opponent

options [ ( opponent , any_piece]

end promoting
constraints must_capture

end define

DEFINE casket
moving

movement
leap
<2,2> symmetry all_symmetry

end movement

movement
hop before [x>=0]

over [x<=4] after [x>=0]
hop_over [ ( opponent ,
( dumbo handler jester lover , ]

<2,0> symmetry all_symmetry
end movement

end moving
capturing
capture by ( retrieve clobber ,
type [ ( player , any_piece]
effect player possesses

movement
ride longest
<2,0> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision opponent
options [any_player any_piece]

end promoting
constraints must_capture

continue_captures
end define

DEFINE dumbo
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
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end moving
capturing
capture by ( clobber ,
type [ ( opponent , ( badger casket

fairy jester morph , ]
effect remove
movement
ride
<2,3> symmetry ( forward side ,

end movement
end capture

end capturing
promoting promote_to handler
end promoting
constraints must_capture

end define

DEFINE fairy
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect remove
movement
hop before [x>=0]

over [x>=1] after [x<=5]
hop_over [ ( player , any_piece]
<0,2> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting promote_to albino

end promoting
end define

DEFINE handler
moving

movement
leap
<0,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , ( badger dumbo

fairy jester morph , ]
effect remove

movement
ride max 4
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [any_player any_piece]

end promoting
end define

DEFINE jester
moving

movement
ride
<2,3> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve ,
type [ ( player , any_piece]
effect player possesses

movement
leap
<0,1> symmetry all_symmetry

end movement
end capture
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end capturing
promoting promote_to lover
end promoting
constraints must_capture

end define

DEFINE lover
moving

movement
hop before [x>=0]

over [x=2] after [x>=0]
hop_over

[any_player any_piece]
<1,1> symmetry all_symmetry

end movement

movement
leap
<2,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( opponent , any_piece]
effect remove
movement
ride
<1,0> symmetry all_symmetry

end movement
end capture

end capturing

promoting decision player
options [ ( player ,
( badger casket handler jester , ]

end promoting
constraints continue_captures

end define

DEFINE morph
moving

movement
ride max 3
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect opponent possesses

movement
leap
<1,0> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( player , any_piece]

end promoting
constraints must_capture

end define

end game .

D.1.2 Game: game2
game game2
goals stalemate player
arrive [ ( player ,
( jerk llama monster plato , ]

at ( (b,5)(c,5) ,
eradicate [ ( opponent , any_piece]
arrive [ ( opponent ,
( drainer plato , ] at ( (e,5) ,

arrive [ ( opponent , any_piece]
at ( (a,2) ,

board_size 6 by 6
board_type planar
inversion forward
promote_rank 6
setup



D.1. GENERATED GAMES IN TOURNAMENT 235

decision opponent assigns
( albino boy cleric
drainer frenchman hooter , to
( (a,1)(b,1)(c,1)(d,1)(e,1)(f,1) ,

end decision

DEFINE albino
moving

movement
leap
<0,1> symmetry all_symmetry

end movement

movement
ride max 3
<1,1> symmetry ( forward ,

end movement

movement
ride
<2,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement
ride
<1,0> symmetry all_symmetry

end movement
end capture

end capturing
promoting promote_to jerk
end promoting

end define

DEFINE boy
moving

movement
leap
<0,1> symmetry all_symmetry

end movement

movement
hop before [x=0]

over [x<=3] after [x>=0]
hop_over [any_player

( albino drainer llama , ]
<2,3> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player ,
( boy drainer frenchman
jerk llama plato , ]

effect opponent possesses
movement
leap
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber ,
type [ ( player , any_piece]
effect remove

movement
hop before [x>=0]

over [x<=2] after [x>=0]
hop_over [ ( player , any_piece]
<0,3> symmetry all_symmetry

end movement

movement
ride
<0,2> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
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end capturing
promoting promote_to albino
end promoting

end define

DEFINE cleric
moving

movement
ride max 2
<0,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( opponent ,

( albino boy cleric
drainer hooter jerk
llama monster , ]

effect opponent possesses
movement
ride
<1,1> symmetry ( forward side ,

end movement

movement
hop before [x>=0]

over [x<=1] after [x<=1]
hop_over

[any_player any_piece]
<2,3> symmetry ( forward side ,

end movement
end capture

end capturing
promoting decision opponent

options [any_player any_piece]
end promoting

end define

DEFINE drainer
moving

movement
leap

<0,1> symmetry ( forward side ,
end movement

end moving
capturing
capture by ( clobber hop ,
type [ ( player ,�( llama plato , ]
effect opponent possesses

movement
ride
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( hop ,
type [ ( player ,

( albino boy cleric
hooter llama plato , ]

effect remove
movement
leap
<1,0> symmetry all_symmetry

end movement

movement
ride max 4 longest
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber hop ,
type [ ( opponent , ( albino

drainer frenchman hooter , ]
effect opponent possesses

movement
ride
<1,1> symmetry ( forward side ,

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
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end capture
end capturing
promoting decision opponent

options [any_player any_piece]
end promoting
constraints must_capture

end define

DEFINE frenchman
moving

movement
ride
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( player , any_piece]
effect remove
movement
leap
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber hop ,
type [ ( opponent , any_piece]
effect remove
movement
ride
<2,2> symmetry all_symmetry

end movement
end capture

capture by ( clobber hop ,
type [ ( player , any_piece]
effect remove
movement
ride
<0,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision player
options [ ( player , any_piece]

end promoting
end define

DEFINE hooter
moving

movement
leap
<2,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve clobber ,
type [ ( opponent , any_piece]
effect player possesses

movement
ride
<3,0> symmetry all_symmetry

end movement

movement
ride
<0,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber hop ,
type [ ( opponent ,
( albino boy cleric drainer
frenchman hooter monster , ]

effect player possesses
movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision opponent
options [ ( player , any_piece]

end promoting
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constraints must_capture
end define

DEFINE jerk
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [any_player

( cleric frenchman , ]
effect player possesses
movement
leap
<2,0> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision player

options [ ( player , any_piece]
end promoting

end define

DEFINE llama
moving

movement
hop before [x>=0]

over [x<=3] after [x>=0]
hop_over [ ( player ,
( albino boy frenchman
jerk monster plato , ]

<2,3> symmetry ( forward side ,
end movement

end moving
capturing
capture by ( clobber hop ,
type [ ( player ,#( albino cleric

drainer hooter monster , ]
effect remove

movement
ride
<1,2> symmetry all_symmetry

end movement

movement
leap
<1,0> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( player , any_piece]

end promoting
end define

DEFINE monster
moving

movement
ride max 2
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [any_player ( albino boy

hooter jerk llama plato , ]
effect remove

movement
leap
<0,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision opponent
options [ ( player ,6( jerk , ]

end promoting
end define

DEFINE plato
moving

movement
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leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by (+,
type [ ( opponent , any_piece]
effect opponent possesses
movement
leap

<0,1> symmetry all_symmetry
end movement

end capture
end capturing
promoting promote_to frenchman
end promoting

end define

end game .

D.1.3 Game: game3
game game3
goals stalemate opponent

arrive [ ( player ,
( dumbo fairy heaven , ]

at ( (e,5) ,
eradicate [ ( opponent ,
( albino bear
cheeseman dumbo heaven , ]

arrive [ ( opponent , any_piece]
at ( (c,4)(c,3)(a,2) ,

arrive [ ( opponent , ( dumbo , ] at ( (b,1) ,
board_size 6 by 5
board_type planar
inversion forward
promote_rank 5
setup

albino at ( (a,1) ,
bear at ( (e,1) ,
cheeseman at ( (c,1) (d,1) ,

DEFINE albino
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing

capture by ( clobber ,
type [ ( opponent , any_piece]
effect opponent possesses

movement
ride longest
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision opponent
options [ ( opponent , any_piece]

end promoting
constraints must_capture

end define

DEFINE bear
moving

movement
leap
<1,0> symmetry all_symmetry

end movement

movement
leap
<0,2> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
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type [ ( player ,#( albino bear fairy , ]
effect opponent possesses
movement
hop before [x>=0]

over [x=1] after [x>=0]
hop_over [ ( player , any_piece]
<2,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision opponent

options [any_player
( albino bear cheeseman
dumbo fairy , ]

end promoting
constraints must_capture

end define

DEFINE cheeseman
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent ,
( albino bear dumbo heaven , ]

effect remove
movement
leap
<2,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting promote_to heaven
end promoting

end define

DEFINE dumbo
moving

movement
ride max 4 longest
<1,1> symmetry all_symmetry

end movement

movement
ride max 3
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect remove

movement
hop before [x=0]

over [x=2] after [x>=2]
hop_over [ ( opponent , ( albino , ]
<1,0> symmetry all_symmetry

end movement

movement
hop before [x>=0]

over [x>=1] after [x>=0]
hop_over

[any_player any_piece]
<2,1> symmetry all_symmetry

end movement

movement
ride max 4
<0,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( player , any_piece]

end promoting
end define

DEFINE fairy
moving
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movement
ride longest
<2,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( hop ,
type [any_player any_piece]
effect remove
movement
ride max 3
<0,1> symmetry ( forward side ,

end movement
end capture

end capturing
promoting promote_to albino
end promoting

end define

DEFINE heaven
moving

movement
leap
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( player , any_piece]
effect remove
movement
hop before [x>=0]

over [x>=1] after [x>=0]
hop_over [ ( player ,
( albino bear dumbo heaven , ]

<1,1> symmetry all_symmetry
end movement

movement
leap
<1,0> symmetry ( forward side ,

end movement

movement
ride max 2
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber ,
type [ ( opponent , ( albino bear

cheeseman dumbo fairy , ]
effect remove

movement
hop before [x=1]

over [x>=1] after [x>=0]
hop_over

[any_player any_piece]
<0,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( player ,6( albino fairy , ]

end promoting
constraints must_capture

end define

end game .

D.1.4 Game: game4
game game4
goals stalemate opponent

eradicate [ ( opponent ,
( andover clinton , ]

arrive [ ( opponent , any_piece]
at ( (b,3) ,

board_size 5 by 6
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board_type planar
inversion forward
promote_rank 6
setup

andover at ( (d,1) ,
bishop at ( (a,1) ,
clinton at ( (b,1) ,
dumbo at ( (e,1) ,
firefly at ( (c,1) ,

DEFINE andover
moving

movement
ride
<1,3> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve clobber hop ,
type [ ( player ,#( firefly , ]
effect remove
movement
hop before [x<=4]

over [x>=1] after [x>=0]
hop_over

[any_player any_piece]
<2,0> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision player

options [any_player any_piece]
end promoting

end define

DEFINE bishop
moving

movement
leap
<1,1> symmetry all_symmetry

end movement
end moving

capturing
capture by ( retrieve clobber hop ,
type [ ( opponent , any_piece]
effect opponent possesses

movement
leap
<0,2> symmetry all_symmetry

end movement
end capture

capture by ( clobber ,
type [any_player ( jupiter lover , ]
effect remove

movement
leap
<0,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( opponent , any_piece]

end promoting
constraints must_capture

end define

DEFINE clinton
moving

movement
ride
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player ,�( andover jupiter , ]
effect remove

movement
hop before [x>=0]

over [x<=6] after [x>=0]
hop_over [ ( opponent ,
( bishop firefly handler , ]

<1,2> symmetry all_symmetry
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end movement
end capture

end capturing
promoting promote_to firefly
end promoting

end define

DEFINE dumbo
moving

movement
ride max 4
<0,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect opponent possesses
movement
leap
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision player

options [ ( player , any_piece]
end promoting
constraints must_capture

end define

DEFINE firefly
moving

movement
ride
<1,2> symmetry ( forward side ,

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( player , any_piece]
effect opponent possesses
movement

ride
<2,3> symmetry all_symmetry

end movement
end capture
end capturing
promoting promote_to lover
end promoting
constraints must_capture

end define

DEFINE handler
moving

movement
ride
<3,2> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( player ,
( andover bishop clinton firefly
handler jupiter lover , ]

effect opponent possesses
movement
leap
<3,1> symmetry all_symmetry

end movement

movement
ride max 4
<0,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting promote_to lover
end promoting

end define

DEFINE jupiter
moving

movement
ride
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<2,1> symmetry all_symmetry
end movement

end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect player possesses
movement
ride max 3
<1,0> symmetry all_symmetry

end movement
end capture

end capturing
promoting promote_to andover
end promoting
constraints continue_captures

end define

DEFINE lover
moving

movement
hop before [x=0]

over [x<=2] after [x>=0]
hop_over [ ( player , any_piece]
<2,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve clobber hop ,
type [ ( player ,
( bishop firefly handler lover , ]

effect player possesses
movement
leap
<0,2> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement

movement
ride
<1,0> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision opponent
options [ ( opponent ,
( bishop clinton dumbo handler , ]

end promoting
constraints continue_captures

end define

end game .

D.1.5 Game: game5
game game5
goals stalemate player

arrive [ ( player ,�( frenchman heaven , ]
at ( (f,2) ,

arrive [ ( player ,�( heaven , ] at ( (d,2) ,
eradicate [ ( opponent ,
( aardvark berkeley christ
digger frenchman , ]

arrive [ ( opponent , any_piece]
at ( (e,4) ,

board_size 6 by 6
board_type planar
promote_rank 6
setup
aardvark at ( (f,1)(e,1)(c,1) ,
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berkeley at ( (d,1) ,
christ at ( (b,1) ,
digger at ( (a,1) ,

DEFINE aardvark
moving

movement
ride
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( retrieve clobber hop ,
type [any_player ( berkeley , ]
effect remove
movement
ride max 2
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
promoting decision opponent

options [ ( opponent , any_piece]
end promoting
constraints must_capture

end define

DEFINE berkeley
moving

movement
ride max 2
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
type [ ( player ,

( berkeley digger , ]
effect remove
movement
leap
<2,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting decision player
options [ ( opponent ,

( berkeley christ , ]
end promoting
constraints must_capture

end define

DEFINE christ
moving

movement
ride
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<0,1> symmetry ( forward side ,

end movement
end capture
end capturing
promoting decision opponent
options [ ( opponent ,
( berkeley frenchman heaven , ]

end promoting
end define

DEFINE digger
moving

movement
ride longest
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber hop ,
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type [ ( player ,#( digger , ]
effect player possesses
movement
leap
<0,3> symmetry all_symmetry

end movement
end capture

end capturing
promoting promote_to berkeley
end promoting

end define

DEFINE frenchman
moving

movement
ride max 2
<1,0> symmetry ( forward side ,

end movement
end moving
capturing
capture by ( hop ,
type [ ( player , any_piece]
effect player possesses
movement
ride max 4
<0,1> symmetry all_symmetry

end movement

movement
hop before [x>=0]

over [x<=6] after [x>=0]
hop_over

[ ( opponent , any_piece]
<1,1> symmetry all_symmetry

end movement
end capture

end capturing

promoting decision opponent
options [ ( player , any_piece]

end promoting
end define

DEFINE heaven
moving

movement
ride
<0,2> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( player , any_piece]
effect remove

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture

capture by ( clobber ,
type [ ( player , any_piece]
effect remove

movement
ride
<1,3> symmetry all_symmetry

end movement
end capture
end capturing
promoting promote_to christ
end promoting

end define

end game .

D.2 Known Games
The following games are encodings of some known games as symmetric chess-like
games which were not already listed in the main text.
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D.2.1 Game: tic-tac-toe
This encoding of noughts and crosses (tic tac toe) was discussed in Section 9.2.1.2.

game tic_tac_toe
goals stalemate opponent

stalemate player
arrive [ ( player ,�( win , ] at

( (a,7) (b,7) (c,7)
(a,6) (b,6) (c,6)
(a,5) (b,5) (c,5) ,

board_size 3 by 11
board_type planar
promote_rank 4
setup

man at ( (a,1) (b,1) (c,1)
(a,2) (b,2) (c,2)
(a,3) (b,3) (c,3) ,

dummy at ( (a,4) (b,4) (c,4) ,
constraints must_capture

DEFINE on_board
capturing
capture by ( clobber ,
type [ ( player ,#( on_board , ]
effect remove
movement
ride min 2 max 2
<1,0> symmetry ( rotation ,

end movement

movement
ride min 2 max 2
<1,1> symmetry ( side ,

end movement

end capture

capture by ( retrieve ,
type [ ( player ,�( on_board , ]
effect remove

movement
leap
<1,0> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing
promoting promote_to win
end promoting

end define

DEFINE man
moving

movement
leap
<0,4> symmetry (+,

end movement
end moving
promoting promote_to on_board
end promoting

end define

end game .

D.2.2 Game: chess
This is the encoding of chess used in the contests in Section 17.4. While the initial
position in this encoding is the same as that in chess proper, the initial position used in
the competitions with GnuChess was modified and randomised to eliminate situations
in which double-pawn moves or castling could occur, as these rules are not covered
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in this encoding of the game. Note that in this version of chess, it is legal to leave a
king in check, and a player wins by capturing the opponent’s king. Also, the notion
of stalemate here is that used in symmetric chess-like games: a player is stalemated
when he starts a turn having no legal moves. As it is legal here to move a king into
check, this representation does not have draws by stalemate as does chess proper.

game chess
goals stalemate opponent

eradicate [ ( opponent , ( king , ]
board_size 8 by 8
board_type planar
inversion forward
promote_rank 8
setup

pawn at ( (a,2) (b,2) (c,2) (d,2)
(e,2) (f,2) (g,2) (h,2) ,

night at ( (b,1) (g,1) ,
bishop at ( (c,1) (f,1) ,
rook at ( (a,1) (h,1) ,
queen at ( (d,1) ,
king at ( (e,1) ,

DEFINE pawn
moving

movement
leap
<0,1> symmetry (+,

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement
leap
<1,1> symmetry ( side ,

end movement
end capture

end capturing
promoting decision player

options [ ( player ,

( night bishop rook queen , ]
end promoting

end define

DEFINE night
moving

movement
leap
<2,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<2,1> symmetry all_symmetry

end movement
end capture
end capturing

end define

DEFINE bishop
moving

movement
ride
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
ride
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<1,1> symmetry all_symmetry
end movement

end capture
end capturing

end define

DEFINE rook
moving

movement
ride
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement
ride
<1,0> symmetry all_symmetry

end movement
end capture

end capturing
end define

DEFINE queen
moving

movement
ride
<1,0> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement

ride
<1,0> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
end capture
end capturing

end define

DEFINE king
moving

movement
leap
<1,0> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<1,0> symmetry all_symmetry

end movement

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing

end define

end game .
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D.2.3 Game: fairy
This is an encoding of the definitions of some fairy-chess pieces, which are mentioned
in Section 15.3.4. Section 15.6 shows the material values

��� ��
��
������
assigns to these

pieces, for purposes of comparison with the ordinary chess pieces.

DEFINE nightbishop
moving

movement
leap
<2,1> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement
leap
<2,1> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
end define

DEFINE nightrook
moving

movement
leap
<2,1> symmetry all_symmetry

end movement

movement

ride
<1,0> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<2,1> symmetry all_symmetry

end movement

movement
ride
<1,0> symmetry all_symmetry

end movement
end capture
end capturing

end define

DEFINE nightqueen
moving

movement
leap
<2,1> symmetry all_symmetry

end movement

movement
ride
<1,0> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
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end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove
movement
leap
<2,1> symmetry all_symmetry

end movement

movement
ride
<1,0> symmetry all_symmetry

end movement

movement
ride
<1,1> symmetry all_symmetry

end movement
end capture

end capturing
end define

DEFINE ortholeap
moving

movement
leap
<1,0> symmetry all_symmetry

end movement
end moving
capturing

capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<1,0> symmetry all_symmetry

end movement
end capture
end capturing

end define

DEFINE diagleap
moving

movement
leap
<1,1> symmetry all_symmetry

end movement
end moving
capturing
capture by ( clobber ,
type [ ( opponent , any_piece]
effect remove

movement
leap
<1,1> symmetry all_symmetry

end movement
end capture
end capturing

end define

D.2.4 Game: knight-zone
This is part of an encoding of the first version of knight-zone chess with Rule 1. This
game was discussed in Section 3.2.2.2 on page 18. The only difference between this
game and chess is that the board is extended by two on all sides, and other pieces are
restricted from landing on the outside squares except for the knight. This restriction
is represented as a goal in which the opponent wins if a player ever puts a piece other
than a knight in that zone. The piece definitions are exactly the same as those in
the chess encoding above, so they have been omitted here. Section 15.6 shows the
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material values
���	��
��
������

assigns to each piece in this game based on its analysis
of these rules.

game knight-zone-chess
goals stalemate opponent

eradicate [ ( opponent , ( king , ]
arrive [ ( opponent ,
( pawn bishop rook queen king , ] at
( (a,1) (b,1) (c,1) (d,1) (e,1) (f,1)
(g,1) (h,1) (i,1) (j,1) (k,1) (l,1)
(a,2) (b,2) (c,2) (d,2) (e,2) (f,2)
(g,2) (h,2) (i,2) (j,2) (k,2) (l,2)
(a,3) (b,3) (k,3) (l,3)
(a,4) (b,4) (k,4) (l,4)
(a,5) (b,5) (k,5) (l,5)
(a,6) (b,6) (k,6) (l,6)
(a,7) (b,7) (k,7) (l,7)
(a,8) (b,8) (k,8) (l,8)
(a,9) (b,9) (k,9) (l,9)
(a,10) (b,10) (k,10) (l,10)

(a,11) (b,11) (c,11) (d,11) (e,11) (f,11)
(g,11) (h,11) (i,11) (j,11) (k,11) (l,11)
(a,12) (b,12) (c,12) (d,12) (e,12) (f,12)
(g,12) (h,12) (i,12) (j,12) (k,12) (l,12) ,

board_size 12 by 12
board_type planar
promote_rank 12
setup
pawn at ( (i,4) (j,4) (c,4) (d,4)

(e,4) (f,4) (g,4) (h,4) ,
night at ( (d,3) (i,3) ,
bishop at ( (e,3) (h,3) ,
rook at ( (c,3) (j,3) ,
queen at ( (f,3) ,
king at ( (g,3) ,

D.2.5 Games in Main Text
The rules of checkers are listed as Figure 7.3 on page 59. The rules of turncoat-chess
are listed as Figure 8.2 and Figure 8.3 on page 68.
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Experimental Results

This appendix contains the full results for the experiments in Chapter 16.
The results of the competition on each game are presented in Table E.1–Table E.5.

Table E.6 summarises the results of the competition between each pair of players
summed across all 5 games. Table E.7 summarises the results of each player on each
game. To determine the total score for a player in a given table, players were awarded
1 point for a win, 0.5 points for a draw, and 0 points for a loss on each contest. Due
to space considerations, the number of losses are not listed explicitly on the tables.
Each pair of players played 20 contests on each game, so between a pair of players,
� � > � � � � 	 8 
 . Similarly, to find the number of contests lost by a player on a given
game, � � ��� � � � � 	 8 
 , and for the tournament, � � � �-� � � � 	 8 
 .

For full details of the experiment, see Chapter 16.
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Contest Results: Game 1
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 1 12 3 11 1 9 0 13 0 10 5 55 32.5
2 7 12 — — 6 11 2 11 2 10 0 7 17 51 42.5
3 6 11 3 11 — — 1 12 2 7 3 9 15 50 40.0
4 10 9 7 11 7 12 — — 1 15 0 15 25 62 56.0
5 7 13 8 10 11 7 4 15 — — 0 15 30 60 60.0
6 10 10 13 7 8 9 5 15 5 15 — — 41 56 69.0

Table E.1: Results of tournament on Game 1.

Contest Results: Game 2
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 0 1 0 0 0 0 0 0 1 0 1 1 1.5
2 19 1 — — 11 0 14 2 7 0 8 1 59 4 61.0
3 20 0 9 0 — — 15 0 11 0 14 4 69 4 71.0
4 20 0 4 2 5 0 — — 7 0 6 2 42 4 44.0
5 20 0 13 0 9 0 13 0 — — 9 2 64 2 65.0
6 19 0 11 1 2 4 12 2 9 2 — — 53 9 57.5

Table E.2: Results of tournament on Game 2.
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Contest Results: Game 3
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 0 0 0 0 0 0 0 0 0 0 0 0 0.0
2 20 0 — — 11 2 9 1 4 0 4 1 48 4 50.0
3 20 0 7 2 — — 16 2 0 5 1 5 44 14 51.0
4 20 0 10 1 2 2 — — 8 0 0 1 40 4 42.0
5 20 0 16 0 15 5 12 0 — — 2 13 65 18 74.0
6 20 0 15 1 14 5 19 1 5 13 — — 73 20 83.0

Table E.3: Results of tournament on Game 3.

Contest Results: Game 4
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 0 0 1 1 1 0 0 0 0 0 2 1 2.5
2 20 0 — — 12 8 8 6 3 15 1 11 44 40 64.0
3 18 1 0 8 — — 5 0 3 0 0 6 26 15 33.5
4 19 0 6 6 15 0 — — 16 4 0 13 56 23 67.5
5 20 0 2 15 17 0 0 4 — — 0 13 39 32 55.5
6 20 0 8 11 14 6 7 13 7 13 — — 56 43 77.5

Table E.4: Results of tournament on Game 4.
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Contest Results: Game 5
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 0 0 0 0 0 0 0 1 0 1 0 2 1.0
2 20 0 — — 6 3 0 8 0 8 0 10 26 29 40.5
3 20 0 11 3 — — 0 8 0 11 0 8 31 30 46.0
4 20 0 12 8 12 8 — — 3 17 0 20 47 53 73.5
5 19 1 12 8 9 11 0 17 — — 0 18 40 55 67.5
6 19 1 10 10 12 8 0 20 2 18 — — 43 57 71.5

Table E.5: Results of tournament on Game 5.

Overall Results: by Opponent
Opponent

1 2 3 4 5 6
P
l
a
y
e
r W D W D W D W D W D W D

�

win
�

draw
Total
score

1 — — 1 13 4 12 2 9 0 14 1 11 8 59 37.5
2 86 13 — — 46 24 33 28 16 33 13 30 194 128 258.0
3 84 12 30 24 — — 37 22 16 23 18 32 185 113 241.5
4 89 9 39 28 41 22 — — 35 36 6 51 210 146 283.0
5 86 14 51 33 61 23 29 36 — — 11 61 238 167 321.5
6 88 11 57 30 50 32 43 51 28 61 — — 266 185 358.5

Table E.6: Overall results of tournament against each opponent.
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Overall Results: by Game
Game

1 2 3 4 5
P
l
a
y
e
r W D W D W D W D W D

�

win
�

draw
Total
score

1 5 55 1 1 0 0 2 1 0 2 8 59 37.5
2 17 51 59 4 48 4 44 40 26 29 194 128 258.0
3 15 50 69 4 44 14 26 15 31 30 185 113 241.5
4 25 62 42 4 40 4 56 23 47 53 210 146 283.0
5 30 60 64 2 65 18 39 32 40 55 238 167 321.5
6 41 56 53 9 73 20 56 43 43 57 266 185 358.5

Table E.7: Overall results of tournament on each game.
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