
954 IEEE T R A N S A C T I O N S O N C O M M U N I C A T I O N S , VOL. C O M - 2 9 , N O . 7, J U L Y 1981

Bottleneck Flow Control
JEFFREY M . JAFFE, MEMBER, IEEE

Abstract-The problem of optimally choosing message rates for
users of a store-and-forward network is analyzed. Multiple users
sharing the links of the network each attempt to adjust their message
rates to achieve an ideal network operating point or an “ideal tradeoff
point between high throughput and low delay.” Each user has a fixed
path or virtual circuit.

In this environment, a basic definition of “ideal delay-throughput
tradeoff” is given and motivated. This definition concentrates on a
fair allocation of network resources at network bottlenecks. This
“ideal policy” is implemented via a decentralized algorithm that
achieves the unique set of optimal throughputs. All sharers constrained
by the same bottleneck are treated fairly by being assigned equal
throughputs.

A generalized definition of ideal tradeoff is then introduced to
provide more flexibility in the choice of message rates. With this
definition, the network may accommodate users with different types
of message traffic. A transformation technique reduces the problem of
optimizing this performance measure to the problem of optimizing the
basic measure.

V
I . INTRODUCTION

ARIOUS store-and-forward packet-switched computer
networks have been developed in recent years. The pri-

mary function of these networks is to route messages or
packets from one network location to another. Typically,
the source of a message dispatches a packet to a neighboring
location or node, which relays the message to another node
and so forth, until the message arrives at the destination.

There are a number of disciplines used by networks to fun-
nel a large number of packets from one source to a given
destination. For example, ARPANET handles each packet
individually [11 , trying to find the shortest path for each
packet based on changing network characteristics. In this pa-
per we assume a fixed route approach whereby all messages
from a given “session7’ are assigned to a fixed unique route.
This approach is currently used in TYMNET [2] , [3] , IBM’s
network architecture [4] , and various other networks (e&,
[5]). Many sessions may share a given route.

The total time required for transmission of a packet is
called its delay. Assuming small nodal processing time, there
are two major components to message delay. Since communi-
cation links take some time to transmit a message, there is a
transmission delay component. Also, if a communication link
needs to transmit too many packets at once, it temporarily
buffers some of them, leading to a queueing delay component.
The queueing delay clearly depends on the amount of network
traffic, and roughly speaking, increases with greater traffic.

Paper appoved by the Editor for Computer Communication of the
IEEE Communications Society for publication after presentation at the
5th International Conference on Computer Communication, Atlanta,
GA, October 1980. Manuscript received April 25, 1980; revised Janu-
ary 6 , 1981. This research was supported in part by the National
Science Foundation under Grant EDS-79-25092.

Yorktown Heights, NY 10598.
The author is with the IBM ,Thomas J . Watson Research Center,

Flow control regulates the amount of traffic to maintain
good system performance. For example, if the buffers at a
link are almost full, some mechanism is needed to slow down
the rate of incoming traffic. Otherwise, the buffers would
overflow, causing severe queueing delays or even deadlock.
Another purpose of flow control is to maintain a good through-
put delay tradeoff. If a user is sending a high average message
rate (in our studies this is equated with throughput), the re-
sulting delays may be intolerably long. On the other hand, the
user would not want to sacrifice too much throughput in order
to achieve low delay. Related to this is the notion of fair&
dividing network resources between competing network
users.

In this paper we discuss methods to achieve a well defined
notion of system performance which results in fairness to
users and a good delay-throughput tradeoff. We concentrate
on network access means of flow control [6] where external
inputs are throttled based on measurements of internal net-
work congestion. The buffer depletion problem (see [7]) is
ignored so that we may concentrate on delay and throughput.
Formally, when our model is specified (in Section 11), infinite
buffers at each link are assumed.

This paper primarily concentrates on the fundamental
questions of “what is optimum performance?” and “what
notions of optimality are accomplishable in a decentralized
environment?”. No new method of constraining the input of
messages is proposed; it is assumed that message rate is regu-
lated by a simple rate mechanism, i.e., some “black box” at
each route which chooses the message rate for that route.

Network access flow control schemes include the isa-
rithmic scheme [8], input buffer limiting [9] , and the choke
packet scheme [l o] . Other schemes are discussed in [6] and
[l 13 . The isarithmic scheme limits the total number of pack-
ets allowable in the network. Input buffer limiting locally
restricts input traffic in favor of transit traffic.

The “bottleneck flow control” presented here may be
viewed as a generalization and abstraction of both the choke
packet scheme and certain ideas presented in [9]. Common
features with the choke packet scheme are that the decision
to decrease message rate is a function of congestion in the
bottleneck links. The relatlonship between the two is further
developed throughout this paper. The main difference is that,
while optimality is defined in a similar way, the control
mechanisms are different. As a result, the choke packet
scheme has no explicit way of ensuring a specified notion of
fairness. On the other hand, bottleneck flow control uses
fairness criteria related to those that are described in [9].

In Section 111 we define and motivate a notion of “optimal
tradeoff.” An adaptive algorithm is given in Section IV which
attempts to achieve this tradeoff in a network that is experi-
encing changes in traffic patterns and numbers of users. Due.

0090-6778/81/0700-0954$00.75 0 1981 IEEE

JAFFE: BOTTLENECK FLOW CONTROL 955

to the changing nature of such a network, it is difficult to
state specific “steady-state’’ properties of the algorithm. We
thus restate the problem somewhat to reflect a static network.
In that environment it is easier to discuss properties of the
“optimal tradeoff’ and an algorithm that implements it. In
particular, the following is achieved:

0 A “decentralized” algorithm is given that always achieves
the optimal tradeoff (Sections V and VII).

The algorithm obtains the tradeoff in linear time [in the
number of users (Section VII)] .

The “optimal tradeoff’ defines a unique set of through-
puts that the users of the network must achieve (Section

0 The unique set of optimal throughputs has important
VIII).

“fairness” properties (Section IX).

Section X generalizes these results to the situation w,here
different user classes have different network performance
requirements. The main result of Section X is that the tech-
niques developed earlier in the paper may be applied directly
to the more general case by a simple transformation technique.

We briefly explain and motivate the notion of a “decen-
tralized” algorithm for flow control. When a user chooses its
throughput, the inputs to the process should consist of infor-
mation locally available to it . The user might be permitted t o
use information about the interfering traffic on its path, but
not about global topology. Basically, in.a decentralized algo-
rithm, information not readily available on a user’s path
should not be usable for throughput determination.

In [121 it is shown that a single user may optimize its
power (ratio of throughput to delay) using only such local
information. However, in [I31 it is shown that, under certain
conditions, no decentralized algorithm maximizes power in
a multiple user system. Since certain optimality criteria are
nondecentralizable, the importance of the decentralizable
criterion discussed here is enhanced.

We further remark that the criterion expressed here has
other advantages over the power concept. It is shown in [14]
that, in some network configurations, optimizing power
implies that certain users must choose zero throughput. A
corollary of the fairness property of Section IX is that no users
are required to have zero throughput at optimal performance.
This fact is still true for the generalization of Section X
where users are not handled identically in terms of through-
put allotment.

11. NETWORK MODEL
We model a data network as a graph (N, L) with vertex

(or node) set N and edge (or link) set L . Each link 1 E L has
a service rate of s(Z) bits/s. Apath p in the network is a sequence
p = (nl , e.-, nk) with ni E N such that for i = 1, -, k - 1,
Zi = (ni, n i +]) E L . The set { I I , --, l k -] } is denoted l b) ,
the links of p . A path p models a fixed route that is used by
one of the “users” of the network.

In order to evaluate the delays on the links, a queueing
model is needed which relates throughputs to delay. We use a
simple model ([IS, Sect. 5.61) which, as indicated above, has
infinite buffers. Specifically, we assume that each link may be
modeled as an M/M/1 queue, the average message length is

b bits/message, there is no nodal processing time, and Klein-
rock’s independence assumption applies [151 .

Define the capacity of link I , c(l), by c(Z) = s(Z)jb. Assume
that there are K users, all of whose fixed routes use a link 1.
Let yi denote the message rate of the ith user. In that case,
the average steady-state delay for the packets (of each user)
that traverse the link at l is dl(?) = l/(c(Z) - (yl + - - - + i ~)) .
The average total deZay of packets sent by user i, Di(y) is
the sum of the average delays experienced at the individual
links.

111. OPTIMALITY CRITERION

In this section an optimality criterion is presented using
several levels of description. First, optimum throughput is
defined in terms of link capacity. We explain why our defini-
tion might be considered “the optimum operating point of a
network.” Next, the definition is reformulated to express a
tradeoff between user throughput and, delay. Section IV gives
an adaptive algorithm for optimizing the criterion in a “dy-
namically changing” network. It is difficult, .however, to pre-
sent any concrete analysis for a rapidly changing network.
Starting with Section V we analyze the optimality criterion in
a “static” environment.

Recall that c(l) is the capacity of the link 1. Let y(1) denote
the sum of the throughputs of all users of link 1. The maxi-
mum value that y(l) can be is c(1) or else messages are gener-
ated at a faster rate than they can be transmitted. Certainly,,
y(Z) > c(Z) is not a situation we would like to encourage for
any link. In fact, it is probably not even desirable to have
r(Z) = c(l) for two reasons. First of .all, if y(Z) = c(l) the
system “never reaches steady state”; the delays of the mes-
sages increase over time due to the fact that buffer occupancy
approaches infinity. Also, choosing y(1) = c(l) leaves n o room
for fluctuations in the network. One user may be forced by
certain considerations to increase his throughput or new
users may attempt to open up new routes sharing link 1. For
that reason, optimum y(Z) is chosen to be somewhat iess than
c(Z), as we proceed to describe. This distance is parameterized
by a variable x . This variable permits designers of different
systems to choose somewhat different notions of “ideal
throughput-delay tradeoff.” If they are throughput-oriented,
they choose x large; if delay-oriented, then x should be small.

Define the residual capacity of 1 by r(1) = c(l) - y(0. Let
y denote the throughput of a user whose path includes link 1.
The user saturates Z if y = x(r(1)). The user overloads 1 if
y > x(@)). A user is overloaded if it overloads any link on its
path. A user is saturated if it is not overloaded and it saturates
at least one link on its path. These preliminaries prepare us
for the following.

Definition: Given a data network (as modeled in Section 11)
with several paths through the network (corresponding to
users of the network), and a rate assigned to each user, the
iate assignment is optimal if all users are saturated.

Remarks: The way that we keep y(1) somewhat less than
c(l) is to guarantee that no user overloads any links. Thus, for
each link I , x(r(1)) 2 ymax where ymax is the largest through-
put of any user of link 1. In addition to keeping i(Z) somewhat
less than c(l), we also desire a large measure of throughput in
the network. Thus, each user must not only prevent

956 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 7 , JULY 1981

overload-it’also must, be saturated. Each user would then have
the largest possible throughput subject to x and the residual
capacities. ’

TO contrast this’with the Cyclades choke packet proposal,
we remind the reader that optimality in [101 basically requires
that no link exceeds a certain threshold of utilization. For
instance, y(Z) should not exceed (0.8) (c(Z)) if the threshold
equals 0.8.

We feel that it is better to force saturation of each user and
choose y(Z) as a function of yhax for a few reasons. The

3 primary reason is that the choke packet scheme has no regard
for the number or types of users of the link, and therefore
loses the ability to fairly allocate resources. By fixing the
requirement that no link should exceed a certain utilization,
one loses the ability to predict transients in future utilization
based,, on current . utilization. This is developed further in
Section IX. Also assume that x(@)) = yma,. Then, with our
definition, if x = 1, we can accommodate one new user with
throughput ymax without causing y(Z) > c(Z). Similarly,
choosing r(Z) = (ymax)/x protects the network against per-
centage changes ii each user’s throughput due to transients.
If a user increases his throughput by a factor of l/x, the
inequality c(Z) > y(Z) still applies. Methods of obtaining an
optimality criterion similar to “80 percent of utilization,” as
a limiiing case of saturation, are discussed in Section XII.

,Next, we motivate saturation as a means of expressing an
“optimal delay-throughput tradeoff.” Recall that the delay
at Z is given by dl = l/(c(Z) - y(Z)). Thus, saturation for user p
is eduivalent to

’Y min x/dl(7) (1)
I: I€ Z(p)

From (1) it is evident that saturation is a direct method of
expressing. a delay-throughput tradeoff for the users of the
network. A user may increase its throughput until the delay on
its “bottleneck” iifik is too large. As delay increases, y is
constrained by (1).

Note the role played by the parameter x in all viewpoints
of the optimality criterion. From the network point of view,
it indicates the amount of traffic fluctuation that is to be
protected against. From the user viewpoint, it indicates the
amount of effect that increased delay should have on through-
put.

There is a third viewpoint of saturation. Using Little’s
theorem [161 , the average number of messages waiting at a
link Z when the throughput of a user is y, and the delay is
dl is ydl. Now if ‘y < x/dl for every link Z in the path of a
gived user, the user is willing to tolerate x messages waiting at
each link, and a total of x times # (user’s linksJ, messages
waiting in the system. Thus, the average number of waiting
messages that a user will tderate varies linearly with the
length of his path-if’the path is longer, the user may have
more messages in transit.
TO review, the features of optimum network operation

based on the use of the saturation measure are
1) protection for the network against changes in users’

rates

2) protection for the network from arrivals of new users
3) establishment of delay/throughput tradeoff at the

4) use of the parameter (x) to permit flexibility .in the

5) protection for the buffers in an average sense
6) fair allocation of resources (Section IX).
In addition to stating what optimal performance is (all

users saturated), it might be helpful to evaluate how far
suboptimal solutions are from optimal. To do this, it is use-
ful to have an objective function which characterizes the
quality of a set of throughput assignments. Assume that
there are m users with throughputs y = (yl , ... , 7,). Define

bottleneck link

definition of optimum performance

If each user is saturated at y, then for all i , yi =
minl:lEl(i) x/dl(y) and fly) = 0. Conversely, if f l y) = 0, all
users are saturated. Thus, the goal of saturating all users may
be conveniently restated as an attempt to minimize f.

IV. AN ADAPTIVE DISTRIBUTED ALGORITHM

An adaptive distributed algorithm which attempts to
saturate all paths without overloading any is now given.
Each user adjusts its message rate based on information sent
to it by the links and nodes on its path. The information
needed by a user with path p is

1) its current throughput y

We do not specify the mechanics of when this information
is made available and in what form the information arrives.
Each link may know to dispatch information to all users’of
the link at regular intervals, or alternatively, information
gathering may be prompted by a signal from the user. Each
link may compute dl) or estimate it based on buffer occu-
pancy. Also, the links may send the throughputs of the indi-
vidual users of the links, and let user p calculate r(Z).

The algorithm executed by user p each time it desires to
recalculate its message rate y‘ from the old rate y is

2) minl:l€l(p) r (0 .

The following explains why we say that the above algo-
rithm attempts to achieve saturation. First, note that after
executing one step of the algorithm, the user is saturated.
This can be seen as follows. For a link I, the new sum of
throughputs y’(Z) = y(Z) - y + y’. Thus, x(&) - y’(Z)) =
xc(Z) - xy’(Z) = xc(Z) - xy(Z) + xy - xy’ = y’ by (3) for the
link at which dl) was minimized. Also, x(c(Z) - y’(Z)) > y’ for
all other links, I, Le., none is overloaded.

If there were no transients, such as no new users entering
the system, and each user converged to a steady-state through-
put, then those throughputs that are converged to will saturate
all users. Any unsaturated or overloaded user must change its
throughput! Unfortunately, we are unable to show, even

JAFFE: BOTTLENECK FLOW CONTROL 957

without transients and new users, that each user does con-
verge. To clearly express an algorithm that saturates all users,
we spend the rest of this paper discussing a static case, i t . ,
no new users.

As a practical matter, the above algorithm would need ti,
be modified in an adaptive situation. Choosing y’ by (3) may
cause large deviations in certain user’s message rates, leading
to instabilities in the system. A better way is to have users
slowly change rates in the direction (increase or decrease)
implied by (3). The reader is referred to [141 for an algorithm
to coordinate user updates, so that many users do not change
their rates at once.

V. ALGORITHM TO SATURATE ALL USERS

In this section an algorithm is presented which saturates
all users in a static network with a fixed set of users. It is
assumed that if a user is assigned by the algorithm fo send
messages at a rate y, that indeed its average throughput is y.
(Variations of this are described in Section XI.) The algorithm
is decentralized in the sense described above. Each user
chooses its throughput based on information provided from
its links. In fact, the execution of the algorithm will be pre-
sented in a manner which distributes the computation even
more-the links (or whatever controls the links) will do some
computation in the algorithm. The link computation provides
a concise description of the current traffic on the link.

There are a number of idealizations used in this section.
It is assumed that each link may accurately calculate message
rates of users that use the link. Also, in order to conveniently
discuss the convergence time of the algorithm, a synchronous
algorithm is assumed (i.e., a clock at each node permits all
updates to occur at once). However, the main feature of
using “local information,” i.e., information accumulated
along a user’s path, is preserved. In practice, one would prob-
ably use a hybrid of the algorithm of Section IV and the
algorithm that we proceed to present here.

The algorithm proceeds in iterations. Consider a link 1
which is shared by a number of users, exactly j of which are
not saturated before the ith iteration. Let ysat(Z, i) denote the
sum of the throughputs of the users of link 1 that are satur-
ated before the ith iteration. Then the saturation allocation
of 1 at i , denoted y(1, i), is

Intuitively, if each unsaturated user of link Z chooses the
saturation allocation as its throughput, and each saturated
user leaves its throughput unchanged, then all unsaturated
users become sathrated. This follows from the fact that r(1)
in that case would be (c(Z) - ysnt(Z, i)) / l + j x .

The following is the algorithm for the ith iteration. Ini-
tially, all throughputs are 0 and each link knows how many
users have paths which use it.

Saturation Algorithm (ith Iteration)
1) Each link 1 calculates y(Z, i).

3) Each user sets its new throughput y to the smallest
value of y(1, i) among links 1 that it uses.

4) Each link 1 determines which of its users are now satur-
ated at Z and informs each such user.

5) Each user that is saturated at any link informs all of its
links that it is saturated.

There are basically two computations done at each itera-
tion. After receiving y(Z, i) from each link 1 on its path, a user
readjusts its throughput by taking the minimum allocation
[step 3)]. Also, each link must calculate y(Z, i). The informa-
tion needed for this calculation is the number of saturated
users [obtained in step 5)] and ysat(Z, i) (obtained in some
way by measuring each saturated user’s throughput).

One method whereby a link can determine ysat(l, i) with-
out explicitly finding out which user sent each message is
briefly described. Let each saturated user set a bit in the
message header to 1 and each unsaturated user to 0. Then
ysat(l, i) is just the average rate of messages arriving with
header bit equal to 1. Further elaboration on implementation
is omitted.

The key properties of the algorithm (proved in Section VII)
follow.

0 Any user that is saturated after iteration i , remains satu-

0 If not all users are saturated at the beginning of an

From the above two facts it is immediate that if there are

rated after iteration i + 1.

iteration, then at least one becomes saturated at the iteration.

rn users, they are all saturated after no more rn iterations.

VI. AN EXAMPLE

Consider the network of Fig. 1. The following is a trace
of the iterations, of the algorithm with x = 1. The labels of
the links are the capacities,

Iteration 1 Iteration 2 Iteration 3

71 112 (from link D) 112 112
72 1 112 (F) 714 (E) 714
73 1 112 (F) 1116 (F) 1518 Q
74 10 (A) 10 10
7 5 3 113 (0 1914 (0 1914

User 1 is saturated at link D, 2 at E, 3 at F, 4 at A , and 5 at C.

VII. PROOF OF CORRECTNESS

The main result of this section is the following.
Theorem 1 : Fix a network with m paths. Define

If the saturation algorithm is executed, then after at most
m iterations, the resulting value of y, satisfiesf(y) = 0. Fur-
thermore, y is unchanged by subsequent iterations of the
algorithm.

Proof: As mentioned in Section IV, this is proved by
showing that saturated users stay saturated-and each iteration
produces at least one saturated user. (Recall that fly) = 0

2) Each link sends the value y(l, i) t o all users of 1. if all users are saturated at y.) The main technical-result

958

Fig. 2. Worst case network (in terms of number of steps).

algorithm of Section IV converges to an optimal solution, it
does not converge exactly. Rather, the sequence of through-
puts achieved by the users converge (in a Cauchy sense) to the
optimal throughputs.

The fact that linear time is actually required by our algo-
rithm in the worst case is proved by the example of Fig. 2 .
Basically, the y i may be chosen so that each user converges
at a different step. See [171 for details.

VIII. UNIQUENESS

In this section it is shown that for any network and any set
of users there is a unique way to saturate all users. This is a
“well-defined” result for the saturation measure: two different
throughput assignments cannot both be optimal for the same

\\ network configuration. We first separate out a simple lemma

Lemma 3: Assume user i is saturated at link 1 at an
Fig. 1. Example network for execution of algorithm. optimum solution 7 , with throughput yi, and user j uses link

needed to prove Theorem 1 may be stated informally as Proof: Since user i is saturated, yi = x(r(Z)). Since user
“y(l, i) is a nondecreasing function of i.” This fact, and the j is not overloaded, yi <x(r(l)) = yi.
fact that saturated users stay saturated, are proved inductively Theorem 2: The value y obtained from the saturation
in the following lemma. algorithm uniquely minimizes the objective function f.

Lemma 1 : Proof: We prove by induction on the iteration number
l) F o r a l l Z € L , a l l I E Z + , y (Z , i + l) ~ y (~ , i) . that all users saturated at step i must obtain the same through-
2) If any user becomes saturated at link 1 during the ith put assignment in any optimal solution. The basis step is

iteration, then all users of I that were not saturated before similar to the inductive step and is left to the reader.
the ith iteration become saturated at l during the ith iteration. Consider all users saturated at the ith step. By Lemma 1,

3) If a user is saturated after the ith iteration with through- part 2) , a user may only be saturated if it takes the satura-
put y, he remains saturated after the i + 1st iteration with tion allocation at some link I , and all other not previously
throughput y. saturated users also take their saturation allocations at 1 (and

The proof of Lemma 1 is given in the Appendix. To com- get saturated). Thus, we may study all users that are satur-
plete the proof of Theorem 1 we prove the following. ated at the ith step by looking at all links at which all non-

Lemma 2: At each iteration which starts with some saturated users take the saturation allocation.
unsaturated users, at least one user becomes saturated. Assume, contrary to the hypothesis, that it is possible for

Proof: For each link at which not all users are saturated the users saturated at step i to get different assignments in
at a given iteration, consider the saturation allocation of the some optimal assignment y * . Consider a link I , which is
link. Some link must have minimal allocation among all such saturated at the ith iteration and has some of its saturated
links. All unsaturated users of that link choose that allocation. users with different assignments in y * . By induction, recall
Since all saturated users of the link do not change their that all users that share I , and are saturated before the ith
throughputs [3) of Lemma 13, all of the unsaturated users iteration must receive the same throughputs in any optimal
of that link become saturated. . solution.

Theorem 1 follows directly from Lemma 2 and 3) of We first claim that at least one user saturated at l at the ith
Lemma 1. At each iteration at least one user becomes satu- iteration must obtain less than y(2, i) in 7 * . For if all of them
rated-and saturated users stay saturated. receive y(l, i) or more, and the users saturated before iteration

Corollary-(Existence): Given any network and set of users i receive the same amounts, then x(c(l) - y * (I)) < y(l, i). But
of the network, there is a throughput assignment y, which then, all those users that receive y(Z, i) or more are overloaded
saturates all of the users. at I in y * , and thus y * is not optimal.

Note that the saturation algorithm determines the optimal Thus, one may consider a user which obtains throughput
throughputs exactly. In contrast, even when the adaptive y * in y * where y * < y(Z, i) . Assume that the user is satur-

’“e; \ which we refer t o later.

I and has throughput yi. Then yi 2 yi.

JAFFE: BOTTLENECK FLOW CONTROL 959

ated in y * at link I f . Note that y(Zf, i) > y * since y(Zf, i) 2
y = y(Z, i) > y. Consider the sharers .of I f . Those saturated
before iteration i may not change their throughput in y * by
induction. The r other users must have throughputs in ;r * of
at most y * , each by Lemma 3 . Thus, x(c(Z’) - y * (If)) 2
x(c(Z‘) - ysat(Zf, i) - q*). But < y(Zf, i) implies that y* <
x(c(Z’) - ysat(Z‘, i))/(l + rx). Thus,

This contradicts the fact that the user is saturated at 1’ in
Y*.

IX. FAIRNESS

One aspect of a flow control optimality criterion which is
difficult to evaluate is the elusive notion of fairness. One ver-
sion of fairness is to insist that all users obtain equal through-
puts. In a network with different users, using links of differ-
ent capacities, it is unlikely that such a policy would be de-
sirable.

Recall that flow control is instituted not only to protect
a user against high delay due to traffic, but also to equitably
divide network resources among competing users. The notion
of fairness provided by saturation relates to the equitable
division of resources. Briefly, saturation is “fair” because

0 each user’s throughput is at least as large as all other
users that share its bottleneck link (Lemma 3)

0 the only factor that prevents a user from obtaining
higher throughput is the bottleneck link (which essentially
divides resources equally).

X. GENERALIZATIONS
The fact that our algorithm saturates all users is inter-

esting in a network with a homogenous user set, but suffers
in that it provides too restrictive a notion of fairness. The
property that “all users are treated equally” may not be
desirable in practical networks. One user may be more impor-
tant and thus deserving of a higher message rate. Alternatively,
a user that interferes with many other users would probably
deserve special treatment.

This is only one deficiency that results from the definition
of saturation. A different problem arises if many (n) users
share a single link. If the link is the bottleneck link for each,
then (at x = 1) they each choose a message rate of c(Z)/
(n + 1). As n +=, the total rate approaches c(Z); thus, there is
excessive throughput and disastrous delay. (This particular
problem is dealt with both here and in Section XU.)

A final problem with the definition of saturation is that it
may not be desirable to have a network-wide value of x as
defined. Recall that one reason to choose y = x minl r(Z) was
to protect the network against transients in a user’s message
rate which were as large as a factor of l/x. Clearly, the varia-

bility in rates of different users is different. A user that has
large variability would need a larger relative amount of residual
capacity on its links.

This section solves the above problems by reformulating the
definition of saturation. With user p , one associates a number
x p , the throughput priority of user p . User p’s throughput
priority expresses the desired message rate of user p as com-
pared to the rates of interfering users. In particular, user p
is saturated at I if y, = x p r(Z). If users p and q are both
saturated at I , the ratio of their throughputs is x p / x q . This
genedization clearly treats users differently. Optimum
pe..rformance is again equated with rate assignments that
saturate all users.

In practice, some higher level protocol would decide what
the relative values of x p should be. If x p were chosen as a
function of the number of interfering users, some network
manager could prevent the excessive use of an n user bottle-
neck. Similarly, a network manager could decide how to
appropriately allocate relative priorities to competing users.
In some network environments, each user might make a local
decision choosing x p based on the expected variability of its
message rate to protect the network. A network manager is
not needed if some convention is adopted by network users
for determination of their throughput priorities.

We proceed to explain how the variable throughput priority
case may be effectively reduced to the equal throughput
priority case. In particular, the following questions are ad-
dressed:

0 Is there a static algorithm to saturate all users?
Is there a unique way to saturate all users?
Is there an appropriate adaptive, distributed algorithm

What delay/throughput tradeoff is implied by the new

What fairness properties are implied?
First, consider the case that x p is an integer for all p . We

assume that each link knows the value of x p for each user of
the link. In this case, the variable x p case is reduced to the
X = 1 case as follows. A user with priority x p is treated asxp
users each with x = 1 and identical paths. Initially, if there are
j users of Z with priorities x1 , - , x i , then

such as the one described in Section IV?

definition of saturation?

where S = Xi= xi. If y(Z, 1) is the minimal allocation for user
k (with priority xk) , then user k chooses y = xk y(Z, 1). In
subsequent steps, ysat is measured as before, and

where S(1, i) is the sum of the xp’s for users of link I that are
not saturated before iteration i.

It can be shown that with this modified algorithm, the
value of y(Z, i) for every I and every i is identical here to the
case where each user with priority x p were replaced by x p
users with priority 1. Also, the message rate y of a user with

960 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 7 , J U L Y 1981

priority xp after iteration i equals the sums of the rates of
the xp users with x = 1 . These facts are proved trivially by
induction on i. From this it follows that there is a static
algorithm to saturate all users, and that saturation is unique.

Actually, using (7) and (8) uniquely saturates all users
even if xp is not an integer. The proof of this follows in a
manner similar to the proof of Section VII.

Continuing with the aforementioned questions, the appro-
priate adaptive algorithm remains roughly the same as in
Section IV; each user saturates itself based on current condi-
tions (perhaps changing message rate slowly for stability
reasons). The delay-throughput tradeoff defined for user p is

The relevant fairness statements are as follows.
0 Each user’s throughput is only constrained by its bottle-

neck link.
0 At its bottleneck link a user gets at least “its share of

capacity” based on its throughput priority. That is, the rate
y p of user p satisfies y,, 2 (xp/xq) yq if 4 shares p’s bottle-
neck link.

XI. LOW THROUGHPUT USERS

The saturation algorithm provides each user with an “opti-
mum” throughput, but requires one special assumption to do
so. It is assumed that each user has a throughput equal to that
assigned in the algorithm. In practice, however, a user may not
have enough data to send at the high rate. In this section we
briefly discuss the required modifications to handle this case.

Assume that y is the maximum possible rate for a user
based on incoming data rate considerations. Then the user
“pretends” that on its path is a “virtual link” of capacity
(y)(l + x)/x, which is shared with no one. If all other links
have saturation allocation larger than y, then the rate chosen
on the basis of the virtual link is y. For example, if x = 1 , the
virtual link has capacity 2 7 and the user is saturated if its rate
is y. Thus, by slightly modifying the network, the inherent
throughput constraints of each user are taken into account,
without changing the algorithms and their properties.

XII. RESTRICTING THE PERCENTAGE UTILIZATION
OF A LINK

Assume that it was desired that no link exceed a fraction
y of its capacity. This might be used to prevent y(Z) + c(Z) as
n + 00 in the case of n users sharing a bottleneck link. Section
XI prevents y(Z) + c(Z) by suggesting that the values xp should
be chosen as a function of n. In this section a more direct
approach is used. This approach leads to a derivation of the
“optimum Cyclades performance” as a limiting case of satura-
tion.

Define the effective capacity of I, e(Z) = yc(Z). This is the
largest amount of capacity of Z that should be used. If e(Z) is
used instead of c(Z) in the algorithms to saturate all users,
then the capacity of any link utilized is restricted to be at
most e(1).

This is not quite the Cyclades notion of optimality-they
require that e(Z) not be exceeded, but place no other restric-
tions on the message rates (such as y <r(Z)). To effectively
remove the restriction y < r(Z), let x + 00; y < xr(Z) is then
trivially accomplished.

To review, a utilization of y at bottleneck links is accom-
plished by using e(Z) instead of c(Z), letting x + 00, and satur-
ating all users. This accomplishes the desired utilization of
bottlenecks, and also provides fairness not usually provided
by just restricting link utilization. In this case, letting x + 00

does not strongly degrade delay at the cost of throughput,
since the rates are all chosen based on e(Z), not c(Z).

XIII. CONCLUSIONS
We have presented a “fair” motivatable network perform-

ance criterion. Two algorithms have been presented to opti-
mize performance, one of which is guaranteed to find the
unique optimal throughput assignments in a static environ-
ment.

APPENDIX

PROOF OF LEMMA 1 (BY INDUCTION ON i)

i = 1:
1) y(Z, 1) = x-c(Z)/(l+ jx)where j is the number of users

that share 1 . y(1, 2) = x(c(1) - ysat(l , 2))/(1+ rx)where r is
the number of users of Z not saturated at the first iteration.
By the way that throughputs are assigned, ysat(Z, 2) d 0’ -
r) y(Z, 1) = 0’ - r)(x*c(Z))/(l + jx). Thus,

xo’ - r)(x 40)
x40 - xY,,t(L 2)

x c o - +jx
YU, 2) = + ?x 2 1 +?x

= Y(l, 1). (-41)

2) Recall that the saturation allocation is designed to guar-
antee saturation if all unsaturated users of a link choose the
saturation allocation and all saturated users keep the same
throughput. Before the first iteration, there are no saturated
users, and each user chooses at most the saturation allocation.
From this, 2) follows immediately.

3) Similar to the inductive step (below).
Inductive Step: Assume l), 2) , and 3) for k < i and prove

1) and 2) for k = i. Then, using 1) and 2) for k = i and 3) for
k < i , prove 3) for k = i as follows.

JAFFE: BOTTLENECK FLOW CONTROL 96 1

1) y(l, i + 1) = x(c(Z) - ysat(Z, i + 1))/(1 + rx), y(Z, i) =
x(c(Z) - ysat(Z, i))/(l + ‘sx) where there are r nonsaturated
users of I before the i + 1st iteration and s before the ith. By
induction on 3), any user saturated before the ith iteration
remains saturated before the i + 1st (i.e., after the..ith) with
the same throughput. Thus, ysat(Z, i +1)= ysat(Z,.ij ?t; ynew
where ynew is the sum of the throughputs of the s - r users
that become saturated at the ith iteration. Note that ynew <
(s - r) y(Z, i) since each newly saturated user has message rate
at most y(Z, i), Thus,

2) By induction on 3), all users saturated before the ith
iteration choose the same throughput at the ith iteration.
Since each unsaturated user chooses, at most, the saturation
allocation at I , by the definition of y(Z, i), a user becomes
saturated at I at iteration i only if all other unsaturated users
choose y(I, i) and become saturated.

3) Fix a user that is saturated after the ith iteration with
throughput y. We must show that at the i + 1st iteration, it
chooses the same throughput and remains saturated. Consider
a link I at which the user is saturated after the ith iteration.
Using 2) for the iteration number k at which the user was
first saturated at 1, (k < i), all users that share I are either
saturated before the kth iteration or become saturated at the
kth iteration. By induction on 3), it follows that all are satu-
rated after the kth iteration. Also, the ones that were previ-
ously saturated use the same throughput as before the kth
iteration. This continues through iteration i. Since the user is
saturated at I, its throughput y satisfies y = x(r(Z)). Also, since
all users of I are saturated, ysat(I, i + 1) = y(I) and y(l, i +
1) = x(&) - y(2)) = y. Thus, due to the saturation allocation
at I , the user chooses a throughput of at most y at iteration
i + 1. Since for every link I’ in the user’s path y(I’, i + 1) 2
-y(Z‘, ‘i) [by (l)] , the user chooses exactly y.

The above argument may be repeated for each user satu-
rated after the ith iteration. Returning to the user fixed above,
it is apparent that the user is saturated at 1 at the i + 1st
iteration, since all users that share I do not change their
throughputs. Thus, y(Z) is unchanged and y = x(r(Z)) still
holds. To prove that the user is still saturated after the i +
1st iteration, it suffices to show that it is not overloaded on

To prove that the user is not overloaded at a link l‘, it suf-
fices to show y < x(c(Z’) - y(l‘)) where y(Z’) is the sum of
throughputs of users of I’ after the i + 1st iteration. Consider
the iteration (iteration k) at which the user became saturated
(with rate 7). If I’ is on its path, y(I‘, k) 2 y by the way y is
chosen. By induction on (l), y(Z’, i + 1) > y. Recall that
y (t , i + 1) = (x(@) - ysat(I’, i + 1)))/(1 +]x) (i f j users
are not saturated before the i + 1st iteration). Note, the
value of y(Z’) after iteration i + 1 is given by

y (t) < ysat(lr, i + 1) +jy(Z’, i + 1).

Thus,

X(C(Z’) - y(~‘)) >,x(c(l’) - ysat(l‘, i + 1) - jy(l‘, i + 1))

= x(c(l’) - ysat(l‘, i + 1)) (1 - +ljx)

= y (t , i + 1) 2 7.

ACKNOWLEDGMENT

The author acknowledges helpful conversations with K.
Bharath-Kumar, F. H. Moss, and M. Schwartz.

any other link on its path. [I21

REFERENCES

J . M. McQuillan, “Adaptive routing algorithms for distributed
computer networks,’’ Bolt Beranek and Newman Rep. 2831,
NTISAD781467,May 1974.
L. Tymes, “TYMNET-A terminal-oriented communication
network,” in AFIPS Conf. Proc., Springfoint Comput. Conf.., vol.
38. 1971, pp. 211-216.
M. Schwartz, Computer Communication Network Design and
Analysis. Englewood Cliffs. NJ: Prentice-Hall.
J. P. Gray and T . B . McNeill. “SNA multiple-system net-
working,” IBM Syst. f . , vol. 18. no. 2, 1979.
A. Danet, R. Despres. A. LaRest, G. Pichon, and S . Ritzentheler,
“The French public packet switching service: The transpac
network,” in Proc. 3rd In t . Conf, Comput. Commun., Toronto,
Ont., Canada. Aug. 1976, pp. 251-260.
M . Gerla and L. Kleinrock, “Flow control: A comparative
survey,” IEEE Trans. Commun., vol. COM-28. pp. 553-575, Apr.
1980.
V. Ahuja, “Routing and flow control in systems network archi-
tecture,” IEM Syst. f . , vol. 18, no. 2, 1979.
D. W. Davies, ”The control of congestion in packet switching
networks,’’ lEEE Trans. Commun., vol. COM-20, June 1972.
E. Raubold and J . Haenle, “A method of deadlock-free resource
allocation and flow control in packet networks,” in Proc. 3rd In?.
Conf. Comput. Commun., Toronto, Ont., Canada, Aug. 1976.
J. C. Majithia et al . , “Experiments in congestion control tech-
niques,” in Proc. In t . Symp. Flow Contr. Comput. Networks,
Versailles, France, Feb. 1979.
Proc. Int . Symp. Flow Contr. Comput. Networks. Versailles,
France. Feb. 1979.
K. Bharath-Kumar. “Optimum end-to-end flow control in net-

962 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. C O M - ~ ~ , NO. 7 , J U L Y 1981

On the Dynamic Control of the Urn Scheme for Multiple
Access Broadcast Communication Systems

KUMUD K. MITTAL, STUDENT MEMBER, IEEE, AND ANASTASIOS N. VENETSANOPOULOS, SENIOR MEMBER, IEEE

Absrracr-The Urn scheme is known to perform better than optimal
ALOHA and TDMA for all ranges of traffic rates. In this paper we
discuss the dynamic behavior of the Urn scheme to show that it
possesses bistable behavior in a manner similar to ALOHA schemes
and that dynamic control procedures can be applied to improve the
system performance effectively. In particular, an input control
procedure (ICP) is presented that gives a delay-throughput charac-
teristic very close to optimal (perfect scheduling) for a wide range of
throughput rates. The improvement is obtained at no extra cost in
terms of information acquisition and the complexity introduced is
minimal, An analytical method is described to calculate the expected
delay, throughput, and the. probability of packet rejection. Numerical
results are shown for various values of user population and compared
with corresponding results for other schemes.

I. INTRODUCTION

P ACKET broadcasting systems combine the advantages of
packet communication with those of broadcast communi-

cation systems. Unlike circuit switching, packet communica-
tion does not dedicate circuits or tie them up to establish con-
nections, and hence provides a powerful means of sharing the
communication channel among large numbers of users. Among
the advantages of a broadcast communication system are multi-
destination or conferencing capability, absence of topological
and routing problems, system modularity, and overall system
simplicity.

In packet broadcasting systems, the problem of designing
an efficient multiple access scheme is of prime importance.

Paper approved by the Editor for Computer Communication of the
IEEE Communications Society for publication after presentation at the
National Telecommunications Conference, Washington, DC, November
1979. Manuscript received November 11, 1979; revised April 18, 1980.
This work was supported in part by the Natural Sciences and Engineer-
ing Research Council of Canada under Grant A-7397.

The authors are with the Department of Electrical Engineering, Uni-
versity of Toronto, Toronto, Ont., Canada.

Various schemes have been devised and studied. These can be
categorized mainly into the fixed assignment schemes, the
polling schemes, and the random access schemes. The random
access schemes are particularly suitable for systems in which
the number of users is large and the users are characterized by
a high ratio of peak to average data rates [l] . However, these
schemes generally suffer from system instability and have low
obtainable channel capacities (e.g., only 37 percent for slotted
ALOHA; see [2] for a brief summary of random access
schemes). Recently an adaptive asymmetric scheme, called the
Urn scheme [3], has been proposed that is not unstable in the
strict sense (elaborated later in the paper) and can achieve a
channel utilization of nearly 100 percent.

I t is well known that the asymmetric variations of slotted
ALOHA perform better than the symmetric ones. For example,
Abramson has shown [4] that the channel capacity of an
ALOHA system is higher if traffic rates at the users are un-
equal (“excess capacity”). Metzner [5] has considered the
use of unequal transmission power levels for improving chan-
nel utilization (“capture effect”). In the Urn scheme, the
asymmetry is incorporated in the transmission probabilities.
Some users will try to access the system with probability 1 and
others with probability 0. However, there is a need for coordi-
nation in decision making among the users as to which partic-
ular user employs which probability. This coordination is
achieved by using the same seed for random number genera-
tors at each user site and following a preprogrammed priority
mechanism. The information used for decision making is the
same as in the case of optimal ALOHA, namely, the number
of busy terminals. The scheme behaves like optimal ALOHA
for low traffic rates and adapts smoothly to TDMA for heavy
traffic, performing better than both throughout the range of
traffic intensities.

0090-6778/8 1 /0700-0962$0Q.75 0 198 1 IEEE

