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Bottleneck  Flow  Control 
JEFFREY M .  JAFFE, MEMBER, IEEE 

Abstract-The problem  of  optimally  choosing  message  rates for 
users  of  a  store-and-forward network is analyzed.  Multiple  users 
sharing the  links of the  network  each  attempt to adjust  their  message 
rates  to  achieve  an  ideal  network  operating  point or an  “ideal  tradeoff 
point  between  high  throughput  and low delay.” Each  user  has  a  fixed 
path or virtual  circuit. 

In this  environment,  a  basic  definition  of  “ideal  delay-throughput 
tradeoff”  is  given  and  motivated.  This definition  concentrates  on  a 
fair  allocation  of  network  resources  at  network  bottlenecks.  This 
“ideal  policy” is implemented  via  a decentralized algorithm  that 
achieves  the unique set of optimal throughputs. All sharers  constrained 
by  the  same bottleneck  are  treated  fairly by being  assigned  equal 
throughputs. 

A generalized  definition  of  ideal  tradeoff  is  then  introduced  to 
provide  more  flexibility in the  choice  of  message  rates. With this 
definition, the  network  may  accommodate  users  with  different  types 
of  message  traffic. A transformation  technique  reduces  the  problem of 
optimizing  this performance  measure  to  the  problem  of  optimizing  the 
basic  measure. 

V 
I .  INTRODUCTION 

ARIOUS store-and-forward packet-switched computer 
networks have been  developed  in recent years. The  pri- 

mary function of these networks is to  route messages or 
packets from  one  network  location  to  another.  Typically, 
the source of a message dispatches  a packet to a  neighboring 
location or node, which relays the message to another  node 
and so forth,  until  the message arrives at  the  destination. 

There are a number of disciplines used by  networks to  fun- 
nel  a large number of packets  from  one source to a given 
destination.  For  example, ARPANET  handles  each packet 
individually [ 11 , trying to find  the  shortest  path  for each 
packet based on changing network characteristics. In  this  pa- 
per we assume a  fixed route  approach whereby all messages 
from a given “session7’ are assigned to  a  fixed unique  route. 
This approach is currently used  in TYMNET [ 2 ] ,   [ 3 ] ,  IBM’s 
network  architecture [4 ] ,  and various other  networks  (e&, 
[5]). Many sessions may share  a given route. 

The  total  time required for transmission of a packet is 
called its  delay. Assuming small nodal processing time,  there 
are two  major  components  to message delay.  Since communi- 
cation  links  take some time  to  transmit a message, there is a 
transmission delay component. Also, if a communication link 
needs to transmit  too  many  packets  at  once,  it  temporarily 
buffers some of them, leading to a queueing delay component. 
The queueing  delay clearly depends  on  the  amount of network 
traffic, and roughly  speaking, increases with greater traffic. 
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Flow control regulates the  amount  of traffic to maintain 
good system performance.  For  example, if the  buffers  at a 
link are almost full, some  mechanism is needed to  slow down 
the rate of incoming traffic.  Otherwise,  the  buffers would 
overflow, causing severe queueing  delays or even deadlock. 
Another purpose of flow control is to maintain  a  good through- 
put delay tradeoff. If a user is sending  a  high average message 
rate (in our  studies this is equated  with  throughput),  the re- 
sulting  delays  may  be intolerably  long.  On  the  other  hand,  the 
user would not  want  to sacrifice too  much  throughput  in  order 
to achieve low delay. Related to this is the  notion of fair& 
dividing network resources between  competing  network 
users. 

In this paper we discuss methods  to achieve a well defined 
notion of system performance which  results  in  fairness to 
users and  a  good delay-throughput  tradeoff. We concentrate 
on  network access means of flow control  [6]  where  external 
inputs are throttled based on measurements of internal  net- 
work  congestion. The  buffer  depletion  problem (see [7]) is 
ignored so that we may concentrate  on delay and  throughput. 
Formally,  when  our model is specified (in Section 11), infinite 
buffers  at each link are assumed. 

This paper primarily concentrates  on  the  fundamental 
questions  of  “what is optimum  performance?”  and  “what 
notions of optimality are  accomplishable  in  a  decentralized 
environment?”. No new  method  of constraining the  input  of 
messages is proposed;  it is assumed that message rate is regu- 
lated by  a simple rate mechanism, i.e., some  “black box”  at 
each route which  chooses the message rate  for  that  route. 

Network access flow  control schemes include  the isa- 
rithmic scheme [8],  input  buffer limiting [9 ] ,  and  the  choke 
packet scheme [ l o ] .  Other schemes are discussed in [6]  and 
[l 13 . The isarithmic  scheme limits  the  total  number  of  pack- 
ets allowable in the  network.  Input  buffer limiting  locally 
restricts input  traffic in  favor of  transit  traffic. 

The  “bottleneck flow control”  presented  here may  be 
viewed as a  generalization and  abstraction  of  both  the  choke 
packet scheme and  certain ideas presented in [9].  Common 
features  with  the  choke  packet scheme are  that  the decision 
to decrease message rate is a function of congestion  in the 
bottleneck  links.  The relatlonship between  the  two is further 
developed throughout this paper. The  main  difference is that, 
while optimality is defined  in  a similar way,  the  control 
mechanisms  are different. As a result,  the  choke  packet 
scheme has no  explicit way of ensuring  a  specified notion  of 
fairness. On the  other  hand,  bottleneck flow control uses 
fairness  criteria related to  those  that  are described in [9]. 

In Section 111 we define  and  motivate a notion  of  “optimal 
tradeoff.” An adaptive  algorithm is  given in Section IV  which 
attempts  to achieve this  tradeoff in a network  that is experi- 
encing  changes  in  traffic patterns  and  numbers of users. Due. 
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to  the changing nature  of such  a network,  it is difficult to 
state specific  “steady-state’’ properties of the algorithm. We 
thus restate the  problem  somewhat to  reflect  a static  network. 
In that  environment it is easier to discuss properties  of  the 
“optimal  tradeoff’  and  an algorithm that implements it. In 
particular,  the following is achieved: 

0 A “decentralized”  algorithm is given that always achieves 
the  optimal  tradeoff (Sections  V and VII). 

The  algorithm obtains  the  tradeoff in linear time [in the 
number of users (Section  VII)] . 

The  “optimal tradeoff’ defines  a unique set of  through- 
puts  that  the users of  the  network  must achieve (Section 

0 The  unique  set  of optimal  throughputs  has  important 
VIII). 

“fairness” properties (Section IX). 

Section X generalizes these  results to  the  situation w,here 
different user classes have different  network  performance 
requirements. The main  result  of Section X is that  the  tech- 
niques developed earlier  in the  paper  may be applied  directly 
to  the  more general case by a simple transformation  technique. 

We briefly explain  and motivate  the  notion of a “decen- 
tralized”  algorithm for flow control. When a user chooses its 
throughput,  the  inputs  to  the process should consist  of infor- 
mation locally available to  it .  The user might be permitted t o  
use information  about  the  interfering  traffic on its  path,  but 
not  about global topology. Basically, in.a decentralized  algo- 
rithm,  information  not readily available on a user’s path 
should not be usable for  throughput  determination. 

In [ 121 it is shown that a single user may  optimize  its 
power (ratio of throughput to delay) using only such local 
information. However,  in [I31  it is shown that,  under  certain 
conditions,  no decentralized  algorithm  maximizes  power  in 
a  multiple user system. Since certain optimality criteria are 
nondecentralizable,  the  importance  of  the decentralizable 
criterion discussed here is enhanced. 

We further  remark  that  the criterion  expressed  here  has 
other advantages over the power concept.  It is shown in [14] 
that, in some network  configurations, optimizing power 
implies that certain users must choose zero  throughput. A 
corollary of  the fairness property of Section IX is that  no users 
are required to  have zero  throughput  at  optimal  performance. 
This fact is still true  for  the generalization  of Section X 
where users are not  handled identically in terms of through- 
put  allotment. 

11. NETWORK MODEL 
We model  a data  network as a  graph (N, L )  with vertex 

(or node) set N and edge (or link)  set L .  Each link 1 E L  has 
a service  rate of s(Z) bits/s. Apath p in the  network is a  sequence 
p = (nl , e.-, nk) with ni E N such that  for i = 1,  -, k - 1, 
Zi = (ni, n i + ] )  E L .  The set { I I ,  --, l k - ] }  is denoted l b ) ,  
the links of p .  A path p models  a  fixed route  that is used by 
one of  the “users” of  the  network. 

In order to  evaluate the delays on the  links, a  queueing 
model is  needed which  relates throughputs  to  delay. We use a 
simple model ([IS, Sect. 5.61) which, as indicated  above, has 
infinite buffers.  Specifically, we assume that each  link  may be 
modeled as an M/M/1 queue,  the average message length is 

b bits/message, there is no nodal processing time,  and  Klein- 
rock’s independence assumption applies [ 151 . 

Define the capacity of link I ,  c(l), by c(Z) = s(Z)jb. Assume 
that there are K users, all of  whose  fixed routes use a link 1. 
Let yi denote  the message rate of  the  ith user. In  that  case, 
the average steady-state delay for  the  packets (of each user) 
that traverse the link at l is dl(?) = l/(c(Z) - (yl + - - -  + i ~ ) ) .  
The average total deZay of packets sent by user i, Di(y) is 
the sum of  the average delays  experienced at  the individual 
links. 

111. OPTIMALITY CRITERION 

In this  section  an optimality criterion is presented using 
several levels of description.  First,  optimum  throughput is 
defined in terms  of  link  capacity. We explain why  our defini- 
tion might be considered “the  optimum  operating  point  of a 
network.”  Next,  the  definition is reformulated  to express  a 
tradeoff between user throughput and, delay.  Section IV gives 
an adaptive  algorithm for optimizing the criterion in a “dy- 
namically changing” network.  It is difficult, .however, to  pre- 
sent any  concrete analysis for a  rapidly  changing network. 
Starting with Section V we analyze the  optimality criterion  in 
a  “static” environment. 

Recall that c(l) is  the  capacity  of  the  link 1. Let y(1) denote 
the sum of  the  throughputs  of all users of  link 1. The maxi- 
mum value that y(l) can  be is c(1) or else messages are  gener- 
ated  at a faster  rate  than  they  can  be  transmitted. Certainly,, 
y(Z) > c(Z) is not a situation we would  like to  encourage for 
any link. In fact,  it is probably  not even desirable to have 
r(Z) = c(l) for  two reasons. First of .all, if y(Z) = c(l) the 
system “never reaches steady  state”;  the delays of  the  mes- 
sages increase over time  due to the  fact  that  buffer  occupancy 
approaches  infinity. Also, choosing y(1) = c(l) leaves n o  room 
for  fluctuations in the  network. One user may be forced  by 
certain  considerations to increase his throughput or new 
users may  attempt  to  open  up  new  routes sharing  link 1. For 
that  reason,  optimum y(Z) is chosen to  be  somewhat iess than 
c(Z), as we proceed to  describe.  This  distance is parameterized 
by  a variable x .  This variable permits designers of  different 
systems to  choose somewhat  different  notions of “ideal 
throughput-delay  tradeoff.” If they are throughput-oriented, 
they choose x large; if delay-oriented,  then x should  be small. 

Define the residual capacity of 1 by r(1) = c(l) - y(0. Let 
y denote  the  throughput of  a user whose path includes link 1. 
The user saturates Z if y = x(r(1)). The user overloads 1 if 
y > x(@)). A user is overloaded if it overloads any  link  on  its 
path. A user is saturated if it  is not overloaded and  it  saturates 
at least  one  link on  its  path. These preliminaries  prepare  us 
for  the following. 

Definition: Given a data  network (as modeled in Section 11) 
with several paths  through  the  network (corresponding to 
users of the  network),  and a  rate assigned to each user, the 
iate assignment is optimal if all users are saturated. 

Remarks: The way that we keep y(1) somewhat less than 
c(l) is to  guarantee that  no user overloads any links. Thus,  for 
each  link I ,  x(r(1)) 2 ymax where ymax is the largest through- 
put  of any user of  link 1. In  addition to keeping i(Z) somewhat 
less than c(l), we also desire a large measure  of throughput in 
the  network.  Thus, each user must not  only  prevent 
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overload-it’also must,  be  saturated. Each user would then have 
the largest possible throughput subject to x and  the residual 
capacities. ’ 

TO contrast  this’with  the Cyclades choke packet proposal, 
we remind the reader that  optimality in [ 101 basically requires 
that  no  link exceeds  a  certain  threshold of utilization. For 
instance, y(Z) should not exceed (0.8) (c(Z)) if the  threshold 
equals 0.8. 

We feel that  it is better  to force saturation of each user and 
choose y(Z) as a function of yhax for a few reasons. The 

3 primary  reason is that  the  choke  packet scheme  has no regard 
for  the  number  or  types of users of the  link,  and  therefore 
loses the  ability  to fairly  allocate  resources. By fixing the 
requirement  that  no  link should  exceed  a  certain utilization, 
one loses the ability to predict  transients in future utilization 
based,,  on  current . utilization. This is developed further  in 
Section  IX. Also assume that x(@)) = yma,. Then,  with  our 
definition,  if x = 1, we can accommodate  one new user with 
throughput ymax without causing y(Z) > c(Z). Similarly, 
choosing r(Z) = (ymax)/x  protects  the  network against per- 
centage  changes ii each user’s throughput  due  to transients. 
If  a user increases his throughput  by a factor of l/x, the 
inequality c(Z) > y(Z) still  applies. Methods of obtaining  an 
optimality  criterion similar to “80 percent  of utilization,” as 
a  limiiing case of  saturation, are discussed in Section XII. 

,Next, we motivate  saturation as a  means of expressing an 
“optimal  delay-throughput  tradeoff.” Recall that  the delay 
at  Z is given by dl = l/(c(Z) - y(Z)). Thus,  saturation  for user p 
is eduivalent to 

’Y min x/dl(7) (1) 
I: I€  Z(p)  

From (1) it is evident that  saturation is a  direct method of 
expressing.  a delay-throughput  tradeoff  for  the users of  the 
network. A user may increase its  throughput  until  the delay on 
its  “bottleneck” iifik is too large. As delay  increases, y is 
constrained  by (1). 

Note  the role played by  the  parameter x in all viewpoints 
of  the  optimality  criterion.  From  the  network  point  of view, 
it  indicates  the  amount of traffic  fluctuation  that is to be 
protected against. From  the user viewpoint,  it indicates the 
amount  of  effect  that increased  delay should have on  through- 
put. 

There is a third viewpoint of  saturation. Using Little’s 
theorem [ 161 , the average number of messages waiting at a 
link Z when  the  throughput of a user is y, and  the delay is 
dl is ydl.  Now if ‘y < x/dl for every link Z in the  path of a 
gived user,  the user is willing to tolerate x messages waiting at 
each link, and a total of x times # (user’s linksJ, messages 
waiting in the system. Thus,  the average number  of waiting 
messages that a user will tderate varies linearly  with the 
length  of his path-if’the  path is longer,  the user may have 
more messages in transit. 
TO review, the  features  of  optimum  network  operation 

based on  the use of  the  saturation measure are 
1) protection  for  the  network against changes in users’ 

rates 

2 )  protection  for  the  network  from arrivals of new users 
3) establishment of  delay/throughput  tradeoff  at  the 

4) use of the parameter (x) to  permit flexibility .in  the 

5) protection  for  the  buffers in an average sense 
6) fair  allocation of resources (Section IX). 
In addition to stating  what  optimal performance is  (all 

users saturated),  it might  be  helpful to evaluate how far 
suboptimal solutions are from  optimal.  To  do  this,  it is use- 
ful to have  an objective function which  characterizes the 
quality of a set of throughput assignments. Assume that 
there  are m users with throughputs y = (yl , ... , 7,). Define 

bottleneck link 

definition of optimum  performance 

If each user is saturated  at y, then  for all i ,  yi = 
minl:lEl(i) x/dl(y)  and fly) = 0. Conversely, if f l y )  = 0, all 
users are saturated.  Thus,  the goal of saturating all users may 
be conveniently restated as an  attempt to  minimize f. 

IV. AN ADAPTIVE DISTRIBUTED ALGORITHM 

An adaptive distributed algorithm  which attempts  to 
saturate all paths  without overloading any is now given. 
Each user adjusts its message rate  based on  information  sent 
to  it  by  the  links  and nodes on  its  path.  The  information 
needed by a user with  path p is 

1) its  current  throughput y 

We do  not specify the mechanics of when this  information 
is made available and  in what  form  the  information arrives. 
Each link may know to dispatch  information to all users’of 
the  link  at regular intervals, or  alternatively,  information 
gathering  may  be prompted  by a signal from  the user.  Each 
link may compute dl) or  estimate  it based on  buffer  occu- 
pancy. Also, the  links may  send the  throughputs  of  the indi- 
vidual users of  the  links,  and  let user p calculate r(Z). 

The algorithm executed  by user p each  time  it desires to 
recalculate its message rate y‘ from  the old rate y is 

2 )  minl:l€l(p) r (0 .  

The  following  explains  why we say that  the above algo- 
rithm  attempts  to achieve saturation.  First,  note  that  after 
executing  one  step  of  the  algorithm,  the user is saturated. 
This can be seen as follows. For a  link I, the new sum of 
throughputs y’(Z) = y(Z) - y + y’. Thus, x(&) - y’(Z)) = 
xc(Z) - xy’(Z) = xc(Z) - xy(Z) + xy - xy’ = y’ by (3) for  the 
link  at which dl) was minimized. Also, x(c(Z) - y’(Z)) > y’ for 
all other  links, I, Le., none is overloaded. 

If there were no  transients,  such as no new  users entering 
the  system,  and  each user converged to a steady-state  through- 
put,  then  those  throughputs  that are converged to will saturate 
all users. Any unsaturated  or overloaded user must change its 
throughput!  Unfortunately, we are  unable to show, even 
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without  transients  and new users, that each user does con- 
verge. To clearly express  an algorithm that  saturates all users, 
we spend  the rest of  this paper discussing a static case, i t . ,  
no  new users. 

As a  practical matter,  the above algorithm would need ti, 
be modified in an adaptive situation. Choosing y’ by (3) may 
cause large deviations  in  certain user’s message rates, leading 
to instabilities in  the system.  A better way is to  have users 
slowly change rates in the  direction (increase or decrease) 
implied by (3). The  reader is referred to [ 141 for  an algorithm 
to  coordinate user updates, so that  many users do  not change 
their  rates at  once. 

V. ALGORITHM TO SATURATE ALL  USERS 

In  this  section an  algorithm is presented which saturates 
all users in  a static  network with  a  fixed  set  of users. It is 
assumed that if a user is assigned by  the algorithm fo send 
messages at a rate y, that  indeed  its average throughput is y. 
(Variations  of this are  described  in Section XI.) The algorithm 
is decentralized in the sense described  above.  Each user 
chooses its  throughput based on  information provided from 
its links. In  fact,  the  execution of the algorithm will be pre- 
sented in  a manner which distributes  the  computation even 
more-the  links  (or  whatever controls  the links) will do some 
computation in the  algorithm.  The  link  computation provides 
a concise description of  the  current  traffic  on  the  link. 

There are a number  of idealizations used in this  section. 
It is assumed that  each  link may  accurately  calculate message 
rates  of users that use the  link. Also, in order to  conveniently 
discuss the convergence time  of  the  algorithm, a synchronous 
algorithm is assumed (i.e., a  clock at each node  permits all 
updates  to  occur  at once). However, the main feature  of 
using “local information,” i.e., information  accumulated 
along  a user’s path, is preserved. In  practice, one would  prob- 
ably use a hybrid  of  the algorithm of  Section IV and  the 
algorithm that we proceed to present  here. 

The algorithm proceeds in iterations. Consider  a link 1 
which is shared by a number of  users, exactly j of  which  are 
not  saturated  before  the  ith  iteration.  Let ysat(Z, i) denote  the 
sum of the  throughputs  of  the users of  link 1 that are satur- 
ated  before  the ith iteration. Then the saturation allocation 
of 1 at i ,  denoted y(1, i), is 

Intuitively, if each  unsaturated user of link Z chooses the 
saturation  allocation as its  throughput,  and each saturated 
user leaves its  throughput  unchanged,  then all unsaturated 
users become  sathrated. This  follows from  the  fact  that r(1) 
in that case would  be (c(Z) - ysnt(Z, i)) / l  + j x .  

The  following is the algorithm for  the  ith  iteration.  Ini- 
tially, all throughputs are 0 and each  link knows  how  many 
users have paths which use it. 

Saturation  Algorithm (ith  Iteration) 
1) Each  link 1 calculates y(Z, i). 

3) Each  user  sets its new throughput y to  the smallest 
value of y(1, i) among links 1 that  it uses. 

4) Each  link 1 determines  which of  its users are  now satur- 
ated  at Z and  informs each  such user. 

5) Each user that is saturated  at any link informs all of its 
links that  it is saturated. 

There  are basically two  computations  done  at each itera- 
tion.  After receiving y(Z, i) from each  link 1 on  its  path, a user 
readjusts its  throughput by  taking the  minimum allocation 
[step 3)]. Also, each  link must calculate y(Z, i). The  informa- 
tion  needed for  this calculation is the  number of saturated 
users [obtained in step 5)] and ysat(Z, i) (obtained  in  some 
way  by measuring each  saturated user’s throughput). 

One method whereby  a  link  can determine ysat(l, i) with- 
out explicitly  finding out which user sent  each message is 
briefly described.  Let  each saturated user set a  bit  in the 
message header to 1 and each unsaturated user to  0. Then 
ysat(l, i) is just  the average rate of messages arriving with 
header  bit  equal to  1. Further  elaboration  on  implementation 
is omitted. 

The  key  properties of the algorithm  (proved  in Section VII) 
follow. 

0 Any user that is saturated  after  iteration i ,  remains satu- 

0 If not all users are saturated  at  the beginning of  an 

From  the above two  facts  it is immediate  that if there are 

rated  after  iteration i + 1. 

iteration,  then  at least  one  becomes saturated  at  the  iteration. 

rn users, they are all saturated  after  no  more rn iterations. 

VI. AN EXAMPLE 

Consider the  network of Fig. 1. The  following is a  trace 
of the  iterations, of the algorithm  with x = 1. The labels  of 
the links are the capacities, 

Iteration 1 Iteration  2  Iteration  3 

71 112 (from link D) 112 112 
72  1  112 (F) 714 (E)  714 
73  1  112 (F) 1116 (F) 1518 Q 
74 10 ( A )  10 10 
7 5  3  113 (0 1914 (0 1914 

User 1 is saturated  at link D, 2 at E,  3 at F,  4 at A ,  and 5 at C. 

VII. PROOF OF CORRECTNESS 

The  main  result  of this  section is the following. 
Theorem 1 : Fix a network  with m paths. Define 

If  the  saturation algorithm is executed,  then  after  at  most 
m iterations,  the resulting value of y, satisfiesf(y) = 0. Fur- 
thermore, y is unchanged by  subsequent  iterations of the 
algorithm. 

Proof: As mentioned in Section IV, this is proved by 
showing that  saturated users stay saturated-and each  iteration 
produces  at least one  saturated user. (Recall that fly) = 0 

2) Each link  sends  the value y(l, i) t o  all users of 1. if all users are saturated  at y.) The main technical-result 
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Fig. 2. Worst case network (in terms of number of steps). 

algorithm of Section IV converges to an  optimal  solution,  it 
does not converge exactly.  Rather,  the sequence of through- 
puts achieved by  the users converge (in a  Cauchy sense) to  the 
optimal  throughputs. 

The fact  that linear  time is actually  required by  our algo- 
rithm in the worst case is proved by  the example of Fig. 2 .  
Basically, the y i  may  be  chosen so that  each user converges 
at a  different step. See [ 171 for  details. 

VIII. UNIQUENESS 

In this  section it is shown that  for  any  network  and  any  set 
of users there is a unique way to saturate all users. This is a 
“well-defined”  result for  the  saturation measure: two  different 
throughput assignments cannot  both be optimal  for  the same 

\\ network  configuration. We first  separate  out a simple lemma 

Lemma 3: Assume user i is saturated  at  link 1 at  an 
Fig. 1. Example network for execution of algorithm. optimum  solution 7 ,  with  throughput yi, and user j uses link 

needed to prove Theorem 1  may  be stated informally as Proof: Since user i is saturated, yi = x(r(Z)). Since user 
“y(l, i )  is a  nondecreasing function of i.” This fact,  and  the j is not  overloaded, yi <x(r( l ) )  = yi. 
fact  that  saturated users stay  saturated, are  proved  inductively Theorem 2: The value y obtained  from  the  saturation 
in  the following lemma. algorithm  uniquely  minimizes the objective function f. 

Lemma 1 :  Proof: We prove by  induction  on  the  iteration  number 
l ) F o r a l l Z € L , a l l I E Z + , y ( Z , i + l ) ~ y ( ~ , i ) .  that all users saturated at step i must  obtain  the same through- 
2 )  If any user becomes saturated at  link 1 during the  ith put assignment in any  optimal  solution.  The basis step is 

iteration,  then all users of I that were not  saturated  before similar to  the inductive step  and is left to the reader. 
the  ith  iteration  become  saturated  at l during the  ith  iteration. Consider all users saturated  at  the  ith  step. By Lemma 1, 

3) If  a user is saturated  after  the ith iteration  with  through- part 2) ,  a user may only be saturated if it  takes  the  satura- 
put y, he remains saturated  after  the i + 1st  iteration  with tion  allocation  at some  link I ,  and all other  not previously 
throughput y. saturated users also take  their  saturation  allocations  at 1 (and 

The  proof of Lemma 1 is given in the  Appendix.  To  com- get saturated).  Thus, we may study all users that are satur- 
plete  the  proof of Theorem 1 we prove the following. ated  at  the  ith  step  by  looking  at all links  at  which all non- 

Lemma 2: At  each  iteration which starts  with some saturated users take  the  saturation  allocation. 
unsaturated users, at least one user becomes  saturated. Assume, contrary to  the  hypothesis,  that  it is possible for 

Proof: For  each  link  at  which  not all users are saturated the users saturated  at  step i to get different assignments in 
at a given iteration, consider the  saturation  allocation of the some optimal assignment y * . Consider  a link I ,  which is 
link. Some link  must have minimal  allocation among all such saturated  at  the  ith  iteration  and  has some of its  saturated 
links. All unsaturated users of that  link choose that  allocation. users with  different assignments  in y * . By induction, recall 
Since all saturated users of  the  link  do  not change their that all users that share I ,  and are saturated  before  the  ith 
throughputs [3) of  Lemma  13, all of  the  unsaturated users iteration  must receive the same throughputs in any  optimal 
of  that  link  become  saturated. . solution. 

Theorem 1 follows directly  from Lemma 2 and 3) of We first claim that  at least  one user saturated  at l at  the  ith 
Lemma 1. At each iteration  at least one user becomes satu-  iteration  must  obtain less than y(2, i) in 7 * . For if all of them 
rated-and saturated users stay  saturated. receive y(l, i) or more,  and  the users saturated  before  iteration 

Corollary-(Existence): Given any network  and  set of users i receive the same amounts,  then x(c(l) - y * ( I ) )  < y(l, i). But 
of the  network,  there is a throughput assignment y, which then, all those users that receive y(Z, i) or  more are  overloaded 
saturates all of  the users. at I in y * , and  thus y * is not  optimal. 

Note  that  the  saturation algorithm determines  the  optimal  Thus,  one may  consider  a user which obtains  throughput 
throughputs  exactly. In contrast, even when  the adaptive y * in y * where y * < y(Z, i ) .  Assume that  the user is satur- 

’“e; \ which we refer t o  later. 

I and  has  throughput yi. Then yi 2 yi. 
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ated in y * at link I f .  Note  that y(Zf, i) > y * since y(Zf, i) 2 
y = y(Z, i)  > y. Consider the sharers .of I f .  Those saturated 
before  iteration i may not change their  throughput in y * by 
induction.  The r other users must have throughputs in ;r *  of 
at  most y * , each  by Lemma 3 .  Thus, x(c(Z’) - y * (If)) 2 
x(c(Z‘) - ysat(Zf, i) - q*). But < y(Zf, i )  implies that y* < 
x(c(Z’) - ysat(Z‘, i))/(l + rx). Thus, 

This contradicts  the  fact  that  the user is saturated  at 1’ in 
Y*. 

IX. FAIRNESS 

One aspect of a  flow control  optimality  criterion which is 
difficult to  evaluate is the elusive notion of fairness. One ver- 
sion of  fairness is to  insist that all users obtain equal through- 
puts. In a network  with  different users, using links  of differ- 
ent capacities, it is unlikely that such  a  policy  would be de- 
sirable. 

Recall that flow control is instituted  not only to  protect 
a user against high  delay due  to  traffic,  but also to  equitably 
divide network resources among  competing users. The notion 
of fairness provided by  saturation relates to  the  equitable 
division of resources.  Briefly, saturation is “fair” because 

0 each user’s throughput is at least as large as all other 
users that share its  bottleneck  link (Lemma 3) 

0 the  only  factor  that prevents  a user from  obtaining 
higher throughput is the  bottleneck link  (which  essentially 
divides resources  equally). 

X. GENERALIZATIONS 
The  fact  that  our  algorithm  saturates all users is inter- 

esting in a network  with a homogenous user set,  but suffers 
in that  it provides too restrictive  a notion of fairness. The 
property  that “all users are treated  equally” may not be 
desirable in practical  networks. One user may  be  more  impor- 
tant  and  thus deserving of a higher message rate. Alternatively, 
a user that  interferes  with many other users would  probably 
deserve special treatment. 

This is only one deficiency that results from  the  definition 
of saturation. A different  problem arises if many (n) users 
share a single link. If the  link is the  bottleneck link for  each, 
then (at x = 1) they  each choose  a message rate  of c(Z)/ 
(n + 1). As n +=, the  total  rate  approaches c(Z); thus,  there is 
excessive throughput  and disastrous delay. (This particular 
problem is dealt  with  both  here  and in Section XU.) 

A final problem with the  definition  of  saturation is that  it 
may not be desirable to  have a network-wide value of x as 
defined. Recall that  one reason to choose y = x minl r(Z) was 
to  protect  the  network against transients in  a user’s message 
rate which were as large as a factor of l/x.  Clearly,  the varia- 

bility  in  rates  of  different users is different. A user that has 
large variability would  need  a larger relative amount of residual 
capacity on  its links. 

This  section solves the above problems  by reformulating the 
definition of saturation. With user p ,  one associates  a number 
x p ,  the throughput  priority of user p .  User p’s throughput 
priority expresses the desired message rate  of user p as com- 
pared to  the  rates of interfering users. In particular, user p 
is saturated  at I if y, = x p  r(Z). If users p and q are both 
saturated  at I ,  the ratio  of their throughputs is x p / x q .  This 
genedization clearly treats users differently.  Optimum 
pe..rformance is again equated  with rate assignments that 
saturate all users. 

In  practice, some higher level protocol would  decide what 
the relative values of x p  should  be. If x p  were chosen as a 
function  of  the  number of  interfering  users, some network 
manager could prevent the excessive use of  an n user bottle- 
neck. Similarly,  a network manager could decide  how to  
appropriately allocate relative priorities to  competing users. 
In some network  environments, each user might  make  a local 
decision choosing x p  based on  the  expected variability of its 
message rate to  protect  the  network. A network manager is 
not  needed if some convention is adopted  by  network users 
for  determination  of  their  throughput priorities. 

We proceed to  explain  how  the variable throughput  priority 
case may be effectively  reduced to  the  equal  throughput 
priority case. In  particular,  the following questions are ad- 
dressed: 

0 Is there a static algorithm to saturate all users? 
Is there a unique way to  saturate all users? 
Is there  an  appropriate  adaptive,  distributed algorithm 

What delay/throughput  tradeoff is implied by  the new 

What fairness properties are implied? 
First, consider the case that x p  is an integer for all p .  We 

assume that  each  link  knows  the value of x p  for each user of 
the  link.  In  this case, the variable x p  case is reduced to  the 
X = 1 case as follows. A user with  priority x p  is treated asxp 
users each with x = 1 and identical paths.  Initially, if there are 
j users of Z with  priorities x1 , - , x i ,  then 

such as the  one described  in Section IV? 

definition of  saturation? 

where S = Xi= xi. If y(Z, 1) is the minimal  allocation for user 
k (with priority xk) ,  then user k chooses y = xk y(Z, 1). In 
subsequent  steps, ysat is measured as  before,  and 

where S(1, i) is the sum of  the xp’s for users of link I that are 
not  saturated  before  iteration i. 

It can be shown that with this modified algorithm,  the 
value of y(Z, i) for every I and every i is identical here to  the 
case where  each user with priority x p  were replaced by x p  
users with  priority 1. Also, the message rate y of  a user with 
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priority xp after  iteration i equals the sums of  the rates of 
the xp users with x = 1 .  These facts  are  proved trivially by 
induction on i. From this it follows that there is a static 
algorithm to saturate all users, and  that  saturation is unique. 

Actually, using (7) and (8) uniquely saturates all users 
even if xp is not  an integer. The  proof of this  follows  in  a 
manner similar to  the  proof  of  Section  VII. 

Continuing  with  the  aforementioned  questions,  the  appro- 
priate adaptive  algorithm  remains  roughly the same as in 
Section IV; each user saturates itself based on  current  condi- 
tions (perhaps changing message rate slowly for stability 
reasons). The  delay-throughput  tradeoff defined for user p is 

The  relevant  fairness statements are as follows. 
0 Each user’s throughput is only  constrained by its  bottle- 

neck link. 
0 At  its  bottleneck  link a user gets at least  “its  share of 

capacity” based on  its  throughput  priority.  That is, the rate 
y p  of user p satisfies y,, 2 (xp/xq) yq if 4 shares p’s bottle- 
neck  link. 

XI. LOW THROUGHPUT  USERS 

The  saturation  algorithm provides  each user with  an  “opti- 
mum”  throughput,  but requires one special assumption to  do 
so. It  is assumed that  each user has a throughput  equal to  that 
assigned in the  algorithm.  In  practice, however,  a user may  not 
have enough  data to send at  the high rate.  In  this section we 
briefly discuss the  required  modifications to handle this case. 

Assume that y is the  maximum possible rate  for a user 
based on incoming data  rate  considerations.  Then  the user 
“pretends”  that  on  its  path is a  “virtual link” of  capacity 
(y)(l + x)/x, which is shared with no  one.  If all other  links 
have saturation allocation larger than y, then  the  rate chosen 
on  the basis of  the virtual link is y. For  example, if x = 1 ,  the 
virtual link  has  capacity 2 7  and  the user is saturated if its  rate 
is y. Thus,  by slightly modifying  the  network,  the  inherent 
throughput  constraints of each user are taken  into  account, 
without changing the algorithms and  their  properties. 

XII. RESTRICTING THE PERCENTAGE  UTILIZATION 
OF A  LINK 

Assume that it was desired that  no link exceed a fraction 
y of  its  capacity. This  might  be used to prevent y(Z) + c(Z) as 
n + 00 in the case of n users  sharing  a bottleneck  link.  Section 
XI prevents y(Z) + c(Z) by suggesting that  the values xp should 
be  chosen as a function  of n. In  this section  a more  direct 
approach is used. This approach leads to a  derivation of  the 
“optimum Cyclades performance” as  a  limiting case of  satura- 
tion. 

Define the effective capacity of I, e(Z) = yc(Z). This is the 
largest amount  of  capacity  of Z that should  be used.  If e(Z) is 
used instead of c(Z) in the algorithms to saturate all users, 
then  the  capacity of any link  utilized is restricted to be at  
most e(1). 

This is not quite  the Cyclades notion  of  optimality-they 
require  that e(Z) not be exceeded,  but place no  other restric- 
tions on the message rates (such as y <r(Z)). To effectively 
remove the restriction y < r(Z), let x + 00; y < xr(Z) is then 
trivially accomplished. 

To review, a  utilization of y at  bottleneck links is accom- 
plished by using e(Z) instead of c(Z), letting x + 00, and  satur- 
ating all users. This  accomplishes the desired utilization of 
bottlenecks,  and also provides fairness not usually provided 
by just restricting  link utilization.  In this  case, letting x + 00 

does not strongly degrade  delay at  the cost of throughput, 
since the rates are all chosen based on e(Z), not c(Z). 

XIII. CONCLUSIONS 
We have presented a  “fair”  motivatable network  perform- 

ance criterion.  Two algorithms have been presented  to  opti- 
mize performance, one of which is guaranteed to find  the 
unique optimal  throughput assignments in a static  environ- 
ment. 

APPENDIX 

PROOF  OF LEMMA 1 (BY INDUCTION ON i) 

i =  1: 
1) y(Z, 1 )  = x-c(Z)/(l+ jx)where j is the  number  of users 

that share 1 .  y(1, 2 )  = x(c(1) - ysat(l ,  2))/(1+ rx)where r is 
the  number of users of Z not  saturated  at  the  first  iteration. 
By the way that  throughputs are assigned, ysat(Z, 2) d 0’ - 
r )  y(Z, 1) = 0’ - r)(x*c(Z))/(l + jx). Thus, 

xo’ - r)(x 40) 
x40 - xY,,t(L 2 )  

x c o -  +jx 
YU, 2 )  = + ?x 2 1 +?x 

= Y(l, 1). (-41) 

2 )  Recall that  the  saturation allocation is designed to guar- 
antee  saturation if all unsaturated users of a link  choose  the 
saturation allocation and all saturated users keep  the same 
throughput. Before the  first  iteration,  there are no  saturated 
users, and  each user chooses at  most  the  saturation  allocation. 
From  this, 2) follows immediately. 

3) Similar to the inductive step (below). 
Inductive  Step: Assume l), 2) ,  and 3) for k < i and prove 

1 )  and 2) for k = i. Then, using 1) and 2) for k = i and 3) for 
k < i ,  prove 3) for k = i as follows. 



JAFFE: BOTTLENECK FLOW CONTROL 96 1 

1) y(l, i + 1) = x(c(Z) - ysat(Z, i + 1))/(1 + rx), y(Z, i) = 
x(c(Z) - ysat(Z, i))/(l + ‘sx) where there are r nonsaturated 
users of I before  the i + 1st  iteration  and s before the  ith. By 
induction  on 3), any user saturated  before the ith  iteration 
remains saturated  before  the i + 1st (i.e., after the..ith) with 
the same throughput.  Thus, ysat(Z, i +1)= ysat(Z,.ij ?t; ynew 
where ynew is the sum of  the  throughputs of the s - r users 
that become saturated  at  the  ith  iteration. Note that ynew < 
(s - r )  y(Z, i) since each  newly saturated user has message rate 
at  most y(Z, i), Thus, 

2) By induction  on 3), all users saturated  before  the  ith 
iteration choose the same throughput  at  the  ith  iteration. 
Since each  unsaturated user chooses,  at  most,  the  saturation 
allocation at I ,  by the  definition  of y(Z, i), a user becomes 
saturated  at I at  iteration i only if all other  unsaturated users 
choose y(I, i) and  become  saturated. 

3) Fix a user that is saturated  after  the  ith  iteration  with 
throughput y. We must  show  that  at  the i + 1st  iteration,  it 
chooses the same throughput  and remains saturated. Consider 
a  link I at which the user is saturated  after  the  ith  iteration. 
Using 2) for  the  iteration  number k at which the user was 
first saturated  at 1, (k < i), all users that share I are either 
saturated before the  kth  iteration or become  saturated  at  the 
kth iteration. By induction  on 3), it follows that all are satu- 
rated after  the  kth  iteration. Also, the ones that were previ- 
ously saturated use the same throughput as before  the  kth 
iteration. This continues  through  iteration i. Since the user is 
saturated  at I, its  throughput y satisfies y = x(r(Z)). Also, since 
all users of I are saturated, ysat(I, i + 1) = y(I) and y(l, i + 
1) = x(&) - y(2)) = y. Thus,  due  to  the  saturation  allocation 
at I ,  the user chooses  a throughput  of  at  most y at  iteration 
i + 1. Since for every link I’ in the user’s path y(I’, i + 1) 2 
-y(Z‘, ‘i) [by (l)] , the user  chooses exactly y. 

The above argument may be  repeated  for each user satu- 
rated  after  the  ith  iteration.  Returning to the user fixed above, 
it is apparent  that  the user is saturated  at 1 at  the i + 1st 
iteration, since all users that share I do  not change their 
throughputs.  Thus, y(Z) is unchanged and y = x(r(Z)) still 
holds. To prove that  the user is still saturated  after  the i + 
1st  iteration,  it suffices to  show  that  it is not overloaded on 

To prove that  the user is not overloaded at a link l‘, it  suf- 
fices to show y < x(c(Z’) - y(l‘)) where y(Z’) is the sum of 
throughputs of users of I’ after  the i + 1st  iteration. Consider 
the  iteration (iteration k )  at which the user  became saturated 
(with rate 7). If I’ is on  its  path, y(I‘, k )  2 y by  the way y is 
chosen. By induction on (l), y(Z’, i + 1) > y. Recall that 
y ( t ,  i + 1) = (x(@) - ysat(I’, i + 1)))/(1 + ]x) ( i f j  users 
are not  saturated  before  the i + 1st iteration).  Note,  the 
value of y(Z’) after  iteration i + 1 is given by 

y ( t )  < ysat(lr, i + 1) +jy(Z’, i + 1). 

Thus, 

X(C(Z’) - y(~‘)) >,x(c(l’) - ysat(l‘, i + 1) - jy(l‘, i + 1)) 

= x(c(l’) - ysat(l‘, i + 1)) (1 - +ljx) 

= y ( t ,  i + 1) 2 7. 
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On the  Dynamic  Control  of  the  Urn  Scheme  for  Multiple 
Access  Broadcast  Communication  Systems 
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Absrracr-The Urn scheme  is known to  perform better than optimal 
ALOHA  and  TDMA  for  all  ranges  of  traffic  rates. In this paper we 
discuss  the  dynamic  behavior  of the Urn scheme  to show that it 
possesses  bistable  behavior in a  manner  similar  to ALOHA schemes 
and  that  dynamic  control  procedures  can be applied  to improve the 
system  performance  effectively. In particular,  an input control 
procedure (ICP) is  presented that gives  a delay-throughput charac- 
teristic very close  to  optimal  (perfect  scheduling)  for  a wide range of 
throughput  rates.  The  improvement  is  obtained  at  no  extra  cost in 
terms  of  information  acquisition  and  the  complexity introduced is 
minimal, An analytical  method  is  described  to  calculate the expected 
delay,  throughput,  and the. probability  of packet rejection. Numerical 
results  are  shown  for  various  values  of  user  population  and compared 
with  corresponding  results  for  other  schemes. 

I. INTRODUCTION 

P ACKET  broadcasting  systems combine  the advantages of 
packet  communication  with  those  of  broadcast  communi- 

cation systems. Unlike circuit  switching, packet  communica- 
tion  does  not  dedicate  circuits  or  tie  them  up  to establish con- 
nections,  and  hence provides  a powerful  means  of sharing the 
communication  channel  among large numbers  of users. Among 
the advantages of a broadcast  communication system  are multi- 
destination  or conferencing capability, absence of topological 
and  routing  problems, system modularity,  and overall system 
simplicity. 

In  packet broadcasting systems,  the  problem  of designing 
an  efficient  multiple access scheme is of  prime  importance. 
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National  Telecommunications  Conference,  Washington, DC,  November 
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Various  schemes have been devised and  studied. These  can  be 
categorized  mainly into  the fixed  assignment  schemes, the 
polling  schemes, and  the  random access schemes. The  random 
access schemes are particularly  suitable for systems  in  which 
the  number of users is large and  the users are characterized by 
a  high ratio  of peak to average data  rates [ l ]  . However,  these 
schemes  generally  suffer from system instability  and have low 
obtainable  channel capacities (e.g., only  37  percent  for  slotted 
ALOHA; see [ 2 ]  for a brief summary of random access 
schemes). Recently  an adaptive asymmetric  scheme, called the 
Urn scheme [3],  has been  proposed  that is not  unstable  in  the 
strict sense (elaborated later in the paper) and can achieve a 
channel  utilization  of nearly 100 percent. 

I t  is well known  that  the  asymmetric variations of  slotted 
ALOHA perform  better  than  the  symmetric  ones.  For  example, 
Abramson  has  shown  [4]  that  the  channel  capacity  of an 
ALOHA system is higher if traffic  rates at the users  are un- 
equal (“excess capacity”).  Metzner [5] has considered the 
use of  unequal transmission power levels for improving chan- 
nel utilization (“capture effect”).  In  the  Urn  scheme,  the 
asymmetry is incorporated  in  the transmission  probabilities. 
Some users will try  to access the system with  probability 1 and 
others  with  probability 0. However, there is a  need for  coordi- 
nation in  decision making  among  the users as to which partic- 
ular user employs which probability. This coordination is 
achieved by using the same seed for  random  number genera- 
tors  at  each user site and following  a  preprogrammed priority 
mechanism. The  information used for decision  making is the 
same as  in the case of  optimal ALOHA, namely,  the  number 
of busy  terminals. The scheme behaves like optimal ALOHA 
for low traffic  rates  and  adapts  smoothly to TDMA for heavy 
traffic, performing better  than  both  throughout  the range of 
traffic intensities. 
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