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Abstract. Mars probes send back to Earth enormous amount of data.
Automating the analysis of this data and its interpretation represents a
challenging test of significant benefit to the domain of planetary science.
In this study, we propose combining terrain segmentation and classifi-
cation to interpret Martian topography data and to identify constituent
landforms of the Martian landscape. Our approach uses unsupervised
segmentation to divide a landscape into a number of spatially extended
but topographically homogeneous objects. Each object is assigned a 12
dimensional feature vector consisting of terrain attributes and neighbor-
hood properties. The objects are classified, based on their feature vectors,
into predetermined landform classes. We have applied our technique to
the Tisia Valles test site on Mars. Support Vector Machines produced
the most accurate results (84.6% mean accuracy) in the classification of
topographic objects. An immediate application of our algorithm lies in
the automatic detection and characterization of craters on Mars.

1 Introduction

Landforms in Mars are characterized using imagery and altimetry data. Impact
craters are among the most studied landforms on Mars. Their importance stems
from the amount of information that a detailed analysis of their number and mor-
phology can produce. Visual inspection of imagery data by domain experts has
produced a number of catalogs [3122] that list crater locations and diameters. Au-
tomated algorithms for crater detection from imagery data exist [TAT6/RI27I28],
but none has been deemed adequately accurate to be employed in a scientific
study because of poor accuracy (mainly because of false identifications).

In this paper we develop a methodology for automatic identification of land-
forms on Mars using altimetry (topographic) data. Our goal is to identify craters’
floors and their corresponding walls from other landforms. The distinction be-
tween floors and walls is important for subsequent calculation of crater geometry
[20). An accurate knowledge of the geometry for a large database of Martian
craters would enable studies with a number of outstanding issues and potential
discoveries, such as the nature of degradation processes [24], regional variations
in geologic material [10], and distribution of subsurface volatiles [I1], leading to
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a much better understanding of the composition of the planet’s surface and its
past climate.

Our strategy departs significantly from that employed in [257]. First, we move
away from a pixel-based analysis and adopt an object-based analysis [2], which is
more appropriate for spatially extended data. Object-based analysis originated
in applications of image analysis of remotely sensed data, where an image is
segmented into a number of image objects —areas of spectral and/or textural ho-
mogeneity. Our approach is based on extending the notion of objects from images
to topographic data, and our first task is to segment a given site into topogra-
phy objects —areas of topographic homogeneity. Second, we move away from
clustering (unsupervised learning) and adopt classification (supervised learning)
by assigning landform class label to each object. This change assures that the
resultant classification corresponds to recognizable landforms. Classification is
feasible because the classified units are now objects instead of pixels. Objects
have clear topographic meaning and are more suitable than individual pixels
for manual labeling. The number of units to be handled is drastically reduced
making the classification process viable. Finally, objects are the source of addi-
tional information, such as their size, aggregative statistics, and neighborhood
information which are used as extra features for classification.

The novelty of our study can be summarized as follows: 1) the automatic seg-
mentation of a terrain into constituent objects is a new concept in the context
of terrain analysis; it has applications in both planetary and terrestrial geomor-
phology. The methodology creates a spatial database otherwise inaccessible to
terrain analysis; 2) using classification algorithms to aggregate segmentation ob-
jects into larger, physically relevant structures, is a new concept readily available
for data analysis techniques (particularly spatial data mining).

2 Background Information

There are currently four space probes on orbits around Mars remotely collecting
data about its surface. They generate a deluge of data, but only a small fraction
of this data can be interpreted because analysis is performed manually at high
“cost” by domain experts. Automation is the only practical solution to the chal-
lenge behind processing a significant portion of the —ever increasing— volume of
Martian data.

Martian craters, despite having deceptively simple circular appearance,
present a formidable challenge for a pattern recognition algorithm. Some craters
are degraded by erosion and are barely distinguishable from their background.
In a heavily cratered terrain, where an automated detection is most desirable,
there is a significant degree of crater overlapping. Finally, crater sizes differ by
orders of magnitude. Image-based detection techniques face additional difficul-
ties as the “visibility” of an impact crater depends on the image quality. Other
landforms on Mars, as for example valleys, also present challenges for automatic
recognition [19].
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Fig. 1. A perspective view of the Tisia Valles landscape rendered using the DEM. The
vertical dimension is exaggerated 10 times, and the north is to the left.

Recently, landform detection algorithms have begun to use topography data
as an alternative to images. Mars is the only planet besides the Earth for which
global elevation model (DEM) data is available [23]. A DEM is a raster dataset
where each pixel is assigned an elevation value. In [257] Martian sites are di-
vided into mutually exclusive and exhausting landform categories on the grounds
of similarity between pixel-based vectors of terrain attributes. In both studies,
landform categories are the result of unsupervised clustering of these vectors, but
whereas [25] employs a probabilistic algorithm working under a Bayesian frame-
work, [7] employs a self-organizing map [17]. In principle, these methods avoid the
issue of crater identification by automatically categorizing all landforms (includ-
ing craters) in a given site. The clustering-based division of a site into constituent
landforms has the advantage of being an unsupervised, low “cost” process, but
it also suffers from the lack of direct correspondence between clusters and gener-
ally recognizable landforms. A significant manual post-classification processing
is necessary to interpret all results. In addition, some landforms of interest (like,
for example, craters’ walls) are poorly represented by any single cluster, or even
group of clusters.

3 Study Site and Terrain Attributes

Fig. 1. shows a DEM-derived shaded relief of our Tisia Valles test site centered
at 46.13°E, 11.83°S. The DEM has a resolution of 500 meters and its dimensions
are N = 385 rows and M = 424 columns. This is a challenging site for landform
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identification. In a relatively small area many different crater morphologies are
present: fresh deep craters with intact walls; old, degraded craters with various
degrees of wall erosion; conjoined craters with various degrees of overlap. All
these different types of craters are present in a range of sizes. In addition, the
site is crossed from south-west to north-east by a broad valley with escarpments
on both sites. The valley floor is further sculptured. Smaller scale valleys are
present at inter-crater highlands. The same site was previously used in [25].

The DEM carries information about terrain elevation, z(z,y) at the location
of each pixel. Terrain attributes are additional raster datasets calculated from
the DEM. In this study we use three terrain attributes: slope, curvature, and
flood. The slope, s(z,y), is the rate of maximum change of z on the Moore
neighborhoocﬂp of a pixel located at (x,y). The (profile) curvature, k(x,y), mea-
sures the change of slope angle and is also calculated using the values of z on
the Moore neighborhood of a pixel (k > 0 correspond to convex topography,
whereas k < 0 correspond to concave topography). The flood, f(z,y), is a bi-
nary variable; pixels located inside topographic basins have f(x,y) = 1, and
all other pixels have f(z,y) = 0. A vector, V(z,y) = {z, s, &, f}(x,y) describes
the topography of the landscape at the level of an individual pixel. We refer to
the (N —2) x (M — 2) array of vectors V as the landscape. The landscape is
smaller than a DEM because the DEM’s edge is eliminated (by removing the
two rows and two columuns lying on the array boundaries) due to calculations of
derivatives using the Moore neighborhood.

4 Segmentation

In the context of image analysis the term segmentation refers to a process of
dividing an image into smaller regions having homogeneous color, texture, or
both. We have observed that the notion of segmentation can be applied not only
to multi-band images, but to all spatially extended datasets including multi-
attribute landscapes. A variety of techniques [TJ4T3[2T] have been proposed to
implement image segmentation, and all of them can be, in principle, easily ex-
tended to landscape segmentation. In [I5] a computationally simple homogeneity
index H was proposed, and in [9] this index was combined with the watershed
transform [26] for fast, unsupervised segmentation of multi-band images. In this
paper we utilize this method for segmentation of multi-attribute landscapes.

The homogeneity measure H is calculated using a square window of width
2K + 1 (where K is user-defined). Consider a focal pixel (z¢,y.) having an
attribute (for example, an elevation z) z(z,y.). For every pixel in a window
we calculate a “separation” vector d; = (z; — Zc, yi — yc). From the separation
vector we construct a “gradient” vector,

d;
[l

(1)

gi = (Z(Ilvyl) - Z(xcvyc))

L' The Moore neighborhood around a focus pixel (z0,y0) is a square-shaped area de-
fined by {(z,y) : [x — @o| < 1,y —yo| < 1}.
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Fig. 2. Segmentation of Tisia Valles landscape into 2631 topographically homogeneous
objects

and we use gradient vectors calculated for all pixels in a window to calculate the
homogeneity measure H,
(2K+1)2

H=| Y @& (2)
i=1
A pixel located in the region that is homogeneous with respect to z has a small
value of H. On the other hand, a pixel located near a boundary between two
regions characterized by different values of z has a large value of H.

A raster constructed by calculating the values of H for all pixels in the land-
scape can be interpreted as a gray scale image and is refered to as the H-image.
We denote the H-image by H. The white areas on H represent boundaries of
homogeneous regions, whereas the dark areas represent the actual regions. The
extension of the H-image concept to multiple attributes is straightforward. Let’s
say that we want to calculate the H of a landscape on the basis of slope, cur-
vature, and flood attributes. For each pixel we calculate the three individual H
values separately and combine them to obtain the overall value of H at that
pixel:

H = o, B +w. HE +wy H? (3)

where w,, wy, and wy are weights introduced to offset different numerical ranges
of the attributes. All attributes are scaled to have the same range (0, 1), and the
weights in (3) correspond to the corresponding scales.

We have segmented the Tisia Valles landscape using three attributes, s, x and
f. Note that we have opted not to use z as a segmentation attribute because no
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landforms are characterized by their elevations. We use the H-image technique
with K = 2 to obtain H,, H,, and H;. Individual H-images are subject to
thresholding,

(o) = { @)

where k = s, K, f, and Tk is an appropriate threshold value introduced to prevent
oversegmentation caused by high sensitivity to noise. The thresholded H-images
are combined using formula (3) and the combined H-image is segmented using
the watershed transform. This procedure (with Ts = 0.15, T), = 0.92, and Ty =
3.9) segments the site into 2631 topographic objects as shown in Fig. 2. Each
object is topographically homogeneous. Note that the number of objects is two
orders of magnitude smaller than 161,626 pixels constituting the DEM. The
objects are small where topography changes on a small spatial scale, like, for
example, on the walls of the craters, or at the escarpments. On the other hand,
objects are large when changes occur on only a large spatial scale, like, for
example in the inter-crater plain, or on the floors of large craters. The largest
object has 15,106 pixels, and the 13 largest objects occupy 75% of the site’s area.
For each object, i = 1,...,2631, we calculate the mean values, 5;, A;, fi, and
standard deviation values, o7, o, sz , from its constituent pixels. We refer to s;,
i, and f; simply as slope, curvature, and flood of an object.

Objects making up craters’ walls and objects constituting escarpments not
associated with craters have similar topographic attributes but are located in
different spatial contexts. The object’s neighborhood properties provide some
information about that context. Ideally, we would like to know classes of ob-
ject’s neighbors, but such information is not available prior to classification.
However, a preliminary categorization of objects is possible on the basis of their
values of §;, K;, fi. We divide all objects into three categories (low, medium,
and high) on the basis of their slope values. Such categorization is used to calcu-
late a neighborhood property of an object i, {af, a3, a3}i, where af, j = 1,2,3,
is the percentage of the object boundary adjacent to neighbors belonging to
slope category j. Similar neighborhood properties, {af,a5,af}, {a{,ag,ag}i,
are calculated on the basis of curvature and flood values, yielding a total of nine
attributes corresponding to the spatial context of objects.

Hk(xvy) :Hk(xvy) if Hk(xvy) > Tk
Hy(z,y) =0 otherwise

5 Classification

We classify topographic objects into six landform classes with clear physical
meaning. Class 1 consists of inter-crater plains, a flat terrain that in most cases
is homogeneous on relatively large spatial scale. Class 2 consists of craters’ floors,
a flat terrain inside craters. Class 3 consists of convex craters’ walls, whereas class
4 consists of concave craters’ walls. Classes 5 and 6 consists of objects that are
located on convex and concave non-crater escarpments, respectively. We use the
following 12-dimensional feature vector to characterize each segment,

_ = = r s s s K K K f f f
u= {s, R, f, ai, a3, a3, af, af, af, ai, aj, a3} (5)
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Fig. 3. Training set of 517 labeled topographic objects, 10% gray indicates class 1,
black indicates class 2, 20% gray indicates class 3, 80% gray indicates class 4, and 40%
gray indicates classes 5 and 6

We note that the object’s size, its elevation, and its o}, of, Ulf values are

not presently used as part of the feature vector. In general, objects’ sizes and
elevations have proved to be poor indicators of their class as defined in this
study. Inclusion of o7, of, azf into the feature vector produces no improvement
in classification.

5.1 Training Set

We have manually labeled 517 topographic objects to make up a training set.
This set constitutes 20% of all objects and 29% of the site’s area. The location
of training set objects is shown on Fig. 3. Due to the limitation of illustrating a
site using gray scales, classes 5 and 6 are shown employing the same gray shade.
The objects were selected for labeling on the basis of geographical coherence (see
Fig. 3) but we have also made sure that all landform classes are represented in
the training set.

To provide additional information regarding our training set, Table 1 (left
side) shows for each class (each row), the number of objects in that class, the
fraction of the training set’s total area covered by the objects in the class, and
the values of the three physical features, s, k, and f, averaged over objects
in each class. The right side of Table 1 provides the same information but for
all objects constituting the Tisia Valles site as divided into classes by using a
classifier obtained using a Support Vector Machine.
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Table 1. Properties of topographic objects in six landform classes averaged over the
training set (left) and the entire set (right).

class object area s K f object area s K f
count site % deg. x10° count site % deg. x10°
517 objects in the training set All 2631 objects
1 89 54.0 099 -0.1 0.04 957 64.5 096 0.12 0.03
2 5 240 083 041 1.0 26 11.5 0.83 058 0.91
3 163 9.0 524  3.12 0.78 536 8.0 5.2 3.54 0.83
4 145 8.0 4.08 -3.78 0.08 674 10.0 411 -4.62 0.13
5 61 2.6 249 261 0.09 208 2.0 2.02 227 0.08
6 54 2.4 220 -2.01 0.0 230 4.0 1.78 -1.79 0.0

5.2 Classification Results

Table 2 (left side) shows the result of invoking various learning algorithms on
our training set. Each entry shows the average of 5 runs of 10-fold cross vali-
dation (numbers in parentheses represent standard deviations). All algorithms
follow the implementation of the software package WEKA [29] using default
parametersﬁ. An asterisk at the top right of a number implies the difference
is significantly worse than the first algorithm (Support Vector Machine) at the
p = 0.05 level assuming a two-tailed t-student distribution.

Table 2 was produced to observe the inherent difficulty associated with differ-
entiating between various Martian landforms. The advantage of relatively com-
plex models over simpler ones points to the need for flexible decision boundaries.
The apparent advantage of bagging over the decision tree points to some degree
of variance [6]. The right side of Table 2 shows a confusion matrix obtained using
the Support Vector Machine model.

Overall, the exclusion errors (i.e., false negatives) are acceptable with the ex-
ception of class 6. A significant number of class 6 (concave escarpment) objects
are classified as either class 4 (concave crater walls), as we could expect from the
local similarity between the two landforms, or as class 1 (inter-crater plains). The
largest number of exclusions from class 4 are, as expected, picked up by class 6,
but some are picked up by classes 1 and 3. Surprisingly, there is not much confu-
sion between classes 5 and 3. This is probably due to the large difference between
the values of the flood attribute in the two classes (see Table 1). The erroneous
inclusion errors (i.e., false positives) show similar patterns. Interestingly, class
1 (a big inter-crater plain) suffers a small degree of erroneous inclusions from
most other classes that, in general, are characterized by very different values of
physical features.

2 SVM uses a cubic kernel with a complexity parameter of C' = 1. Decision tree uses
reduced error pruning with a confidence factor of 0.25 and a stopping criterion for
splitting of size 2. Bagging uses bootstrap samples of size equal to the training set
and average values over 10 trees. Neural network uses a learning rate of 0.3 and
momentum of 0.2 with 500 epochs. k-nearest neighbor uses k = 5 and the KKDtree
algorithm [5]. Bayesian Network builds a network using the K2 algorithm [12].
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Table 2. (Left) Accuracy by averaging over 5 x 10-fold cross-validation for various
learning algorithms. An asterisk at the top right of a number indicates a statistically
significant degradation with respect to the first algorithm (Support Vector Machine).
Numbers enclosed in parentheses represent standard deviations. (Right) Confusion ma-
trix for the Support Vector Machine algorithm, exclusions (false negatives) are in the
rows, erroneous inclusions (false positives) are in the columns.

Learning Algorithm  Accuracy Estimation| Confusion Matrix
123 4 56

Support Vector Machine 84.61 (4.89) 80 1 0 30
Neural Network 81.71 (5.09) 041 0 00
Bagging 83.02 (5.30) 21146 10 4 0
Decision Tree 81.01" (5.09) 71 8 119 0 10
Bayesian Network 79.42* (5.75) 304 0540
Nearest Neighbor 78.77* (5.15) 130 0 11 1 29

Fig. 4. Classification of all 2631 topographic objects, 10% gray indicates class 1, black
indicates class 2, 20% gray indicates class 3, 80% gray indicates class 4, and 40% gray
indicates classes 5 and 6

Using a decision function calculated on the basis of the Support Vector Ma-
chines model, we have classified all 2631 objects in the Tisia Valles site. The
spatial illustration of this classification is shown on Fig. 4 and the numerical
results of the classification are given in Table 1 (right side). The values of the
three physical features averaged over objects belonging to the same class are
very similar to corresponding values in the training set. This reassures us that
the training set constitutes a representative sample of the entire site.
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Visual inspection of Fig. 4 indicates that classification successfully divided
the landscape into its landforms. Large craters are perfectly delineated from
the inter-crater plain, and most of the escarpment is also correctly identified.
A more in depth examination reveals some inevitable shortcomings. The classi-
fier does not identify the centers of small craters as floors (class 2). Technically,
this is correct, because such craters are too small to have flat “floors,” but such
omissions complicate the process of crater recognition. The smallest craters have
centers represented by class 3 objects, which are surrounded by class 4 objects,
too large to produce a correct representation of their walls. This is due to insuf-
ficient resolution of our segmentation. Finally, there are some limited problems
in the correct delineation of small relief escarpments. Overall these shortcomings
are minor; most of the complex landscape was correctly interpreted.

6 Conclusions and Future Work

The success of our method depends on two factors, the quality of segmentation
and the choice of an appropriate feature vector. Martian terrain requires that
the range of topography objects sizes span few orders of magnitude. Although
our segmentation achieves this requirement, a larger range is necessary to resolve
the smallest craters. Future work will have to address this issue. One possible
solution is to avoid a single watershed threshold, and rather use an adaptive
threshold with a value that is coupled to the spatial scale of the change in
topography.

Our segmentation process can also be viewed as the process of creating a spa-
tial database of topography objects. In spatial data mining, objects are character-
ized by different types of information: non-spatial attributes, spatial attributes,
spatial predicates, and spatial functions [I§]. In this paper we have considered
only physical features (corresponding to non-spatial attributes) and some neigh-
borhood relations (corresponding to spatial attributes). Using just the physical
features produced a 77.4% classification accuracy; this accuracy increases to
84.6% when features based on neighborhood properties are also considered (us-
ing a Support Vector Machine). Future studies will employ spatial predicates
and spatial functions to further increase our current predictive accuracy.

Finally, we stress that the present classification allows for an automatic iden-
tification and characterization of large and medium craters. A study is underway
to use our technique to calculate geometries of such craters on Sinai Planum and
Hesperia Planum, two locations on Mars that, although similar, are expected to
have systematic differences in crater morphologies [20]. Once a good predictive
model is found we plan to use it to identify craters along the whole surface of
Mars, without any need for creating additional training sets.
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