Time in Distributed Systems
Cooperation and Communication Models

J.-P.Thomesse

7. Mammeri

L. Vega

CRIN - CNRS URA 262
ENSEM, 2, av. de la Forét de Haye
F-54516 Vandceuvre-lés-Nancy

email: {thomesse,mammeri,vegasaen}@loria.fr

Abstract

Dealing with time constraints in the design of dis-
tributed real-time systems is a challenge in the future
trends on distributed computing. Time constraints
must be considered, projected and derived onto all the
layered structure components of the distributed sys-
tem. This time constraints constderation, projection
and derivation must be also done along all the stages
of the life cycle. We focus how time constraints are in-
volved in cooperation and communication aspects. We
show one way to express time constraints with a tem-
poral logic oriented specification, and some operating
mechanisms to deal with them at the tmplementation
stage.

1 Introduction

This paper deals with time considerations in dis-
tributed real-time systems. The problem of time con-
straints (TCs) is considered for a large number of
years by a lot of people but essentially at the specifi-
cation stage or in operating systems, through schedul-
ing, and in protocols particularly in the MAC layer.
The significative results in these domains are however
insufficient to solve globally the problem. The main
preoccupation is always to find development methods
and mechanisms to implement reliable distributed real
time systems and applications.

Motus [19] introduced several points of view to con-
sider time aspects: time and specifier, time and veri-
fier, time and implementor, from specification to im-
plementation. The TCs have been studied and a lot
of models have been proposed to solve the problems
at the specification stage, with abstraction of the dis-
tribution [21, 1, 13, 24].

The possible validations are related to properties as
lifeness, fairness, safety, but the notions of network or
distribution (and then the time delays introduced) do

not appear explicitely.

But when a solution must be designed, it’s im-
portant to take into account characteristics of hard-
ware, of operating systems, and of networks. There-
fore we have introduced the time and designer point
of view [32].

In this paper, we will focus on the design stage, be-
tween the specification and the implementation ones.
At this stage, a solution must be defined by distribut-
ing the application on hosts, and exchanges on com-
munication networks. The problem is to choose a good
distribution according to the communication services
provided by the profile, or to choose the profile ac-
cording to the application needs.

Our approach starts from the application needs
analysis, and from the distribution which generates
more or less complex communication transactions con-
strained by time. Indeed, if exchanges are time con-
strained, that comes from application TCs which must
be clearly expressed before to be managed in order to
be met by the operating system and the communica-
tion protocols.

Our objectives are:

e to have models in order to verify at the design
stage, before implementation, if the TCs will be
met or not in the final solution, at least under
certain hypothesis,

e to define operating mechanisms adapted to the
applications constraints, in order to verify on line
if TCs are met or not.

The paper is structured as follows: In the second
section, we will describe the design development stage
introducing the notions of application architectures
(functional, support and operating) with a way to
consider time aspects as constraints, characteristics or
properties. In the third section we will specify more

precisely the TCs essentially related to the commu-
nication in order to define in the fourth section, the
models of cooperation and/or communication. In the
fifth section, we focus on operating mechanisms and
open issues.

2 Time and application architectures

In this section, we will focus on time considera-
tion in development stage. Different application ar-
chitectures will be defined, and the concepts intro-
duced. Starting from a functional architecture ex-
plaining TCs, the designer has to define an operating
architecture with properties corresponding to the pre-
vious constraints and based on a support architecture
with temporal characteristics.

2.1 Architectures

In this subsection we would like to introduce three
kinds of architecture which are of importance for the
design of any system: an application, a protocol, a
subsystem [8, 29, 36].

Functional Architecture

A functional architecture is the result of a specifi-
cation starting from a requirements document. It ab-
stracts the implementation, and particularly the dis-
tribution. It may be obtained by any method but it
must include the specification of functions, the typed
relations between them, the TCs on functions or on
relations between functions.

Support Architecture

A support architecture is composed of the descrip-
tion of hardware, of communication and operating sys-
tems, of all that is necessary for the implementation.

Operating Architecture

An operating architecture is the result of the map-
ping of a functional architecture on a support one.
2.2 Constraints and characteristics

Three words are commonly used to indicate time
aspects: characteristics, constraints, properties. They
are more or less randomly used and it clouds one’s
understanding.

Characteristics

A time characteristic is a known information, some-
thing known, for example, the reaction time of an ac-
tuator, the processing time of an action, and so on.
Others characteristics are expressed in a function of
time: a speed, a flow.

A time characteristic is a physical greatness ex-
pressed in time units, or with a time function, which
certain values are known to choose elements for the
solution and to implement this solution (constant, or
minimum, maximum, average values).

Constraints

The term constraint is reserved to express what 1s to
be verified in a solution before its design. For example
a reaction time must be less than a given value, an
action must be triggered at a given date. A constraint
is a specification element.

Properties

The word property is reserved to express that a so-
lution meets a constraint. It has then a characteristic
conform to the constraint.

Conclusion

The three words have been defined according to de-
velopment stage. A functional architecture expresses
time constraints. A support architecture expresses
time characteristics. An operating architecture must
have properties corresponding to the constraints.

The same view may be applied on a layered sys-
tem. At the run time a (N+1)-layer function requests
a service to the N one. The service request is supposed
constrained by TCs. The N-layer uses the characteris-
tics of (N-1) to meet the constraints and to implement
the mechanisms to verify on line their respect.

At the end of a specification, usually some verifica-
tion or validation may occur if some formal model has
been used. These validations are related to properties
as lifeness, fairness, safety, which are all implementa-
tion independent. The knowledge of such properties is
very important but not sufficient. To be sure that TCs
are really met, it is necessary to know the real solution
and to take physical or real time into account.

3 Time constraints modeling

About TCs in distributed systems a lot of papers
have focused on the deadline of message transmis-
sion by different MAC protocols (for example [16]),
and on the deadline of tasks by scheduling (for exam-
ple [6, 10]). Analogies between tasks and messages
have been evoked and studied [5]. But for the de-
signer, the problem is to consider TCs at the applica-
tion level, according to the real needs of application
processes and of their cooperation. Therefore, we in-
troduced some properties of solutions which are con-
straints at the design stage beginning. These proper-
ties are formally defined using a quantified temporal
logic. They are based on the definition of objects sub-
mitted to events and of group of events (time coher-
ences of events, actions and data).

3.1 Objects

The behavior of a system is modeled by the dy-
namics of its internal/external actions and data. It
is the environment that imposes TCs over the system
behavior, thus over its actions or data. An action is
any internal or external treatment. A data is a piece

of information which is treated as a whole (a single
measure, an N-PDU).

The main concept that allows us to model the dy-
namics of actions and data is the event concept. An
event is a sequence of changes produced over a system
condition along its behavior evolution. Each change
over the condition is called an event occurrence [3].
The event could be internal or external [7] representing
a change on the state of the system or its environment
and they usually trigger a related processing.

The event concept allows us to model a system by
the occurrences along the time axis of its external ob-
servable events. These events are the objects allowing
us to describe the system behavior and the constraints
over this behavior. So, in order to describe constraints
over actions and data, we 1dentify first the TCs over
generic events in order to allow the possibility to asso-
ciate a semantic according to any kind of actions and
data.

3.2 Time constraints types

Two ways are used to indicate TCs related to sys-

tem behavior:

e non-quantified time modeling approach referring
to relationships linked to causality or any order
between objects without duration concept. With
this time we can only express behavioral relation-
ships between system events [18, 23].

e quantified time modeling approach referring to in-
stants or dates and intervals or time windows,
durations or periods, for example earliest date,
deadline, maximum, minimum or average dura-
tion, period. This modeling approach allows the
expression of timeliness properties on the system
behavior [13, 1, 21].

Here we are interested in the second one. We show in
this section some constraints associated to events.
3.3 Constraints and events

Basic notions

An event is a changes sequence of a state or a condi-
tion. Example E7: the temperature 7} is greater than
T.. Each time, it goes from false to true, it’s an oc-
currence of the event E;. The constraints on such an
event are constraints on their occurrences. An event
is defined by:
an event is a couple (logic condition, value) which oc-
currence is the time instant when the logic condition
over the assertion changes from false to true.

In a more formal way, in order to express in the
following sections time properties over events without
ambiguity, we could define an event as follows, but
first we introduce some notations.

Notations: & is the set of predicates representing

system events. VAR is a set of local variables with
a range of values type(v) = {vg,...,vn}. 1t is a time
variable with a range of values type(t) = {to, ..., %, ... }.

Definition 1 One event £ / F € &, is a 2-ary pred-
icate E(t,v) where v € VAR and t is its time vari-
able. We note F; the i —th occurrence of event E and
(Ei)iz1,...n € Op is the set of the event occurrences
over the time:

Eo(to, Uo) — ... Ez'(ti, Ui) — ...
where — indicates the successor and Vi, F; — Fiqq.
We have a time-stamping function

d: O, — type(t) where Vi d(F;) = t;

The time interval, or time window, is one of the ba-
sic concepts that allows us to express TCs. We define
the following syntax for the time windows.

Definition 2 A time window AT is a bounded inter-
val [ts,t.] where t5 is the start instant, t. is the end
wmstant and

AT = |ty —t.] [te,ts € N and i, —t5 > 0

ts = start(AT)

t. = end(AT)

We can identify three basic constraints over one
event occurrence: the earliest time, the deadline time
and the time window constraint. Using definitions 1
and 2, we define these TCs over events as following.
Earliest time constraint. An earliest time con-
strains one event occurrence to occur after this instant.
Definition 3 For the i — th occurrence of event E
with an associated earliest TC t., the respective logic
assertion s

E; N (d(EZ) > te)

Deadline constraint. The deadline constrains the
occurrence to occur before this date.

Definition 4 For the i — th occurrence of event E
with an assoctated deadline constraint tg, the respec-
twe logic assertion is

B A (d(EZ) < td)

Time window constraint. It is a combination of
the two above constraints.

Definition 5 For the i — th occurrence of event E
within a AT, the respective logic assertion is

Ei A (start(AT) < d(E;) < end(AT))

Single events and constraints

The constraints relating occurrences of a same
event may be described by their temporal relation-
ships with the system clock.

Periodicity specifies exact distance between two suc-
cessive event occurrences.

Definition 6 One event E is a periodic one with AT,
period iff

Vi (Ez A QEZ = EZ'_|_1) = (d(EZ) + ATp = d(Ez+1))

Minimal arrival rate [12] expresses the minimal
distance between two event occurrences (assumption
about the rate of stimuli from the environment).
Definition 7 A minimal rate of occurrences noted
ATin 1s defined by

A(Eisn))

Jitter is a time window constraint applied to a pe-
riodic event. It expresses the permissible time win-
dow drift between two event occurrences (assumption
about the jitter data packet arrivals on multimedia
applications [34]).

Definition 8 One event E has a jitter constraint
AI} = ATnar — Al pin Zﬁt

Vi (Ez A QEZ = EZ'_|_1) = (d(EZ) + ATnin <
d(Ei+1) S d(Ez) + ATmax)

Dependent events and time constraints

Some events are independent. But a lot of events
are related with other internal or external events.
In [7], a constraint classification is done by identifying
minimal and maximal constraints over internal and
external ones. This classification shows the reactive
aspect of this kind of systems which must be able to
react to environment changes. So, the environment
events called stimuli, indicating environment changes,
trigger a reaction of the system to produce related re-
sponses.

We use this distinction in order to define causal
relation between events. We define two temporal re-
lationships between causal or related events.
Response time. It indicates the timing of the occur-
rence of two events linked by a causality relationship:
one cause event (stimulus) generates the production
of another consequence event (response). The most
usual cases are:

1. Maximal duration or deadline between a cause
and its effect events (see definition 9).

2. Exact distance (e.g., delay). Tt is defined as in
definition 9 but the inequality is replaced by an
equality.

Definition 9 A response TC between a stimulus E*
and its associated response K7, is expressed as maxi-
mal time bound AT,

E$ = O(B] Ad(ES) — d(E)| < AT,)

Time coherence. We have time coherence on a
group of two or more linked events if their occurrences
are within a time window.

Definition 10 The occurrences 1 of a sel of evenis
Ef:{l"”’n} are called time coherent within a time win-
dow AT, off '

Vj (B! = (start(AT,) < d(E!) < end(AT,)))

3.4 Actions, data and constraints

Some constraints on events being defined, it seems
possible to extend these concepts to other objects as
actions or tasks and data. An action can be tempo-
rally described by start event (for its beginning) and
an end event (for its termination). The deadline con-
straint for an action is seen as a constraint on the
end event. An earliest date constraint is seen as an
earliest constraint on the start event. Considering an
action attached to an indication (in OSI sense [31]),
a deadline constraint on the response 1s similar to the
deadline constraint on the action.

A parallel approach (or dual) may be considered
with data. A data is the result of an action. The
production instant or event may be confused with the
end event of the production action. A consumption
of a data may be assimilated to the beginning of the
concerned task. Considering the life time of a data,
it’s a duration between production and consumption
instants. We assume that all the concepts previously
defined for events are also valid for actions and data,
specially coherence.

These considerations are not here formally defined,
(see [35]), but they show informally how TCs ex-
pressed in a specification on actions or on data, may
be translated into TCs on events, in order to be man-
aged in a unique way as well at the design stage as at
the running one. These concepts are used to define the
relationships between the entities cooperating in a dis-
tributed system. The cooperation between application
processes is expressed in different ways, client-server,
producer-consumer, ... Constraints on APs or on their
relationships are expressed in terms of event TCs. The
main events are communication requests, indications,
responses, and confirmations.

We propose a way to facilitate the mapping of func-
tional architecture on a support one, by using coop-
eration and communication models. The cooperation
models are used to describe the wished behavior with
TC, the communication ones are used to define the
profile mechanisms of support architecture. The map-
ping is then the operation which associates commu-
nication transactions with cooperation ones.The ver-
ification of the properties is made by considering the
TCs on cooperation models and the characteristics of
the communication ones.

4 Cooperation models

We have defined TCs on events, independently of
their nature and of their semantics. We have cho-
sen this way, in order to be able further to associate
various senses with the events. An application is spec-
ified in different ways, starting from actions, or from

data. A communication mechanism is seen from ac-
tions point of view associated to requests, or to indi-
cations, or from transfered information one (data or
PDUs). An event may be the reception of an indica-
tion, the sending of a request. An event is generally
assoclated with an action, and the action produces an
event when it terminates its execution. The action
18, according to classification, either a communication
action, or an application action. This consideration
leads to the well known Client/Server behavior.

Nevertheless, 1t is possible to consider the result
of action rather than actions themselves, for exam-
ple, data must be produced at the same time. The
TCs on events are then translated into TCs on data,
where the significant events are production of data,
sending, reception, consuming, ... At the applica-
tion design stage, we will consider these facts and we
would like verify, at running stage, that the constraints
are met or not. This consideration leads to the Pro-
ducer/Consumer behavior.

Each of these two behaviors is the basis of four co-
operation models; according to the number of the par-
ticipating entities in the exchange. These models are
described in the following section.

4.1 Producer(s)/Consumer(s) models

This model has a data oriented semantics. It allows
us to describe the data exchanges between distributed
sites and to express the time constraints and proper-
ties associated to them.

The communication types derived from the pro-
ducer/consumer model are function of the number of
participants that exchange data between them accord-
ing to this model. Thus, we have four possible com-
munication types: one to one, one to N, N to one and
N to M, where N and M are the number of involved
processes whose temporal properties are discussed in
the following paragraphs.

Producer/Consumer model

This basic model represents the transfer of data be-
tween the producer that provides data to a consumer.

In real time system, data have a validity constraint
called life time. The life time of data is a time win-
dow defined by the actions performed over this data:
production, transmission and consumption. Another
time problem is the rate control [25].

Producer/Multi-Consumer model

This model represents a communication exchange
between one producer and several consumers that re-
quire the same data at the same moment provided by
the producer. As in the above section we have a life
TC over data that is function of the periodic, or non-
periodic nature of its associated actions. In addition

we have the problem of the time coherence of the data
copies located in the distributed consumers.

Multi-Producer/Consumer model

Here the interaction between tasks is defined be-
tween several producers, each of one 1s a provider
of one data, and there is one consumer that re-
quires at the same time, all these data provided by
the producers. So, we have the same constraints of
producer/multi-consumer model, but the time coher-
ence constraint is associated to the productions of
data at each distributed producer.

Multi-Producer/Multi-Consumer model

We can reduce this cooperation model as a combi-
nation of the two above models.

4.2 Client(s)/Server(s) models

The semantics of the client/server model is an ac-
tion oriented one. As in the previous section, the co-
operation models derived from the client /server model
are function of the number of participants requesting
and providing services according to this model. Thus,
we have the same four possibilities: one to one, one
to N, N to one and N to M, where N and M are the
number of involved processes.

Client /Server model

It 1s a one-to-one elementary model. It represents
the interaction between the requesting and the per-
forming of an action, or a service, between a client
and a server.

The functional structure is distributed using the no-
tion of service [20]. We can consider a service as the
execution of an action (cf. section 3.4) because both
of them perform an activity that provides a result.

The TCs associated with this model have a
time response nature. We can distinguish four
deadlines over the causal events of a client/server
transaction: request-indication, indication-response,
response-confirmation and request-confirmation.

Client /Multi-Server model

This cooperation model represents a communica-
tion type composed by many servers that provide ser-
vices to one client. The client needs the servers activ-
ities results to perform its own ones. Here the prob-
lem is the centralized time coherence of the actions
requested by one site and the distributed time coher-
ence 1n the execution of the actions performed by the
distributed servers. So, 1t is the same problem for the
time coherence of indications and responses.

Multi-Client /Server model

Here we have a cooperation model constituted of
several clients and one server. The server provides
services to the clients in order to provide them the
results that they need to realize their own activities.

We find in this case the problem of the distributed
time coherence on the clients services requests, and the
centralized time coherence on the execution of these
actions by the server.

Multi-Client /Multi-Server model

This model is the case of a cooperation activity
where we can find the two above models.

4.3 Examples
After this short presentation about the cooperation
models, we would like to analyze some examples.
Producer/Multi-Consumer model
The constraints in this data exchange are:

e the deadline on the reception of indications that
can be expressed as follows. Considering the
event set (Ind’)?={1-"} as the indications set
produced by arequest event Req. So at the occur-
rence ¢ we have a maximal response time AT}, 40

Reqi = O(Vj (Ind A (d(Ind)) < d(Reqi) + ATpmaz)))
e the time coherence on the reception of the indi-
cations. Considering the occurrence 7 of a set of

events (Indj)j:{l’“"”} as the indications set that
must be received within a time window AT,:

Vi (Ind! = (start(AT.) < d(Ind)) < end(AT.)))
Client /Server
The four TCs on the client/server model, intro-
duced in section 4.2, are expressed as follows. Consid-
ering the next causality relations between the events
on a client/server transaction i:
Req; = O(Ind; = $(Rsp; = O(Cnfy)))
The deadlines constraints associated are:
Req; = O(Indl A |d(R6ql) — d([ndl)| < ATM)
Ind; = O(Rsp; Ald(Ind;) — d(Rsp;)| < ATyy)
Rsp; = O(Cnfi Ad(Rspi) — d(Cnfy)| < AT,.)
Req; = O(Ind; A|d(Req;) —d(Cnf;)] < ATy)
Client /Multi-Server
We can see that its constraints are a combination
of those issued from the client/server model and the
producer/multi-consumer model. So, considering a set
of j = {1,...,n} servers, we have first the deadlines
constraints: ' ' '
Vj (Req] = O(Ind) A |d(Req]) — d(Ind))| < AT,))
Vi (Ind} = O(Rspl A |d(Ind)) — d(Rspl)| < ATiy))
Vi (Rspl = O(Cnfl Ald(Rspl) — d(Cnfl)| < AT;.))
Vi (Reql = O(Cnf] Ad(Req]) = d(Cnf])| < AT))
Then we have time coherence constraints over the
set of indications, responses and confirmation events,
as follows:
Vi (Ind! = (start(ATy) < d(Ind)) < end(ATY)))
Vi (Rspl = (start(ATy) < d(Rspl) < end(ATs)))
Vi (Cnfl = (start(ATy) < d(Cnfl) < end(ATs)))

5 Operating mechanisms and open is-
sues

In the previous sections we have presented the no-

tions of architectures, of time constraints and of co-

operation models. A functional architecture specifies

A support architecture has time

characteristics. The mapping of the first one on the

time constraints.

second one must have the right properties associated
with the constraints.

At the mapping stage (design stage) some valida-
tion must be obtained [2] but often such a validation
is not deterministic. [2] has shown that time interop-
erability could be of two types: the so-called 1O P,y s¢
and IO Pp,.y which express respectively that inter-
operability is always or may be sometimes guaran-
teed. But it is not sufficient for real-time applications.
Therefore, mechanisms must be included in the com-
munication profile as well as strategies in the traffic
control [9, 26, 28].

We give here some ideas and solutions in order
to manage the different time constraints present in
a given transaction.

5.1 Temporal qualification of data

As previously mentioned, communication between
remote entities may be achieved according to several
models. This section especially deals with the basic
communication model, i.e., the producer/consumers
one. Message scheduling depends mostly on the pro-
tocols of the network, and especially on the MAC
(medium access control) protocol. The mechanisms
proposed in this section are general and they are not
designed for a particular network.

The communication between a producer and a con-
sumer is achieved according to several steps: produc-
tion of data value, it passes through the stack of the
communication layers at the producer station, it is
transmitted on the medium, it passes through the
stack of the communication layers at the consumer
station, consumption of the data value.

In a real-time context, production and consumption
operations but also the communication layers must re-
spect certain TCs to guarantee that the end-to-end
(i.e., producer/consumer) cooperation will meet the
whole application TCs. It is necessary to clarify the
temporal data validity for each data with regard to
the production and consumption time windows to en-
sure the data consumption coherence. A produced
variable value is valid during a particular time win-
dow with regard to each consumer, called Temporal
Validity Window. The consumer must terminate or
begin its consumption operation before the end of the
temporal validity window. In consequence, emission,

receipt and consumption operations must be sched-
uled by taking into account the end of the temporal
validity windows.

To facilitate the analysis of temporal validity of val-
ues, and to have a good knowledge about the TCs, we
assoclate a time window with each step; this time win-
dow (TW) will specify the time interval during which
the step must be started and finished. Like that, we
may specify the following TWs: a TW for the produc-
tion step, a TW for each communication layer for the
producer station, a TW for each communication layer
for the consumer station, a TW for the consumption
step.

One end-to-end TW, or one end-to-end delay, is
often (or even, usually) associated with a communi-
cation relationship (i.e., one TW is associated with
all the steps of a producer/consumer communication).
We propose the use of several TWs to effectively mas-
ter real-time communications [17].

A temporal status is associated with each step of
the communication. These statuses enable to know if
the TCs assigned to the corresponding steps (or time
windows) are satisfied, or not.

The temporal status associated with each commu-
nication step is elaborated by an entity controlling the
respect of the TCs, this entity is called TCCE (Tim-
ing Constraint Control Entity). TCCEs modeled by a
general state machine are presented in [15].

In consequence, the consumer does not receive only
a variable value but a message containing the pro-
duced variable value and several temporal statuses.
If all the temporal statuses are set to True, then the
variable value 1s valid for consumption, otherwise 1t is
invalid, and the consumer may know why the value is
invalid.

Finally, we note that some kind of such temporal
mechanisms have been validated and implemented in
the FIP network. Further work has to be carried on
to deal with temporal data validity in other communi-
cation models such as client/server and client/multi-
server models.

5.2 Clock synchronization

One of the principal functions of real-time systems
is to provide adequate mechanisms for measuring the
time instants at which particular events occur, the du-
ration of time intervals between events. These func-
tions become particularly critical, as the occurrence
of the same event may be observed from such inher-
ently asynchronous devices as a number of different
processors.

Data have often meaning only when associated with
time, and the temporal qualification of data is intrin-

sically based on time. This implies, in the context of
a real-time context, that data must be time-stamped
at different times of their life. The direct consequence
of this is that all nodes in a distributed system should
have access to a globally agreed real-time clock.

Example

Multi-Producer/Consumer - Client/Multi-Server.
Let the constraints All productions must be done
within a AT, and All transmissions must be done
within a AT,. A client sends a request to N servers, if
the following hypothesis is made: All indications are
produced within a given AT, the previous mechanisms
in 5.1 may be used to verify if productions are done
with their TCs without clock synchronization. The
control of the correct transmission in time is done by
the client.

But without the hypothesis, it is necessary to time-
stamp the events in order to control the TCs are met
and then a clock synchronization is necessary [11, 14].
The previous hypothesis is equivalent to a clock syn-
chronization mechanism.

In this section we have only overviewed some of the
main operating mechanisms which are used to sup-
port real-time applications. Others as scheduling of
tasks [4, 6, 30, 33, 37] and PDUs are of importance
too (see for example [10, 5, 22, 27, 38]).

6 Conclusion

At the design stage, we have to choose a support ar-
chitecture, then the well suited mechanisms, the right
scheduling of tasks, of traffic, the right clock synchro-
nization algorithm, the right TC verification mecha-
nisms, in order to obtain a safe operating architecture.

We would like to focus on the fact that it is im-
portant to can do these choices and the mapping with
a maximum confidence, i1.e. with proofs as formal as
possible, as quantified as possible that the operating
architecture will be correct. It will be necessary to op-
timize it to obtain the best one according to criteria
(costs, place, power supplying, ...).

This paper 1s too short to go into long consider-
ations and complete formal explanations about the
communication and cooperation models. It intends to
present an approach for linking operating mechanisms
and physical characteristics to specification needs.

Our approach, based on cooperation models allows
the designer to express his needs in terms of commu-
nication services at which are attached TCs. We may
then look to the capability of identifying and mea-
suring the characteristics which are of importance to
meet the constraints. The main goal now is to be able
to define TCs derivation.

A lot of other problems have not been neither
treated nor even evoked, task placement, dynamic
vs. static scheduling, tasks and PDUs scheduling, dy-
namic configuration, quality of service regulation and
so on. It will be of importance in the future to as-
sociate, to integrate all these aspects in a real design
tool for distributed real-time applications.

Acknowledgments

The authors would like to thank their colleagues
of the working group on real-time in the "Groupe
de Recherche" PRS of the "Centre National de la
Recherche Scientifique" in France, for their discussions
on some topics presented in this paper.

References
[1] R. Alur and T. A. Henzinger. Logics and models
of real time: a survey. Technical Report TR-92-
1262, Department of Computer Science, Cornell
University, Ithaca, NY 14853-7501, January 1992.

[2] Y. Benkhellat, M. Siebert, and J.-P. Thomesse.
Interoperability of sensors and distributed sys-
tems. Journal Sensors and Actuators, Elsevier

Sequota, 2:247-254, Octobre 1992.

[3] M. Benmaiza. Le concept d’événement dans
la spécification et la programmation de sys-
témes temps réel. PhD thesis, Université Henri
Poincaré, CRIN, Nancy (France), Mars 1984.

[4] C. Cardeira and Z. Mammeri. Ordonnancement
de taches dans les systémes temps réel et répartis.
Revue RAIRO Automatique, Productique, Infor-
matique Industrielle, APII, 28(4):353-384, 1994.

[5] C. Cardeira and Z. Mammeri. A schedulability
analysis of tasks and network traffic in distributed
real-time systems. Measurement Journal, 1995.
No. 15, Elsevier.

[6] C.C. Cheng, J.A. Stankovic, and K. Ramam-
rithan. Scheduling algorithms for hard real-time
systems. Real-time systems Newsletter, 3(2):1-24,
1989.

[7] B. Dasarathy. Timing constraints of real-time
systems : constructs for expressing them, meth-
ods for validating them. IEEE Transactions on
Software Engineering, SE-11(1):80-86, January
1985.

[8] J.L. Delcuvellerie. Ingénierie des Systémes
d’automatisation de production : connaissance en
conception des architectures des systémes infor-
matisés d’automatisation et outil d’analyse de la

robustesse aux défaillances d’architectures répar-
ties. PhD thesis, Institut National Polytechnique
de Lorraine, Centre de Recherche en Informatique
de Nancy, Nancy (France), mars 1989.

[9] ISO TCCA group. Interim report of the TCCA
group of ISO/TC 184/SC 5/WG2 on Time-
Critical Communications Architectures. Report

N 254, April 1991.

[10] H. Kopetz. Scheduling in distributed real time
systems. TR 1/86, Mars, Austria, January 1986.

[11] H. Kopetz. Clock synchronization in distributed
real-time systems. [EEE trans. on Computers,

C-36(8):933-940, August 1987.

[12] R. Koymans. Specifying real-time properties with
metric temporal logic. The Journal of Real-Time

Systems, 2:255-299, 1990.

[13] R. Koymans. Specifying message passing and
time-critical systems with temporal logic. In Lec-
ture Notes in Computer Science (651). Springer-
Verlag, 1992.

[14] L. Lamport. Synchronizing clocks in the presence
of faults. Journal of the ACM, 32(1):52-78, 1985.

[15] P. Lorenz and Z. Mammeri. Real-time software
architecture: application to FIP fieldbus. In
TFAC Workshop on algorithms and architectures
for real-time control, AART(C’95, Ostend, Bel-
gium, 31 May 1995.

[16] N. Malcolm and W. Zhao. Hard real-time com-
munication in multiple-access networks. Journal

of Real-time systems, 8:35-77, 1995.

[17] Z. Mammeri and P. Lorenz. Integration of
temporal mechanisms in communication proto-
cols for time-critical distributed systems. In
12th IFAC Workshop on Distributed Computer
Control Systems, DCCS’94, pages 7-13, Toledo,
Spain, September 1994.

[18] Z. Manna and A. Pnueli. The modal logic of pro-
grams. In Colloq. Aut. Lang. Prog., pages 385—
409, Berlin, 1979. LNCS 71, Springer-Verlag.

[19] L. Motus. Time concepts in real-time software.
In the International Workshop on Real-Tvme Pro-
gramming (WRTP’92), pages 1-10, Bruges (Bel-
gium), June 1992.

[20]

[23]

[29]

B.J. Nelson. Remote Procedure Call. PhD the-
sis, Carnegie Mellon University, Computer Sci-
ence Department, 1981. (Technical report CSL-
81-9 at Xerox PARC).

J.S. Ostroff. A verifier for real-time properties.
The Journal of Real-Time Systems, 4:5-35, 1992.

F. Panzieri and R. Davoli. Real-time systems:
a tutorial. In Performance Evaluation of Com-
puter and Communication Systems, pages 435—

462. LNCS (729), 1993.

A. Pnueli. The temporal logic of programs. In
18th IFEE Annual Symposium on the Founda-
tions of Computer Science, pages 46-57, Provi-
dence, R.I., New York, November 1977.

A. Pnueli and E. Harel. Applications of tem-
poral logic to the specification of real time sys-
tems. Lecture Note in Computer Science, 331:84—
98, September 1988.

M. Raynal. La communication et le temps dans

les réscauxr et les systémes répartis. Eyrolles,
Paris, 1991.

M.G. Rodd and S.F. Al-rowaihi. Temporal mod-
elling of real-time communication protocols based
on a processor/channel approach. Journal of
Real-time systems, 6:243-262, 1994.

M.G. Rodd and W. Zhao. RTMMS- An OSI-
based real-time messaging system. Journal of

Real-Time Systems, 2:213-234, 1990.
L. Sha, S.S. Sathaye, and J.K. Strosnider.

Scheduling real-time communication on dual-link
networks. In Proceedings IEEFE Real-time systems
sympo, pages 188-197, Phoenix, Arizon, Decem-
ber 1992.

F. Simonot-Lion and C. Verlinde. Importance
d’un cadre de référence dans la mise en place d’un
systéme automatisé de production. In Actes de la
Conférence sur Automatisation Industrielle vol. I,
Montreal, juin 1992.

B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic
task scheduling for hard real-time systems. Jour-

nal of Real-Time Systems, 1:27-60, 1989.

ISO TR/8509 Technical Report. Information Pro-
cessing Systems - Open Systems Interconnection -
Service Conventions. International Organisation
for Standardization, 1987.

[32]

[34]

[35]

[36]

J.P. Thomesse. Time and industrial local area
networks. In the 7th Annual European Computer
Conference on Computer Design, Manufacturing
and Production (COMPEURO’93), pages 365—
374, Paris-Evry (France), May 1993. Organized
by the IEEE Computer Society.

K. Tindell, A. Burns, and A. Wellings. Allocat-
ing Hard Real-Time Tasks: An NP-Hard Prob-
lem Made Easy. Journal of Real-Time Systems,
4:145-165, 1992.

D. Towsley. Providing quality of service in packet
switched networks. In L. Donatiello and R. Nel-
son, editors, Joint Tutorial papers of Perfor-
mance’93 and Sigmetrics’93, pages b60-586. Lec-
ture Notes in computer Science (729), 1993.

L. Vega and J.P. Thomesse. Temporal proper-
ties in distributed real-time applications. In 13th
Workshop on Distributed Computer Control Sys-
tems, DCCS’95, Toulouse (France), September
1995. IFAC. To appear.

C. Verlinde, E. Georgel, and J.P. Thomesse. Hi-
erarchical and functional architecture for con-
trol systems. In ITECON 15th Annual conference,
pages 462-468, Philadelphia, November 1989.
IEEE Industrial Electronics Society. Vol. I: Signal
processing and system control.

J. Xu and D.L. Parnas. On satisfying timing con-
straints in hard-real-time systems. In Proc. of
the ACM SIGSOFT’91 Conf. on Soft. for Critical
Systems, pages 132-146, New Orleans, December,
1991.

Q. Zheng and K.G. Shin.
time communication in distributed computing
systems. In 22nd Intern. Sympo. on Fauli-

tolerant Computing, pages 86-93, Boston, Octo-
ber 1992.

Fault-tolerant real-

