
Decidability and complexity of Petri netproblems { an introduction?Javier EsparzaInstitut f�ur Informatik, Technische Universit�at M�unchen,Arcisstr. 21, D-80290 M�unchen, Germany,e-mail: esparza@informatik.tu-muenchen.deAbstract. A collection of 10 \rules of thumb" is presented that helpsto determine the decidability and complexity of a large number of Petrinet problems.1 IntroductionThe topic of this paper is the decidability and complexity of veri�cation problemsfor Petri nets. I provide answers to questions like \is there an algorithm to decideif two Petri nets are bisimilar?", or \how much time is it needed (in the worstcase) to decide if a 1-safe Petri net is deadlock-free?"My intended audience are people who work on the development of algorithmsand tools for the analysis of Petri net models and have some basic understandingof complexity theory. More precisely, I assume that the reader is familiar withthe notion of undecidable problem, with the de�nitions of deterministic andnondeterministic complexity classes like NP or PSPACE, with the notion of hardand complete problems for a complexity class, and with the use of reductionsto prove hardness and completeness results. Theoreticians acquainted with thetopic of this paper are warned: They won't �nd much in it that they didn't knowbefore.2 On the other hand, they might be interested in the paper's uni�edview of complexity questions for 1-safe and general Petri nets, and in a fewsimpli�cations in the presentation of some proofs.When I was invited to write this paper, I hesitated for a while. I rememberedthe statement of the Greek scepticist Gorgias:Nothing exists;if anything does exist, it is unknowable;if anything can be known, knowledge of it is incommunicable.and imagined a Greek chorus advising me not to write the paper because, intheir opinion:? Work partially supported by the Sonderforschungsbereich 342 \Werkzeuge undMethoden f�ur die Nutzung paralleler Rechnerarchitekturen".2 Only one result has not been published before, namely a PSPACE algorithm for themodel-checking problem of CTL and 1-safe Petri nets, presented in Section 4.

All results about decidability and complexity of Petri nets were alreadyobtained in the early eighties;if there are new results, you have included them for sure in the paper\Decidability issues for Petri nets { a survey" you wrote with MogensNielsen in 1994 [10];if you haven't included them in the survey, they are only of interest forspecialists; moreover, these results just show that all interesting problemsare intractable { �ner classi�cations, like NP-, PSPACE- or EXPSPACE-hardness have no practical relevance.Since, as you can see, I still decided to write the paper, I would like to an-ticipate my answer to these three possible criticisms.� There have been important recent developments about decidability and com-plexity questions, of interest for the whole Petri net community.During the late seventies and early eighties there was an outburst of theoret-ical work on decidability and complexity problems for (Place/Transition) Petrinets. Well-known computer scientists, like Rabin, Racko�, Lipton, Mayr, Meyer,and Kosaraju, just to mention a few, obtained a very impressive collection ofresults. The decidability of most problems, like boundedness, liveness, reachabil-ity, language equivalence, etc. was settled, and in many cases tight complexitybounds were obtained.However, while these results were being obtained, two developments in com-puter science opened new problems:� In the late seventies, temporal logic was proposed as a query language forthe speci�cation of reactive and distributed systems; a few years later, model-checking was introduced as a technique for the veri�cation of arbitrary temporalproperties. Howell, Rosier, and Yen were the �rst to study the decidability andcomplexity of model-checking problems for Petri nets in the second half of theeighties [17, 19, 20]. Today most questions in this research �eld have been an-swered [9, 14].� In the early eighties, process algebras were introduced for the formal de-scription of concurrent and reactive systems. It was seen that language equiv-alence was not an adequate equivalence notion for this class of systems, sincefor instance it may consider deadlock-free systems as equivalent to systems withdeadlocks. New equivalence relations were introduced, like bisimulation and fail-ures equivalence. In the early nineties, the decidability of these equivalences forsystems with in�nite state spaces started to receive a lot of attention, and ledto renewed interest in Petri nets. Jan�car proved only a few years ago a funda-mental result showing the undecidability for Petri nets of all equivalence notionsdescribed in the literature [22, 21].These two developments still had another e�ect. During the eighties, manyresearchers started to study the relationship of process algebras to Petri nets.Net models in which a place can carry at most one token, like condition/eventsystems or elementary net systems, turned out to be particularly useful for thesestudies. These nets, which have by de�nition a �nite number of states, became

even more interesting after the introduction of automatic model-checkers, whenit was realised that they could be used to model a large number of interesting sys-tems which were within the reach of automatic veri�cation. The questions thathad been asked and mostly solved for Place/Transition nets were now asked againfor these models. In the last years the complexity of classical properties (reach-ability, liveness . . .), model-checking problems for di�erent temporal logics, andequivalence problems for di�erent equivalence notions, has been completely de-termined [2, 23, 31].� This paper has a di�erent approach than the '94 survey paper, and has beenwritten to complement it.Research on the decidability and complexity of veri�cation problems for Petrinets has produced well over 100 papers, maybe even 150. Many of them have beenpublished in well-known journals, and are thus available in any good library. Mysurvey paper with Mogens Nielsen [10] summarises many results, and providesa rather comprehensive list of references.Petri net researchers often need information about the complexity of a par-ticular problem (the Petri net mailing list receives now and then postings withthis kind of requests). In most cases, a similar problem has already been studiedin the literature, and pointers to relevant papers can be found in [10]. If oneis familiar with a number of basic techniques, it is easy to apply these existingresults to the new problem. However, acquiring this familiarity is at the momenta rather hard task, specially for Ph. D. students: one has to go through manypapers and distill an understanding which is not explicitly contained in the pa-pers themselves. The purpose of these pages is to make this task a bit easier.Instead of listing results and references, I concentrate on a few general results ofbroad applicability. I also provide \rules of thumb", which I think can be moreuseful than formal theorems.� All researchers interested in the development and implementation of analysisalgorithms for Petri nets can greatly pro�t from some basic knowledge on thecomputational complexity of analysis problems.All researchers are regularly confronted with the problem of having to proveor disprove a conjecture. Should one �rst try to �nd a proof or a counterexample?The wrong choice can make one lose precious time. Complexity theory can oftenhelp by showing that the truth or falsity of the conjecture implies an unlikelyfact, like P=NP or NP=PSPACE. I present here some examples in the form ofthree stories taken from my personal experience:Story I. After graduating in Physics, I became a Ph. D. student of computerscience. At that time I knew very little about theoretical computer science, andthere were no theoreticians in my environment. I started to work on the analysisof free-choice Petri nets, a net class for which there was hope of �nding e�cientveri�cation algorithms, and more precisely I began to investigate the livenessproblem. My hope was to e�ciently transform the problem into a set of linearinequations that could be solved using linear programming. `E�ciently' meant

for me that the number and size of the equations should grow quadratically, say,in the size of the net.During the next four months I could not �nd any encoding, but I read sometextbooks on theoretical computer science. I came across Garey and Johnson'sbook on the theory of NP-completeness [12], and I found the problem I wasworking on (more precisely, its complement) in the list of NP-complete prob-lems at the end of the book. Since there exist polynomial algorithms for LinearProgramming but the complement of the liveness problem for free-choice netswas NP-complete, the existence of an e�cient encoding would imply P=NP, andso it was highly unlikely.The NP-completeness of the non-liveness problem for free-choice Petri netsis proved in Section 10.Story II. Some years ago I refereed a paper submitted to the Petri net conference.The paper contained a conjecture on the reachability problem for Petri nets thatcan be stated as follows. LetN be a net, and letM0 andM be markings ofN suchthat M is reachable from M0. Conjecture: M can be reached from M0 througha sequence of transition �rings which only visits intermediate markings of sizeO(n+m0+m), where n;m0;m are the sizes of N , M0 andM , respectively. Theauthor of the paper had constructed a random generator of nets and markingsand had tested the conjecture in one thousand cases, always with a positiveanswer.It is certainly possible to disprove the conjecture by exhibiting a counterex-ample, but it is faster to use a complexity argument. I show this argument inSection 7.Story III. I have recently come across a paper containing a characterisation ofthe set of reachable markings of 1-safe Petri nets. A simple complexity analysisshows that the characterization is most probably wrong, although I haven't founda counterexample yet. In order to formulate the characterisation we need somede�nitions and notations. A siphon of a net is a subset of places R satisfying�R � R�. A trap is a subset of places R satisfying R� � �R. Given a netN = (S; T; F) and a set U � T , we de�ne the net NU as the result of �rstremoving all transitions of N not belonging to U , and then removing all placesthat are not connected to any transition anymore.Now, let N = (S; T; F) be a net, and let M0 and M be markings of N suchthat the Petri net (N ;M0) is 1-safe. The characterization states M is reachablefromM0 if and only if there exists a mapping X :T ! IN satisfying the followingthree properties:(1) for every place s, M(s) =M0(s) +Pt2T (F (t; s)� F (s; t)) �X(t),(2) every nonempty siphon of NTX is marked at M0, and(3) every nonempty trap of NTX is marked at M .where TX is the set of transitions t such that X(t) > 0.

I strongly believe that the proof of this result contains a mistake, and that acounterexample exists. I show why in Section 3.3� The classi�cation of a problem as NP-, PSPACE- or EXPSPACE-hard doeshave practical relevanceThe complexity of Petri nets was �rst studied in the seventies, when NP-complete problems were really intractable: computer scientists were unable todeal even with very small instances due to the lack of computing power and ofgood theoretical results. At that time it probably didn't make so much di�erencefor a practitioner whether a problem was PSPACE-hard or only NP-complete.In my opinion, today's picture is very di�erent:{ NP-complete problems are no longer \intractable". It is certainly true that allknown algorithms that solve them have exponential worst-case complexity.However, today there exist commercial systems for standard NP-completeproblems, like satis�ability of propositional logic formulas or integer linearprogramming problems, that routinely solve instances of large size.{ The last years have witnessed a proliferation of model-checking tools, likeCOSPAN, PEP, PROD, SMV, SPIN, and others (see [11] and [30] for com-prehensive information). Although the problems they solve are PSPACE-complete, they have been successfully applied to the veri�cation of manyinteresting �nite state systems. Commercial versions are starting to appear.{ Experimental tools for the analysis of timed-systems are starting to emerge.Examples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the problemssolved by these tools are EXPSPACE-complete. The size of the instancesthey can handle is certainly much smaller than in the case of model-checkers,but the results are very promising.{ Theorem provers like HOL, Isabelle, PVS, and others are being applied withgood success to the veri�cation of systems with in�nite state spaces. Theyuse heuristics to try to solve particular instances of undecidable analysisproblems.My conclusion is that the old \tractable { intractable" classi�cation hasbecome too rough. A �ner analysis provides very valuable information aboutthe size of instances that can be handled by automatic tools, and about thepossibility of applying existing tools to a particular problem.Organisation of the paperThe paper is divided into two parts. The �rst is devoted to 1-safe Petri nets,which are Place/Transition Petri nets having the property that no reachablemarking puts more than one token in any place. Nearly all results hold for n-safe Petri nets (at most n tokens on a place) too, assuming that the algorithms3 After I wrote this paper, but before its publication, Stephan Melzer found a coun-terexample with 5 places and 3 transitions.

receive n as part of the input, which implies in particular that n must be knownin advance. The second part is devoted to general Place/Transition nets. Bothparts are divided into the same four sections. Each section contains one or more\rules of thumb". These are general informal statements which try to summarisea number of formal results in a concise, necessarily informal, but informativeway. They could also be called \useful lies": statements which do not tell all thetruth and nothing but the truth, but are more useful than a complicated formaltheorem with many ifs and buts. There is a total of 10 rules of thumb in thepaper; with their help I can solve most of the complexity questions I come acrossin my own research.Rules of thumb are displayed in the text like this:Rule of thumb 0:To �nd the rules of thumb, look for pieces of text within a box.This is only a rule of thumb, because other pieces of text are also surroundedby a box, in fact by a double box. They are fundamental formal results used toderive the rules of thumb.Fundamental results are displayed within a doublebox.The �rst section contains a universal lower bound for \interesting" Petri netproblems. The second section deals with upper bounds: for 1-safe Petri nets itis possible to give an almost universal upper bound, whereas the case of generalPetri nets is more delicate. The third section deals with equivalence problems:are two given nets equivalent with respect to a given equivalence notion? Upperand lower bounds are considered simultaneously. Finally, the fourth section givesinformation about how far one can go with polynomial time algorithms.Only some of the results mentioned in the paper are proved; for others thereader is referred to the literature. The results with a proof are those ful�llingtwo conditions: they are very general, applicable to a variety of problems, andadmit relatively simple, non-technical proofs. I have devoted special e�ort topresenting proofs in the simplest possible way. My goal was to produce a paperthat could be read straight through from beginning to end. I don't know if thegoal has been achieved, but I tried my best.Table of Contents1 Introduction : 12 Preliminaries : 7

I 1-safe Petri nets 93 A universal lower bound : 94 A nearly universal upper bound : : : : : : : : : : : : : : : : : : : 134.1 Linear-time propositional temporal logic 144.2 Computation Tree Logic . 204.3 An exception . 264.4 A remark on action-based temporal logics 265 Deciding equivalences : 276 Can anything be done in polynomial time? : : : : : : : : : : : : 29II General Petri nets 317 A universal lower bound : 318 Upper bounds : 408.1 The state-based case . 418.2 The action-based case . 439 All equivalence problems are undecidable : : : : : : : : : : : : 459.1 Partial-order equivalences are also undecidable 5010 Can anything be done in polynomial time? : : : : : : : : : : : : 5011 Conclusions : 522 PreliminariesWe assume that the reader is acquainted with the basic notions of net theory,like �ring rule, reachable marking, liveness, boundedness, etc., and also withother basic computation models like Turing machines. This section just �xessome notations.Petri nets. A net is a triple N = (S; T; F), where S and T are �nite sets of placesand transitions, and F � (S � T) [(T � S) is the ow relation. We identify Fwith its characteristic function (S�T)[(T �S)! f0; 1g. The preset and postsetof a place or transition x are denoted by �x and x�, respectively. Given a setX � S [T , we denote �X = Sx2X �x and X� = Sx2X x�. A marking is amapping M :S ! IN . A (Place/Transition) Petri net is a pair N = (N ;M0),where N is a net and M0 is the initial marking. A transition t is enabled at amarking M if M(s) > 0 for every s 2 �t. If t is enabled at M , then it can �reor occur, and its �ring leads to the successor marking M 0 which is de�ned forevery place s by M 0(s) =M(s) + F (t; s)� F (s; t)The expression M t�! M 0 denotes that M enables transition t, and that themarking reached by the occurrence of t is M 0. A �nite or in�nite sequence

M0 t1�!M1 t2�!M2 � � � is called a �ring sequence. The maximal �ring sequencesof a Petri net (i.e., the in�nite �ring sequences plus the �nite �ring sequenceswhich end with a marking that does not enable any transition) are called runs.Given a sequence � = t1t2 : : : tn, M ��! M 0 denotes that there exist markingsM1;M2; : : : ;Mn�1 such that M t1�!M1 : : :Mn�1 tn�!M 0.A Petri net is 1-safe if M(s) � 1 for every place s and every reachablemarking M .We encode a net (S; T; F) as two jSj � jT j binary matrices Pre and Post .The entry Pre(s; t) is 1 if there is an arc from s to t, and 0 otherwise. The entryPost(s; t) is 1 if there is an arc from t to s, and 0 otherwise. The size of a netis the number of bits needed to write down these two matrices, and is thereforeO(jSj � jT j). The size of a Petri net is the size of the net plus the size of its initialmarking. Markings are encoded as vectors of natural numbers. The size of amarking is de�ned as the number of bits needed to write it down as a vector,where each component is written in binary. Observe that the size of a 1-safePetri net is O(jSj � jT j), since the initial marking has size O(jSj).A labelled net is a fourtuple (S; T; F; �), where (S; T; F) is a net and � is amapping that associates to each transition t a label �(t) taken from some givenset of actions Act . Given a 2 Act , we denote by M a�! M 0 that there is sometransition t such that M t�! M 0 and �(t) = a. A labelled Petri net is a pair(N ;M0), where N is a labelled net and M0 is the initial marking.Turing machines. In the paper we use single tape Turing machines with one-wayin�nite tapes, i.e., the tape has a �rst but not a last cell. For our purposes itsu�ces to consider Turing machines starting on empty tape, i.e., on tape con-taining only blank symbols. So we de�ne a (nondeterministic) Turing machineas a tuple M = (Q;�; �; q0; F), where Q is the set of states, � the set of tapesymbols (containing a special blank symbol), �: (Q � �) ! P(Q � � � fR;Lg)the transition function, q0 the initial state, and F the set of �nal states. Thesize of a Turing machine is the number of bits needed to encode its transitionrelation.Linearly and exponentially bounded automata. We work several times with Tur-ing machines that can only use a �nite tape fragment, or equivalently, with Tur-ing machines whose tape has both a �rst and a last cell. We call them boundedautomata. If a bounded automaton tries to move to the right from the last tapecell it just stays in the last cell.A function f : IN ! IN induces the class of f(n)-bounded automata, whichcontains for all k � 0 the bounded automata of size k that can use f(k) tapecells. Notice that we deviate from the standard de�nition, which says that anautomaton is f(n)-bounded if it can use at most f(k) tape cells for an inputword of length k. Since we only consider bounded automata working on emptytape, the standard de�nition is not appropriate for us. When f(n) = n andf(n) = 2n we get the classes of linearly bounded and exponentially boundedautomata, respectively.

Complexity classes and reductions. In the paper we use some of the most basiccomplexity classes, like P, NP, and PSPACE. We also use the class EXPSPACE,de�ned by4 EXPSPACE = [k�0DSPACE(2nk)We always work with polynomial reductions, i.e., given an instance x of a problemA we construct in polynomial time an instance y of a problem B. Many of theresults also hold for logspace reductions, or even log-lin reductions, but we donot address this point.PartI1-safe Petri netsWe study the complexity of analysis problems for 1-safe Petri nets. Given a 1-safe Petri net (N ;M0), where N = (S; T; F), we say that the possible markingsof N or just the markings of N are the set of markings that put at most onetoken in a place. Clearly, there are 2jSj possible markings. Each of the markingscan be identi�ed with the set of places marked at it. Observe that the size of amarking is linear in the size of the net.3 A universal lower boundIn this section we obtain a universal lower bound for the complexity of decidingwhether a 1-safe Petri net satis�es an interesting behavioural property:Rule of thumb 1:All interesting questions about the behaviour of 1-safe Petri netsare PSPACE-hard.Notice that a rule of thumb is not a theorem. There are behavioural propertiesof 1-safe Petri nets that can be solved in polynomial time. For instance, thequestion \Is the initial marking a deadlock?" can be answered very e�ciently;however, it is so trivial that hardly anybody would consider it really interesting.So a more careful formulation of the rule of thumb would be that all questionsdescribed in the literature as interesting are at least PSPACE-hard. Here are 14examples:{ Is the Petri net live?{ Is some reachable marking a deadlock?{ Is a given marking reachable from the initial marking?4 Notice that some books (for instance [1]) de�neEXPSPACE = Sk�0 DSPACE(k � 2n).

{ Is there a reachable marking that puts a token in a given place?{ Is there a reachable marking that does not put a token in a given place?{ Is there a reachable marking that enables a given transition?{ Is there a reachable marking that enables more than one transition?{ Is the initial marking reachable from every reachable marking?{ Is there an in�nite run?{ Is there exactly one run?{ Is there a run containing a given transition?{ Is there a run that does not contain a given transition?{ Is there a run containing a given transition in�nitely often?{ Is there a run which enables a transition in�nitely often but contains it only�nitely often?The PSPACE-hardness of all these problems is a consequence of one singlefundamental fact, �rst observed by Jones, Landweber and Lien in 1977 [24]:A linearly bounded automaton of size n can be simulated by a 1-safe Petri net of size O(n2). Moreover, there is a polynomial timeprocedure which constructs this net.The notion of simulation used here is very strong: a 1-safe Petri net simulatesa Turing machine if there is bijection f between con�gurations of the machineand markings of the net such that the machine can move from a con�guration c1to a con�guration c2 in one step if and only if the Petri net can move from themarking f(c1) to the marking f(c2) through the �ring of exactly one transition.Let A = (Q;�;�; �; q0; F) be a linearly bounded automaton of size n. Thecomputations of M visit at most the cells c1; : : : ; cn. Let C be this set of cells.The simulating Petri net N(A) contains a place s(q) for each state q 2 Q, aplace s(c) for each cell c 2 C, and a place s(a; c) for each symbol a 2 � and foreach cell c 2 C. A token on s(q) signals that the machine is in state q. A tokenon s(c) signals that the machine reads the cell c. A token on s(a; c) signals thatthe cell c contains the symbol a. The total number of places is jQj+n � (1+ j�j).The transitions of N(A) are determined by the state transition relation ofA. If (q0; a0; R) 2 �(q; a), then we have for each cell c a transition t(q; a; c) whoseinput places are s(q), s(c), and s(a; c) and whose output places are s(q0), s(a0; c)and s(c0), where c0 is the cell to the right of c (this signals that the tape headhas moved to the right) unless c is the last cell, in which case c0 = c. The last cellis an exception, because by assumption the machine cannot move to the rightfrom there. If (q0; a0; L) 2 �(q; a) then we add a similar set of transitions; thistime the �rst cell is the exception. The total number of transitions is at most2 � jQj2 � j� j2 � n, and so O(n2), because the size of A is O(jQj2 � j� j2).The initial marking of N(A) puts one token on s(q0), on s(c1), and on theplace s(B; ci) for 1 � i � n, where B denotes the blank symbol. The total sizeof the Petri net is O(n2).

It follows immediately from this de�nition that each move of A corresponds tothe �ring of one transition. The con�gurations reached by A along a computationcorrespond to the markings reached along its corresponding run. These markingsput one token in exactly one of the places fs(q) j q 2 Qg, in exactly one of theplaces fs(c) j c 2 Cg, and in exactly one of the places fs(a; c) j a 2 �g for eachcell c 2 C. So N(A) is 1-safe.In order to answer a question about a linearly bounded automaton A we canconstruct the net N(A), which is only polynomially larger than A, and solve thecorresponding question about the runs of A. For instance, the question \doesany of the computations of A terminate?" corresponds to \has the Petri netN(A) a deadlock?"It turns out that most questions about the computations of linearly boundedautomata are PSPACE-hard. To begin with, the (empty tape) acceptance problemis PSPACE-complete:Given: a linearly bounded automaton A.To decide: if A accepts the empty input.Moreover, the PSPACE-hardness of this problem is very robust: it remainsPSPACE-complete if we restrict it to{ deterministic bounded automata,{ bounded automata having one single accepting state,{ bounded automata having one single accepting con�guration.Many other problems can be easily reduced to the acceptance problem inpolynomial time, and so are PSPACE-hard too. Examples are:{ does A halt?,{ does A visit a given state?,{ does A visit a given con�guration?{ does A visit a given con�guration in�nitely often?We obtain in this way a large variety of PSPACE-hard problems. Since N(A)is only polynomially larger than A, all the corresponding Petri net problems arePSPACE-hard as well. For instance, a reduction from the problem \does Aever visit a given con�guration?" proves PSPACE-hardness of the reachabilityproblem for 1-safe Petri nets. Furthermore, once we have some PSPACE-hardproblems for 1-safe Petri nets we can use them to obtain new ones by reduction.For instance, the following problems can be easily reduced to the problem ofdeciding if there is a reachable marking that puts a token on a given place:{ is there a reachable marking that concurrently enables two given transitionst1 and t2?{ can a given transition t ever occur?{ is there a run containing a given transition t in�nitely often?

13 out of the 14 problems at the beginning of the section (and many others)can be easily proved PSPACE-hard using these techniques. The liveness problem,the �rst in our list, is a bit more complicated. The interested reader can �nd thereduction in [2].The solution to Story IIIRecall the conjecture of Story III: Let N = (S; T; F) be a net, and let M0 andM be markings of N such that the Petri net(N ;M0) is 1-safe. M is reachablefrom M0 in N if and only if there exists a mapping X :T ! IN satisfying thefollowing three properties:(1) for every place s, M(s) =M0(s) +Pt2T (F (t; s)� F (s; t)) �X(t),(2) every nonempty siphon of NTX is marked at M0, and(3) every nonempty trap of NTX is marked at M .where TX is the set of transitions t such that X(t) > 0.We show that if the conjecture is true, then the reachability problem for1-safe Petri nets belongs to NP. Since we know that this problem is PSPACE-hard, the truth of the conjecture implies NP=PSPACE, which is highly unlikely.So, very probably, the conjecture is false; one should look for a counterexampleinstead of trying to prove it.We need a well-known result (see for instance [16]):There is a polynomial time nondeterministic algorithm Feasible(S) forthe problem of deciding if a system of linear equations S with integercoe�cients has a solution in the natural numbers.It is easy to decide if every siphon of a net N is marked at a given markingM . The following (deterministic) algorithm, due to Starke [33, 5], does it foryou. It �rst computes the largest siphon R contained in the set of places notmarked at M . Clearly, all nonempty siphons are marked at M if and only if Ris empty. Algorithm All Siphons Marked(N , M):variable: R of type set of places;beginR := set of places of N unmarked under M ;while there is s 2 R and t 2 �s such that t =2 R� doR: = R n fsgod;if R = ; then return trueelse return falseend

The algorithm All Traps Marked is very similar: just change the loop condi-tion to: there is s 2 R and t 2 s� such that t =2 �R. Clearly, these two algorithmsrun in polynomial time.The following nondeterministic algorithm checks conditions (1), (2) and (3).It �rst guesses the set TX of transitions, and checks that (2) and (3) hold. Then,it checks if condition (1) holds for a vectorX such that TX = ft 2 T j X(t) > 0g.For that, it checks if the system of equations S containing the equations ofcondition (1) plus the equation X(t) � 1 for every t 2 TX , and the equationX(t) = 0 for every t 2 T n TX has a solution.Algorithm Check Conditions(N , M0, M):beginguess a subset of transitions TX of N ;if All Siphons Marked(NTX , M0)and All Traps Marked(NTX , M)and Feasible(S)then return true �endSince the system of equations S has linear size in the net N , Feasible(S) runs inpolynomial time in the size of the net. So Check Conditions runs in polynomialtime, and the problem of checking if conditions (1), (2), and (3) hold belongs toNP.Remark Even if we didn't know about the All Siphons Marked algorithm, wecould still conclude that the conjecture is probably false. Only from the exis-tence of the procedure Feasible(S) we can already conclude that the reachabilityproblem for 1-safe nets belongs to �P2 , the second level of the polynomial-timehierarchy (see for instance [1]). The general opinion of complexity theorists isthat �P2 = PSPACE is almost as unlikely as NP=PSPACE.4 A nearly universal upper boundIn this section we obtain a nearly universal upper bound matching the PSPACE-hard lower bound of the last section:Rule of thumb 2:Nearly all interesting questions about the behaviour of 1-safe Petrinets can be decided in polynomial space.Observe that the rule of thumb says \nearly all" and no longer \all". Thereason is that the literature contains at least one interesting question requiringmore than polynomial space. This exception to the rule is described at the endof the section.

We substantiate the rule of thumb with the help of temporal logics. Sincetheir �rst application to computer science in the late seventies by Pnueli andothers, temporal logics have become the standard query languages used to ex-press properties of reactive and distributed systems. A good introduction to theapplication of temporal logics to computer science can be found in [6].Temporal logics can be linear-time and branching-time: linear-time logics areinterpreted on the single computations of a system, while branching-time logicsare interpreted on the tree of all its possible computations. The most popularlinear and branching-time temporal logics are LTL (linear-time propositionaltemporal logic) and CTL (computation tree logic). Most of the safety and live-ness properties of interest for practitioners, like deadlock-freedom, reachability,liveness (in the Petri net sense), starvation-freedom, strong and weak fairness,etc. can be expressed in LTL or in CTL (often in both).We show that all the properties expressible in LTL and CTL can be decidedin polynomial space. Actually, we even show that they can be uniformly decidedin polynomial space, i.e., we prove that the degree of the polynomial does notdepend on the property we consider. More precisely, let jN j denote the size of aPetri net N , and let j�j denote the length of a formula � (its number of symbols).For each of LTL and CTL we give an algorithm that accepts as input a Petrinet N and a formula �, and answers \yes" or \no" according to whether the netsatis�es the formula or not; the algorithm uses O(p(jN j+ j�j)) space, where p isa polynomial independent of N and �.4.1 Linear-time propositional temporal logicThe formulas of LTL are built from a set Prop of atomic propositions, and havethe following syntax:� ::= p 2 Prop:��1 ^ �2X� (� holds at the next state)�1U�2 (�1 holds until �2 holds)Usual abbreviations are true = p _ :p, F� = trueU� (eventually �), andG� = :F:� (always �).LTL formulas are interpreted on computations. A computation is a �nite orin�nite sequence � = P (0)P (1)P (2) : : : of sets of atomic propositions. Intuitively,P (i) is the set of propositions that hold in the computation after i steps. For acomputation � and a point i in the computation, we have that:

�; i j= p iff p 2 P (i)�; i j= :� i� not(�; i j= �)�; i j= �1 ^ �2 iff �; i j= �1 and �; i j= �2�; i j= X� iff there exists a point i+ 1 in the computation, and�; i+ 1 j= ��; i j= �1U�2 iff for some j � i, we have �; j j= �2 andfor all k, i � k < j, we have �; k j= �1We say that a computation � satis�es a formula �, denoted � j= �, if �; 0 j= �.The atomic propositions are intended to be propositions on the states of asystem. They can only be chosen after the class of systems on which the logic is tobe applied has been �xed. In the case of 1-safe Petri nets the states of the systemare the markings, and so the atomic propositions are predicates on the possiblemarkings of the net. It is then natural to have one atomic proposition per place.The markings satisfying the atomic proposition s are those that put a tokenin s. Observe that a computation is now a sequence of sets of places, and so asequence of markings. In particular, the sequences of markings obtained from theruns of N by removing the intermediate transitions are computations. Abusinglanguage, we also call these particular computations runs. We now de�ne thata Petri net N satis�es � if all its runs satisfy �. Here are some LTL formulasthat can be interpreted on the Petri net of Figure 1, which models a variationof Lamport's 1-bit mutual exclusion algorithm for two processes [26]:(1) All runs are in�nite (true for the net of Figure 1): GXtrue.(2) All runs mark place cs1 in�nitely often (false): GFcs1.(3) In all runs, if place req1 becomes marked then place cs1 will eventuallybecome marked (true): G(req1) Fcs1).Formula (1) expresses deadlock-freedom; formula (3) expresses that the re-quests of the �rst process to the critical section are eventually granted.The model-checking problem for LTL and 1-safe Petri nets consists of, givena 1-safe Petri net N and a formula �, deciding whether N satis�es � or not.The solution to the model-checking problem we give here makes use of au-tomata theory. We have to introduce automata on in�nite words. Let A =(�;Q; q0; �; F) be a nondeterministic automaton, where � is a �nite alphabet,Q is a �nite set of states, q0 is the initial state, � � Q�� �Q is the transitionrelation, and F is a set of �nite states. The language of A, denoted by L(A), isde�ned as the set of �nite words accepted by A. We de�ne now the language ofin�nite words accepted by A, which we denote by L!(A). A word w = a0a1a2 : : :belongs to L!(A) if there is an in�nite sequence of states q0q1q2 : : : such that(qiaiqi+1) 2 � for every i � 0.When we are interested in the language of in�nite words of an automaton,then we call it B�uchi automaton.We have the following important result:

req_1

cs_1

idle_1

req_2

cs_2

idle_2

First process Second process

id_1

nid_1

id_2

Fig. 1. A Petri net model of Lamport's 1-bit mutex algorithmGiven an LTL formula �, one can build a �nite automaton A�and a B�uchi automaton B� such that L(A�) [L!(B�) is exactlythe set of computations satisfying the formula �.Since computations are sequences of sets of atomic propositions, the alphabetof the automata A� and B� is the set 2Prop . In our case Prop is the set of placesof the net, and so the alphabet of the automata is the set of all markings.The construction of A� and B� exceeds the scope of this paper (see forinstance [37]). For our purposes, it su�ces to know the following facts:{ The states of A� are sets of subformulas of �; the states of B� are pairs of setsof subformulas of �. Since there are exponentially many sets of subformulas,A� and B� may have exponentially many states in j�j.{ Given two states q1; q2 of A� or B� and a markingM , there is an algorithmwhich decides using polynomial space whether (q1;M; q2) 2 ��.We also need two automataAN = (2S ; QN ; q0N ; �N ; FAN) andBN = (2S ; QN ; q0N ; �N ; FBN)obtained from the Petri net N , as follows:{ QN is the set of reachable markings of N ;{ q0N is the initial marking M0;{ �N contains the triples of markings (M1;M1;M2) such that M1 t�!M2 forsome transition t;

{ FAN is the set of deadlocked reachable markings of N ;{ FBN = Q, i.e., FBN is the set of reachable markings of N .Loosely speaking, both automata correspond to the reachability graph of N ,with the peculiarity that edges are labelled with the marking they come from.AN and BN di�er only in their �nal states. Clearly, L(AN) is the set of all �niteruns of N , and L!(BN) the set of all in�nite runs.In order to solve the model-checking problem for input N , �, let A bethe product of the automata A:� and AN , and let B be the product of theautomata B:� and BN , where the product (�;Q; q0; �; F) of two automata(�;Q1; q01; �1; F1) and (�;Q2; q02; �2; F2) is de�ned in the usual way:Q = Q1 �Q2q0 = (q01; q02)� = f((q1; q2); a; (q01; q02)) j (q1; a; q01) 2 �1 and (q2; a; q02) 2 �2gF = F1 � F2Clearly, we have L(A) = L(A:�) \ L(AN) and L!(B) = L!(B:�) \ L!(BN).5So the union of L(A) and L!(B) is the set of runs of N that do not satisfy �; inother words, N satis�es � if and only if L(A) = ; and L!(B) = ;.We have reduced the model checking problem to the following one: Given Nand �, decide if L(A) and L!(B) are empty. We have to solve this problem usingonly polynomial storage space in the size of N and �. The �rst natural idea isto construct A and B, and then use the standard algorithms for emptiness ofautomata for �nite and in�nite words. Unfortunately, both A and B may haveexponentially many states in jN j and j�j.At this point, complexity theory helps us by means of Savitch's construction.Recall that a nondeterministic decision procedure for a problem is an algorithmwhich can return \yes" or fail, and satis�es the following property: the answerto the problem is \yes" if and only if some (not necessarily all) execution ofthe algorithm returns \yes". A deterministic decision procedure always answers\yes" or "no\.Savitch's construction:Given a nondeterministic decision procedure for a given problemusing f(n) space, Savitch's construction yields a deterministic pro-cedure for the same problem using f2(n) space.This construction makes our life easier: it su�ces to give a nondeterministicalgorithm for the emptiness problem of A and B running in polynomial space.Actually, it also su�ces to give a nondeterministic algorithm for the nonempti-ness problem: by Savitch's construction there exists a deterministic algorithm5 The product of two B�uchi automata doesn't always accept the intersection of thelanguages, but this is so in our case.

for the nonemptiness problem, and by reversing the answer of this algorithm weobtain another one for the emptiness problem.The nondeterministic algorithm for the nonemptiness problem constructs Aand B \on the y". The algorithm keeps track of a current state of A or B,which is initially set to the initial state. The algorithm repeatedly guesses a nextstate, checks that there is a transition leading from the current state to the nextstate, and updates the current state. In the case of A, the algorithm returns\true" when (and if) it reaches a �nal state:Algorithm Nonempty A(N , �)variables: q of type state of A:�;M of type state of AN (i.e., of type marking);begin(q;M) := (q0:�;M0);while (q;M) is not a �nal state of A dochoose a state q0 of A:� such that (q;M; q0) 2 �:�and a marking M 0 such that M t�!M 0 for some transition t;(q;M) := (q0;M 0);od;return trueendIn order to estimate the space used by Nonempty A, observe that all theoperations and tests can be performed in polynomial space. For that, recall thatgiven two states q1; q2 2 Q:� and M 2 2S , there is an algorithm which decidesusing polynomial space whether (q1;M; q2) 2 �:�. The algorithm needs to storeone state q of A:� and a marking M of N . Since the states of A:� are sets ofsubformulas of �, q has quadratic size in j�j. Since M has linear size in jN j,polynomial space su�ces.The case of B is a bit more complicated. Since B has �nitely many states,L!(B) is nonempty if and only if there exists a reachable �nal state q such thatthere is a loop from q to itself. So the algorithm proceeds as in the case of A,but, at some point, it guesses that the current �nal state will be revisited; itthen stores the current state to be able to check if the guess is true. The rest ofthe algorithm checks the guess nondeterministically.Algorithm Nonempty B(N , �):variables: M;Mr of type state of BN (i.e., of type marking);q; qr of type state of B:�;ag of type boolean;

begin(q;M) := (q0:�;M0); flag := false ;while ag = false dochoose a state q0 of A:� such that (q;M; q0) 2 �:�and a marking M 0 such that M t�!M 0 for some t;(q;M) := (q0;M 0);if (q;M) is a �nal state thenchoose between flag := false and flag := true�od;(qr;Mr) := (q;M);repeatchoose a state q0 of A:� such that (q;M; q0) 2 �:�and a marking M 0 such that M t�!M 0 for some t;(q;M) := (q0;M 0)until (q;M) = (qr;Mr);return trueendAgain, Nonempty B(N , �) uses only polynomial space. Since the deter-ministic algorithm obtained after the application of Savitch's construction toNonempty A and Nonempty B also needs polynomial space, the model-checkingproblem for LTL belongs to PSPACE.Observe that the only properties of 1-safe nets we have used in order toobtain this result are:{ a state has polynomial size (actually, even linear) in jN j, and{ given two markings M;M 0, it can be decided in polynomial space if M t�!M 0 for some transition t.These conditions are very weak, and so the PSPACE result can be extendedto a number of other models. As observed in [35], conditions (1) and (2) holdfor other Petri net classes, like condition/event systems, elementary net systems,but also for process algebras with certain limitations to recursion, and for severalother models based on a �nite number of state machines communicating by�nite means. The conditions also hold for bounded Petri nets, assuming that thebound is also given to Nonempty A and Nonempty B as part of the input. Thisassumption is necessary, because the bound of a bounded Petri net (the maximalnumber of tokens a place can contain under a reachable marking) can be muchbigger than the size of the net, and so we may need more than polynomial spacein order to just write down a reachable marking.The PSPACE result can also be extended to more general logics, like thelinear-time mu-calculus, for which the translation into automata still works (seefor instance [4]).

4.2 Computation Tree LogicSome interesting properties of Petri nets cannot be expressed in LTL. An ex-ample is liveness (in the Petri net sense). Recall that a transition is live if itcan always occur again. One possibility to express this to allow existential oruniversal quanti�cation on the set of computations starting at a marking. CTLintroduces this quanti�cation on top of LTL's syntax The syntax of CTL is� ::= p 2 Prop:��1 ^ �2EX� existential next operatorAX� universal next operatorE[�1U�2] existential until operatorA[�1U�2] universal until operatorDisjunction and implication are de�ned as usual. Other abbreviations aretrue = p _ :p, EF� = E[trueU�] (possibly �), AG� = :EF:� (always �),AF� = A[trueU�] (eventually �) and EG� = :AF:� (� holds at every stateof some computation).CTL formulas are interpreted on computation trees, which are possibly in�-nite trees where each node n is labelled with a set of atomic propositions P (n).A path of a computation tree that cannot be extended to a larger path is calleda computation; notice that it is a computation in the LTL sense. The intuitionis that the nodes of the tree correspond to the states of a system; a state mayhave an arbitrary number of successors, corresponding to di�erent computations.P (n) is the set of atomic propositions that hold at node (state) n. For a tree �and a node n we have that:�; n j= p iff p 2 P (n)�; n j= :� iff not(�; n j= �)�; n j= �1 ^ �2 iff �; n j= �1 and �; n j= �2�; n j= AX� iff for every child n0 of n, �; n0 j= ��; n j= EX� iff for some child n0 of n, �; n0 j= �(n must have at least one child)�; n j= A[�1U�2] iff for all computations n = n0n1n2 : : :there exists i � 0 such that ni j= �2and for every j, 0 � j < i, nj j= �1�; n j= E[�1U�2] iff for some computation n = n0n1n2 : : :there exists i � 0 such that ni j= �2and for every j, 0 � j < i, nj j= �1If the tree � is clear from the context we shorten �; n j= � to n j= �. We saythat a tree � satis�es a formula � if root(�) j= �.Observe that AX� is equivalent to :EX:�, i.e., EX and AX are dualoperators. So actually we could remove AX from the syntax without losingexpressive power. It might seem that the existential and universal until operatorsare also dual of each other, but this is not true. The dual operator of the universal

until is the existential weak until, with syntax E[�1WU�2], and the followingsemantics: �; n j= E[�1WU�2] iff �; n j= E[�1U�2] _EG(�1)It holds that A[�1U�2] = :E[:�2WU:�1]In order to use CTL to specify properties of a 1-safe Petri net N , we chooseagain the places of N as atomic propositions. With this choice a computationtree is a tree of sets of places, and so a set of markings. We can associate to N acomputation tree �N as follows: the root is labelled with the initial markingM0;the children of a node labelled by M are labelled with the markings M 0 suchthat M t�! M 0 for some transition t. We say that N satis�es � if the tree �Nsatis�es �.The computation tree corresponding to the the net of Figure 1 is shown inFigure 2. Essentially, the tree is just the unfolding into a tree of the reachabilitygraph of the net. Di�erent nodes in the tree can be labelled with the same
{idle_1,id_1,idle_2,id_2}

{req_1,nid_1,idle_2,id_2} {idle_1,id_2,req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{cs_1,nid_1,
 idle_2,id_2}

{idle_1,id_1,
 cs_2,nid_2}

...Fig. 2. Computation tree of the Petri net of Figure 1marking, but all subtrees whose roots are labelled with the same marking areisomorphic. Given a formula � and a markingM , either all or none of the nodeslabelled by M satisfy �. So it makes sense to say that M satis�es �, meaningthat all nodes labelled by M satisfy �.Here are some CTL queries on the Petri net of Figure 1:{ No reachable marking puts tokens in cs1 and cs2 (true): AG(:cs1 _ :cs2).{ The output transition of the place req1 is live (true): AGEF (req1 ^ id 2).{ The initial marking is reachable from every reachable marking (true):AGEF (idle1 ^ id1 ^ id2 ^ idle2)){ Eventually place cs1 becomes marked (false): AFcs1{ There is a run that never marks cs2 (true): EG:cs2{ If req2 becomes marked, then eventually cs2 becomes marked (false):AG(req2) AFcs2)

We show that the model checking problem for CTL is in PSPACE. It followsfrom the discussion above that it su�ces to give a polynomial space algorithmfor the syntax� ::= s j :�1 j �1 ^ �2 j EX� j E[�1U�2] j E[�1WU�2]We give a (deterministic) algorithm Check(M , �) with a marking M and aformula � as parameters which answers \true" if M satis�es �, and \false"otherwise. The model-checking problem is then solved by Check(M0, �).Check(M , �) is a recursive procedure on the structure of �, i.e., Check(M ,Op(�1; : : : ; �n)), where Op is some operator of the logic, calls Check(M , �1),. . . , Check(M , �n).Algorithm Check(M , �):beginif � = s thenif M(s) = 1 then return true else return false �elseif � = :�1 then return not Check(M , �1)elseif � = �1 ^ �2 then return Check(M , �1) and Check(M , �2))elseif � = EX�1 thenfor every M 0 such that M t�!M 0 for some transition t doif Check(M 0, �1) then return true �odelseif � = E[�1U�2] then return EU(M , �1, �2)elseif � = E[�1WU�2] then return EWU(M , �1, �2)�endIt remains to de�ne the procedures EU(M , �1, �2) and EWU(M , �1, �2). Westart with EU(M , �1, �2).It is not possible to deterministically explore the in�nitely many computa-tions starting atM , and check directly if one of them satis�es �1U�2. The readermight feel tempted to give a nondeterministic algorithm which explores one ofthe computations, and then apply Savitch's technique. This seems to be a goodidea, but in fact doesn't work! There is a rather subtle problem. Consider theformulas �n = E[E : : : E[s0Us1] : : :]Usn�1]Usn]where s1; : : : ; sn are places. We obtain a checking algorithm �n through n appli-cations of Savitch's technique. It is easy to give a
(jN j)-space nondeterministicalgorithm for E[s0Us1]. Unfortunately, the deterministic algorithm obtained bySavitch's technique requires
(jN j2) space, the algorithm for E[E[s0Us1]Us2]
(jN j4) space, and the algorithm for �n no less than
(jN j2n) space. So thedegree of the polynomial in jN j depends on the formula we are considering.We proceed in a di�erent way. In a �st step we reduce the problem to theexploration of a �nite number of �nite paths. We extend the syntax of CTL withnew operators E[�1Ub�2], one for each natural number b. Loosely speaking, a

node satis�es E[�1Ub�2] if in at least one of the computations starting at it we�nd a node satisfying �2 after at most b steps, and all nodes before it satisfy �1.Formally:�; n j= E[�1Ub�2] iff for some computation n = n0n1n2 : : :there exists i, 0 � i � b� 1 such thatni j= �2 and nj j= �1 for every j, 0 � j < iIt follows immediately from this de�nition that if �; n satis�es E[�1Ub�2] forsome number b then it also satis�es E[�1U�2].Now, let n be an arbitrary node of �N , and let k be the number of places ofN . We prove n j= E[�1U�2] () E[�1U2k�2]It su�ces to prove that n j= E[�1U�2] implies n j= E[�1U2k�2]. Assume that nsatis�es E[�1U�2]. Then, �N contains a computation n = n0n1n2 : : : satisfying�1U�2: ni j= �1 for some i � 0 and nj j= �1 for every j, 0 � j < i. Ifi � 2k � 1, then this computation satis�es �1U2k�2, and so n j= �1U2k�2. Letus now consider the case i � 2k. Let M0M1M2 : : : be the sequence of markingscorresponding to n0n1n2 : : :. Since N is 1-safe and has k places, it has at most2k reachable markings. So there are indices j1 and j2, 0 � j1 < j2 � i, suchthat Mj1 = Mj2 . Since the markings labelling the successors of a node arecompletely determined but the marking labelling the node itself, �N containsanother computation starting at n0 and labelled byM0 : : :Mj1Mj2+1Mj2+2 : : :Loosely speaking, the sequence of markings of the new computation is obtainedfrom the old sequence by \cutting out" the pieceMj1+1 : : :Mj2 and \glueing" thetwo ends Mj1 and Mj2+1. In this new sequence the marking Mi appears at theposition i� (j2 � j1), and so closer to M0 than in the original computation. Wenow iterate the \cutting and glueing" procedure untilMi appears before the 2k -th position. The computation so obtained satis�es �1U2k�2, and so n j= �1U2k�2.So we have solved our �rst problem: instead of a potentially in�nite numberof computations, it su�ces to explore �nitely many paths containing at most2k nodes, and check that at least one of them satis�es �1U2k�2 (more precisely,that at least one of them can be extended to a computation satisfying �1U2k�2).We construct EU(M , �1, �2) with the help of another algorithm Path(M ,M 0, �, , l), still to be designed, with the following speci�cation:Path(M ,M 0, �, , l) returns \true" if and only if �N has a path n0 : : : nlsuch that{ n0 is labelled by M and nl is labelled by M 0,{ ni j= � for every i, 0 � i < l, and{ nl j= .We can take:

Algorithm EU(M , �1, �2)constant: k = number of places of N ;beginfor every marking M 0 of N and every 0 � l < 2k doif Path(M , M 0, �1, �2, l) then return trueod;return falseendSince each iteration of the for loop can reuse the same space, the space usedby EU(M , �1, �2) is the space used by Path(M ,M 0, �1, l) plus the space neededto storeM 0 and l. So Path(M ,M 0, �1, l) should use at most polynomial space forevery l < 2k. A backtracking algorithm, which would be the obvious choice, doesnot meet this requirement, because it stores all the nodes of the computationbeing currently explored having still unexplored branches, and there can beexponentially many of those.A trick frequently applied in complexity theory6 helps us out of the problem.Loosely speaking, for each reachable marking M 00, we explore all paths leadingfrom M to M 00 and containing d l2e+1 nodes, and then, reusing the same space,all paths leading from M 00 to M 0 and containing b l2c + 1 nodes. This trick ofsplitting the paths into two parts is applied recursively until paths having atmost 2 nodes are reached.Algorithm Path(M , M 0, �, , l)constant: k = number of places of N ;beginif l = 0 thenif M =M 0 and Check(M ,)then return true ��;if l = 1 thenif M t�!M 0 for some transition tand Check(M , �) and Check(M 0,)then return true ��;for every marking M 00 of N doif Path(M , M 00, �, true, d l2e) and Path(M 00, M , �, , b l2c)then return true �od;return falseendIn order to estimate the space complexity of Path(M , M 0, �, l), let c(�) bethe maximum over all markingsM of the space needed by Check(M , �), and let6 In fact, this trick lies at the heart of Savitch's technique.

p(�; ; l) be the maximum over all pairs of markingsM ,M 0 of the space neededby Path(M , M 0, �, , l). Then we havep(�; ; 0) = O(c())p(�; ; 1) = O(maxfc(�); c()gjN j)p(�; ; l) = O(maxfp(�; ; d l2e); p(�; ; b l2c)gjN j)and so, in particularp(�; ; 2k) = O(maxfc(�); c()g+ k � jN j) = O(maxfc(�); c()g+ jN j2)It remains to construct EWU(M , �1, �2). The interested reader can easilyprove that for every node n of �Nn j= E[�1WU�2] () E[�1WU 2k�2]where the semantics of E[�1WU b�2] is given by�; n j= E[�1WU b�2] iff n j= E[�1Ub�2] orthere exists a path n = n0n1n2 : : : nbsuch that ni j= �1 for every 0 � i � bSo we can takeAlgorithm EWU(M , �1, �2)constant: k = number of places of N ;beginif EU(M , �1, �2) then return trueelsefor every marking M 0 of N doif Path(M , M 0, �1, true, 2k) then return trueod;return falseendThis completes the de�nition of Check(M , �). It is easy to see that it runsin polynomial space in jN j and j�j, but let us determine the space complexity abit more precisely. We have:c(s) = O(jN j)c(�1 ^ �2) = O(maxfc(�1); c(�2)g+ jN j)c(:�) = O(c(�))c(E[�1U�2]) = O(p(�1; �2; 2k) + jN j)= O(maxfc(�1); c(�2)g+ jN j2)c(E[�1Uw�2]) = O(maxfc(E[�1U�2]); p(�1; true; 2k)g+ jN j)= O(maxfc(�1); c(�2)g+ jN j2)and so we �nally get c(�) = O(j�j � jN j2).

4.3 An exceptionThe most interesting exception to Rule of Thumb 2 is the controllability property.Let T0 be a subset of transitions of a 1-safe Petri net N = (S; T; F;M0), and lett 2 T nT0. We say that T0 controls t by a sequence � 2 T �0 if for every occurrencesequence M0 ��!M such that the projection of � onto T0 is �, the transition tcannot occur at M . The intuition is that T0 can control t in the sense that oncethe sequence � has occurred, possibly interleaved with transitions of T n T0, tcannot occur until transitions of T0 occur again. We say that T0 can control t ifT0 can control t by at least one sequence �.The controllability problem is de�ned as follows:Given: a 1-safe Petri net with a set T of transitions, T0 � T , t 2 T n T0To decide: if T0 can control t.Jones, Landweber and Lien show in [24] that controllability is EXPSPACE-complete.4.4 A remark on action-based temporal logicsWe have de�ned LTL and CTL as state-based logics, because in order to knowif a run satis�es a property one only needs information about the states { themarkings { visited during its execution, and not about which transitions leadfrom a marking to the next. It is possible to de�ne action-based versions of theselogics, in which the identities of the markings visited during the execution of arun is irrelevant, while the information is carried by the sequence of transitionsthat occur. These action-based versions are particularly useful for labelled Petrinets.The action-based version of LTL { tailored for labelled Petri nets { looksas follows: the set of basic propositions contains only one element, namely theproposition true. The operators X and U are replaced by a set of relativisedoperators XK , UK , where k is a subset of a certain �nite set of actions Act. Acomputation is now a �nite or in�nite sequence � = a0a1a2 : : : of actions. Let�(i) = aiai+1 : : :. We have:� j= true always� j= XK� iff � 6= �, a0 2 k, and �(1) j= �� j= �1UK�2 iff for some j � 0 we have �(j) j= �2 andfor all k, 0 � k � j, we have ai 2 k and �(k) j= �1In order to interpret the logic on a 1-safe labelled Petri net N , we choose Actas the set of labels carried by the transitions of N . We say that N satis�es aformula � if all the sequences of transition labels obtained from the runs of Nby removing the markings satisfy �.Similarly, in the action-based version of CTL the operators of the logic EX ,AX , E[: : : U : : :], and A[: : : U : : :] are replaced by sets of relativised operators

EXK , AXK , E[: : : UK : : :], and A[: : : UK : : :]. Computation trees are now treeswhose edges are labelled with actions. The semantics is exactly what one expects.It is easy to prove that the model-checking problem for these two new logicscan be reduced to the model-checking problem for their state-based versions.More precisely: given a labelled 1-safe Petri net N and a formula � of action-based LTL (CTL), one can construct in polynomial time an unlabelled 1-safePetri net N 0 and a formula �0 of state-based LTL (CTL) such that N satis�es �if and only if N 0 satis�es �0. It follows that the model-checking problem for theaction-based LTL and CTL is also in PSPACE.In Section 8 we study the model checking problems for temporal logics andarbitrary Petri nets. There, the distinction between state-based and action-basedlogics plays a much more important rôle.5 Deciding equivalencesIn this section we investigate the complexity of deciding if two labelled 1-safePetri nets are equivalent with respect to a given equivalence notion.Since the early eighties many di�erent equivalence notions have been pre-sented in the literature. Van Glabbeek has classi�ed them in several papers, e.g.[36]. Most of these equivalences �t between the so-called trace equivalence, whichis a process theory counterpart of the classical language equivalence used in for-mal language theory, and bisimulation equivalence. An equivalence notion X �tsbetween trace and bisimulation equivalence if bisimilar systems are X-equivalent,and X-equivalent systems are trace equivalent.Trace and bisimulation equivalences are de�ned as follows. Let N be a la-belled Petri net, where transitions are labelled with the elements of a set ofactions Act. The set of traces of N , denoted by T (N) is the set of wordsa1 : : : an 2 Act� such that there exist markings M1; : : :Mn satisfying M0 a1�!M1 a2�! : : : an�!Mn7. Two Petri nets N1 and N2 are trace equivalent if T (N1) =T (N2).A relation R between the sets of markings of two nets is a (strong) bisimu-lation if for every pair (M1;M2) 2 R and for every action a 2 Act ,{ if M1 a�!M 01, then M2 a�!M 02 for some markingM 02 such that (M 01;M 02) 2R, and{ if M2 a�!M 02, then M1 a�!M 01 for some markingM 01 such that (M 01;M 02) 2R.Two Petri nets N1 and N2 are (strongly) bisimilar if there exists a (strong)bisimulation R containing the pair (M01;M02) of initial markings of N1 and N2.We have the following7 Recall: M a�!M 0 denotes that there is a transition t labelled by a such that M t�!M 0.

Rule of thumb 3:Equivalence problems for 1-safe Petri nets are harder to solvethan model-checking problems, but they need at most exponentialspace.We provide a �rst piece of evidence for this rule of thumb by showing thatthe equivalence problem for 1-safe Petri nets and any equivalence notion �ttingbetween trace and bisimulation equivalence is PSPACE-hard. It turns out that allthe concrete equivalences mentioned in the literature have at least DEXPTIME-hard equivalence problems, and so this general PSPACE-hardness lower boundcan possibly be improved.We proceed by reduction from the following PSPACE-hard problemGiven: a 1-safe Petri net N , a place s of NTo decide: if some reachable marking of N puts a token on s.We start by labelling each transition of N with the same label, say a. N isnow a labelled net. We put N side by side with the labelled net N 0 consisting of aloop containing one single place marked with one token and one single transitionlabelled by a. We denote the resulting Petri net by N k N 0.Now, we consider two labelled nets. The �rst one is N k N 0; the second is asmall modi�cation of it obtained by adding a new output transition to the places of N . The new transition has s as unique input place, no output places, andcarries a label di�erent from a, say b.The following holds:{ If some reachable marking puts a token on s, then the two nets are not traceequivalent: the second one can do a b, while the �rst one can't.{ If no reachable marking puts a token on s, then the two nets are bisimilar:the relation containing all pairs (M1;M2), where M1 is a reachable markingof the �rst net and M2 a reachable marking of the second net, is clearly abisimulation.Therefore, given any equivalence notion X �tting between trace and bisimula-tion equivalence, we can solve the PSPACE-hard problem above by constructingthe two nets and deciding if they are X-equivalent. So the equivalence problemfor any such notion is PSPACE-hard.Apart from this little result, the real evidence supporting the rule of thumbabove is the work of Rabinovich [31] and Jategaonkar and Meyer [23]. This lastpaper contains a table with the complexity of 18 equivalence notions. Bisimilarityand many variants of it are DEXPTIME-complete, while trace equivalence, fail-ures equivalence, and several variants of them are EXPSPACE-complete. Theyalso consider so-called partial order equivalences, for which the concurrent execu-tion of two actions is not equivalent to their interleaved execution (i.e., a systemthat executes a and b in parallel is not considered to be equivalent to a systemwhich chooses between executing a and then b, or b and then a). The complexityresults (up to some open problems) are similar.

6 Can anything be done in polynomial time?We have seen that all interesting problems for arbitrary 1-safe Petri nets are atleast PSPACE-hard, and so that there is very little hope of �nding polynomialalgorithms for them. The natural question to ask is if there are important sub-classes of 1-safe Petri nets for which one could solve at least some problems inpolynomial time. In this section we get some general answers in the form of rulesof thumb.A �rst rule, which tends to be surprising for many people isRule of thumb 4:Most interesting questions about the behaviour of acyclic 1-safePetri nets are NP-hard.Here, as in Section 3, a word of warning is required about the meaning of\interesting". Liveness is certainly an interesting question for arbitrary 1-safenets, but not for the acyclic ones: 1-safe acyclic Petri nets are always non-live,because no transition can �re more than once. Interesting questions for 1-safeacyclic Petri nets, all of them NP-hard, are{ Is a given marking reachable from the initial marking?{ Is there a reachable marking which marks a given place?{ Is there a reachable marking which does not mark a given place?{ Is there a reachable marking which enables a given transition?{ Is the initial marking reachable from every reachable marking?{ Is there a run containing a given transition?{ Is there a run that does not contain a given transition?Let us prove NP-hardness of the second problem: Is there a reachable markingwhich marks a given place? We present a polynomial time construction whichassociates to a boolean formula in conjunctive normal form an acyclic 1-safe Petrinet. The net nondeterministically selects a truth assignment for the variables ofthe formula, and then checks if the formula is true under the assignment. Theconstruction is illustrated in Figure 3 by means of an example.It seems8 that in order to obtain classes with polynomial decision algorithmsone has to impose local constraints on the net's structure. Here \local constraint"means a constraint which can be shown not to hold by looking at only a smallpart of the net. For instance, \every transition has exactly one input place" isa local constraint; if the constraint does not hold, then one can always point ata particular transition in the net, together with its input places, and show thatthe constraint is not satis�ed because of this transition. A constraint like \thenet is acyclic" is not local, because the smallest circuit of the net may be thenet itself.The two following local constraints have been very intensely studied in theliterature:8 Although I don't know of any formal proof.

A A A

C

C

C

1

1

1 2 31 2 3

2

2

3

3

- - -x x xx x x

TrueFig. 3. Acyclic net corresponding to the formula (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3){ the conict-freeness constraint: s� � �s for every place s with more than oneoutput transition; in the case of 1-safe Petri nets this constraint is equivalentto \every place has at most one output transition" for nearly all purposes;{ the free-choice constraint: if (s; t) is an arc from a place to a transition, thenso is (s0; t0) for every place s0 2 �t and for every transition t0 2 s�.Unfortunately, it is not possible to summarise the results of the research onconict-free and free-choice Petri nets in a concise and general rule of thumb.But we can still say:Rule of thumb 5:Many interesting questions about 1-safe conict-free Petri nets aresolvable in polynomial time.Some interesting questions about live 1-safe free-choice Petri netsare solvable in polynomial time (and liveness of 1-safe free-choicePetri nets is decidable in polynomial time too).Almost no interesting questions for 1-safe net classes substantiallylarger than free-choice Petri nets are solvable in polynomial time.Among the \many" interesting polynomial questions for conict-free nets areall those that can be expressed in the fragment of CTL with syntax� ::= s j :� j �1 ^ �2 j EX� j EF�

(see [7]). Among the \some" interesting polynomial questions for live free-choicenets are the following [5]:{ Is there a reachable marking which marks a given place?{ Is there a reachable marking which does not mark a given place?{ Is there a reachable marking which enables a given transition?{ Is the initial marking reachable from every reachable marking?{ Is there a run that does not contain a given transition?Interestingly, the reachability problem for 1-safe live free-choice nets is NP-complete [8], and so it is unlikely that it will ever be added to this list.PartIIGeneral Petri netsIn this second part of the paper we consider arbitrary (�nite) Place/TransitionPetri nets. The possible markings of a net N or just the markings of N are nowthe set of all mappings S ! IN , where S is the set of places of N . Observe that,contrary to the 1-safe case, there is no a priori relation between the size of a netand the size of its markings. Notice also that the set of reachable markings maybe in�nite.7 A universal lower boundThis section is the counterpart of Section 3 for Place/Transition Petri nets. Therule of thumb is now:Rule of thumb 6:All interesting questions about the behaviour of (Place/Transition) Petrinets are EXPSPACE-hard. More precisely, they require at least 2O(pn)-space.In particular, all the questions we asked about 1-safe Petri nets can be refor-mulated for Petri nets, and turn out to have at least this space complexity. Asin the case of 1-safe Petri nets, this is a consequence of one single fundamentalfact:A deterministic, exponentially bounded automaton of size n can be sim-ulated by a Petri net of size O(n2). Moreover, there is a polynomial timeprocedure which constructs this net.

In order to answer a question about the computation of an exponentiallyspace bounded automaton A, we can construct the net that simulates A, whichhas size O(n2), and solve the corresponding question. If the original questionrequires 2n space, as is the case for many properties, then the correspondingquestion about nets requires at least 2O(pn)-space.The fundamental fact above was �rst proved by Lipton [27]. Mayr and Meyerproved in [29] that it is possible to make the simulating net reversible (a net isreversible if for each transition t there is a reverse transition t which \undoes"the e�ect of t). Since reversible nets are equivalent to commutative semigroups,the construction by Mayr and Meyer has important applications in mathematics.Since Mayr and Meyer's construction is more involved than Lipton's, andsince reversibility is not a main concern for this paper, we consider Lipton'sconstruction in detail. It would have been easier to refer to Lipton's paper, butunfortunately it only exists as an old Yale report, quite di�cult to �nd.Bounded automata and general Place/Transition Petri nets do not \�t" well.It is not appropriate to model a cell of a bounded automaton as a place, as wedid in the 1-safe case, because the cell contains one out of a �nite number ofpossible symbols, while the place can contain in�nitely many tokens, and so thesame information as a nonnegative integer variable. So we use an intermediatemodel, namely counter programs. It is well-known that so-called bounded counterprograms can simulate bounded automata (see below), and we show that Petrinets can simulate bounded counter programs.A counter program is a sequence of labelled commands separated by semi-colons. Basic commands have the following form, where l, l1, l2 are labels oraddresses taken from some arbitrary set, for instance the natural numbers, andx is a variable over the natural numbers, also called a counter:l: x := x+ 1l: x := x� 1l: goto l1 unconditional jumpl: if x = 0 then goto l1 conditional jumpelse goto l2l: haltA program is syntactically correct if the labels of commands are pairwisedi�erent, and if the destinations of jumps correspond to existing labels. Forconvenience we can also require the last command to be a halt command.A program can only be executed once its variables have received initial values.In this paper we assume that the initial values are always 0. The semantics ofprograms is that suggested by the syntax. The only point to be remarked is thatthe command l : x := x � 1 fails if x = 0, and causes abortion of the program.Abortion must be distinguished from proper termination, which corresponds tothe execution of a halt command. Observe in particular that counter programsare deterministic.A counter program C is k-bounded if after any step in its unique executionthe contents of all counters are smaller than or equal to k. We make use of awell known construction of computability theory:

There is a polynomial time procedure which accepts a determin-istic bounded automaton A of size n and returns a counter pro-gram C with O(n) commands simulating the computation of A onempty tape; in particular, A halts if and only if C halts. Moreover,if A is exponentially bounded, then C is 22n-bounded.Now, it su�ces to show that a 22n-bounded counter program of size O(n)can be simulated by a Petri net of size O(n2). This is the goal of the rest of thissection.Since a direct description of the sets of places and transitions of the simulatingnet would be very confusing, we introduce a net programming notation with avery simple net semantics. It is very easy to obtain the net corresponding toa program, and execution of a command corresponds exactly to the �ring of atransition. So we can and will look at the programming notation as a compactdescription language for Petri nets.A net program is rather similar to a counter program, but does not have thepossibility to branch on zero; it can only branch nondeterministically. However,it has the possibility of transferring control to a subroutine. The basic commandsare as follows: l: x := x+ 1l: x := x� 1l: goto l1 unconditional jumpl: goto l1 or goto l2 nondeterministic jumpl: gosub l1 subroutine calll: return end of subroutinel: haltSyntactical correctness is de�ned as for counter programs. We also assumethat programs are well-structured. Loosely speaking, a program is well-structuredif it can be decomposed into a main program that only calls �rst-level sub-routines, which in turn only call second-level subroutines, etc., and the jumpcommands in a subroutine can only have commands of the same subroutine asdestinations.9 We do not formally de�ne well-structured programs, it su�ces toknow that all the programs of this section are well-structured.We sketch a (Place/Transition) Petri net semantics of well-structured netprograms. The Petri net corresponding to a program has a place for each label,a place for each variable, a distinguished halt place, and some additional placesused to store the calling address of a subroutine call. There is a transition foreach assignment and for each unconditional jump, and two transitions for eachnondeterministic jump, as shown in Figure 4. We illustrate the semantics of thesubroutine command by means of the program9 Here we consider the main program as a zero-level subroutine, i.e., jump commandsin the main program can only have commands of the main program as destinations.

l

l l l

l

l l

l

l l l halt

l

l l

x x

1

1 1 2

1

1 1

: x:=x+1;
: ...

: x:=x-1;
: ...

l: goto l l: haltl: goto l
 or
 goto l

11

2Fig. 4. Net semantics of assignments and jumps1: gosub 4;2: gosub 4;3: halt;4: goto 5 or goto 6;5: return;6: returnThe corresponding Petri net is shown in Figure 5. Observe that the places1 calls 4 and 2 calls 4 are used to remember the address from which the subrou-tine was called.Clearly, the Petri net corresponding to a net program with k commands hasO(k) places and O(k) transitions, and its initial marking has size O(k). So it isof size O(k2).Let C be a 22n-bounded counter program with O(n) commands. We showthat C can be simulated by a net program N(C) with O(n) commands, whichcorresponds to a Petri net of size O(n2). Unfortunately, the construction ofN(C) requires quite a bit of low-level programming. But the reward is worththe hacking e�ort.The notion of simulation is not as strong as in the case of 1-safe Petri nets.In particular, net programs are nondeterministic, while counter programs aredeterministic. A net program N simulates a counter program C if the follow-

1

2

3

halt

return_4

4

5 6

1_calls_4

2_calls_4

Fig. 5. Net semantics of subroutinesing property holds: C halts (executes the command halt) if and only if somecomputation of N halts (other computations may fail).Each variable x of N (be it a variable from C or an auxiliary variable) hasan auxiliary complement variable x. N takes care of setting x = 22n at thebeginning of the program. We call the code that takes care of this Ninit(C).10The rest of N(C), called Nsim(C), simulates C and takes care of keeping theinvariant x = 22n � x.We design Nsim(C) �rst. This program is obtained through replacement ofeach command of C by an adequate net program. Commands of the form x :=x + 1 (x := x � 1) are replaced by the net program x := x + 1;x := x � 110 Recall that by de�nition all variables of N have initial value 0. Therefore, if we needx = 22n initially, then we have to design preprocessing code for it.

(x := x � 1;x := x + 1). Unconditional jumps are replaced by themselves. Letus now design a program Testn(x,ZERO, NONZERO)to replace a conditional jump of the forml: if x = 0 then goto ZEROelse goto NONZEROThe speci�cation of Testn is as follows:If x = 0 (1 � x � 22n), then some execution of the program leads toZERO (NONZERO), and no computation leads to NONZERO (ZERO); moreoverthe program has no side-e�ects: after any execution leading to ZERO orNONZERO no variable has changed its value.Actually, it is easier to design a program Test0n(x,ZERO, NONZERO) with thesame speci�cation but a side-e�ect: after an execution leading to ZERO, the valuesof x and x are swapped.11 Once Test0n has been designed, we can take:Program Testn(x, ZERO, NONZERO):Test0n(x, continue, NONZERO);continue: Test0n(x, ZERO, NONZERO)because the values of x and x are swapped 0 times if x > 0 or twice if x = 0,and so Testn has no side e�ects.The key to the design of Test0n lies in the following observation: Since x neverexceeds 22n , testing x = 0 can be replaced by nondeterministically choosing{ to decrease x by 1, and if we succeed then we know that x > 0, or{ to decrease x by 22n , and if we succeed then we know that x = 22n , and sox = 0.If we choose wrongly, that is, if for instance x = 0 holds and we try to decreasex by 1, then the program fails; this is not a problem, because we only have toguarantee that the programmay (not must!) terminate, and that if it terminatesthen it provides the right answer.Decreasing x by 1 is easy. Decreasing x by 22n is the di�cult part. We leave itfor a routine Decn to be designed, which must satisfy the following speci�cation:If the initial value of s is smaller than 22n , then every execution ofDecn fails. If the value of s is greater than or equal to 22n , then allexecutions terminating with a return command have the same e�ect ass := s � 22n ; s := s + 22n ; in particular, there are no side-e�ects. Allother executions fail.11 Executions leading to NONZERO must still be free of side-e�ects.

Test0n proceeds by transferring the value of x to a special variable s, and thencalling the routine Decn, which decreases s by 22n . In this way we need onesingle routine Decn, instead of one for each di�erent variable to be decreased,which leads to a smaller net program.Program Test0n(x, ZERO, NONZERO):** initially s = 0 and s = 22n **goto nonzero or goto loop;nonzero: x := x� 1; x := x+ 1; goto NONZERO;loop: x := x� 1; x := x+ 1; s := s+ 1; s := s� 1;goto exit or goto loopexit: gosub decn; goto ZERO** the routine called at decn is Decn(s) **It is easy to see that Test0n meets its speci�cation: if x > 0, then we maychoose the nonzero branch and reach NONZERO. If x = 0, then x = 22n . Afterlooping 22n times on loop the values of x, x and s, s have been swapped.The values of s and s are swapped again by the subroutine Decn, and thenthe program moves to ZERO. Moreover, if x = 0 then no execution reaches theNONZERO branch, because the program fails at x := x � 1. If x > 0, then noexecution reaches the ZERO branch, because s cannot reach the value 22n , andso Decn fails.The next step is to design Decn. We proceed by induction on n, starting withDec0. This is easy, because it su�ces to decrease s by 220 = 2. So we can takeSubroutine Dec0(s):s := s� 1; s := s+ 1;s := s� 1; s := s+ 1;returnNow we design Deci+1 under the assumption that Deci is already known. Thede�nition of Deci+1 contains two copies of a program Test0i, called with di�erentparameters. We de�ne this program by substituting i for n everywhere in Test0n.Test0i calls the routine Deci at the address deci. Notice that this is correct,because we are assuming that the routine Deci has already been de�ned.The key to the design of Deci+1 is that decreasing by 22i+1 amounts todecreasing 22i times by 22i , because22i+1 = (22i)2 = 22i � 22iSo decreasing by 22i+1 can be implemented by two nested loops, each of whichis executed 22i times, such that the body of the inner loop decreases s by 1. Theloop variables have initial values 22i , and termination of the loops is detected bytesting the loop variables for 0. This is done by the Test0i programs.

Subroutine Deci+1(s):** Initially yi = 22i = zi, yi = 0 = zi **** The initialisation is carried out by Ninit **outer loop: yi := yi � 1; yi := yi + 1;inner loop: zi := zi � 1; zi := zi + 1;s := s� 1; s := s+ 1;Test0i(zi, inner exit , inner loop);inner exit: Test0i(yi, outer exit, outer loop);outer exit: returnObserve also that both instances of Test0i call the same routine at the same label.It could seem that Deci+1 swaps the values of yi, yi and zi, zi, which would bea side-e�ect contrary to the speci�cation. But this is not the case. These swapsare compensated by the side-e�ects of the ZERO branches of the Test0i programs!Notice that these branches are now the inner exit and outer exit branches.When the program leaves the inner loop, Test0i swaps the values of zi and zi.When the program leaves the outer loop, Test0i swaps the values of yi and yi.This concludes the description of the program Testn, and so the descriptionof the program Nsim(C). It remains to design Ninit(C). Let us �rst make a listof the initialisations that have to be carried out. Nsim(C) contains{ the variables x1; : : : ; xl of C with initial value 0; their complementary vari-ables x1; : : : ; xl with initial value 22n ;{ a variable s with initial value 0; its complementary variable s with initialvalue 22n ;{ two variables yi; zi for each i, 0 � i � n � 1, with initial value 22i ; theircomplementary variables yi; zi for each i, 0 � i � n� 1, with initial value 0.Now, the speci�cation of Ninit(C) is simpleNinit(C) uses only the variables in the list above; every successful ex-ecution leads to a state in which the variables have the correct initialvalues.Ninit(C) calls programs Inci(v1, . . . , vm) with the following speci�cation:All successful executions have the same e�ect asv1 := v1 + 22i ;. . . ;vm := vm + 22iIn particular, there are no side-e�ects.These programs are de�ned by induction on i, and are very similar to the familyof Deci programs. We start with Inc0:

Program Inc0(v1; : : : ; vm):v1 := v1 + 1; v1 := v1 + 1;. . .vm := vm + 1; vm := vm + 1and now give the inductive de�nition of Inci+1:Program Inci+1(v1; : : : ; vm):** Initially yi = 22i = zi, yi = 0 = zi **outer loop: yi := yi � 1; yi := yi + 1;inner loop: zi := zi � 1; zi := zi + 1;v1 := v1 + 1;. . .vm := vm + 1;Test0i(zi, inner exit , inner loop);inner exit: Test0i(yi, outer exit, outer loop);outer exit: . . .It is easy to see that these programs satisfy their speci�cations. Now, let usconsider Ninit(C). Apparently, we face a problem: in order to initialise the vari-ables v1; : : : ; vm to 22i+1 the variables yi and zi must have already been initialisedto 22i ! Fortunately, we �nd a solution by just carrying out the initialisations inthe right order: Program Ninit(C):Inc0(y0; z0);Inc1(y1; z1);. . .Incn�1(yn�1; zn�1);Incn(s; x1; : : : ; xl)This concludes the description of N(C), and it is now time to analyse itssize. Consider Nsim(C) �rst. It contains two assignments for each assignmentof C, an unconditional jump for each unconditional jump in C, and a di�erentinstance of Testk for each conditional jump. Moreover, it contains (one singleinstance of) the routines Decn, Decn�1, . . . , Dec0 (notice that Testn calls Decn,which calls Decn�1, etc.). Both Testn and the routines have constant length. Sothe number of commands of Nsim(C) is O(n).Ninit(C) contains (one single instance of) the programs Inci 1 � i � n. Theprograms Inc1, . . . , Incn�1 have constant size, since they initialise a constantnumber of variables. The number of commands of Incn is O(n), since it initialisesO(n) variables.So we have proved that N(C) contains O(n) commands. It follows that itscorresponding Petri net has size O(n2), which concludes our presentation ofLipton's result.

The solution to Story IIRecall the conjecture of Story II: given a net N and two markings M1 and M2,if M2 is reachable from M1 then it is reachable from M1 through a sequenceM0 t0�! M1 t1�! � � � tn�! Mn = M such that all the markings M1; : : : ;Mn havesize O(n+m0 +m), where n;m0;m are the sizes of N , M0 and M respectively.Let c be the constant such thatM0; : : : ;Mn have size at most c �(n+m0+m).If the conjecture is true, then the following nondeterministic algorithm solves thereachability problem, since it may always answer \true" when M is reachable:Algorithm Reachable(N , M0, M):variable: M 0 of type marking;beginM 0 :=M0;while M 0 6=M dochoose a marking M 00 of size at most c � (n+m0 +m)such that M 0 t�!M 00 for some transition t;if there is no such marking then stop;M 0 :=M 00;od;return trueendSince the algorithm only visits markings of size c � (n +m0 +m), it runs inlinear space. By Savitch's construction there is a deterministic algorithm whichuses quadratic space. Since the reachability problem requires exponential space,the conjecture is false.8 Upper boundsThe general exponential space lower bound of the last section is almost the bestwe can hope for, because Racko� gave in [32] an almost matching exponentialspace upper bound for the covering and boundedness problems for Petri nets.More precisely, the upper bound is 2O(n logn) space, very close to the 2O(pn)lower bound. The covering problem consists of deciding if there exists a reachablemarking M such that M � M 0 for a given marking M 0, i.e., if there exists areachable markingM coveringM 0; the boundedness problem consists of decidingif the number of reachable markings is �nite.Yen showed some years later in [38] that the same upper bound holds for theproblem of deciding if there exists a �ring sequenceM0 �1�!M1 �2�! � � � �k�!Mk

satisfying a given predicate F (M1; : : : ;Mk; �1; : : : ; �k) constructed using the fol-lowing syntax:12 F ::=Mi(s) � c jMi(s) > cMi(s) �Mj(s0) jMi(s) �Mj(s0)#�i(t) � c j #�i(t) � c#�i(t) � #�j (t0) j #�i(t) � #�j (t0)F1 ^ F2 j F1 _ F2where s and s0 are places, t and t0 are transitions, c is a constant, and #�(t)denotes the number of times that t occurs in �. Both the covering and theboundedness problem can be reduced to Yen's problem. The covering problemfor a marking M = (m1; : : : ;mn) corresponds to deciding if there exists a �r-ing sequence M0 �1�! M1 such that M1(s1) � m1 ^ : : : ^M1(sn) � mn. Theboundedness problem can be easily shown to be equivalent to the problem ofdeciding if there exists a sequence M0 �1�! M1 �2�! M2 such that M1(s1) �M2(s1)^ : : :^M1(sn) �M2(sn). Observe however that the reachability problemcannot be reduced to Yen's problem, because the predicate M(s) = c does notbelong to the syntax. The reachability problem was shown to be decidable byMayr [28] and shortly after with a simpler proof by Kosaraju [25], but all knownalgorithms are non-primitive recursive. Closing the gap between the exponentialspace lower bound and the non-primitive recursive upper bound is one of themost relevant open problems of net theory.Is it possible to give more general results about the properties that are decid-able, and the properties that are decidable in exponential space? In particular,we would like to show that all the properties of a certain temporal logic aredecidable, or decidable in exponential space. As we are going to see, there isa very signi�cant di�erence between state-based logics and action-based logics,and so we consider them separately.8.1 The state-based caseWe have the following very general rule of thumb:Rule of thumb 7:The model-checking problems of all interesting state-based logicsare undecidable.As in the 1-safe case, we �rst have to choose a set of atomic propositions. Wetake again Prop = S, i.e., the atomic propositions are the places of N . We saythat a markingM satis�es the proposition s ifM is marked at s. Observe that acomputation is no longer a sequence of markings; a computation is a sequence of12 The syntax is actually a bit more general, see [38] for the details.

sets of places, as in the 1-safe case, but the markings of general Place/transitionnets are not sets of places anymore.With this choice of atomic propositions we can only express that a placeis marked or not; we can say nothing about the number of tokens it contains.Unfortunately, even with this restricted expressive power the model checkingproblems for LTL and CTL turn out to be undecidable.The proof is in both cases by reduction from the following problem, which isknown to be undecidable:Given: a counter program C with counters initialised to 0.To decide: if C halts.We simulate once again counter programs by net programs. Given a counterprogram C, we obtain a net programN 0(C) through replacement of each countercommand l: if x = 0 then goto l1 else goto l2by the net program l: goto test l1 or goto test l2;test l1: goto l1;test l2: goto l2while other commands are replaced by themselves.The net program N 0(C) simulates C in a much weaker sense than that ofSection 7. N 0(C) has a honest run that exactly mimics the (unique) executionof C: whenever C executes the command l, N 0(C) chooses the same branch asC. However, it also has many other runs that \cheat", i.e., runs that at somepoint choose the wrong branch. The labels test l1 and test l2 correspond totwo places of N 0(C) which can be used to test if the program has cheated or notwhen executing the conditional jump.Suppose that there exists a temporal logic formula Halt with the followingproperty:N 0(C) satis�es Halt if and only if the honest execution of N 0(C) halts.13Since the honest run exactly mimics the execution of the counter program C,N 0(C) satis�es Halt if and only if C halts. Therefore, the problem of deciding ifHalt is satis�ed by a given Petri net N is undecidable. It follows that the model-checking problem of those logics in which Halt was expressed is undecidable aswell.We construct in CTL and LTL very simple formulas LTL-Halt and CTL-Halt. We �rst de�ne a formula Cheat without temporal operators. Cheat is theconjunction over all conditional jumps l: if x = 0 then goto l1 else goto l2of the formulas:13 Since N 0(C) is just a shorthand description of a Petri net, it makes sense to ask ifN 0(C) satis�es a property formalised as a temporal formula.

(test l1 ^ x) _ (test l2 ^ :x)If a run visits a marking satisfying Cheat, then we know that it is dishonest: ifthe marking satis�es (test l1 ^ x), then at some conditional jump the run hastaken the l1 branch even though x > 0; if (test l2^:x), then the run has takenthe l2 branch even though x = 0. Now, we de�neLTL�Halt = F (Cheat _ halt)where halt is the place in the net semantics corresponding to all the halt com-mands. A run satis�es LTL-Halt if at some point it cheats or it halts. N 0(C)satis�es LTL-Halt iff every run satis�es LTL-Halt. Since the honest run is theonly one that doesn't cheat, N 0(C) satis�es LTL-Halt iff the honest run halts.The formula CTL-Halt is :CTL �Halt = AF (Cheat _ halt)It follows immediately from the semantics of formulae that N 0(C) satis�esCTL-Halt if and only if it satis�es LTL-Halt.Since the formula CTL-Halt only contains the operator AF , the fragment ofCTL that extends propositional logic with the operators EF and its dual AGcould still be decidable. Unfortunately, a di�erent proof [9] shows that this isnot the case.8.2 The action-based caseAs mentioned above, the action-based case is very di�erent from the state-basedcase:Rule of thumb 8:The model-checking problems of all interesting branching-time, action-based logics are undecidable. The model-checking problems of all inter-esting linear-time, action-based logics are decidable.The undecidability of branching-time logics in the action-based case is animmediate consequence of the following fact: given an unlabelled Petri net Nand a formula � of state-based CTL there is a labelled net N 0 and a formula �0of action-based CTL such that N satis�es � if and only if N 0 satis�es �0.The net N 0 is obtained by labelling the transitions of N with some label,say a, and then adding for each place s a new transition ts having s as onlyinput place, no output place at all, and labelled by s. The formula �0 is ob-tained through replacement of each atomic proposition s by EXstrue, and ofeach temporal operator EX , AX , E[: : : U : : :], A[: : : U : : :] by EXfag, AXfag,E[: : : Ufag:::], and A[: : : Ufag : : :], respectively. Observe that s holds iff the tran-sition ts can occur, i.e., iff EXstrue holds.

We cannot use the same technique to prove the undecidability of the model-checking problem for LTL, because the problem is decidable! As in the 1-safecase, the model-checking algorithm is based on automata theory. Given an LTLformula �, one can build a �nite automaton A� and a B�uchi automaton B� suchthat L(A�)[L!(B�) is exactly the set of computations satisfying the formula �.In the action-based case both A� and B� are automata over the alphabet Act.In the 1-safe case, given a net N and a formula �, we �rst constructed twoautomata A:� and B:� such that L(A:�) [L!(B:�) is exactly the set of com-putations violating the formula �. In the general case we proceed exactly in thesame way. The second step was to construct two �nite automata AN and BNfrom the Petri net N , which were both essentially equal to the reachability graphof the net. Here we have a problem: the automata AN and BN can be de�nedjust as in the 1-safe case, but since N may now have in�nitely many reachablemarkings, they are not guaranteed to be �nite.The solution to this problem is easy: instead of constructing two automataAN and BN out of the Petri net N , we construct two labelled Petri nets NA:�and NB:� out of the automata A:� and B:� in the following obvious way:{ the places of NA� are the states of A�;{ for each transition q a�! q0 in A� add a transition to NA�, labelled by a,with q and q0 as input and output place.NB� is constructed analogously. Now we construct the products N � NA� andN � NB�, where the product N1 �N2 of two Petri nets N1 and N2 is anotherPetri net de�ned in the following way:{ the set of places of N is the union of the sets of places of N1 and N2;{ for each pair of transitions t1 of N1 and t2 of N2 labelled by a same actiona, the product N contains a transition (t1; t2) also labelled by a; the input(output) places of (t1; t2) are the union of the input (output) places of t1and t2.The two following results are easy to prove:{ L!(BN) \ L(B�) 6= ; holds if and only if the Petri net N � NB� has a runwhich marks some place corresponding to a �nal state of B� in�nitely often.{ L(AN)\L(A�) 6= ; holds if and only if the Petri net N�NA� has a reachabledead marking which marks some place corresponding to a �nal state of A�.Finding a run of N�NB� that marks some place from a given set FS of �nalplaces in�nitely often is equivalent to deciding if there exists a �ring sequenceM0 �1�!M1 �2�!M2 �3�!M3 in the net N �NB� such that(ŝ2SM3(s) �M1(s)) ^ (_s2FSM2(s) � 1)where S denotes the set of all places. By Yen's result, introduced at the beginningof this section, the problem can be solved in exponential space in the size of

N �NB�. In a more detailed analysis [14], Habermehl shows that this problemis EXPSPACE-complete in the size of N and PSPACE-complete in the lengthof �.Finding a dead reachable marking of N �NA� that marks some place froma given set FS of �nal places can be reduced to and is at least as hard asthe reachability problem. Therefore, there exist so far no primitive recursivealgorithms for it.As in the 1-safe case, these results can be generalised to any logic for whichthe translation into automata theory holds [9].9 All equivalence problems are undecidableThis section's rule of thumb has a rather negative avour:Rule of thumb 9:All equivalence problems for Petri nets are undecidable.This rule is supported by a recent and very nice result due to Jan�car, showingthat every equivalence notion between trace and bisimulation equivalence is un-decidable for Petri nets.14 Jan�car himself has presented his result very clearly in[22]; here we do it in a slightly di�erent way. We proceed by reduction from theproblemGiven: a counter program C,To decide: if C halts (recall that all counters are initialised to 0).which is known to be undecidable.Although the result can be presented directly by constructing two Petri netsout of C (and this is the way the proof in [22] goes), we prefer to use again a netprogramming language with a very simple net semantics, this time a languageof guarded commands. A program is a sequence of instructions, and instructionsare expressions of the forml : [guard1 action1������! command1guard2 action2������! command2. . . guardn actionn������! commandn]where l is a label, action1, . . . , actionn are actions, a guard is either the specialstring true or a conjunction of expressions of the form x > 0 (no guards of theform x = 0 are allowed), and the possible commands are14 Actually, the result is a bit stronger, since bisimulation can be replaced by an even�ner equivalence.

skip , x := x+ 1 , x := x� 1 , goto l , haltOperationally, an instruction is executed as follows: one of the guards that eval-uate to true at the current state is nondeterministically selected (if no guardevaluates to true, the program aborts). Then, two things happen: the action ofthe selected guard is sent to the environment, and its command is executed (ifthe command is x := x � 1 and x = 0 holds, then the program aborts). If thecommand is a jump goto l, then execution continues at the instruction withlabel l. If the command is skip or an assignment, then execution continues withthe next instruction. An observer can only see the actions executed by the pro-gram, but not the values of its variables, or the label of the instruction beingcurrently executed.Guarded command programs can be easily translated into labelled Petri nets.Figure 6 shows the labelled net corresponding to the instruction1 : [x > 0 a�! x := x� 1true b�! x := x+ 1x > 0 ^ y > 0 a�! goto 3true c�! halt](where we assume that the instruction following 1 in the program is labelled by2). There is a place for each variable and each label, plus a special place halt.There is a transition for each alternative, labelled by the alternative's action.The semantics of a program is obtained by merging places of the nets corre-sponding to its instructions carrying the same label. We identify a program withits corresponding labelled Petri net. In particular, two programs are trace orbisimulation equivalent if their corresponding labelled nets are.
a

b

1

2

x

y
a

halt

c3Fig. 6. Net corresponding to an instruction

Given a counter programC, we construct two net programsN1(C) andN2(C)satisfying the following two properties:(1) if C halts, then N1(C) and N2(C) are not trace equivalent, and(2) if C does not halt, then N1(C) and N2(C) are bisimilar.For the proof of these properties it is very useful to characterise trace andbisimulation equivalences in terms of two-person games. We describe �rst thefeatures common to both trace and the bisimulation games. The board of thegames are the two programs N1(C) and N2(C) in their initial states. The gamesare played by two players, Alice and Bob, who alternate moves. Alice makes the�rst move. A move is the execution of (one of the alternatives of) an instructionin either N1(C) or N2(C), and is named after the action corresponding to theexecuted alternative. That is, an a-move is the execution of an alternative of theform guard a�! command. If Alice makes an a-move in one of the programs, thenBob can only answer with an a-move in the other program. It may help yourintuition to imagine that Alice wishes the programs to be non-equivalent, whileBob wishes them to be equivalent. The winner of a game is decided as follows:{ if Alice has no move available, then Bob wins;{ if Bob cannot answer to Alice's move, then Alice wins;{ if the game does not terminate, then Bob wins.If you �nd the idea of a non-terminating game awkward, think of chess with-out the 50-move rule. If a position with only the two kings on the board isreached, then the game goes on forever. In the trace and bisimulation games asituation like this is not a draw, but a win for Bob. Bob only wins after in�-nite time, which can make the game rather tedious, but that's his problem: thewinning condition is well de�ned, and every game has a winner.We describe now the di�erences between the trace and bisimulation games,which are surprisingly small. In a trace game, Alice chooses one of the programsat the beginning of the game, and makes all her moves in this program; Bobmust make all his moves in the other program. In a bisimulation game, Alicechooses one of the programs before each move, and makes her next move in thisprogram. For instance, in the bisimulation game Alice can make her �rst movein the �rst program (Bob must answer in the second), and her second move inthe second program (Bob must answer in the �rst).A strategy for a player is a function which gets the list of moves played so farand yields the player's next move. A strategy is winning if a player that sticksto it wins all games. We have the following nice result (see for instance [34]),which at least in the case of the trace game is intuitively very plausible:In the trace and bisimulation games for N1(C) and N2(C):if Alice has a winning strategy, then the two programs are equivalent; ifBob has a winning strategy, then the two programs are not equivalent.

So the properties (1) and (2) that N1(C) and N2(C) { both to be constructed{ have to satisfy can be reformulated as follows:(1) if C halts, then Alice has a winning strategy in the trace game, and(2) if C does not halt, then Bob has a winning strategy in the bisimulation game.It is time to start with the de�nition of N1(C) and N2(C). To make thingsa bit simpler, assume without loss of generality that the counter program Ccontains one single halt instruction, and that this instruction is the last one.15The programs N1(C) and N2(C) look as follows:Program N1(C):start: [true start����! y := y + 1];N 0(C);halt: [y > 0 halt����! halt] Program N2(C):start:[true start����! skip];N 0(C);halt: [y > 0 halt����! halt]where the program N 0(C) still has to be de�ned. Observe that the two programsdi�er only in the �rst instruction, and that after this instruction is executed, thevariable y has the value 1 in N1(C) and the value 0 in N2(C).The program N 0(C) is obtained by replacing each command of C but theunique halt command through an instruction of the new language. The instruc-tions corresponding to assignments and jumps are:l: x := x+ 1 is replaced by l: [true inc����! x := x+ 1]l: x := x� 1 is replaced by l: [true dec����! x := x� 1]l: goto l1 is replaced by l: [true jump����! goto l1]Conditional jumps are the delicate part. A command of the forml: if x = 0 then goto ZEROelse goto NONZEROis replaced by the following sequence of two instructions:l : [x > 0 nonzero������! goto NONZEROtrue zero����! skipx > 0 ^ y > 0 zero����! y := y � 1];l0: [true zero����! goto ZERO]This completes the description of N1(C) and N2(C). Before going on, we ob-serve that the program N 0(C) has an honest run that mimics the execution ofC, and looks as follows: whenever C executes a command, N 0(C) executes its15 If there are several halt instructions, we can replace them by jumps to a new labelat the end of the program, and place there a unique halt command.

corresponding instruction. If the command is a conditional jump and C takesthe NONZERO-branch, then N 0(C) chooses the nonzero alternative of the corre-sponding instruction; if C takes the ZERO branch, then N 0(C) chooses the �rstof the two zero alternatives, namely true zero����! skip, and then it executes thegoto ZERO instruction.There is an important di�erence between N1(C) and N2(C). Assume thatin both N1(C) and N2(C) we execute the start action, followed by the honestexecution of N 0(C). If and when the honest execution terminates, we can executethe halt action in N1(C), because y has been set to 1 by the start action, but wecannot execute it in N2(C), because y still has the value 0 there.We are now ready to describe the winning strategies for Alice and Bob in thedi�erent games.Assume that C halts. Here is the strategy for Alice in the trace game. Alicechooses to play on N1(C), and so Bob is forced to play on N2(C). Alice sticksto the following sequence of moves, completely disregarding Bob's answers: sheplays the start-move, continues with the moves of the honest execution of N 0(C),and { if the honest run terminates { �nishes with a halt-move.We show in the �rst place that, if Alice follows this strategy, then from thesecond move on Bob is forced to play exactly the same moves as Alice (i.e., exactlythe same alternatives in the same commands). When Alice plays a nonzeromove,Bob can only answer with a unique nonzero move, so this case is easy. WhenAlice plays a zero move, it seem as if Bob can choose between two zero-answers,namely true zero����! skip and x > 0 ^ y > 0 zero����! y := y � 1But remember: Alice is playing the honest run, and so she only plays a zero-movewhen x = 0. So, whenever Alice plays a zero move, Bob observes that the guardx > 0^y > 0 evaluates to false, and so that his only move is true zero����! skip.Let us now see that Alice's strategy is winning. Since C halts, the honest runterminates, and so eventually Alice plays a halt move.16 All along the game Bobhas patiently repeated Alice's moves, waiting for a chance, but his e�orts are invain: he cannot reply to Alice's halt move, because in his program N2(C) thevariable y has the value 0, and so the guard y > 0 of the halt move evaluates tofalse. So Bob loses.Assume that C does not halt. Here is the strategy for Bob in the bisimulationgame. Alice has to play the start move in one of the two programs, and Bob justreplies with the start move in the other program. Then, as long as Alice playsthe honest run of N 0(C) (possibly switching between the two programs), Bobpatiently repeats her moves in the other program.17 The �rst time (if at all) thatAlice deviates from the honest run by playing16 Incidentally, observe that Alice can indeed play halt, because she set y to 1 with herstart move, and she never touched y during the honest execution.17 He has no choice anyway!

x > 0 ^ y > 0 zero����! y := y � 1in one of the programs, Bob replies withtrue zero����! skipin the other program. After this move, Bob goes on playing exactly the samemoves as Alice.Let us see that Bob wins all games. If Alice sticks to the honest execution,then, since C does not halt, she never plays a halt-move. Since all other movescan be mimicked by Bob without problems, the game never terminates: a winfor Bob. So Alice's only chance to win is to deviate from the honest run at somepoint by playing x > 0 ^ y > 0 zero����! y := y � 1 at a marking in whichx > 0 { a cheat. But with this cheat she digs her own grave: she sets y to 0, andnow all variables have exactly the same value in N1(C) and N2(C)! Bob replaystrue zero����! skip, and after his move both programs are in exactly the samestate. So Bob wins by playing the same moves as Alice.9.1 Partial-order equivalences are also undecidableAs we mentioned in Section 5, the literature contains many so-called partial-orderequivalence notions which do not �t between trace and bisimulation equiva-lence. So Jan�car's result might seem not to apply for them. But it does. Saythat two transitions t1 and t2 are concurrently enabled at a marking M ifM(s) � F (s; t1)+F (s; t2) for every place s, and say that a Petri net is sequentialif no reachable marking enables two transitions concurrently. It is easy to seethat the Petri nets N1(C) and N2(C) we have constructed above are sequential.So, actually, we have just proved that any equivalence relation which �ts be-tween trace and bisimulation equivalence for the class of sequential Petri nets isundecidable. Partial-order equivalences turn out to �t between trace and bisim-ulation equivalence for sequential nets. Actually, this is what one would expect:partial-order equivalences should distinguish concurrency from interleaving, butif there is no concurrency at all then there is also nothing to distinguish.10 Can anything be done in polynomial time?The general EXSPACE-hardness bound of Section 7 raises the question if thereare better results (PSPACE, NP, polynomial problems) for classes of Place/Tran-sition Petri nets. Since a complete treatment of this question is out of the scopeof this paper, we concentrate on how far can one go with polynomial algorithms.Obviously, we cannot expect to go further than for 1-safe Petri nets. So the �rstquestion is if at least some problems for conict-free nets and free-choice netsthat are not necessarily 1-safe can still be solved in polynomial time. The answeris a quali�ed \no". Even though [18, 39] contain some polynomial algorithms forconict-free Petri nets, most of the important problems for these two classes

become at least NP-hard. For instance, the reachability problem for conict-freePetri nets is NP-complete [8], and the liveness problem for free-choice Petri netsis co-NP-complete (i.e., it is the complement of an NP-complete problem) [24, 5](the proof is sketched below as the solution to Story I). Notice that the livenessand reachability problems for arbitrary Petri nets are much harder, and so theseNP-completeness results can also be seen as positive results.Is there any interesting constraint leading to polynomial algorithms for manyproblems? There seems to be essentially a single non-trivial one: every place hasexactly one input transition and exactly one output transition (\exactly" canalso be generalised to \at most") The Petri nets satisfying this constraint havebeen called marked graphs, synchronisation graphs, and T-systems. Two of theoldest papers in net theory show that many problems for these nets can be solvedusing simple graph algorithms or linear programming [3, 13]. So let us formulateour last rule of thumb:Rule of thumb 10:Many interesting problems about marked graphs are solvable inpolynomial time. Almost no interesting problems about Petri netclasses substantially larger than marked graphs are solvable inpolynomial time.The solution to Story IThe non-liveness problem for free-choice Petri nets can be formulated as follows:Given: a free-choice Petri net N ,To decide: if N is non-live.Membership in NP is non-trivial; it follows from Commoner's theorem [15, 5].NP-hardness, on the contrary, is very easy to prove by a reduction, �rst presentedin [24], from the satis�ability problem for boolean formulas in conjunctive normalform.18. Figure 7 shows the Petri net corresponding to the formula(x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)and we explain the construction on this example. Loosely speaking, the Petrinet works as follows: �rst, the variables are nondeterministically assigned truthvalues by �ring either the transition xi or xi for each variable xi. Once allvariables have been assigned a value, a transition Cj is enabled if and only if theassignment makes the clause Cj false. For instance, C2 is enabled if and only if thetransitions x1; x2; x3 have �red; this corresponds to the assignment x1 := false ,x2 := true, x3 := false , which is the only assignment making C2 false. So wehave that the place False gets tokens if and only if the formula is false under theassignment. If the formula is satis�able, then there is an assignment making theformula true, and for this assignment the place False never gets marked. So thePetri net is not live. On the contrary, if the formula is unsatis�able, then theplace False can always get marked again, and the net is live.18 It is interesting to compare this reduction with the one of Section 6.

False

A A A

C

C
C

1

1

1 2 31 2 3

2

2

3

3

- - -x x xx x x

Fig. 7. Petri net corresponding to the formula (x1 _ x3) ^ (x1 _ x2 _ x3) ^ (x2 _ x3)Since the formula is satis�able, the Petri net of Figure 7 is non-live.11 ConclusionsI'd like to conclude by listing the 10 rules of thumb of the paper. You can �ndthem in Table 11. I've allowed myself to suppress the word \interesting" fromall the rules, since it should no longer lead to confusion.AcknowledgmentsMany thanks to Eike Best, Peter Habermehl, Ernst Mayr, Richard Mayr, Pe-ter Rosmanith, P.S. Thiagarajan, Antti Valmari and Frank Wallner for helpfulsuggestions, discussions, and informations. The PSPACE-algorithm for CTL ofSection 4 is joint work with Peter Rossmanith.References1. J.L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I, volume 11 ofMonographs in theoretical Computer Science. Springer-Verlag, 1988.2. A. Cheng, J. Esparza, and J. Palsberg. Complexity Results for 1-safe Nets. The-oretical Computer Science, 147:117{136, 1995.3. F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked Directed Graphs.Journal of Computer and System Sciences, 5:511{523, 1971.

The 10 Rules of Thumb1. All questions about the behaviour of 1-safe Petri nets are PSPACE-hard.2. Nearly all questions about the behaviour of 1-safe Petri nets can be solved inpolynomial space.3. Equivalence problems for 1-safe Petri nets are harder to solve than model-checking problems. They need at most exponential space.4. Most questions about the behaviour of acyclic 1-safe Petri nets are NP-hard.5. Many questions about 1-safe conict-free Petri nets are solvable in polynomialtime.Some questions about live 1-safe free-choice Petri nets are solvable in polynomialtime (and liveness of 1-safe free-choice Petri nets is decidable in polynomial timetoo).Almost no questions for 1-safe net classes substantially larger than free-choicePetri nets are solvable in polynomial time.6. All questions about the behaviour of Petri nets are EXPSPACE-hard.7. The model-checking problems for Petri nets and all state-based logics are un-decidable.8. The model-checking problems for Petri nets and all branching-time, action-based logics are undecidable.The model-checking problems for Petri nets and all linear-time, action-basedlogics are decidable.9. All equivalence problems for Petri nets are undecidable.10. Many questions about marked graphs are solvable in polynomial time.Almost no questions about Petri net classes substantially larger than markedgraphs are solvable in polynomial time.Table 1.4. M. Dam. Fixpoints of B�uchi automata. In Proceedings of the 12th InternationalConference of Foundations of Software Technology and Theoretical Computer Sci-ence, volume 652 of Lecture Notes in Computer Science, pages 39{50, 1992,Also: LFCS Report, ECS-LFCS-92-224, University of Edinburgh.5. J. Desel and J. Esparza. Free-choice Petri Nets, volume 40 of Cambridge Tractsin Theoretical Computer Science. Cambridge University Press, 1995.6. E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical ComputerScience Volume B, pages 995{1027, 1990.7. J. Esparza. Model Checking Using Net Unfoldings. Science of Computer Program-ming, 23:151{195, 1994.8. J. Esparza. Reachability in Live and Safe Free-Choice Petri Nets is NP-Complete.Technical Report SFB-Bericht Nr. 342/12/96 A, Technische Universit�at M�unchen,1996. To appear in Theoretical Computer Science.9. J. Esparza. Decidability of Model-Checking for In�nite-State Concurrent Systems.Acta Informatica, 34:85{107, 1997.10. J. Esparza and M. Nielsen. Decidability Issues for Petri Nets { a Survey. InBulletin of the EATCS, volume 52, pages 245{262, 1994

Also: Journal of Information Processing and Cybernetics 30(3):143{160, 1995.11. Formal methods page of the WWW Virtual Library athttp://www.comlab.ox.ac.uk/archive/formal-methods.html#notations.12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to theTheory of NP-completeness. Freeman, 1979.13. H. J. Genrich and K. Lautenbach. Synchronisationsgraphen. Acta Informatica,2:143{161, 1973.14. P. Habermehl. On the Complexity of the Linear-Time Mu-Calculus for Petri Nets.In P. Az�ema and G. Balbo, editors, Application and Theory of Petri Nets, volume1248 of Lecture Notes in Computer Science, pages 102{116. Springer-Verlag, 1997.15. M. H. T. Hack. Analysis of Production Schemata by Petri Nets. M.s. thesis, Cam-bridge, Mass.: MIT, Dept. Electronical Engineering, 1972.16. J. E. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages andComputation. Addison-Wesley, 1979.17. R. R. Howell and L. Rosier. On Questions of Fairness and Temporal Logic forConict-free Petri Nets. In G. Rozenberg, editor, Advances in Petri Nets, volume340 of Lecture Notes in Computer Science, pages 200{220, 1988.18. R. R. Howell and L. E. Rosier. An O(n1:5) Algorithm to Decide Boundednessfor Conict-free Vector Replacement Systems. Information Processing Letters,25(1):27{33, 1987.19. R. R. Howell and L. E. Rosier. Problems Concerning Fairness and Temporal Logicfor Conict-free Petri Nets. Theoretical Computer Science, 64:305{329, 1989.20. R. R. Howell, L. E. Rosier, and H. Yen. A Taxonomy of Fairness and TemporalLogic Problems for Petri Nets. Theoretical Computer Science, 82:341{372, 1991.21. P. Jan�car. All Action-based Behavioural Equivalences are Undecidable for La-belled Petri Nets. Bulletin of EATCS, 56:86{88, 1995.22. P. Jan�car. Undecidability of Bisimilarity for Petri Nets and Some Related Prob-lems. Theoretical Computer Science, 148:281{301, 1995.23. L. Jategaonkar and A. Meyer. Deciding True Concurrency Equivalences on Safe,Finite Nets. Theoretical Computer Science, 154(1):107{143, 1996.24. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of Some Problems inPetri Nets. Theoretical Computer Science, 4:277{299, 1977.25. S.R. Kosaraju. Decidability of Reachability in Vector Addition Systems. In 14thAnnual ACM Symposium on Theory of Computing, pages 267{281, San Francisco,1982.26. L. Lamport. The Mutual Exclusion Problem. Part II { Statement and Solutions.Journal of the ACM, 33(2), 1986.27. R. Lipton. The Reachability Problem Requires Exponential Space. Technical Re-port 62, Yale University, 1976.28. E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAMJournal on Computing, 13:441{460, 1984.29. E.W. Mayr and A.R. Meyer. The Complexity of the Word Problems for Commu-tative Semigroups and Polynomial Ideals. Advances in Mathematics, 46:305{329,1982.30. WWW page on Petri net tools at http://www.daimi.aau.dk/petrinets/tools/.31. A. Rabinovich. Complexity of Equivalence Problems for Concurrent Systems ofFinite Agents. Information and Computation, 127(2):164{185, 1997.32. C. Racko�. The Covering and Boundedness Problem for Vector Addition Systems.Theoretical Computer Science, 6:223{231, 1978.33. P. Starke. Analyse von Petri-Netz-Modellen. Teubner, 1990.

34. C. Stirling. Bisimulation, Model Checking and Other Games. Notes for Math�tinstructional meeting on games and computation, Edinburgh, June 1977. Availableat http://www.dcs.ed.ac.uk/home/cps/.35. A. Valmari. State Space Generation: E�ciency and Practicality. Phd thesis, Tam-pere University of Technology, 1988.36. R. J. van Glabbeek. The Linear Time { Branching Time Spectrum. In Proceedingsof CONCUR '90, volume 458 of Lecture Notes in Computer Science, pages 278{297,1990.37. M. Vardi. An Automata-Theoretic Approach to Linear temporal Logic. In Logicsfor Concurrency: Structure versus Automata, volume 1043 of Lecture Notes inComputer Science, pages 238{265, 1996.38. H. C. Yen. A Uni�ed Approach for Deciding the Existence of Certain Petri NetsPaths. Information and Computation, 96(1):119{137, 1992.39. H. C. Yen. A Polynomial Time Algorithm to Decide Pairwise Concurrency ofTransitions for 1-Bounded Conict Free Petri Nets. Information Processing Let-ters, 38:71{76, 1991.

This article was processed using the LATEX macro package with LLNCS style

