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Ambiguity Function Shaping for Cognitive Radar Via
Complex Quartic Optimization
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Abstract—In this paper, we propose a cognitive approach to de-
sign phase-only modulated waveforms sharing a desired range-
Doppler response. The idea is to minimize the average value of
the ambiguity function of the transmitted signal over some range-
Doppler bins, which are identified exploiting a plurality of knowl-
edge sources. From a technical point of view, this is tantamount to
optimizing a real and homogeneous complex quartic order poly-
nomial with a constant modulus constraint on each optimization
variable. After proving some interesting properties of the consid-
ered problem, we devise a polynomial-time waveform optimiza-
tion procedure based on the Maximum Block Improvement (MBI)
method and the theory of conjugate-partial-symmetric/conjugate-
super-symmetric fourth order tensors. At the analysis stage, we as-
sess the performance of the proposed technique showing its capa-
bility to properly shape the range-Doppler response of the trans-
mitted waveform.

Index Terms—Cognitive radar, radar waveform optimization,
maximum block improvement method, complex tensor optimiza-
tion.

I. INTRODUCTION

I N radar signal processing, a key role is played by the range-
Doppler response of the waveform used to probe the envi-

ronment. In fact, it controls both Doppler and range resolutions
of the system; besides, it also regulates the interference power,
produced by unwanted returns, at the output of the matched
filter to the target signature. In the context of fast-time coding,
the aforementioned response is usually referred to as the classic
waveform ambiguity function [1]–[3] and the problem of de-
signing signals sharing a desired ambiguity [4]–[6] or a given
zero-Doppler ambiguity cut (also known as range profile) [7],
[8], [9], [10], [11], has attracted the interest of many radar re-
searchers since the early days of radar. If a slow-time coding is
considered, then the waveform range-Doppler response can be
interpreted as a slow-time ambiguity function, namely each cut
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along a line parallel to the Doppler axis is the Doppler response
of the filter (matched to the transmitted waveform) to an echo
(arising from a potential useful target and/or an interference re-
turn) which is located at a given number of Pulse Repetition
Intervals (PRI) away from the one of interest.
In this work, we propose a cognitive approach to devise radar

waveforms sharing a desired range-Doppler response. The im-
portance of this study is motivated by the potential of the cogni-
tive paradigm which is becoming one of the leading approaches
for advanced signal processing techniques, attempting to satisfy
more and more demanding system performance requirements
[12], [16].
We suppose that the radar system can exploit a plurality of

knowledge sources. Specifically, it can predict the actual scat-
tering environment, using a dynamic environmental database,
including a geographic information system, meteorological
data, previous scans, and some electromagnetic reflectivity
and spectral clutter models. Hence, exploiting the above in-
formation, the radar look-ahead coprocessor ([12], p. 27) can
locate the range-Doppler bins where strong unwanted returns
are foreseen and, consequently, transmit a waveform whose
ambiguity function exhibits low values in those interfering bins.
This framework is particularly attractive for the confirmation
process where a previous detection, performed through a stan-
dard radar waveform, can be reliably confirmed using a signal
matched to the specific range-Doppler interference scenario.
The adopted design criterion minimizes the average value

of the ambiguity function (over the identified range-Doppler
bins) with respect to the radar phase-only waveform. Specif-
ically, we formulate the problem as a complex quartic order
polynomial optimization problem [13]–[15] with constant mod-
ulus constraints forced to ensure phase-only modulated signals,
compatible with today amplifier’s technology [17], [18]. After
proving that the optimization problem falls into an NP-hard
class, we propose a new solution technique based on the Max-
imum Block Improvement (MBI) method, which is an iterative
algorithm known to achieve excellent performances in the opti-
mization of real polynomial functions subject to spherical con-
straints [19]. First we devise three MBI type optimization algo-
rithms, based on a linear- and a quadratic-improvement subrou-
tines; then, we obtain our radar signal as the best solution among
them. At the analysis stage, we provide some numerical results
showing the effectiveness of the proposed method to provide a
radar waveform with a desired range-Doppler behavior.
The paper is organized as follows. In Section II, we describe the
system model and formulate the waveform design problem. In
Section III, we analyze the properties of the obtained optimiza-
tion problem and propose a solution technique based on theMBI
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method and the theory of conjugate-partial-symmetric/conju-
gate-super-symmetric fourth order tensors. In Section IV, we
present the performance of the devised algorithm. Finally, in
Section V, we draw conclusions and outline some possible fu-
ture research tracks.

A. Notation

We adopt the notation of using boldface for vectors (lower
case), and matrices (upper case), while tensors are indicated
with calligraphic upper case letter . The transpose, the conju-
gate, and the conjugate transpose operators are denoted by the
symbols , and respectively. denotes the identity
matrix (its size is determined from the context). ,
and are respectively the set of -dimensional vec-
tors of real numbers, the set of -dimensional vectors of com-
plex numbers, the set of matrices of complex numbers,
and the set of fourth order tensors of complex
numbers. The Euclidean norm of the vector is denoted by .
The letter represents the imaginary unit (i.e., ), while
the letter often serves as index in this paper. For any complex
number , we use and to denote respectively the real
and the imaginary part of ; also, and represent the
modulus and the argument of . For any finite set
indicates the cardinality of the set . denotes statistical ex-
pectation. Finally, denotes the Hadamard product and for any
optimization problem represents its optimal value.

II. SYSTEM MODEL & PROBLEM FORMULATION

We consider a monostatic radar system which transmits a co-
herent burst of slow-time coded pulses. Let us denote by

the radar code. The waveform
at the receiver end is down-converted to baseband, undergoes
a pulse matched filtering operation, and then is sampled. The
-dimensional column vector

of the observations, from the range-azimuth cell under test, can
be expressed as:

(1)

with a complex parameter accounting for channel
propagation and backscattering effects from the target
within the range-azimuth bin of interest,

the normalized target
Doppler frequency, the -dimensional column vector
containing the filtered interfering echo samples, and the
-dimensional column vector of the filtered noise samples.
The interfering vector is the superposition of the returns

from different uncorrelated point-like scatterers. It models
clutter, non-threatening or threatening targets (different from
the one of interest) contributions. Precisely, as depicted in
Fig. 1, the vector accounts for:
• clutter returns from different range-azimuth bins ,
with , where

is the number of range rings that interfere
with the range-azimuth bin of interest (0, 0), and is
the number of discrete azimuth sectors;

• echoes produced by non-threatening targets such as
ground-moving vehicles, civil helicopters and aircrafts;

• echoes produced by threatening targets, previously ac-
quired by the tracking processor, different from the one of
interest.

As a consequence, the vector can be expressed as:

(2)

where is the total number of interfering scatterers,
, and are, respectively, the range posi-

tion, the echo complex amplitude, and the normalized Doppler
frequency of the -th scatterer. Furthermore,

denotes the shift matrix, and .
According to (2), the output of the matched filter to the target
signature , is given by:

(3)

In the following, we assume that the vector , uncorrelated from
, is a zero-mean, complex circular white noise, i.e.:
and . We denote by the echo mean
power, produced by the -th scatterer. Furthermore, we model
the normalized Doppler frequency as a random variable uni-
formly distributed around a mean Doppler frequency , i.e.,

. Consequently, since the scat-
terers and the noise are uncorrelated, the disturbance power at
the output of the matched filter is given by

(4)

where

(5)

is the slow-time ambiguity function of the code , with
the time-lag1 and the

normalized Doppler frequency. Precisely, for a given value of
gives the Doppler response to an interfering patch

located PRI away from the one of interest.

1Notice that, between the range position and the time-lag there exists a
one-to-one mapping. Thus, in the following we will use interchangeably both
the terms.
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Fig. 1. Non-threatening and threatening targets, represented by blue circles, to-
gether with range-azimuth bins of the illuminated area around the radar antenna
pattern.

A. Information for Cognitive Processing

Based on (4), to characterize the mean disturbance power at
the output of the filter matched to the target signature, we need
the mean power as well as the Doppler parameters and
of each scatterer. This information can be obtained according

to a cognitive paradigm. If the -th point-like scatterer models
the return from the clutter range-azimuth bin , as shown in
[12], [20], its Radar Cross Section (RCS) can be predicted
through the interaction between a digital terrain map, such as the
National Land Cover Data (NLCD), and RCS clutter models,
see [21], [22], ([23], Ch. 15, 16). Whenever has been es-
timated, we can evaluate the corresponding as:

(6)

where is a constant accounting for the channel propaga-
tion effects, such as the free space two-way path loss and ad-
ditional system losses (radar equation), is the azimuth angle
of the bin , and is the one-way antenna gain for the
angle2 . To define the mean clutter Doppler frequency and
the uncertainty on the clutter Doppler extension, associated
with the -th range-azimuth bin, a meaningful criterion is to
fix equal to the frequency peak of the clutter Power Spec-
tral Density (PSD) (characterizing the -th bin) and to take
equal to the 90/95-percent power bandwidth. Again, we can

make use of NLCD to classify each bin and, consequently, to
determine an adequate model of the corresponding clutter PSD.
For instance, it has been shown in [24], [25] that the exponen-
tial model is among the most accurate approximations for the
windblown ground-clutter spectral measurements.
With reference to both threatening and non-threatening targets,
we can obtain information about their parameters exploiting the
track files managed by the radar system. For threatening tar-
gets, these files are required in order to predict target trajecto-
ries; these predictions are fundamental for defense applications

2We are considering, for notational simplicity, a two-dimensional scenario
(the generalization to the three-dimensional case is straightforward).

in the fields of airborne early warning and homeland security.
For non-threatening targets, as explained in [32], these files are
required to avoid wasting radar timeline. In fact, for an appro-
priate allocation of the resources, the radar system firstly identi-
fies and classifies the confirmed target, analyzing its amplitude
and Doppler characteristics. If the target is defined to be threat-
ening rather than benign, a track file in the search-and-track
modality is opened; otherwise, a track-while-scan mode is used
to maintain the track, avoiding the activation of a new quali-
fication process to each scan and the consequent consume of
large amounts of radar resources. Thus, accessing to these con-
tinuously updated track files (new measurements are made in
each scan), for each threatening or non-threatening target, cog-
nitive estimates of its RCS, position, and normalized Doppler
frequency can be acquired.

B. Problem Formulation

In the following, without loss of generality, we center the
Doppler frequency axis in the target Doppler frequency,
namely all the normalized Doppler frequencies are ex-
pressed in terms of the difference with respect to .
Furthermore, we discretize the normalized Doppler interval

, into bins, represented by the discrete frequencies
. Thus, each statistical

expectation

can be approximated with the sample mean over the Doppler
bins intersecting , namely

(7)

where , namely,
it is the set containing the Doppler bin indices associated with
the -th scatterer3. Based on (7) and associating to each range-
Doppler bin the corresponding interference power, the total dis-
turbance power at the output of the matched filter (given in (4))
can be expressed as

(8)

3Notice that, the set of Doppler frequencies
corresponds to .
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where, is the Kronecker delta function, denotes the
indicator function of the set , and

is the range-Doppler interference map, namely, for each
range-Doppler bin is interference power in that
bin. Notice that, in the range-Doppler regions free of interfer-
ence .
Based on the aforementioned model, in this paper we deal
with the design of a suitable radar waveform minimizing the
disturbance power at the output of the matched filter. This is
tantamount4 to shaping the ambiguity function of the trans-
mitted signal so as to exhibit low values in range-Doppler bins
where strong unwanted returns are foreseen. To be compliant
with today amplifier technology, we also force a constant mod-
ulus constraint, obtaining phase-only modulated waveforms.
Precisely, we consider both continuous and finite alphabet
codes. As to the continuous alphabet case, we assume that:

(9)

where . Besides,
with reference to the discrete alphabet case, we suppose

(10)

where with
.

Summarizing, the design of a radar code sharing a desired
ambiguity function, can be formulated as the following
constrained optimization problems:

(11)

where

(12)

is the interference power at the output of the matched filter.
Notice that, assuming a uniform interference power among the
interfering bins (homogeneous interference scenario), a robust
phase code design can be performed, for which we only need
to locate the range-Doppler bins where strong unwanted returns
are foreseen. Furthermore, it is worth pointing out that the pro-
posed design requires the specification of the target doppler ;
as a consequence, the radar code depends on this pre-assigned
value. Some applicability scenarios are now described:
1 Assume that, after an uncoded (or a possibly standard
coded) transmission a detection is declared in a given
Doppler bin, using a high value of the false alarm Proba-
bility . Then, our design approach can be employed
to cognitively shape the waveform for the next transmis-
sion in order to confirm the detection in the previously
identified bin, possibly with a smaller value of the
(confirmation process), [32].

2 A radar code optimized to an average scenario, with re-
spect to the target Doppler frequency, can be selected. In

4Whenever the transmitted energy has been fixed, the noise contribution
to the overall disturbance power is independent of the transmitted waveform.

this case, denoting by the output in-
terference power corresponding to the target Doppler fre-
quency , the continuous/discrete phase
radar code might be chosen as a solution to the following
problems:

(13)

Remark 1: Notice that the proposed framework can be also
applied to fast-time coding. In this case, the problem of shaping
the range-Doppler signal response becomes that of minimizing
the volume of the classic ambiguity function in some regions of
the range-Doppler plane (under the constant modulus waveform
constraint). This problem has been of interest among the radar
community [6] since the late sixties; however, the optimization
theory was not yet very mature to provide the instruments to
handle such hard problem. In this context, we would remark
the approach followed in [5] where a heuristic algorithm based
on a set of nonlinear variational equations (whose solution has
been obtained using iterative Newton-Raphson techniques), is
proposed.
Remark 2: For the considered reverberating environment, we

could also deal with the joint design of the transmitted phase
code and receive filter optimizing (over
and ) the Signal to Interference plus Noise Ratio (SINR) at
the filter output [2], [3]. Otherwise stated, we can formulate the
following joint design optimization:

(14)
Problem is generally NP-hard and iterative algo-

rithms, such as those in [33]–[35], and [36], can be used to get
a feasible (high quality) transmitted signal and receive filter
pair. A simplified and, usually, more practical design method
relies on the exploitation, at the transmitter end, of a general
purpose probing waveform (with desired radar behavior) and
the application at the receiver end of some specific filters (also
referred to as mismatched filters [37] or instrumental variable
filters [38]), optimizing radar performance metrics like the
Integrated Sidelobe Level (ISL), Peak to Sidelobe Level (PSL),
SINR [39], or their combination. However, the coefficients of
the resulting filters could share an unacceptable dynamic range
and this drawback could reduce their practical effectiveness.
Another simplified design approach is based on using a

matched filter at the receiver end, namely the receive filter
maximizing the peak Signal to Noise Ratio (SNR) (i.e., ),
and synthesizing the transmitted signal which optimizes the
SINR in (14). In this context, the maximization of the SINR
is tantamount to shaping the transmitted waveform ambiguity
function, namely the design criterion considered in (11).
Based on above considerations, it is clear that, accounting for

a joint signal and filter design, we can obtain in general higher
SINR values than those ensured by the previously specified sub-
optimum techniques (especially in highly non-symmetric clutter
environments). Nevertheless, exploiting the approach (11), we
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are able to synthesize a phase-only filter, hence to directly over-
come the dynamic range issues concerning filter implementa-
tion. Additionally, considering at the design stage the set ,
namely forcing the transmitted code and receive filter to be bi-
nary sequences, we can also reduce the computational com-
plexity connected with filtering operation; in fact for binary
transmit/receive pairs the convolution just requires summations.
We also point out that, employing the proposed design

approach (11), the range-Doppler bins, where strong unwanted
returns are foreseen, experience a double suppression effect
(both at transmission and at reception), as compared with
the receiver only design technique. Besides, we can further
improve the SINR performance of the waveform designed
according to (11) applying a mismatched filter at the receiver
end (possibly we could also iterate the flip-flop procedure).
As a matter of fact, a waveform devised according to (11) can
represent a good initial point for iterative algorithms involved
in the solution of (14). Finally, since “similarity” codes [40]
sharing suitable ambiguity functions are often required in fully
cognitive architectures, [20], [33], the design criterion (11) can
be reasonably exploited to synthesize appropriate reference
codes.

III. DESIGN ISSUES

In this section we focus on the study of and , which
define non-convex optimization problems as the constraint sets

and are non-convex sets. Furthermore, the objective
function is generally a non-convex function. In fact, con-
sidering for instance even, and

it is not difficult to show that

is a non-convex function. To this end, let us consider the points
and , with . Obviously,

; moreover, since ,
if were convex, then

. This is not true because
, and thus is a non-convex

function.
As explained in Appendix A-1, a real valued conjugate homoge-
neous quartic function associated with the complex vector vari-
able , is defined as

(15)

where and . This implies
that the objective function of problems and

belongs to the aforementioned class. In fact, can be
expressed as in (15) taking , consid-
ering a one-to-one mapping5,

, and taking
. Consequently, problems and

belong to the class of complex quartic minimization problems

(16)

The following theorem illustrates the hardness of the problems
and :

Theorem 3.1: Problems and are NP-hard in gen-
eral.

Proof: See Appendix B.
Based on the previous theorem, in the following subsection,

we focus on the design of suitable techniques capable of pro-
viding, in polynomial time, some good quality solutions to prob-
lems and , and thus to and .

A. Maximum Block Improvement Method

In this subsection, we devise three MBI type optimization
algorithms, which try to locally improve the objective func-
tion in and in . As already highlighted, the MBI
method is an iterative algorithm known to achieve excellent per-
formance in the maximization of real polynomial functions sub-
ject to spherical constraints [19]. Moreover, it was proved that
the sequence produced by the MBI method converges to a sta-
tionary point for the relaxed multi-linear problem [19]; how-
ever, such stationary point is not ensured being a globally op-
timal solution.
Before proceeding further with the design of ourMBI type algo-
rithms, we point out that, for any finite value , problems
and share the same (local) optimal solutions, respectively,
of

(17)

In fact, since is a constant function whenever
(resp. ), (resp. ) is equivalent to

(resp. ). Thus in the following, we focus on prob-

lems and .
The first algorithm we propose, exploits the conjugate-super-
symmetric tensor representation of the complex quartic func-
tions, see Appendix A-3. Precisely, suppose that is a com-
plex quartic function in the form (15) and let be the conju-
gate-super-symmetric tensor form such that

(18)

Hence, we introduce an MBI type method with a linear-im-

provement subroutine6 for (resp. ), as described in
Algorithm MBIL.

5The existence of such a correspondence is ensured by the equinumerosity of
two sets and .
6Notice that, is a linear function in the

variable , and we denote by the vector as-

sociated with the linear function on the right side of the arrow. Similarly, we
proceed for the other variables.
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Algorithm MBIL: MBI method with a linear-improvement

subroutine for (resp. )

0 (Initialization): Generate, possibly randomly,
with (resp. ) for
and compute the initial objective value

. Set .

1 (Block Linear Improvement): Let

,

,

be the vectors associated with the linear functions on the
right side of the arrows.

For let

(resp.

.

2 (Maximum Improvement): Let

and . Replace for all

and .

3 (Stopping Criterion): If , stop. Otherwise,
set , and go to step 1.

4 (Output): For , let

,

. Return and .

Notice that the objective value at each iteration of the MBIL
method is generally increasing except for the last step. This is
because the returned is the value of a polynomial function
instead of the multi-linear form on which the MBIL algorithm
is applied. We explicitly point out that, the issue of symmetry
becomes quite delicate when dealing with complex polynomial
functions and requires to introduce the concept of ‘conjugate
symmetry’ (see Appendix A(-2 and -3)). Once the definitions
of conjugate symmetry are given, we are in a position to extend
the result obtained in ([26], Ch. 5) to the complex case:
Theorem 3.2: Suppose is a convex complex quartic

function and let be the conjugate-super-symmetric tensor
form associated with ; then

Proof: See Appendix C.
From the above theorem, the monotonicity of the MBIL al-

gorithm lies in whether or not we can find such that
is convex. In this respect, it is important to study the con-

vexity of a complex quartic function.
Theorem 3.3: Suppose is a complex quartic function.
• If , then

is convex with respect to if and only if

(19)

where

• If is the conjugate-partial-symmetric fourth order tensor
form7 such that , then is convex with
respect to if and only if

(20)

• If is the conjugate-super-symmetric fourth order tensor
form8 such that , then is
convex with respect to if and only if

(21)

Proof: See Appendix D.
Theorem 3.3 indicates that the convexity of a quartic func-

tion is equivalent to the non-negativity of a certain biquadratic
function. We further notice that the biquadratic function corre-
sponding to the quartic function is

, which is strictly positive whenever and .
Consequently, we can make any quartic function convex by
adding multiplied by a large enough constant .
Corollary 3.4: Suppose is a quartic function represented

in the form (15) and denote by the function defined in
(19). Then is convex in if and only if the scalar
complies with:

(22)

Furthermore, letting

(23)

for any is convex in .
Proof: See Appendix E.

7See Appendix A-2 for more details on conjugate-partial-symmetric fourth
order tensor forms.
8See Appendix A-3 for more details on conjugate-super-symmetric fourth

order tensor forms.
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Thus, exploiting Corollary 3.4 and Theorem 3.2, we have
that, for any complex quartic function , we can find a such
that the devised MBIL algorithm is monotonically increasing.
Otherwise stated, , with given in (23), ensures
the equivalence between problems (17) and their relaxed multi-
linear problems. Notice that, in order to compute , i.e. the
maximum value of the biquadratic function , the MBI
algorithm proposed in [19] can be exploited. Finally, we ex-
plicitly point out that the quality of the solution can be im-
proved repeatedly using Algorithm MBIL, setting each time

as new starting points, if further
progress is still possible.
The second method we propose, exploits the conjugate-par-

tial-symmetric tensor representation of the complex quartic
functions, see Appendix A-2. To this end, let be a complex
quartic function in the form (15) and be the conjugate-par-
tial-symmetric tensor form such that

(24)

Hence, we introduce an MBI type method with a quadratic-im-

provement subroutine9 for problem (resp. ), as de-
scribed in Algorithm MBIQ.

Algorithm MBIQ: MBI method with a quadratic-

improvement subroutine for (resp. )

0 (Initialization): Generate, possibly randomly, with
(resp. ) for and compute the initial

objective value . Set .

1 (Block Quadratic Improvement): Let

,

be the matrices associated with the bilinear functions on
the right side of the arrows.

For let

(resp.

), .

2 (Maximum Improvement): Let

and . Replace for all

and .

3 (Stopping Criterion): If , stop. Otherwise,
set , and go to step 1.

4 (Output): For , let
.

Return and .

Now we give a sufficient condition for monotonicity of the
MBIQ method.

9Notice that, is a bilinear function in the
variables and , and we denote by the matrix as-
sociated with the bilinear function on the right side of the arrow. Similarly we
proceed for the other pair of variables.

Theorem 3.5: Consider the complex quartic function
and let be the associated conjugate-partial-symmetric fourth
order tensor form. Then,

(25)

implies

Proof: See Appendix F.
In light of Theorem 3.5, one may ask whether we can find a

large enough such that the conjugate-partial-symmetric fourth
order tensor form associated with satisfies
(25). Unfortunately, this is not possible. In fact, let us consider
the conjugate-partial-symmetric form corresponding to the
quartic function ; then

Thus,
, and .

Moreover,

Simply choosing leads to
implying that it is not strictly positive, so the

technique in Corollary 3.4 cannot be applied here.
This phenomenon lies in the fact that (25) is a stronger condition
than the convexity requirements (20). To see this, let us consider
a complex quartic function whose associated conjugate-partial-
symmetric tensor satisfies (25); then

and replacing by , we have

Obviously, choosing

it holds that . Now adding
to the left hand side of (25), we have that

implying that the corresponding complex quartic function is
convex. However, since the difference between (25) and (20)
is very subtle, in practice we decide to use the same both in
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Algorithm MBIL and in Algorithm MBIQ. Some useful re-
marks on Algorithm MBIQ are now given:
i) Due to Proposition A.1, in Appendix A-2, and in
step 1 are Hermitian matrices.

ii) The complex quadratic problems in step 1 are still
NP-hard; in practice we apply the randomization algo-
rithms in [27] to get a good approximate solution.

iii) In order to improve the quality of the solution, we could
repeatedly use the MBIQ approach, setting

as new starting points, if further progress is still
possible.

Finally, the third proposed algorithm exploits both the conju-
gate-partial-symmetric tensor representation and the conjugate-
super-symmetric tensor representation of the complex quartic
functions. Namely, let and be the conjugate-partial-sym-
metric tensor form and conjugate-super-symmetric tensor form
such that (24) and (18) are respectively satisfied. Then, we in-

troduce an MBI type method for problem (resp. )
which resorts to a quadratic-improvement subroutine for at most
iterations and then switches to a linear-improvement subrou-

tine, as described in Algorithm MBIQ&L. Otherwise stated,
it exploits Algorithm MBIL starting from a good initial point,
which is obtained through Algorithm MBIQ.

Algorithm MBIQ&L: MBI method with a quadratic-
improvement subroutine and a linear-improvement

subroutine for (resp. )

0 (Initialization): Generate, possibly randomly, with
(resp. ) for and compute the initial

objective value . Set .

1 (Block Quadratic Improvement): Let

,

be the matrices associated with the bilinear functions on
the right side.

For let

(resp.

), .

2 (Maximum Improvement): Let

and . Replace for all

and .

3 (Switch Condition): Set . If or
, set

and go to

step 4. Otherwise go to step 1.

4 (Block Linear Improvement): Let

,

,

be the vectors associated with the linear functions on the
right side.

For let

(resp. ),

.

5 (Maximum Improvement): Let

and . Replace for all

and .

6 (Stopping Criterion): If , stop. Otherwise,
set , and go to step 1.

7 (Output): For , let

,

. Return and .

Computational Complexity Issues: It depends on the number
of iterations as well as on the complexity involved in each
iteration. Precisely, we have:
• Algorithm MBIL: the overall complexity is linear with
respect to (see Appendix G for the local convergence
analysis) and, in each iteration, it includes the computa-
tion of the vectors , the solutions to the
block linear improvement problems, and the maximum im-
provement. As to the computation of the vectors

, the complexity is linear with respect to ; more-
over the optimal solution to each linear block improvement
problem is computed in closed form when and
can be obtained with a linear complexity with respect to
when .

• Algorithm MBIQ: the overall complexity is linear with
respect to (see Appendix G for the local convergence
analysis) and, in each iteration, it includes the compu-
tation of the matrices , the solutions to the
quadratic block improvement problems, and the max-
imum improvement. As to the computation of the matrices

, the complexity is quadratic with respect to ;
moreover, a good approximate solution to each quadratic
block improvement problem, is computed resorting to the
randomization algorithms in [27], whose complexity is

, where is a prescribed accuracy, for a
moderate number of randomizations.

• Algorithm MBIQ&L: the overall complexity can be ob-
tained by combining the complexity associated with the

iterations of Algorithm MBIQ and the
iterations of Algorithm MBIL.

Summary. We have formulated the problem of minimizing
the average value of the ambiguity function of the transmitted
phase-only signal over some range-Doppler bins via optimiza-
tion problem (resp. for the quantized case). We have
proved that (resp. ) belongs to the general class of com-
plex quartic minimization problems (resp. ). Ex-
ploiting the equivalence among problem (resp. )

and problem (resp. ) for any the real value of the
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Fig. 2. A pictorial representation of the steps involved in definition of the MBI
methods.

tuning parameter , we have devised optimization techniques
based on the MBI approach to get good quality solutions to
problem (resp. ). Interestingly, an appropriate se-
lection of enforces important properties to the devised opti-
mization methods (see Corollary 3.4 and Theorem 3.2). Fig. 2
shows a pictorial representation of the relationships among the
optimization problems involved in the design of the proposed
MBI optimization procedures.

IV. PERFORMANCE ASSESSMENT

In this section, we analyze the capability of the proposedMBI
type algorithms to select a radar phase code with a properly
shaped ambiguity function. Precisely, we focus on the design
of a continuous phase code exploiting the following three-step
based procedure:
1) select the value of the parameter , denoted by , for
instance such that is convex;

2) starting from different initial points, apply Algorithm
MBIL, Algorithm MBIQ, and Algorithm MBIQ&L to
problem with ;

3) get a feasible point for , picking the solution which
leads to theminimum objective function among the outputs
of the three algorithms.

As to the parameter , Corollary 3.4 provides a systematic ap-
proach to compute it in order to ensure the convexity of the ob-
jective function ; by doing so, the monotonicity
of Algorithm MBIL is guaranteed by Theorem 3.2 and the
monotonicity of Algorithm MBIQ is expected from Theorem
3.5. Nevertheless, if is too high, the original objective function

is significantly changed with respect to the one consid-
ered in the MBI type algorithms and the numerical performance
of the proposed procedures could be consequently affected (the
bias term could mask, from a numerical point of view,
the variations in the objective function ). Additionally, it
is worth observing that our procedures do not work directly on

. For instance, let us considerAlgorithmMBIQ
and investigate the biquadratic function associated with
in each subproblem. Let be the conjugate-partial-symmetric
tensor associated with ; then the multi-linear function
induced by is

Letting and , we get the biquadratic function in the
subproblems

Notice that for any vectors
and .

Therefore, Algorithm MBIQ will terminate in one iteration
if applied to and every is a
global maximizer. As increases, will gradually
dominate the whole function . Consequently,
the local maxima of the relaxed function associated with

will be expected to gradually become that of
the relaxed function associated with , thus increasing
the probability of ending up in a low quality solution. Based on
the previous considerations, a reasonable choice is to consider
the smallest ensuring the convexity. For this reason, denoting
by with defined in (23), the focus will be on

.
We conduct the performance analysis considering the two

range-Doppler interference scenarios reported in Fig. 3, which
are referred to as scenario 1 and scenario 2, respectively. In these
interference maps, the red portions correspond to the regions
of the unwanted range-Doppler returns (interference). In both
scenarios, we discretize the normalized Doppler frequency axis
into bins, namely the discrete Doppler frequencies are

. Furthermore, we assume
a uniform interference power among the interference bins. Pre-
cisely, in scenario 1 we suppose

whereas in scenario 2

Thus, in scenario 2 we also try to control the ISL over the
first ten lags of the transmitted waveform. This can be of
paramount importance in remote sensing applications where
many scatterers share the same Doppler frequency of the patch
of interest (distributed targets), as well as in a fast-time code
design. Notice also that, due to the radar range equation, after
a certain distance (corresponding to a certain discrete lag) the
radar returns can be totally neglected and further constraints on
the ambiguity function sidelobes become useless.
As to the parameters of the devised MBI type algorithms, we
require a minimum iteration gain of , and allow for
a maximum value of 5000 iterations for Algorithm MBIL,
and 200 iterations for Algorithm MBIQ. Additionally, as to
the quadratic-improvement subroutine, involved in Algorithm
MBIQ and Algorithm MBIQ&L, we assume that 100 ran-
domizations are performed to get a good approximate solution.
With reference to Algorithm MBIQ&L, we start from the
same initial points used for Algorithm MBIQ; moreover, we
execute the quadratic subroutine for at most times and
allow for at most 5000 runs of the linear subroutine.
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Fig. 3. (a) Range-Doppler inference map, scenario 1. (b) Range-Doppler inference map with ISL control, scenario 2.

In order to assess the performance of the proposed three-step
based procedure for the design of a continuous phase code,
we set ; specifically, in step 2 we run ten times
the MBI type algorithms with independent random initial
points10, as well as once with the uncoded sequence11

; the best solution is kept as the
devised code. The same initial points are used for any tested

.
In Fig. 4, considering the interference scenario 1, we plot the
Signal to Interference Ratio (SIR), defined as

versus the length of the code, averaged over 20 independent
trials, for the codes and the uncoded sequence
. Also, the SIR achieved by the best radar code , among

in each trial, is plotted (the synthesized
code). As expected, the synthesized code outperforms the
uncoded transmission, showing the capability of the proposed
algorithm to contrast and suppress the interfering returns.
Furthermore, increasing , smaller values of allow to ob-
tain better performances, thereby confirming the numerical
problems that could affect the proposed procedures when
high values of are considered. Nevertheless, the value

produces the worst performances for ; this
could be due to the non-convexity of for

. Notice also that, the achieved SIR values improve as
increases in agreement with the higher degrees of freedom

available at the design stage. For comparison purpose, in Fig. 4,
we also report
• the SIR, averaged over 20 independent trials, as-
sociated with the waveforms obtained through the
Newton-Raphson technique proposed12 in [5];

10Each point is a unimodular sequence with independent and identically dis-
tributed random phases, drawn by a uniform distribution over .
11It is worth pointing out that other deterministic initial sequences could be

considered.
12In each trial the algorithm is run twenty times with independent random ini-

tial points as well as once with the uncoded sequence. The algorithm terminates
either when the norm of the gradient is less than or when the number of
iterations becomes greater than 200.

Fig. 4. SIR versus , for the uncoded transmission, the synthesized code, the
radar codes designed exploiting some values, the code synthesized according
to Newton-Raphson method [5], and the mismatched filters associated with a
polyphase Barker and a P3 code, respectively.

• the SIR, for the interference scenario 1, of the mismatched
filters13 associated with a polyphase Barker and a P3 code,
respectively, [1].

The figure highlights that our design method can outperform
that in [5]; furthermore, as increases, the double suppression
effect (both at transmission and at reception) connected with
the proposed ambiguity function design, can lead to higher SIR
values than those obtained through mismatched filters, which,
on the other hand, do not account for dynamic range constraints
on the filter coefficients.
In Fig. 5, we plot the ambiguity function contour map of the
synthesized code for . Furthermore, in Figs. 6, we report
the range-cut for different values of (namely ).
These figures highlight the capability of the proposed algorithm
to suitably shape the ambiguity function which presents deep
nulls where interfering regions are foreseen.
In Fig. 7, we represent the square modulus of the autocorre-
lation function of the synthesized code for . Notice
that, we have not imposed any constraints on the zero-Doppler
cut of the ambiguity function; indeed, some sidelobe peaks
can be observed in the plotted function. Finally, in Table I we

13We consider the interfering scenario 1 with a Clutter to Noise Ratio (CNR)
equal to 40 dB. Besides, to allow for a fair comparison with the synthesized am-
biguity function, we further assume the presence of fictitious interfering
bin at range ‘0’, with a CNR still equal to 40 dB.
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Fig. 5. Ambiguity function, in dB, of the synthesized code for (also in fuchsia the assumed interfering regions).

Fig. 6. (a) Ambiguity function cut at , in dB. (b) Ambiguity function cut
at , in dB. (c) Ambiguity function cut at , in dB. (d) Ambiguity
function cut at , in dB.

Fig. 7. Square modulus of the autocorrelation function, in dB, for .

present the average number of iterations (over 200 random
initial points) of Algorithm MBIL, Algorithm MBIQ, and
Algorithm MBIQ&L, for scenario 1. We can observe that
the three proposed algorithms converge quite quickly, with
a number of iterations usually less than 1000 for Algorithm
MBIL and Algorithm MBIQ&L, and less than 200 for Algo-
rithm MBIQ.

In Figs. 8, we plot the SIR versus the length of the code,
for both the best radar code and the uncoded transmission
, assuming the interference scenario 2. The SIRs achieved
by the radar codes devised with the different values are
also reported. Again, an average value over 20 trials has been
considered. In agreement with scenario 1, the synthesized code
outperforms the uncoded transmission; besides, the curves
obtained using the different values of , are much closer than
those resulting from scenario 1. The figure also highlights that
the achieved SIR improves as the code length increases
and this is due to the higher number of degrees of freedom
available at the design stage. Additionally, it is interesting to
note that the uncoded sequence achieves lower and lower SIR
values as increases, highlighting its incapability to contrast
the foreseen unwanted returns and the need for a proper design
of the transmitted radar code. As for scenario 1, in Fig. 8, we
also report the SIR, averaged over 20 independent trials, of the
waveforms devised according to the Newton-Raphson based
technique proposed in [5]. Furthermore, we plot the SIR of
the mismatched filters14 associated with a polyphase Barker
and a P3 code, respectively, [1]. Again our design method can
outperform that in [5] and, for greater than or equal to 10, a
better interference suppression than the mismatched filters can
be observed.
In Fig. 9, we report the ambiguity function contour map
of the synthesized code for , while in Fig. 10, we
show its range-cut, for different values of .
As expected, the proposed algorithms suitably shape the
range-Doppler response because the synthesized ambiguity
function presents deep nulls where interfering regions are
foreseen. Furthermore, the ambiguity function synthesized
in scenario 1 presents lower values than the one synthe-
sized in scenario 2 (compare Figs. 6 and 10) in the common
range-Doppler interfering regions. This agrees with the fact

14We consider the interfering scenario 2 with a Clutter to Noise Ratio (CNR)
equal to 40 dB. Besides, to allow for a fair comparison with the synthesized am-
biguity function, we further assume the presence of fictitious interfering
bin at range ‘0’, with a CNR still equal to 40 dB.
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TABLE I
AVERAGE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHMS, FOR SCENARIO 1

Fig. 8. SIR versus , for the uncoded sequence, the synthesized code, the
radar codes designed exploiting some values, the code synthesized according
to Newton-Raphson method [5], and the mismatched filters associated with a
polyphase Barker and a P3 code, respectively.

that in scenario 2 an additional portion of the range-Doppler
plane has to be controlled and the range-Doppler response is a
continuous function sharing unitary volume, namely

with

Finally, in Fig. 11, we plot the square modulus of the autocor-
relation function of the synthesized code, for . Thanks
to the additional term in the objective which controls the ISL,
the designed code also shares good autocorrelation properties
in the time lags of interest. In Table II, we present the average
number of iterations (over 200 random initial points) of Algo-
rithm MBIL, Algorithm MBIQ, and Algorithm MBIQ&L,
for scenario 2. We can observe that all the considered MBI type
algorithms converge quite quickly, with a number of iterations
usually less than 1000 for Algorithm MBIL and Algorithm
MBIQ&L, and less than 200 for Algorithm MBIQ.

V. CONCLUSION

In this paper, we considered the problem of designing, in a
cognitive way, a constant modulus waveform with a desired
ambiguity function. Due to the hardness of the considered opti-
mization problem, we focused on iterative techniques capable of
providing, in polynomial time, good quality solutions. Precisely,
we first devised MBI type optimization algorithms, based on

linear- and quadratic-improvement subroutines. Then, we pro-
posed an optimization procedure taking the best solution among
those obtained through the aforementioned algorithms. At the
analysis stage, we showed the capability of the proposed tech-
niques to synthesize phase-only codes sharing the desired fea-
tures in the ambiguity function shape, and, hence, the ability to
effectively contrast the interfering returns.
Possible future research tracks might concern the development
of an algorithm with a worst case performance guarantee as
well as the design of a procedure ensuring the convergence to a
Karush-Kuhn-Tucker (KKT) point.

APPENDIX

A. Complex Quartic Function and Associated Tensor Form

1) Complex Quartic Function: A real valued conjugate ho-
mogeneous quartic function, synthetically denoted in the fol-
lowing as complex quartic function, is defined as ([28], Propo-
sition 4.3)

(26)

where and , with for all
and . An equivalent form of

(26), which is extensively used in this paper, is

(27)

(28)

(29)

where and

(30)
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Fig. 9. Ambiguity function, in dB, of the synthesized transmission code for (also in fuchsia the assumed interfering regions).

Fig. 10. (a) Ambiguity function cut at , in dB. (b) Ambiguity function cut at , in dB. (c) Ambiguity function cut at , in dB. (d) Ambiguity
function cut at , in dB.

Fig. 11. Square modulus of the autocorrelation function, in dB, for .

with and the sets of all distinct permu-
tations of the indices and , respectively.

Indeed,
, for any 4-tuple and index

, thus by (30) . Furthermore, any
real valued complex quartic function can be expressed in the
form (27).
Henceforth, we represent complex quartic functions by means
of their corresponding tensor forms [28]–[30]. Suppose

is a complex fourth order tensor,
we define the following multi-linear function:

(31)

where for . If we further let
and in the above multi-linear function,
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TABLE II
AVERAGE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHMS, FOR SCENARIO 2

then and are the coefficients corre-
sponding to the same monomial . To ensure

we need that, from ([28], Lemma 4.2),

2) Conjugate-Partial-Symmetric Tensor Form: Based on the
symmetry property shared by the Hermitian matrices character-
izing bilinear forms, we would like the tensor form to be sym-
metric in some sense.
Definition 1: We call a fourth order complex tensor

conjugate-partial-symmetric, if (i) is partial-sym-
metric: (ii)

for any 4-tuple .
The multi-linear function induced by the conjugate-partial-

symmetric tensor shares the following property.
Proposition A.1: Suppose is a conjugate-partial-sym-

metric fourth order tensor; then for any ,

and

Notice that, for any complex quartic function , the conju-
gate-partial-symmetric tensor given by

(32)

is such that

Otherwise stated, based on (32), any complex quartic function
uniquely determines a conjugate-partial-symmetric tensor

and vice versa.

3) Conjugate-Super-Symmetric Tensor Form: In this subsec-
tion we introduce a stronger symmetry feature than the conju-
gate-partial-symmetry; it plays an important role in this paper.
Definition 2: We call a fourth order complex tensor

conjugate-super-symmetric, if (i) is super-symmetric,
namely

where is the set of all distinct permutations of the
indices , (ii) if ,
for all .
As a direct consequence of conjugate-super-symmetry, it

holds that

(33)

which means that is always
real-valued.
Notice that, for any complex quartic function , the con-

jugate-super-symmetry tensor given at the bottom of the page
by (34) is such that

Otherwise stated, based on (34), any complex quartic func-
tion uniquely determines a conjugate-super-symmetric
tensor and vice versa.
So far, we have established two alternative representations

for the real valued conjugate homogeneous fourth order com-
plex function given in (26), or in (27), in terms of two
different tensor forms, both of which will be frequently used
in our analysis. The former representation makes use of a
conjugate-partial-symmetric tensor (defined
via (32)), the latter exploits a conjugate-super-symmetric tensor

(34)
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(defined via (34)). We point out that the
conjugate-partial-symmetric tensor lies in a smaller tensor
space than the conjugate-super-symmetric tensor , even if
shares a nicer symmetry property than .

B. Proof of Theorem 3.1

Proof: Let us focus on problem , a similar proof
holds true for problem . We consider a reduction from a
known NP-hard problem [27]:

(35)

where is a complex Hermitian positive semidefinite ma-
trix. Performing the variable transformation

and observing that if and only if
, problem P is equivalent to the following complex

quartic problem:

(36)

which can be written in the form of (11), since for any

Therefore, the conclusion immediately follows from the
NP-hardness of problem P.

C. Proof of Theorem 3.2

Proof: The key idea here is to apply inequality (21) twice.
First of all denote
and . Inequality (21) implies

(37)

Secondly, applying again inequality (21)

(38)

Combining (37) and (38) yields

proving the desired inequality.

D. Proof of Theorem 3.3

Proof: To study the convexity of a real valued function,
recall the following theorem in convex analysis [31]:
Theorem A.2: Let us consider a real valued function

, given and , define the restriction
as . Then, is convex

on if and only if, for any and
• is convex on ;
• for all , assuming that the second
order derivatives exist.

Notice that the value of in (26) is always real, thus it
can be viewed as real valued function with respect to the real
variables and . Let us now compute the second order
derivatives associated with .
Lemma A.3: Assume that is a complex quartic function;

given , define as
. Then, denoting by , we have:
1) If , then

(39)

(40)

and it is always a real valued function.
2) If is the conjugate-partial-symmetric fourth order tensor
form such that , then

and it is always a real valued function.
3) If is the conjugate-super-symmetric fourth order tensor
form such that , then

and it is always a real valued function.
Proof: We only prove the statement (2); all the other situ-

ations are almost the same. In the considered case,

Due to the conjugate-partial-symmetry,

and
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Furthermore, exploiting Proposition A.1,

and

Hence, as expected is always real.
Due to the arbitrariness of and in Lemma A.3, the vector
, obtained through the variable transformation ,
is a free complex variable with respect to . Thus, combining
Lemma A.3 and Theorem A.2 we obtain the convexity charac-
terization for the complex quartic function representations given
in (19), (20), and (21).

E. Proof of Corollary 3.4

Proof: For a fixed , let . From
Theorem 3.3, is a convex function in if and only if

Furthermore, let us define

which is a finite real number due to the compactness of the fea-
sible set and the continuity of the function . Additionally,
since is a biquadratic function on and ,

Therefore for any ,

Thus, condition (22) is satisfied and the conclusion follows.

F. Proof of Theorem 3.5

Proof: Applying (25) to and ,

and the conclusion follows.

G. Local Convergence Analysis for Algorithm MBIL and
Algorithm MBIQ

To address the local convergence analysis of the pro-
posed procedures, let us associate to any vector
its phase vector such that

.
• Let us focus on Algorithm MBIL. The optimization
problem of interest is

Let us associate to the phase vector
, and let us denote by the

multi-block function such that

Hence, the constrained optimization problem is equiv-
alent to the unconstrained problem

Notice that in the -th iteration of Algorithm MBIL
applied to , we calculate

for and (with
defined as in footnote

6), and then update the block with the maximum improve-
ment. Before proceeding further, let us define the energy
norm associated with the matrix , as

Now by applying Theorem 3.1 in [41] we have the fol-
lowing result.

Theorem A.4: Let be a local maximum
of problem and be the sequence generated by Al-
gorithm MBIL, which converges to . Supposing that

is negative definite, whenever the initial point is
close enough to , the sequence converges at least Q-lin-
early to in the energy norm, i.e., there exists such
that

• Let us focus on Algorithm MBIQ. The optimization
problem of interest is

Like for Algorithm MBIL, we can construct the function
such that .

Thus, the constrained optimization problem is equiv-
alent to
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Applying Theorem 3.1 in [41], we have the following local
linear convergence result for Algorithm MBIQ.

Theorem A.5: Let be a local maximum of
problem and be the sequence generated byAlgorithm
MBIQ, which converges to . Supposing that
is negative definite and that is obtained optimally solving the
quadratic subproblems, whenever the starting point is close
enough to is Q-linearly convergent to .
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