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Abstract

We consider the problem of constructing a map of an unknown environment by an

autonomous agent such as a mobile robot. Because accurate positional information is

often difficulty to assure, we consider the problem of exploration in the absence of met-

ric (positional) information. Worlds are represented by graphs (not necessarily planar)

consisting of a fixed number of discrete places linked by bidirectional paths. We assume

the robot can consistently enumerate the edges leaving a vertex (that is, it can assign a

cyclic ordering). A mobile robot is assigned the task of creating a topological map, i.e.

a graph-like representation of the places in the world and their connectivity, by moving

from place to place along the paths it encounters. It can detect edges and count them, but

cannot directly sense the labels associated with a place or an edge. In principle, this types

of representation could be used for non-spatial environments such as computer networks.

We present an approach to the exploration of unknown environments for which local

sensing information alone is insufficient to distinguish distinct places, based simply on

the structure of the world itself. Places are identified by a non-unique signature and

by using a collection of such non-unique local signatures, an extended signature may be

constructed which determines the robot’s position (although in certain ‘degenerate’ worlds

additional information is required). We describe the “exploration tree” as a representation

of a collection of alternative descriptions of the environment. In addition, heuristics are

presented that can accelerate the search for the correct world model.
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1 Introduction

We are interested in the problem of automatically learning a map of an unknown environment

using an autonomous agent such as a mobile robot. Because positional information can some-

times be difficult to maintain, we consider the feasibility of map construction in the complete

absence of quantitative positional information. In the research to be described here, worlds

are represented by graphs (not necessarily planar) consisting of a fixed number of discrete

places linked by bidirectional paths. A mobile robot is assigned the task of creating a topo-

logical map, i.e. a graph-like representation of the places in the world and their connectivity,

by moving from place to place along the paths it encounters. Note that topological repre-

sentations can also be used to represent the connectivity of environments where quantitative

spatial information is not natural, such as the connectivity of computer networks.

A prerequisite for map construction is ability to solve the place identification problem:

when visiting a given place in the world, how can the robot determine whether or not it was

already visited and, if so, to what previously-seen place does it correspond?

This task appears to be simple given the idealized robot with error-free (albeit limited)

perceptual capacities that is reasonably common in the theoretical literature. In practice,

the progressive accumulation of positional error, even with sensor feedback, makes the con-

struction of a map based on an absolute metric coordinate system problematic. Furthermore,

the definition of a map in terms of specific places or landmarks facilitates person-machine

interaction; it is much easier to specify a task in terms of a place (eg. take the mail down the

hall to the third office, perform a measurement on the North side of the lander, etc.) than at
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“x-y coordinate (976,436)”.

Various approaches to robot localization using sensory information have been developed

but most either depend on a good prior estimate of the robot’s position and/or a sufficiently

feature-rich environment [Moravec 1988; Cox 1989; Elfes 1987; MacKenzie and Dudek 1994;

Dudek, Romanik and Whitesides 1995; Dudek and Zhang 1996]. In practice, some places may

be difficult to uniquely and accurately localize (due to sparse or noisy sensor data, occlusion or

interference with respect to GPS systems, accuracy considerations, etc.) and so it is important

that autonomous systems be capable of functioning in the presence of non-unique signature

information. As such, we have chosen to study an extreme case of sensing error in the context

of exploration and mapping by assuming that the robot is equipped with limited sensing

capabilities such that local sensing information alone is insufficient to uniquely distinguish

one place from another, making localisation problematic.

In this paper, we describe ongoing work [Dudek et al. 1988; Dudek et al. 1991a; Dudek

et al. 1993] that addresses exploration by assuming that our mobile robot can obtain little or

even no metric positional information whatsoever. In a sense, this is a “worst-case” scenario

for metric mapping. In particular, we demonstrate that by associating with each place the

(non-unique) local signatures of its neighbours (and their neighbours, etc.) called an extended

signature, it becomes possible in many but not all cases to answer the place identification

problem correctly [Corneil and Kirkpatrick 1980; Dudek et al. 1991b]. In this way, a map of

the world may be obtained which faithfully models the places and their connectivity.
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Figure 1: (a) A geometric map of a world. (b) A depiction of its associated topological map
or graph.

2 Specification

We assume that the world to be explored and mapped is composed of a finite number of

distinguishable places connected by bi-directional paths. Such a world may be represented as

a graph where vertices correspond to places and edges correspond to paths1. For example,

the world shown in Figure 1 may be represented by a graph G = (V,E) where V is the set of

vertices v1, v2, .., v6 and E is the set of edges where ei,j or (vi, vj) denotes the edge connecting

vertices vi and vj .

In addition, we shall assume that at each place, the robot is able to enumerate the in-

coming/outgoing edges (i.e. paths) in a systematic way (eg. clockwise), relative to the edge

1For simplicity of presentation, we will consider only graphs with at most a single edge between any pair
of vertices and without an reflexive edges.
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by which it arrived at the place: the edge is referred to as the reference edge (Figure 2(a,b)).

This edge enumeration is also known as a cyclic edge ordering. For planar graphs this is

closely related to the specification of am embedding.

We suggest that many environments of current interest for mobile robots may be charac-

terized as unstructured 2D environments identified by geographical landmarks whose char-

acterization may not by unique. For example, intersections in an office environment would

easily confuse a mail carrying robot unless additional information such as the (presumably

unique) numbers of adjacent office doors can also be perceived. Similarly, a security robot

touring a warehouse might be directed to check for the presence of intruders at specific places

without being able to associate specific (video) camera images with such places (since image

data is sensitive to camera position and orientation, ambient lighting, etc.).

We refer to the set of landmarks which are ‘visible’ (i.e., which may be perceived) at a

place, along with any other (local) identifying characteristics as the perceptual signature of

that place [Kuipers and Byun 1991].

To simplify the exposition in the context of graph-like environments, we will consider a

specific instance of a signature function, that being the degree of the corresponding vertex

(another example might associate signature with vertex colour). In general, however, the

signature refers to some arbitrary collection of non-unique measurements associated with a

location in space.

The robot is situated in some vertex at any time. The reference edge is the edge by which

the robot entered the vertex (or an arbitrary edge for the initial vertex). The robot and can
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choose to move to another vertex by edge specified by its position in the enumeration relative

to the reference edge.

As the robot performs the exploration, it records all the information obtained whenever

any action, sensing or motion (path traversal), is performed. By “remembering” all motion

sequences, the robot may retrace any previously performed motion.

Consider, for example, the scenario shown in Figure 2(c) using a counter-clockwise edge

ordering. The robot has entered the vertex vi by the edge el,i and left it to reach vj by the

edge ei,j which is r edges after el,i, i.e. the rth exit from el,i, and then left vj for vk by the

edge ej,k which is s edges after ei,j . When the robot returns to vj by ej,k, it can reach vi by

the edge ei,j which is −s edges after ej,k (or s edges before it).

We define the transition (or motion) function δ as follows:

δ(vi, ei,j , r) = vj (1)

means leave vertex vi by the edge which is r edges after the reference edge ei,j and this takes

us to vertex vj . We can retrace the previous sequence of movements since:

if δ(vi, el,i, r) = vj and δ(vj , ei,j , s) = vk then δ(vj , ej,k,−s) = vi .

3 Related work

Basic work on path planning and navigation began by presupposing a complete map of the

environment. In order to move between two points, the robot would first plan a path joining
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Figure 2: Examples of: (a) clockwise and (b) counterclockwise edge enumeration. (c) An
example of how the robot retraces its movement

those two points using the map provided, and call upon its sensors to try to follow this path.

Subsequent research began to look at how the robot might go about learning and mapping

its (unknown) environment. Typically, the learning is performed via exploration, i.e. by

moving the robot around, new information is gradually acquired and integrated, in order to

update a world model. The sensing data collected are typically positions of obstacles in the

world computed according to a given absolute reference or based on multiple relative reference

frames. The absolute reference might be a Cartesian coordinate system or some other absolute

system built according to some fixed features existing in the world. The resulting map, called

the geometric map, is in general a two or three-dimensional data structure which describes

the geometric structure of the world and from which a graph generally known as the road

map representing the connectivity of the free space, can be constructed [Latombe 1991; Davis

1986]. We note that many different kinds of models have been proposed in the literature for
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defining geometric maps and in particular free space, such as convex polygons, regular grids,

generalized cones (freeways), Voronoi diagrams [Latombe 1991; Arkin 1990].

For a variety of reasons, the representation of map information in a metric or geometric

form alone may not be suitable for long-range planning. Some of the reasons include the

following.

• Long-term goals are often expressed in terms of semantic tokens or places, rather than

specific coordinates (i.e. going to a valley, a route or a room rather than a specific

coordinate).

• Absolute coordinate systems are typically very difficult to accurately maintain at every

scale.

• Complete metric representations may involve very large mounts of data.

• Changes in the environment and the correspondence between objects may be difficult

to establish in a purely metric representation.

For these and other reasons there has been some interest in the use of more abstract maps.

A topological map can be defined [Davis 1986] as a map including all fixed entities in the world

such as distinguishable places and regions, linked by topological relations eg. connectivity,

containment. Advantages of such an approach include its qualitative nature and attractive

links to theories of human cognition and mapping. Such a map is often represented as a graph

where vertices are places and edges their adjacency relations. For example, when planning a

trip from one place to another, most systems (including people) usually begin by constructing
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a map of possible routes.

Metric and topological information can be hierarchically related, within the context of

a multilevel representation theory of a large scale space 2 based on the observation and re-

acquisition of distinctive visual events called landmarks [Chatila and Laumond 1985]. Topo-

logical and metric representations can be associated via an abstraction hierarchy. In this

spirit, Chatila et. al. [Chatila and Laumond 1985; Chatila 1986] have defined three levels of

description for the world:

1. a 2D geometric level obtained from perceptual data using polygonal approximations of

the perceived obstacles,

2. a topological level, and finally

3. a semantic level, obtained by attributing to each element of the topological model a

label representing its functional property.

In contrast, the multi-level ‘Tour’ model of Kuipers and Levitt proposes that a metric

representation be constructed from a topological one [Kuipers and Byun 1988] such that the

successive layers of the system are: 1) sensorimotor (action primitives), 2) procedural (prim-

itives for place-finding and route-following), 3) topological, 4) metric (metric relations). This

difference stems, in part, from the manner in which places are defined in the two alternative

approaches.

In more recent work, the same authors propose the ‘Qualnav’ Model [Kuipers and Byun

2A “large-scale” space is a space whose structure is at a significantly larger scale than the observations
available at any instant [Kuipers and Byun 1988].
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1991] for the simulation of a land-roving robot equipped with an omni-view visual sensor that

produces a continuous two-dimensional 360 degree image of the surrounding environment.

Here the topological map is simply a spatial decomposition defined in terms of landmarks

and projections (on the ground) of straight lines which connect adjacent landmarks to form

‘landmark-pair-boundaries’. Metric data is added to define the relative orientation between

adjacent landmarks. In this way, the Qualnav Model provides a computable theory integrating

qualitative, topological representations of a large scale space with the quantitative metric ones.

Nonetheless, its applicability is limited to those environments which may be characterized

in terms of landmarks and to those robots having specific sensing devices (for perceiving

landmarks). In addition, the robot cannot be considered as completely autonomous since it

requires some prior knowledge concerning landmarks viewable from the goal places.

It is often assumed that distinctive places can be robustly found, that they are not too

numerous, and that no two places can be confused [Schwartz and Yap 1987; Leonard and

Durrant-Whyte 1991]. Clearly, this last assumption is an idealization of a real robot exploring

a real world; not making it leads to serious complications [Basye and Dean 1990].

Indeed, the notion that no two places can be confused (based on the available sensing

data) is precisely the key hidden assumption in the NX Robot work [Kuipers and Byun 1987;

Kuipers and Byun 1991]. Unlike the Tour Model for which a place is pre-defined by a set of

”unrealistic” views, the NX robot must define in an autonomous way places and connecting

paths in order to create a discrete qualitative description of its a necessarily continuous

environment. In this model, A place is defined as a point which maximizes some distinctiveness
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measures allowing it to be locally distinctive within its immediate neighbourhood. Such

distinctiveness measures are defined in terms of The sensory features, the distinctiveness

measures and the feature values maximized at a place together define the signature of that

place.

While the authors suggest that any robot equipped with a sensorimotor system which

provides sufficiently rich sensory input and moves in sufficiently small steps through the

environment can use their approach, there are several important assumptions which are made

which mitigate such usefulness: places must be distinguishable, the robot must be able to

find them robustly and repeatably, and the places are not too numerous (a summary of the

Tour, Qualnav, and NX models may be found in [Kuipers and Levitt 1988]).

In contrast to this simulation work, Toto [Mataric 1990; Mataric 1992] is a real robot that

creates a topological map (a graph) as it explores a real world. Here the sensory interaction

with the world is defined in terms of three basic sensors: current sensors on the base motor to

detect stalling (non-movement); a ring of 12 Polaroid ultrasonic ranging sensors that covers

the entire 360 degree area around the robot; a flux gate compass. As landmarks are detected,

they become nodes in the graph along with their qualitative properties, i.e. type (left wall,

right wall, corridor) and associated compass bearing. A clever “truth maintenance” protocol

is invoked to ensure that the same landmark does not become multiple nodes in the graph.

While Toto can truly explore and map unknown worlds it is subject to the constraints

related to its sensing and motor control systems. Its very success is due to the care with which

the underlying processing (robot ‘behaviors’) has been tailored to the kinds of environments
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for which it was designed.

Finally, we turn to previous work associated with exploration and mapping using markers

(movable beacons) [Dudek et al. 1988; Dudek et al. 1991b]. This work deals with the

exploration of graph-like worlds, or the validation of maps of such worlds, defined in the

same manner as the environments considered in this paper. In addition, however, the robot

is equipped with at least one recognizable marker which can be put down or picked up.

This physical marker makes vi distinctive relative to the other vertices, and thus establishes a

“temporary” unique signature of that vertex. Such worlds can be fully explored and described

in limited complexity using a single movable marker a pebble) even if there are no spatial

metrics and limited no sensory ability on the part of the robot.

A practical instance of marker-based navigation is proposed in [Deveza et al. 1994]

whereby a mobile robot deposits a short-lived chemical maker on the ground to indicate

the path it has already followed. In this way, the robot ‘records’ information about where it

has been in the environment itself as do certain insects (and Hansel and Gretel).

This marker-based analysis requires that the robot be able to reliably place, identify and

recover the markers it uses for exploration. In this paper, we discuss how mapping can

be accomplished without such markers even though individual places may not be uniquely

identifiable.
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4 Building a map

We presuppose that the robot is able to define and detect locations associated with vertices

in the graph-like representation. Further, it can move between these locations in order to

follow edges as specified by the transition function δ. Large scale exploration and mapping

algorithm then proceed from this basis.

Over time we maintain a set S that contains the models of the environment that are

consistent with the percepts acquired by the robot. This set of solutions is called the “solution

universe”. While the exploration takes place, the robot constructs a data structure called the

“exploration tree” which is used to compute the set S.

If S contains more than one model, then the robot must rely on additional knowledge about

the world such as the total number of places, information about the probability distribution

of place signatures, or perhaps some compass measurements, to identify that model which

best represents the connectivity information in the world.

4.1 The exploration tree

The exploration tree refers to the collection of possible partial maps the serve as hypotheses

about the world the robot is exploring. It is incrementally constructed while the exploration

takes place. The root of the tree is a map containing only the initial place from which the

exploration began. Each successive level in the tree corresponds to elaborating the maps in the

level above using information from the traversal of a previously unexplored edge. The nodes

belonging to a given level of the exploration tree represent possible partial models of the world.
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Nodes corresponding to the current level in the exploration tree (as the exploration proceeds)

are called frontier nodes. Leaf nodes represent possible models (complete configurations)

of world connectivity and are the elements of S. A given node in the exploration tree is

considered to be a leaf node (i.e. a possible model) if there are no paths still to be traversed.

Our notation is as follows:

• vertices corresponding to places in the world are denoted by v1,v2, . . .

• vertices associated with nodes in the exploration tree are denoted by vj
1, vj

2, . . ., where

vj
i corresponds to the jth visit to place vi. Since a given place may be visited several

times as part of the exploration, we can have several vertices in a model (one exploration

tree node) for a single vertex in the world arising from different visits to that vertex.

A correct model is characterized by the fact that when the robot visits a given place multiple

times, it ‘recognizes’ that these are all visits to the same place. That is, there exists a

correspondence between v1
i (the first visit to the place corresponding to vertex vi) and vk

i

(the kth visit) for all k, and an absence of other (incorrect) correspondences. To guarantee

successful exploration, i.e. exploration leading to the creation of a solution universe S which

necessarily contains a model of existing connectivity in the world, two problems must be

addressed:

1. How can the robot know when all of the places in the world have been visited ?

2. When a place is visited, how can the robot know whether or not it represents a place

previously visited and is therefore already present in the exploration tree ? We shall
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call this the place identification problem.

Many possible exploration strategies are possible (even stochastic ones) but for simplicity,

we will process new edges in a a FIFO (first-in first-out) manner, based on breadth-first

traversal in order to guarantee that all edges will be explored, although perhaps not optimally.

Lemma 1 The breadth first traversal (BFT) of a finite graph will visit all its vertices after

at most depth d, d being the graph diameter3.

BFT may be represented by a tree4 where the root is the starting vertex vs (where the

robot starts the exploration), and a level i in the tree contains the ith neighbours of vs

(neighbours will be defined later); see Figure 3.

In Figure 4, we illustrate how the robot explores the world shown in Figure 1, by showing

the robot motions and the associated actions to construct the exploration tree. In this ex-

ample, the exploration tree has only one branch and the solution universe contains just one

possible solution which is the leaf of the tree, the node enclosed in a dotted rectangle.

The second problem is more complex since place identification must be performed with

very limited information. Indeed, by associating the signature of a place with vertex degree,

the robot cannot always know when it is visiting a place for the first time or not. In short,

we can be sure that a BFT will visit every node in a graph, but without node labels how

can we know when this has taken place? For example, in a world which contains cycles, the

3The diameter of a graph G is the maximum distance between any two vertices of G.
4The BFT tree associated with a graph G is different from its exploration tree since the BFT tree deals

with labelled vertices and, further, a single level in the BFT tree corresponds to many levels in the exploration
tree.
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Figure 3: An example of a breadth first traversal tree.

robot will inevitably re-visit some places. That is, when the robot visits a given place, it

could either be the first visit to a new (previously un-visited) place, or a re-visit to any of

the places that have the same signature (i.e. that appear the same). Thus, when the robot

visits a place, it must consider all possible ways of adding vertices to the frontier nodes in the

exploration tree.

Figure 4 shows how the robot explores the world described by the graph G (of Figure 1),

by showing the robot motions, and the associated actions to construct the exploration tree.

In this example, the universe of possible solutions contains only one branch and one possible

solution which is the leaf of the tree (the framed node). We note that a given node (world

model) of the exploration tree is considered a possible solution if there are no edges still to

be traversed. In the exploration tree, we never know whether or not there are extra places to

visit in the environment, only whether or not there are extra exits of a place which we have
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Figure 4: The exploration tree for the world shown in Figure 1
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not visited yet.

Branches in the exploration tree are created as a result of modelling the true topological

structure of the world, or by making one or more correspondence errors of different types. In

most cases, branches arising from errors eventually terminate due to inconsistencies resulting

from the incorrect topology induced by the error(s).

4.2 Algorithm details

The exploration algorithm functions by incrementally expanding a graph (intended to model

the world) for which there exists a known map. Initially, this is simply the robot’s starting

place. As the exploration proceeds, this map is gradually expanded by adding new vertices

and edges. When a place is visited and a new vertex in the map is postulated, its relationship

to the set of known vertices must be established and the correspondence (if any) with any

other vertex must be verified (using the signature and extended signature analysis).

When the robot visits a place corresponding to a new vertex u, it starts by ordering the

incident edges ei according to the “reference” edge e0 by which it arrived at u (eg. using

a clockwise ordering). (Note that the “reference edge” is only defined by the robot’s own

history – the reference edge is not perceptible in the graph itself.) The robot then examines

these edges (except e0) sequentially by traversing each one to visit the vertex at the other

end. The process of traversing the ith edge ei may be described as follows:

The process of traversing the successive edges ei of a new vertex u proceeds as follows:

1. Traverse edge ei to reach the other vertex v and compute the signature of v.
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2. Verify if edge ei is already connected to another vertex w in the map (for each node in

the current level of the exploration tree). If yes, verify the validity of the connection by

comparing the extended signatures of v and w: Sig(v) and Sig(w); if they are different,

then reject the proposed connection.

3. If edge ei is ‘free’, i.e. not already connected to another vertex, compute C(ei), the set

of all possible connections, which includes:

• connections to previously visited vertices vi with Sig(vi) = Sig(v) and with a ‘free’

incident edge. For each such vi found, create a new node in the exploration tree

by adding an edge connecting v to vi.

• a connection to a new vertex w. A new node is created in the exploration tree by

adding an edge connecting v to w.

The cost of this exploration process in terms of actual edge traversals by the robot (me-

chanical complexity) depends only on the search strategy used by the robot in moving through

the world. The algorithm is compatible with almost any strategy that progressively traverses

new edges. Breath-first search provides a simple example.

Further details on the algorithm and its implementation along with some complete exam-

ples may be found in [Dudek, Freedman and Hadjres 1994].

4.3 Algorithm behaviour

For example, if the robot incorrectly constructs a model that connects two vertices v1 and v2

during the exploration of v1 it may observe that there is an inconsistency during a subsequent
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Figure 5: An example of an error in edge correspondence.

visit to v1 that actually takes it to v2 instead (see Figure 5).

As shown later, exploration tree will always contain a branch for which no errors are

committed, i.e. a branch leading to a leaf which faithfully describes the connectivity in the

world.

Some of the possible complications are illustrated in the degenerate example shown in

Figure 6 (note every location in this world is indistinguishable from every other). For example,

at the fourth level of the exploration tree, during the visit to the vertex v3 coming from v2,

the robot finds the local signature (degree) of this vertex to be equal to the degree of another

visited but not yet explored, vertex v1
3, and therefore the robot has to consider 2 cases : (i)

v3 is “fused” with v1
3, labelled node ‘a’ at level 4, (ii)v3 is a new vertex v2

3 labelled node ‘b’

at level 4.

We can describe the mapping errors that can occur at two levels: local correspondence

errors at a given vertex of edge, and global structural errors that ensue as the result of one or

more local errors. We can divide the possible local errors into a few basic types. These occur
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Figure 6: Problems with constructing the exploration tree.
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when the robot arrives at (and maps) a vertex vi, as shown in Figure 7. (Errors associated

with paths (edges in the exploration tree) are subsumed within this classification.) These are

as follows.

E1 Errors of type old-looks-new. A vertex vi is assumed to be a new vertex even though

it has been visited before (i.e. a failure in correspondence). In this case, an additional

vertex is added to represent the current place even though a vertex for the current place

has already been created.

E2 Errors of type mis-correspondence. There are two sub-cases to consider: (a) vertex

mis-correspondence a vertex vi is “recognized” as a known vertex vj (j 6= i) even

though, in reality, it is another old vertex vk (i.e. the robot has confused two existing

nodes); (b) edge mis-correspondence vi is indeed vj but the edge ordering is wrong.

Thus, an incorrect connection between vertices is established in the model.

E3 Errors of type new-looks-old. A vertex vi is assumed to be a previously visited vertex

even though it is new. In this case, the map will have a missing vertex relative to the

real world and incorrect connectivity.

The consequences of these errors on the exploration tree are illustrated in Figure 8. A

succession of failures in correspondence (E1 errors) leads to the creation of an infinite branch

(succeeding node M9), corresponding to the case where each time a place is visited, it is always

considered as a new vertex. A possible model where no correspondences occur (possibly

erroneously) occurs in every exploration tree. As we show, in addition to such erroneous
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Figure 7: Possible errors which may appear during the exploration.

branches, the exploration tree will always contain a branch which leads to a leaf describing

the real world, where no errors are committed (eg. model M8 of Figure 8).

Theorem 1 The solution universe S produced by the exploration of a graph G = (V,E) with

a cyclic edge ordering always contains at least one model M ∈ S which is isomorphic to G

(i.e. which describes its structure). This model is obtained after m traversals of new edges

where m is the cardinality of E. (We will see later that the exploration may lead to multiple

models {M1, ...} ∈ S which all faithfully represent the real world.)

Proof: All nodes vi ∈ V and all its outgoing edges must be visited as part of the exploration

(Lemma 1)). Now, ∀vi ∈ V and all edges ei,k = (vi, vk) ∈ E|vk ∈ V the traversal of ei involves

the creation of C(ei) which contains all locally consistent of adding this edge to the partial

world models obtained thus far. One of these must, of necessity, include a model M which

faithfully represents the part of the real world explored thus far since that is, by definition a

possible combination of edges and vertices. This means that after each traversal of a new edge
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(as opposed to backing up along an edge previously traversed), a new real world connection is

added to M (and to all the other partial models). Therefore, after m such new edge traversals,

M has been augmented in such a way as to faithfully represent the real world. 2

Corollary 2 The solution universe produced by the exploration of a finite graph is never

empty, since it must contain at the very least the real world model.

4.4 The extended signature

Typical exploration trees usually include branches that are subsequently pruned (i.e. they

develop inconsistencies before they lead to a complete model). This can be observed in the tree

shown in Figure 8. The major reason for this is the weakness of the signature information used

by the robot for addressing the place identification problem; incorrect hypotheses regarding

vertex correspondences cannot be avoided based on local perceptual input. To make the

exploration more robust and effective, we shall now exploit non-local information by defining

an extended signature incorporating signature information about a place’s neighbours.

Neighbours are defined with respect to potential forward exploratory motion of the robot.

Thus, each vertex has a predecessor (except for the root) and zero or more immediate neigh-

bours (or successors). Specifically, the initial (zero’th) neighbours N0(u) of a vertex u as

follows:

N0(u) = {u} (2)
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Figure 8: An example of an exploration tree illustrating the three types of errors.
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Then its immediate neighbours N1(u) may be defined as follows:

N1(u) = {v ∈ V |(u, v) ∈ E} (3)

We can then define the immediate “outgoing” neighbours N2(u) of those vertices in N1(u) as

follows:

N2(u) = {v ∈ V | v ∈ {N1(N1(u)) − u}} (4)

Note that we take care to exclude u from this set,since it is the predecessor of the vertices in

N1(u) but not a successor of any vertex in N1(u). In a similar manner we define Nm(u), the

mth neighbours of u, as the union of the successors of the nodes in Nm−1(u).

Examples of neighbourhood computations are shown in Figure 9. Note that this definition

of a neighborhood does not preclude the repeated occurrence of a vertex in different neigh-

borhoods of a vertex; a vertex could be in both Nm(u) and Nm+1(u) (unlike an alternative

“wavefront” definition). Thus, for example, every node in a clique is the mth order neighbour

of every other node for all m > 0.

To make the vertex matching in the exploration tree more robust, we will now go beyond

local signature information (vertex degree) to consider an extended signature defined in terms

of the signatures of the neighbours of a place. For example, suppose that we have two vertices

u and v and we wish to establish whether they refer, in fact, to the same physical place. If

they have identical signatures (degrees), then we consider their immediate neighbours, N1(u)

and N1(v) as a cue to disambiguating them. If the immediate neighbours also have identical
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Figure 9: Some neighbourhood computations.

signatures and appear in the same sequence or configuration, then we also consider outgoing

neighbours N2(u) and N2(v), and so on.

For a generic signature defined by an arbitrary sensor, we define the mth order extended

signature of a vertex u in terms of the signatures of its neighbours up to a given neighborhood

distance m as follows:

Sig0(u) = (sense(u)) (5)

Sigm(u) = (Sigm−1(u), (sense(v))) ∀v ∈ Nm(u) (6)

where sense(v) denotes sensory information obtained at vertex v to identify it. For example,

for the graph in Figure 1 with a sensor that returns the vertex degree, the extended signatures

28



Figure 10: An example of signature tree.

of the vertex v1 are as follows:

Sig0(v1) = (2) (7)

Sig1(v1) = (2, (3, 2))

Sig2(v1) = ((2, (3, 2)), (1, 1, 1))

(8)

This extended signature may be also be viewed as a signature tree, where the root represents

the degree of vertex u and the nodes belonging to level i represent the degrees of the ith

neighbours of u, i.e. Ni(u) (see Figure 10).

Note that a node’s extended signature is generally only unique with respect to a specific

reference edge. Consider as root a vertex with degree d, with d possible extended signatures.

In Figure 11, we illustrate how any extended signature may be obtained from any other
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extended signature by circularly re-ordering its edges. We define two extended signatures as

isomorphic if one can be obtained from the other by a cyclic shift of the edges at the root.

Consequently, when comparing two vertices, the robot must take into consideration all cyclic

re-orderings at the root in evaluating their extended signatures. If the extended signatures

are isomorphic, then the two vertices may correspond to the same place.

4.5 Some special kinds of graphs

Despite the availability of an extended signature, ambiguity may still remain in place identi-

fication. As a result, the universe of possible solutions S may contain various models which

are equivalent insofar as the extended signature is concerned, of which just one faithfully

reflects the connectivity in the world (for example a simple cycle of either three or four ver-

tices). Additional information of various sorts can be used. For different classes of graphs

special-purpose strategies or cues can be used to resolve this difficulty [Dudek, Freedman and

Hadjres 1994].

We can structure graphs into several classes depending on the kind of additional infor-

mation we require in order to solve the exploration problem such that obtain a single world

model. These are as follows.

1. Graphs which may be reliably explored (i.e. to obtain a correct model of the unknown

world) just by using the extended signatures over a distance sufficiently large to allow

for the visiting of all vertices.

2. Graphs for which alternative models can be disposed of by foreknowledge of the number
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Figure 11: An example illustrating the effect on the signature tree of cyclic re-ordering at the
root (i.e. via selection of a different reference edge). The graph G is shown in the upper left.
The other three trees show 4th order signatures of vertex v2.
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Figure 12: A taxonomy of graph topologies and appropriate methods for finding a unique
model.

of nodes in the real world (i.e no alternative model has the same number of nodes as

the correct model). (Planar graphs may be in this class.)

3. Graphs for which the presence of a single uniquely distinguishable vertex can resolve any

ambiguity in the solution universe. In many cases vertices can be uniquely identified

by sequence of turns along a path between them and this distinguished vertex (i.e by

the sequence of edge numbers along this path). How such a vertex could be optimally

located is an iteresting problem.
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4. Graphs for which additional information is required.

Further work on how this taxonomy of graphs could be elaborated remains to be carried

out. Note, however, that an appropriate selection of cues could provide information how to

augment an environment to avoid confusion by a robot navigator (in the context of navigation

as well as exploration).

We not also that a distinguished vertex along with an orientation cue at that vertex

provides a very powerful cue. Thus, painting an arrow on the floor while exploring is much

more informative than simply leaving a mark or a bread crumb.

5 Experimental results and heuristics

The analysis described in the preceding sections of this document relates primarily to the

feasibility of the algorithm and its worst-case behaviour. In order to examine its performance

with respect to various graph-like worlds that might arise in practice, we developed an imple-

mentation that would allow experimental performance assessment. It can be used to simulate

exploration of any connected graph to generate the set of output models.

We now briefly consider empirical considerations drawn from running this program on a

large number of examples representative of important different classes of environment. The

computational cost of the mapping algorithm is a function of the number of nodes (possible

world models) generated in the exploration tree; the actual generation, maintenance and

comparison operations for extended signatures have low-order polynomial complexity. The

number of nodes in the exploration tree depends on the distinctiveness of the perceptual
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information extracted at each place. When places are clearly distinguishable, the exploration

tree grows only as a linear function of the number of new locations visited. When the locations

observed in the world are not uniquely distinguishable, the exploration tree can grow more

rapidly as a consequence of the ambiguity. Thus, when insufficient perceptual information is

available to constrain the growth in the exploration tree various pruning or deferred expansion

strategies become attractive.

Despite the availability of an extended signature, ambiguity may still remain in place

identification. As a result, the universe of possible solutions S may contain various models

which are equivalent insofar as the extended signature is concerned, of which just one faithfully

reflects the connectivity in the world (for example a simple cycle of either three or four

vertices). This, in turn, can lead to a large number of candidate models being developed

and leads to a question of when to terminate the exploration and accept the map that has

already been established. Figures 13 and 14 illustrate and example of a correct and alternative

(incorrect and larger) solution found for the same world – note that with the impoverished

data available to the robot, there is no way to establish which model is correct, i.e. both are

consistent with the available sensor data; it is possible the the larger model could, in fact, be

the correct one. Vertices in the input (correct) model are uniquely numbered while vertices in

the larger model (Figure 14) which are duplicates are marked with an apostrophe in a shaded

ellipse.

A natural pruning strategy is to limit the exploration tree or terminate search is based on

the observation that errors of type E2 (mis-correspondence) and E3 (new-looks-old)
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Figure 13: A correct solution for a 6x6 node map (see following figure).
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Figure 14: An alternative (more complex) model for the prior 6x6 graph.
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typically lead to inconsistency in the hypothetical map (see Figure 7) while errors of type

E1 (old-looks-new) alone lead to a map which is far larger then it should be, but such

maps may be self-consistent (eg. Figure 14). That is, errors of type E1 alone lead to a map

with duplicated sub-graphs but without incorrect “fusion” of non-equivalent nodes. Thus,

the incorrect models that are not rapidly eliminated tend to be far larger then the correct

model of the world. In short, it is the manifestation of Ockham’s razor: the real model tends

to be the most concise. We have examined this experimentally by constraining the search

process to avoid retaining hypotheses (maps) that are much more complex than the current

simplest model. Results to date suggest that, for realistic environments, this leads to major

performance improvements. An example illustrating the effects of pruning the models of size

greater than (γs + 2) where s is the current largest incomplete model and γ is 1.05 and 1.15

is shown in Figure 15 where a few key nodes have been eliminated. It illustrates that even a

small amount of pruning has a major effect.

6 Summary

In this paper, we have described how a robot with limited perceptual capacities may explore

and faithfully map an unknown graph-like world. Such a world can be used to represent the

topology or connectivity of a real metric environment if a lower-level subsystem can extract

the places and routes associated with vertices and edges.

Our approach is based on aggregating non-local information to compensate for potentially

ambiguous local perceptual information. Locations in the world are identified by a non-
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Figure 15: Effects of pruning. Number of exploration tree nodes as a function of level in the
tree with and without pruning. Note that the correct model is found early.

unique “signature” that serves as an abstraction for a percept that might be obtained from a

robotic sensor. While the signature of any single place may not be unique, under appropriate

conditions the distinctiveness of a particular set of signatures in a neighborhood increases

with neighborhood size. By using a collection of non-unique local signatures we can thereby

construct an “extended signature” that uniquely determines the robot’s position (although

in certain insufficiently rich worlds additional information is also required). The algorithm

makes use of no metric information such as the distances of the paths traversed, but the
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availability of such measurements would simplify the mapping problem.

The worst case behaviour of the algorithm is clearly problematic. For example, there can

be multiple embeddings of the same graph, leading to multiple models of the unknown world.

For example, for regular graphs every place is identical to every other and the number of

possible models grows initially as O(k!) for level k of the exploration tree (although keeping

only one or two models is sufficient to express both all the structure that the robot has

observed and all that it can accomplish given the limited percepts it has made). This initial

explosive growth is reduced once the tree depth exceeds the vertex degree (i.e. very early

for planar graphs). This difficulty is not surprising since under such circumstances we are

attempting to construct a map from no knowledge about where we are or how we are moving

– anything is possible. Thus the difficulty is not intrinsic to this algorithm but rather to the

impoverished stimuli.

In realistic worlds where more information is available and various places can be distin-

guished from one another using sensory data, the tree grows much more slowly. Further,

metric information that constrains the location of several nodes (places in the world), even

approximately, typically greatly simplifies the problem. In simulations we have carried out,

the correct map is usually found almost immediately. In the extreme, position information

constraining every place in the world reduces the problem to a fairly simple one.

To conclude, we now suggest some additional ways of reliably exploring unknown worlds

when both the extended signature and the existence of a uniquely distinguishable place are

not sufficient.
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In some worlds, there might be multiple interchangable distinguishable vertices (places

in the world) instead of just one. As a result, the robot may associate extra information

with each vertex, since we can define and record multiple edge sequences, one from each

distinguishable vertex.

It becomes logical to now consider under what conditions the existence of even two dis-

tinctive vertices is sufficient for the robot to uniquely identify any other place in the environ-

ment. Let vd1 and vd2 be two distinctive vertices which can be confused with one another.

Two different vertices u and v can be confused by the robot if they have the same extended

signatures and if vd1 and vd2 occupy the same positions in the tree representations of the

extended signatures. This is illustrated in Figure 16.

In practice, the robot can simply decide to stop the exploration after a certain number

of world models are obtained, and then pick one model from among the possible candidates.

Typically robots have access to at least limited metric information that could be used to choose

the correct model of the real world. Unfortunately, such a strategy can not be guaranteed

to succeed in all cases. One way to accomplish this would be to augment the graph with

qualitative perceptions based on the metric data. We note that fuzzy set theory has been

used with some success for such qualitative modelling [Freedman and Liu 1993].

Finally, the robot might have access to probabilistic information about, for example,

the existence of places with a specific degree, the average and the standard deviation, etc.

Such information might be available thanks to previous exploration of ‘similar’ worlds. In

appears that such information could be used to assign probabilities to alternative models in
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Figure 16: An example of graph where two vertices may be confused despite the existence of
two distinguishable vertices.

the exploration tree, as well as to prune the tree as it is being developed.

In conclusion, in the absence of metric data the exploration and mapping of worlds at

a topological level (in terms of a graph) can be carried out even when the local sensing is

highly ambiguous. The use of a non-local sensor signature can greatly reduce the difficulty of

the problem although, in general, multiple alternative world models may be possible except

in worlds described by acyclic graphs. In practice, the alternative models often differ greatly

in their complexity (as measured by the number of places) and hence simply selecting a

parsimonious model may be sufficient.
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