
XQuery As a Spatial Query Language

Xia (Lisa) Li
Senior Software Engineer

Galdos Systems Inc.
#1300-409 Granville St.

Vancouver, BC Canada V6C 1T2

Abstract – In this paper, we investigate the use of XQuery to retrieve geographic data represented in GML. The
proposed approach is aimed at overcoming the limitations of the earlier proposed GML query languages, and is
able to handle any GML data. We start with an analysis to show why among various kinds of XML and non-XML
query languages we choose XQuery as a fundamental query language for querying GML data. We then describe the
peculiarities of GML data and identify the special requirement for querying GML data which are not sufficiently
addressed in XQuery language. Finally, we present an approach to extend XQuery to address semantics, navigation
mechanism and data types in GML to support query over GML data.

Keywords: GML, XQuery, Spatial Query, Navigation, Syntax and Semantics.

1 Introduction
 The emergence of the World Wide Web brings an unprecedented opportunity to build geographic information
systems that can be shared and accessed by various organizations and applications across the Internet. Such sharing
systems require a unified format for data interchange among disparate applications. The Geographic Markup
Language (GML) was developed exactly for this purpose. GML is XML encoding for the modeling, transport and
storage of geographic information [1]. It provides a variety of kinds of objects for describing geography features
including geometry, topology and time attributes. Since it was adopted as a standard specification by OGC in 2000,
an amount of tools and APIs have been developed to provide access to GML document by various vendors.
However, there is no widely accepted and formally defined query language available to allow query posed directly
against GML documents yet.
Traditional standard query languages such as SQL cannot be used to query the GML data due to the lack of both
spatial query capabilities and XML navigation mechanism. Although GML is XML encoding, the standard XML
Query language XQuery [2] is not completely suitable for retrieving data from GML documents. This is because the
semantics and the spatial related data types of GML documents require different treatments from generic XML data.
In the literature, a couple of attempts have been made to address querying geometry data defined in GML [3], [4].
The fundamental problem of these proposed GML query languages is that they only address GML predefined
elements. However, most of GML applications usually have their own element declarations and type definitions.
Therefore the previously proposed GML query languages lack the flexibility and generality to process ubiquitous
application-defined GML data.
To tackle the above problems in querying GML data, we explore a possible approach to extend XQuery to support
query over GML data. The proposed solution is aimed at being able to handle the spatial data and overcoming the
limitations of the earlier proposed GML query languages to be able to apply query on any GML data.
Our investigation focuses on three aspects of GIS applications, namely spatial, spatial temporal and spatial
networks. We believe that these are the most important applications of GML and the query extension for supporting
these data types is sufficient to demonstrate our approach.

2 Why XQuery
 GML is XML encoding and the XML model is quite different from the traditional data models such as relational,
object-oriented and functional data models. The significant data model differences means the corresponding query
languages SQL, OQL or FQL cannot be efficiently used to query over GML data. In addition, XQuery is chosen as
the base language in this paper because of the following attributes that are not available in other XML query
languages but essential to GML query language,

• XQuery supports XML Schema types. GML is an XML grammar written in XML Schema. It heavily relies

on XML schema types. XQuery provides a rich set of operations on these types. A GML query language
based on XQuery can make greatly use of these operations to retrieve non-spatial data.

• XQuery emphasizes data-oriented XML [5].A GML document is essentially a data-oriented XML
document. Therefore, it is suitable to choose XQuery rather than other XML query language such as XSLT
as the base query language for GML data. Furthermore, the data-oriented attribute might lead to a better
performance which is important for querying large GML documents that are ubiquitous in GIS applications

• Besides the tree structure, XQuery also provides an additional data structure “sequence” which is also the
basic data constructs in GML. The sequence data structure can be used to represent a graph or a path
structure which is an essential data structure to model the spatial network represented in GML.

• XQuery is an algebraic language. A number of predefined functions and operations form the basis of the
query language. The library of predefined functions and operations can be easily extended with the special
operations on GML data types.

• In XQuery, the sequence type syntax allows user to write path expressions that select nodes according to
their schema type, type hierarchy or substitution attribute. This is very useful to realize semantic query on
GML data [6].

• XQuery is a W3C standard XML query language. The elaborated language definition and strong industry
support provide a promising future for building GML query based on XQuery.

3 GML Model, Syntax and Semantics

 Although GML is encoded as XML, it has its own underling logical model. The basic constructs of the GML data
model are object and property. An object in GML can be viewed as an entity in E-R model to represent a real world
entity, such as a road or a river etc. but with a more generic meaning to represent any meaningful things in an
application context such as various kinds of geometry and topology data types. GML properties may be viewed as
attributes of objects or relationships between entity objects. The GML properties actually play a role in the same
way as the attributes in E-R model. Hence, the GML logical data model is very similar to the traditional E-R model.
In fact, it might be more appropriate to say that GML adopts the extended E-R model – an entity relationship model
with a notion of inheritance.

A GML object is encoded as an XML element with a type definition that is derived from the GML predefined type
AbstractGMLType.

The properties of the GML object are represented as sub-elements of the corresponding GML object element.
The property value is represented as the content of the property element

In summary, a GML object is represented in XML syntax as a tree structure as follows,

 <ObjectElement>
 <propertyElement>text content as simple value</propertyElement>
 <propertyElement>
 <ValueElement>
 </propertyElement>
 <propertyElement>
 <ValueElement>
 …
 </ValueElement>
 </propertyElement>
 </ObjectElement>

Figure 1. GML object represented in XML tree.

Single-valued property with
complex value

Multiple-valued property

Single-valued property
with simple valu

A geographic feature “Road” can be represented in GML as follows,

Figure 2. Feature ‘Road’ represent

The basic semantic meaning found in many modelling paradigms (e.g.

• Existence/Type: represented in XML Schema type hierarchy.
• Attribute/Value: represented in the syntax structure of a GM

element represents the value of the property.
• Object Relationship: represented in the syntax structure of

associates the parent object element with the child object elem

4 Semantic Query o
As described above, the logical model and semantic meaning implied
Making use of the semantics to query GML data would be very natura
developers. However, the semantics is not directly reflected in the XQ
bear such semantic meanings. There are several attempts to fill the gap
build semantic model on the top of XQuery data model [8]. Another w
develop functions to facilitate the semantic query [9]. We adopted the
for the reasons a) GML semantics already implies in XML syntax b)
rather than embed the semantics into the XML data model.

To facilitate the semantic query over GML, we have developed a f
implemented purely in a schema-aware XQuery processor or imple
languages such as Java on a non-schema-aware XQuery processor. U
based on the common geographic concepts defined in GML core rat
kinds of application domain. In this way, we can achieve a uniform
significant burden for users to construct queries. A query can be con
structures of a particular GML document. For example, the following
retrieve all geographic features within a specific region,

for $feature in gfn:getFeatures(doc(“sample.xml”))
where gfn:within(gfn:getGeometry($feature), gml:Envelop(…))
return $feature

Here, the “gfn” represents the prefix of functions defined in our functi
As you can see, this query is totally constructed with the common v
there is no need to list all the concrete feature names in a specific GM

<Road>
 <gml:name>Cambie Street</gml:name>
 <numOfLanes>4</numOfLanes>
 <shape>
 <gml:LineString>
 …
 </gml:LineString>
 </shape>
</Road>

Simple value encoded as a text content
ed in G

 UML

L doc

a GML
ent.

ver G
 in GM
l and c
uery d
 betwe
ay is

 latter
 we int

unctio
mente
sers ca
her tha

 acce
structe
query

on libr
ocabul
L datas

-
Complex value encoded as a sub
element
ML

, E-R) [7] implied in GML includes,

ument. The content of a GML property

 document. A GML property element

ML
L are very common in geo-spatial area.
onvenient for end-users and application
ata model since generic XML does not
en semantics and syntax. One way is to

to map the syntax into the semantic and
way to realize semantic query on GML
end to provide semantic view for users

n library. This function library can be
d with the assistance of programming
n use the functions to access GML data
n the specific terms defined in various
ss to GML documents and reduce the
d without knowing the concrete tags or
can be posted to any GML document to

ary.
aries such as feature, geometry etc and
et.

5 Navigation of GML
 In XQuery, path expressions are used to locate nodes in XML documents. The path expressions are defined in
XPath 2.0 which is widely used in the XML community as a notation for navigating inside XML documents. The
path expression uses a sequence of steps, separated by ‘/’ character, to address nodes within the tree representation
of an XML document. Each step in a path expression contains three parts,

• An axis specifies the direction to be traversed.
• A node test, which is either a NameTest or a KindTest, places constraints on the names of kinds of nodes

selected by the axis.
• One or more predicates, which are optional, place further restrictions on the sequence of nodes to be

selected.

For example, child::chapter/descendant::para selects the para element descendants of the chapter element children of
the context node. For the details explanation, see section 3.2 of XQuery spec [2] or XPath spec [11].

The question here is, can the path expression be used to address all nodes in a GML document? Consider the GML
fragment below,

<Airport>
 <gml:description>Vancouver Airport</gml:description>
 <gml:location xlink:href=”#id123”/>
 <facilities>
 <Facility gml:id=”f1” …/>
 <Facility gml:id=”f2” …/>
 …
 <Facility gml:id=”fn” …/>
 </facilities>
</Airport>

The <Airport> element is an object node, <gml:description>, <gml:location> and <facilities> are property nodes.
The value of the property node <gml:description> is the text node containing the string “Vancouver Airport”; The
value of the property node <gml:location> is an object node identified in the xlink:href attribute; The value of the
<facilities> property node is a sequence of <Facility> object nodes.

The value of the properties ‘facilities’ and ‘description’ are represented directly in the children of the property
nodes. Therefore, the value of the property can be given in the path expression
“child::gml:description/child::node()” or “child::facilities/child::node()” assume the context node is the node
“Airport”. However, the value of the property “gml:location” cannot be given by the path expression
“child::gml:location/child::node()” since the value is not directly represented as a child element of the property,
instead it is indirectly represented through the xlink:href attribute. This example shows that in the case where the
value of a GML property isn’t represented as the child elements of the property, the child axis cannot be used to
address the value node of a property node. In fact, there doesn’t exist an axis to locate the value node directly in the
XPath expression.

The problem is caused by the fact that XPath is mainly designed to navigate the tree structure of a XML document
and the representation of GML objects is not a pure tree. Another reason is the data-oriented characteristic of the
GML document determines the most natural way to select nodes is to select object based on the value of their
properties, not by a route by which they can be reached [5].

Two possible approaches might be used to address the problem of GML navigation. One is to introduce an external
function gfn:value in XPath expression that returns either the child or the node identified by the xlink:href attribute
as the property value. Consider, for example, the problem of retrieving Road objects whose geometry property
satisfies certain condition from the following document fragment:

<Road>

 <extent xlink:href=”#TopoComplex1”/>
 …
</Road>
<gml:TopoComplex gml:id=”TopoComplex1”>
 <gml:topoPrimitiveMember xlink:href=”#Edge2”/>
 …
</gml:TopoComplex>
..
<gml:Edge gml:id=”Edge2”>
 …
 <gml:curveProperty xlink:href=”#LineString3”/>
</gml:Edge>
…
<gml:LineString gml:id=”LineString3”>
 <gml:coordinates>…</gml:coordinates>
</gml:LineString>

The path expression to locate the value of the geometry property would be,
//Road/extent/gfn:value(.)/gml:topoPrimitiveMember/gfn:value(.)/gml:curveProperty/gml :value(.)
The drawback of this approach is that it is difficult to put further constraints on the value of a property.
Another possible approach is to give the child axis a different definition just like the approach used in LMNL
document navigation [10]. We could define that the child axis contains either the child nodes or the node specified
in the xlink:href attribute. The advantage of this approach is that it does not require any changes to XPath syntax
and from the user’s point of view there is no difference to address a value represented as child nodes or a value
represented by reference. However, this might bring confusion to the concept of the child axis. Hence we would like
to propose the alternative approach which is to add a new axis value in XPath that is intended to apply on property
nodes to locate the value nodes of the property nodes.

The advantage of this approach over using gfn:value function is that all NameTest and predicates available to other
axes can also be used to make further restrictions on the value nodes selected by the value axis.

6 Operations on GML Data Types
XQuery defines a rich set of operations and functions in the specification XQuery 1.0 and XPath 2.0 Functions and
Operations. However, these operations are mostly defined on the XML schema built-in types. There are no
operations defined in XQuery for the spatial related types defined in GML. In order to allow the user address the
spatial data in the query language, it is necessary to extend the existing set of XQuery operations and functions with
the operations on the spatial related types defined in GML.

A GML application can have its own spatial related type definitions. These types might not be the predefined spatial
related types defined in GML core schemas. An operation must be designed to be able to accommodate any
application data rather than only applicable to the GML predefined data types. We achieve this by making use of the
XQuery sequence type syntax both in the parameters and the return values of the operation definitions. In XQuery, a
sequence type construct can be used to represent a class of items that has some common attributes. For example,
element(*, gml:PointType) refers to any element with a type definition being gml:PointType or derived from
gml:PointType. An operation that takes a sequence type construct such as element(*, gml:PointType) can be
applied to any point element in an application document regardless of the element name and the type name as long
as the element is declared with a type definition derived from gml:PointType. Since any spatial data type defined in
a GML application must be derived from a GML predefined type, an operation with the sequence type constructs
based on GML predefined types must be able to be applied to any corresponding application-defined data types in
GML documents.
There are three categories of spatial related types in GML, which are spatial, spatial temporal and spatial network
data types. Each of them represents an application area in GIS.

• The spatial types are used to describe the geometry locations of geographic data.
• The spatial temporal types describe the data with geometry aspects changing over time.
• The spatial network types describe the connectivity of spatial data.

Below is the typical example operations defined on these three categories of spatial related types in GML,

 Table 1. Operations on Spatial, temporal and spatial network data types

Category Operation definition Brief Description
Functions test for
spatial relationships

gfn:equal($param1 as element(*,
gml:AbstractGeometryType), $param2 as element(*,
gml:AbstractGeometryType)) as xs:Boolean
gfn:disjoint, gfn:touches, gfn:within, gfn:overlaps,
gfn:crosses, gfn:intersects, gfn:contains

Tests the topology
relationship
between two
geometry objects.

Temporal predicate gfn:before($param1 as element(*,gml:TimePrimitiveType),
$param2 as element(*,gml:TimePrimitiveType))
as xs:Boolean

gfn:after, gfn:equal, gfn:contains, gfn:meets, gfn:overlaps,
gfn:starts, gfn:finishes

Tests the temporal
relationship
between two time
objects.

Predicates on a GML
Graph

gfn:reachable($param1 as element(*, gml:EdgeType)+,
$param2 as element(*, gml:NodeType), $param3 as
element(*, gml:NodeType)) as xs:boolean

Determine
whether a node
can be reachable
from another node
in the given
graph.

Given a dataset represented in GML as follows,
<app :Country>
 <gml :name>…</gml :name>
 <app :population>…</app :population>
 <app :extent>
 <app :MyPolygon>
 …
 </app :MyPolygon>
 </app :extent>
</app :Country>
<app :River>
 <gml :name>…</gml :name>
 <app :curveProperty>
 <app :MyLineString>
 …
 </app :MyLineString>
 </app :curveProperty>
</app :Rive>

Here the element ‘Country’ and ‘River’ are defined as GML features, the application-defined geometry elements
‘MyPolygon ‘ and ‘MyLineString’ are defined as being subtypes of GML predefined geometry type
‘gml :PolygonType’ and ‘gml :LineStringType’ respectively.
The query to find all countries that pass through the rivers can be formulated as follows using the operations given
above,
for $river in doc(‘sample.xml’)//app :River
for $country in doc(‘sample.xml)//app :Country
where gfn :crosses(gfn :value($country/app :extent), gfn :value($river/app :curveProperty))
return $coutry/gml :name, $river/gml :name

Here, the gfn :value function returns the value of the specified property which are the element <app :MyPolygon>
and the element <app :MyLienstring> in this case. The function gfn :cross takes these two geometry elements and
returns a boolean value that indicates whether they are crossed to each other. The query finally returns all names of
countries that pass through the rivers.

7 Conclusions

In this paper, we have presented an extensive approach to extend XQuery to support query over GML data. In
particular, the basic semantics of the GML data model is identified and an approach to exploit semantics to achieve
uniform access to GML data is developed. The peculiarity of navigation of GML document is investigated and two
solutions are introduced to make it amenable to XQuery navigation mechanism, XPath processing model. The
XQuery type system is augmented with the data types defined in GML. A set of operators and functions on GML
data types that cover the most typical queries over spatial, spatial temporal and spatial network are developed.
In contrast to the related work such as [3], [4] where the proposed query language can only be applied to the data
with predefined GML types, our major contribution lies in that the extended query language developed by our
approach is applicable to any GML data. This is very important in that most existing GML applications always have
their own data types which are derived from GML predefined types but not the GML predefined types. That means
a query language only applicable to the data with GML predefined types would have limited usage in GML
applications. Our other contributions are that we proposed a uniform access mechanism that provides easy query
construction to users and enables to query/combine heterogeneous and autonomous GML resources. We developed
a suitable set of operations on GML spatial temporal and spatial network data types, and also addressed the issue of
navigation of GML documents. To our knowledge, there is no precedence work on these issues.

8 References
[1] S. Cox et al, Open GIS Geography Markup Language (GML) Implementation Specification. Open GIS
recommendation paper. 2004.

[2] W3C, (2005, April). [Online]. XQuery 1.0: An XML Query Language. Available:
http://www.w3.org/TR/2005/WD-xquery-20050404/

[3] J, E, Ciorcoles and P, Gonzalez. A specification of a spatial query language over GML. The ACM Digital
Library. [online] Available: http://portal.acm.org/citation.cfm?id=512186

[4] R, R, Vatsavai, GML-QL: A spatial query language specification for GML. Available:
http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm

[5] H, Katz et al, XQuery from the Experts: A Guide to the W3C XML Query Language. Addison-Wesley
Professional, 2003.

[6] Xia (Lisa) Li, “Ontology-based semantic access to GML documents,” presented at the GML Days 2003,
Vancouver, BC, 2003.

[7] B, Matthews, “Using RDF to derive schema mappings”. Available:
http://www.xmluk.org/images/content/RAL_06_2004/Brian%20Matthews%20XMLandRDFJune2004.ppt

[8] P, Patel-Schneider and J, Simeon “The Yin/Yang web: XML syntax and RDF Semantics”. Available:
http://www2002.org/CDROM/refereed/231/

[9] J, Robie, “The syntax web”. Available: http://www.idealliance.org/papers/xml2001/papers/html/03-01-
04.html

[10] J, Tennison and W, Piez ‘Layered markup and Annotation Language(LMNL) Extreme Markup Language
2002

[11] W3C, (2005, April). [Online]. XML Path Language (XPath) 2.0. Available: http://www.w3.org/TR/xpath-20

http://www.w3.org/TR/2005/WD-xquery-20050404/
http://portal.acm.org/citation.cfm?id=512186
http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm
http://www.xmluk.org/images/content/RAL_06_2004/Brian Matthews XMLandRDFJune2004.ppt
http://www2002.org/CDROM/refereed/231/
http://www.idealliance.org/papers/xml2001/papers/html/03-01-04.html
http://www.idealliance.org/papers/xml2001/papers/html/03-01-04.html
http://www.w3.org/TR/xpath-20

	Introduction
	Why XQuery
	GML Model, Syntax and Semantics
	Semantic Query over GML
	Navigation of GML
	Operations on GML Data Types
	Conclusions
	References

