

Fully Automatic Wrapper Generation For Search Engines
Hongkun Zhao, Weiyi Meng

Dept. of Computer Science
SUNY at Binghamton

Binghamton, NY 13902, USA
{hkzhao,meng}@cs.binghamton.edu

Zonghuan Wu, Vijay Raghavan
Center for Adv. Compu. Studies
Univ. of Louisiana at Lafayette

Lafayette, LA 70504, USA
{zwu, vijay}@cacs.louisiana.edu

Clement Yu
Dept. of Computer Science

University of Illinois at Chicago
Chicago, IL 60607, USA

yu@cs.uic.edu

ABSTRACT
When a query is submitted to a search engine, the search engine
returns a dynamically generated result page containing the result
records, each of which usually consists of a link to and/or snippet
of a retrieved Web page. In addition, such a result page often also
contains information irrelevant to the query, such as information
related to the hosting site of the search engine and advertisements.
In this paper, we present a technique for automatically producing
wrappers that can be used to extract search result records from
dynamically generated result pages returned by search engines.
Automatic search result record extraction is very important for
many applications that need to interact with search engines such
as automatic construction and maintenance of metasearch engines
and deep Web crawling. The novel aspect of the proposed
technique is that it utilizes both the visual content features on the
result page as displayed on a browser and the HTML tag
structures of the HTML source file of the result page.
Experimental results indicate that this technique can achieve very
high extraction accuracy.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Commercial Services, Web-based Services.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Information extraction, wrapper generation, search engine.

1. INTRODUCTION
Search engines are very important tools for people to reach the
vast information on the World Wide Web. Recent studies indicate
that Web searching, behind email, is the second most popular
activities on the Internet. Surveys indicate that there are hundreds
of thousands of search engines on the Web (e.g., [4, 7]. Not only
Web users interact with search engines, many Web applications
also need to interact with search engines. For example,
metasearch engines utilize existing search engines to perform
search [22] and need to extract the search results from the result
pages returned by the search engines used. As another example,
deep web crawling is to crawl documents or data records from
(deep web) search engines [24] and it too needs to extract the
search results from the result pages returned by search engines.

This paper focuses on the issue of how to extract search result
records (SRRs) from dynamically generated result pages returned
by search engines in response to submitted queries. Each SRR
typically consists of a link to a retrieved Web page and some
pertinent information (snippet). A typical result page contains
multiple SRRs plus some information irrelevant to the user query,
such as information related to the hosting site of the search engine
and advertisements. The objective is to extract SRRs and discard
irrelevant information from a result page. For a given search
engine, an experienced developer may manually write a program
to extract the SRRs from the result pages returned by the search
engine after manually analyzing some sample result pages.
Manually generating SRR extraction programs (i.e., wrappers) is
costly, time-consuming and impractical in many applications. For
example, search engines frequently change their result display
format and such changes will require manual maintenance of the
extraction program. As another example, our WebScales project
[11, 28] aims to connect to hundreds of thousands of search
engines and it is not practical to manually construct a wrapper for
each search engine. Therefore, we need an automated solution.
For search engines that have a Web services interface like Google
and Amazon.com, automated tools may be used to extract their
SRRs because the result formats are clearly described in the
WSDL file of the Web Services. However, our investigation
indicates that very few search engines have Web services
interfaces currently. One reason may be that Web services are
designed to support B2B applications while most search engines
are B2C applications. Therefore, we need to deal with search
engines with no Web services interfaces and extract results that
are presented in HTML files.

In this paper, we describe our solution to the problem of
automatically extracting the SRRs from dynamically generated
HTML result pages returned by search engines. Specifically, we
present ViNTs (Visual information aNd Tag structure based
wrapper generator) – a tool for automatically producing the
wrappers for any given search engines. Since the heart and soul of
a search engine’s wrapper is a set of SRR extraction rules,
wrapper and SRR extraction rules will be used interchangeably in
this paper. On the one hand, there are several reasons that make it
very difficult to derive accurate wrappers entirely based on
HTML tags [29]. First, HTML tags are designed to describe the
presentation of data to facilitate browsing by human users. As
such, the tags themselves convey very limited semantic
information about the data. Second, HTML tags have been used in
ways far beyond the imagination of the HTML tag designers. As a
result, little convention can be relied upon. Third, HTML has a
rather loose grammar and browsers typically do not enforce the
grammar when displaying Web pages, i.e., ill-formed HTML
pages can often be “perfectly” displayed. Fourth, not only the
script program that produces result pages generates tags, the SRRs
themselves may also contain tags. On the other hand, as Web
pages are designed to facilitate human browsing, they contain rich

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

66

visual content features to help people locate and understand
information. In fact, users typically rely entirely on visual content
features to recognize SRRs. Therefore, it is natural to consider
utilizing visual content features for SRR extraction.

The main contribution of this paper is the development and
evaluation of a method that utilizes both the visual content
features on the result page as displayed on a browser and the
HTML tag structure of the HTML source file of the result page to
derive SRR extraction rules. Unlike previous works [2, 5, 6, 8, 10,
12, 20, 26] in this field that exploit regularities in the HTML tag
structure directly, ViNTs first utilizes the visual content (without
HTML tags) to identify the regularities from content itself, and
then combines them with the HTML tag structure regularities to
generate wrappers. Our method is fully automated and the
experimental results indicate that this technique can achieve
considerably higher extraction accuracy than that of the state of
art web information extraction systems like MDR [20], which
utilize only the HTML tag structures on result pages.

The rest of this paper is organized as follows. Section 2 presents
the architecture of ViNTs. Section 3 introduces the fundamentals
of our method like the visual content features. Section 4 discusses
how to find candidate SRRs. Section 5 presents our method for
deriving wrappers. Section 6 reports the experimental results.
Section 7 reviews related works. Section 8 concludes the paper.

2. SYSTEM ARCHITECTURE
Figure 1 shows the architecture of our automatic wrapper
generation system. The input to the system is the URL of a search
engine’s interface page, which contains an HTML form used to
accept user queries. The output of the system is a wrapper for the
search engine. The search engine form extractor figures out how
to connect to the search engine using the information available in
the HTML form. Based on the extracted form information, the
query sender component sends queries to the search engine and
receives result pages returned by the search engine. Readers may
refer to [28] for more details about these two components.

Query sender

Sample query
generator

Web page
rendering
 Tag tree

building

Content line
extraction

Sample
result pages

wrapper
generation

Wrapper
refining

Wrapper
selection

Wrappers

Wrapper building

Line separator
extraction

Block
extraction

Search engine
form extractor

Input: URL of
search engine

Wrapper
integration

Figure 1. System Architecture of ViNTs

The wrapper-building module, shown in the dash-line box above,
is the focus of this paper. The input to this module is a set of
sample result pages produced by a search engine in response to
automatically generated sample queries. The only requirement for
a sample result page is that it contains a sufficient number of
SRRs (at least four, and the more the better), to permit the
regularities among the SRRs to be explored for wrapper building.
The input to this module also contains a special result page called
no-result page, which contains no SRRs. This page contains only
information irrelevant to any user query and thus can be used to

filter out useless information from other result pages. The sample
query that yields the no-result page is called an impossible query.
All sample queries are generated by the sample query generator.
This component has been implemented in our system but it will
not be discussed in this paper.

To utilize the visual content features, we render each sample
result page during wrapper building. There are many objects such
as links and texts on each result page (Anchor text associated with
a URL is called a link in this paper). When a result page is
rendered, for each object on the result page, a rendering box – a
rectangle containing the object – is produced. We use a coordinate
system based on the browser window to help describe the
positions of the rendering boxes. Our wrapper generation method
is sketched below. First, for each sample result page, we analyze
the types (say link or text) and the positions of all the rendering
boxes to identify some candidate result records (section 4). Based
on these records and a hypothesis about the general format of the
SRR wrappers, we build some initial wrappers (sections 5.1-5.4).
These wrappers are refined to enable the detection of the
boundaries separating different types of records (e.g., SRRs and
non-SRRs) (section 5.5). Next, the most promising wrapper is
selected for this result page from the refined wrappers using
additional visual features (section 5.6). Some search engines may
produce different irrelevant information on different result pages
(e.g., the advertisements may be query dependent). As a result,
different sample result pages may lead to slightly different
wrappers. Our final step is to integrate the wrappers for all sample
result pages of the search engine to produce the final wrapper for
the search engine (section 5.7). The detail of our method will be
presented in the next several sections.

3. METHOD FUNDAMENTALS
As mentioned earlier, existing techniques on web information
extraction are based on the analysis of HTML tag structures. We
believe that regularities in visual content (strings, images, etc. as
shown on web pages) should also be utilized to achieve higher
performance.

Many visual content features that are designed to help people
locate and understand information on a web page can help
information extraction. For example, the profile (or contour) of
the left side of each SRR on the same result page tends to be very
similar to each other, there are visual separators (e.g., blank lines)
between consecutive SRRs, all SRRs tend to be arranged together
in a special section on the result page, and this section occupies a
large portion on the result page, and it also tends to be centrally
located on the page. We describe some basic visual content
features that are used in this study in the following sub-sections.

3.1 Content Line
A result page usually consists of multiple sections, each
containing information in one category. For example, the result
page in Figure 2 consists of two sections: the one on the left
contains SRRs and the one on the right contains sponsored links.
The section containing SRRs will be called the SRR section.

Definition 3.1 (Content line) A content line is a group of
characters that visually form a horizontal line in the same section
on the rendered page.

In Figure 2, “Category: Home > Personal Finance > Tax
Preparation” forms a content line. Note that “Tax Info Center”
forms a different content line even though it is visually in the
same line as the line starting with “Category:” because they
appear in different sections on the result page.

67

Figure 2. A result page by Google

Different types of content lines can be observed on typical result
pages and their arrangements are useful for identifying records. In
our approach, the following types of content lines are identified:

• LINK – more than 90% of the area of the rendering box of
this line is link area. Only anchor text (i.e., clickable text)
with an underlying URL is considered a link in this paper.
Thus, a URL that is not an anchor text is not considered as a
link, but as a text. [code: 1]

• TEXT – more than 90% of the area of the rendering box of
this line is text area. [code: 2]

• LINK-TEXT – it contains both link and text, none of them
occupies more than 90% of the area. [code 3]

• LINK-HEAD – link line but started with a number like 1, 2,
3, … [code: 4]

• TEXT-HEAD – text line but started with a number. [code: 5]
• LINK-TEXT-HEAD – link-text line but started with a

number. [code: 6]
• HR-LINE – a visual line generated by HTML tag <HR>.

[code: 7]
• BLANK – the blank line. [code: 8]

The record in Figure 3 contains 5 content lines. The first is a
LINK line, followed by two TEXT lines, then another LINK line
and the last (invisible) is a BLANK line. To facilitate
computation, a code is assigned to each type of content line.

Each content line has a rendering box and the left x coordinate of
the rendering box is called the position code of the content line.
The position code of a blank line is set to be the position code of
the visible line immediately before it. To summarize, each content
line is represented as a (type code, position code) pair.

3.2 Shape of a Block
A record consists of one or more content lines, which together
form a block. An observation about the records on a result page is
that the left side profiles of all records in the same section tend to
be very similar, and records from different sections tend to have
different left side profiles. This observation is consistent with the
fact that result pages are generated by computer programs and
different sections are usually generated by different scripts. We
define block shape to represent the left side profile of a block.

Definition 3.2 (Shape of a block) Let c1, …, ck be the content lines
in a block in top-down order and let pci be the position code of ci,
i=1,…,k. The shape of the block is an ordered list of the position
codes of the member content lines of the block, namely (pc1, …,
pck). (pc1, …, pck) is also called the shape code of the block.

Consider the block in Figure 3. It has 5 content lines (the fifth is a
blank line). Suppose the position codes of the 5 content lines from

top to bottom are 8, 48, 48, 48 and 48, respectively. Then the
shape of the block is represented as (8, 48, 48, 48, 48).

Figure 3. A record block and its shape

3.3 Block Similarity
Each block consists of three pieces of information: the ordered
(from top to bottom) type codes of its content lines, the position
codes of its content lines and the block shape. We define three
metrics to measure the similarity between two blocks of content
lines: type distance, shape distance and position distance.

Type distance. The type distance between two blocks is to
capture the difference in their content line type sequences. The
detail is described below. We define the type code of a block as a
sequence of the type codes of the content lines of the block. Let
TCi be the type code of the ith content line in the block, then
TC1…TCn is the type code of the block, where n is the number of
content lines in the block. Furthermore, multiple consecutive
TEXT type codes are compressed to one occurrence based on the
observation that texts in snippets of SRRs often vary in length
significantly. Based on the above definition, the type code for the
block in Figure 3 is 1 2 1 8 (one TEXT type code 2 is suppressed).
In our implementation, type distance between two blocks a and b
is the edit distance [27] between the type codes of the two blocks.

Shape distance. This distance is to measure difference between
the indention sequences of the shapes of two blocks. To focus on
the shape and ignore where a block starts in the coordinate
system, we subtract the smallest position code in a shape code
from each position code. This will convert (8, 48, 48, 48, 48) to
(0, 40, 40, 40, 40). To concentrate on indentions, multiple
consecutive occurrences of the same position code are suppressed
to one. Consequently, (0, 40, 40, 40, 40) is transformed to (0, 40),
indicating that the shape has one indention with indent value 40.
The final list will be called the modified shape code of a block.
Let MSC(u) denote the modified shape code of block u. For the
block shapes in Figure 4, if we assume the value of each indent is
10, then we have MSC(a) = (0), MSC(b) = (0, 10), MSC(c) = (0,
10), MSC(d) = (0, 10, 20), MSC(e) = (10, 0) and MSC(f) = (0, 10,
0). Note that blocks b and c have the same modified shape code
while other blocks all have different modified shape codes.

Figure 4. Some sample block shapes

In summary, the shape of a block is represented as a sequence of
indentions in our method. The shape distance of two blocks a and
b is defined as the maximum difference between the
corresponding modified shape codes of the two blocks; if one
modified shape code is longer than the other, we pad the shorter
one with 0’s at the end to make the lengths of the two shape codes
the same before calculating their shape distance.

Position distance. This distance measures the difference between
the closest points of the two blocks to the left boundary of the
rendered result page. In other words, the position distance

 a b c d e f

68

between two blocks a and b is the difference between the smallest
position code for any content line in a and that in b.

4. FINDING CANDIDATE SEARCH
RESULT RECORDS
In this section, we discuss how to find some candidate SRRs from
a given result page by exploiting regularities in visual content
features. These candidate SRRs will be used to generate a wrapper
for this result page in section 5.

For a given result page of a search engine, we first render it and
extract content lines from it. Then we remove those content lines
that also appear in the no-result page of the search engine to get
rid of some useless content lines. Now we use a three-step method
to find some candidate SRRs. Visually, different records are
separated by a certain separator. Therefore, in the first step, we
try to identify all candidate content line separators (CCLSs)
(section 4.1). Each CCLS is then used to tentatively segment the
content lines into blocks. In the second step, these blocks are
clustered into different groups such that the blocks in the same
group appear on the result page consecutively and are all visually
similar (section 4.2). Intuitively, each such group corresponds to a
section on the result page. While a separator may help identify
records, it may not reliably separate records correctly. To solve
this problem, in the third step, we present an algorithm to identify
the first line of each candidate record (section 4.3). Clearly, if we
can find the first lines of multiple consecutive records correctly,
we can identify candidate SRRs easily.

4.1 Identifying Candidate Content Line
Separators
This task is to identify content lines that can be used to segment
the result page into blocks. Visually, different records are often
separated by a blank line (e.g., the <p> tag) or a visual line (e.g.,
the <HR> tag). But different records could also be organized into
different items of a list (e.g., the tag within the or
tags) or different rows (e.g., the <tr> tag) of a table, or special
image lines. The above tags may also appear in different records.
Furthermore, our observation is that a separator may consist of
multiple tags, for example, a sequence of tags may collectively
form a separator. Consequently, the problem of correctly
identifying content line separators for arbitrary search result pages
is very challenging. Our solution to this problem is to first identify
all CCLSs on a result page and let other steps determine which
yielded wrapper is correct (section 5). In this subsection, we
discuss how to identify all CCLSs.

In our approach, a CCLS is a sequence of consecutive content
lines, i.e., the pattern of the sequence of content lines is used to
define a CCLS. Such a pattern is defined to be the sequence of
(type code, position code) pairs of the content lines in the CCLS.
When a CCLS is used to segment a result page into multiple
blocks, the content lines in the CCLS are included in the blocks.
In fact, the last content line in a CCLS is also the last content line
of the block containing the CCLS. Since a sample result page is
required to have at least four SRRs by our approach, the pattern
that defines a CCLS must appear at least three times. To avoid
missing any potentially correct content line separator, all content
line patterns that appear at least three times on the result page are
recognized as CCLSs. A suffix tree can be used to accomplish this
step. To efficiently find all CCLSs, each distinct (type code,
position code) pair is first represented as a special symbol. This
will transform a result page of content lines to a string of symbols.
Then a suffix tree is constructed for the symbol string with

complexity O(n) [25], where n is the number of symbols in the
string. From the suffix tree, all sub-strings appearing three or
more times can be found in linear time complexity.

4.2 Block Grouping
Using a CCLS, the result page can be segmented into multiple
blocks of content lines. As mentioned before, a result page
consists of multiple sections and only one of them is the SRR
section. Therefore, we divide the blocks into groups. Blocks that
are consecutive and visually similar are put into one group. Two
blocks are visually similar if their type distance, shape distance
and position distance are all below certain thresholds. At this
point, we do not know which group may contain SRRs. As a
result, all groups are used for further analysis in section 5.

4.3 Identifying the First Line of Record
The blocks in a group may not be equivalent to the records in the
group as the CCLS used to obtain the blocks may be incorrect. A
nice feature of our approach is that it does not require the
identification and use of the correct CCLS to correctly extract
SRRs. As far as three or more SRRs can be correctly obtained
first, we can build a wrapper based on these SRRs to extract other
SRRs on the same page. To this end, we attempt to identify the
first line of each record. Clearly, if the first line of every record is
correctly identified, then all records will be correctly identified.
The blocks we obtained play an important role in identifying the
first lines of records. That is, in each block, we aim to identify
exactly one line as the first line of some record. If each block
contains exactly one first line of a record and this line can be
correctly identified for some consecutive blocks, our approach can
still extract all records correctly, even when the blocks do not
correspond to records exactly. This feature of our approach
reduces the reliance on correctly identifying the content separator.

Based on our analysis of a large number of SRRs from different
search engines, we developed a set of heuristic rules to identify
the first line of a record from a given block. Some of these
heuristic rules are: (1) the line following an HR-LINE is a first
line; (2) if there is only one line starting with a number in a block,
this line is a first line; (3) if only one line in a block has the
smallest position code (i.e., the position codes of all other lines are
strictly larger), this line is a first line; and (4) if there is only one
BLANK line in a block, the line following the BLANK line is the
first line. These heuristics are applied in certain order to reflect
their priorities.

5. WRAPPER BUILDING
After the step described in section 4, for each result page, we have
a set of block groups, each consisting of consecutive and visually
similar blocks. We call these groups candidate groups, because
they may contain SRRs. Each candidate group contains a number
of candidate records obtained based on the first record lines of
blocks (see section 4.3).

In this section, we describe how to build wrappers (SRR
extraction rules) by exploiting regularities in both visual content
features and in the HTML tag structures. Note that the wrappers
of our approach are expressed based on HTML tag structures only.
One advantage of such a wrapper is that it can be efficiently
applied on result pages of user queries to extract SRRs, as the
rendering of the result pages can be avoided.

In section 5.1, we first review the concepts of tag tree and tag
paths, and then introduce how to obtain the tag paths of the
candidate records in each group. The tag path of a record is the tag

69

path to its first line. Our observation indicates that even though
SRRs on different result pages may be laid out differently, all
SRRs on the same result page are usually arranged in the same
sub-tree of the tag tree of the page and their tag paths follow
certain pattern (section 5.2). Based on this observation, we
propose a hypothesis about the general format of the wrappers for
all search engines in the form of a regular expression (section
5.3). On the basis of this hypothesis, we build some initial
wrappers using the tag paths for the candidate records in each
candidate group (section 5.4). The initial wrappers are refined to
detect the boundaries separating different candidate groups
(section 5.5). Since there may be multiple candidate groups for a
result page and multiple initial wrappers may be built for each
candidate group, multiple refined wrappers may be generated.
Next, the most promising wrapper is selected for the result page
from the refined wrappers using additional visual content features
(section 5.6). Our final step is to integrate the wrappers for all
sample result pages of the same search engine to produce the final
wrapper for the search engine (section 5.7).

5.1 Tag Paths of Records
A result page can be transformed into a tree representation based
on the tags in its source HTML file, which is called a tag tree. The
root of a tag tree is the <HTML> tag, and all content nodes (texts,
images, etc.) are leaf nodes. Each internal node represents a pair
of tags (the starting tag and the corresponding ending tag) if the
tag has an ending tag, or just one tag if the tag has no ending tag
(
, for example). The root tag and internal nodes are called
tag nodes. A tag node and the sub-tree rooted at this tag represent
the starting tag and its corresponding ending tag as well as all tags
and elements in between. Figure 5 shows a sample result page and
its partial tag tree. Note that many tag nodes such as <HEAD>
and <CENTER> are not expanded.

< H T M L >
 < H E A D >
 < B O D Y >
 < IM G >
 < C E N T E R >
 < H R >
 < B >
 < H R >
 < D L >
 < D T >
 < S T R O N G >
 < A >
 F in a l A id F o rm s
 < IM G >

 < D D >

 < D L >
 < D T >
 < S T R O N G >
 < A >
 B in gh a m t o n U n iv e r s it y M P A …
 < IM G >

 < D D >

Figure 5. A sample result page and its tag tree

A node in a tag tree can be located by following a path from the
root to the node. We call such a path a tag path. A tag path
consists of a sequence of path nodes. Each path node pn consists
of two components, the tag name (i.e., a tag node) and the
direction, which indicates whether the next node following pn on
the path is the next sibling of pn (indicated by “S”) or the first
child of pn (indicated by “C”). As an example, the tag path of the

first tag in Figure 5 is “<HTML>C<HEAD> S <BODY>
C”; and the tag path of the first link (i.e., Financial Aid Forms;
note <A> is part of the link) of the first SRR is “<HTML>C
<HEAD>S<BODY>CS<CENTER>S<HR>SS<HR>
S<DL>C<DT>C C”.

Once we know the first line of a record, we can search the tag tree
in reverse order from the first node of this line to the root of the
tag tree to find the tag path of the record. From a given candidate
group of size n, we get n tag paths. Table 1 lists some tag paths
for the sample result page in Figure 5.

It is not difficult to see that a regular expression exists for the tag
paths in Table 1. But the problem of automatic regular expression
grammar inference is known to be difficult and we generally
cannot obtain a regular expression grammar using only positive
samples [13], like in our case. Our approach is to provide a
hypothesis about the general format of wrappers, and then try to
build the wrappers based on the hypothesized format.

Table 1. Tag paths extracted from result page in Figure 2

5.2 Structure of the Minimal Sub-tree That
Contains SRRs
There exists a minimal sub-tree t of the tag tree of a result page
such that all SRRs are located in t. The minimal here means that
no proper sub-tree of t contains all SRRs. Each SRR corresponds
to a sub-forest of t (see the dotted circles in Figure 6).

Sea
com
SRR
that
whe
sub
par
of
iden
can
hop
use
foll
of

R# Tag path

1 <HTML>C<HEAD>S<BODY>CS<CENTER>S
<HR>SS<HR>S<DL>C<DT>CC

2 <HTML>C<HEAD>S<BODY>CS<CENTER>S
<HR>SS<HR>S<DL>S<DL>C<DT>CC

3
<HTML>C<HEAD>S<BODY>CS<CENTER>S
<HR>SS<HR>S<DL>S<DL>S<DL>C<DT>C
C

4
<HTML>C<HEAD>S<BODY>CS<CENTER>S
<HR>SS<HR>S<DL>S<DL>S<DL>S
<DL>C<DT>CC

Figure 7. A structure variation
of the minimal sub-tree that

contains SRRs

70
Figure 6. Structure of the
minimal sub-tree
containing SRRs

rch engine result pages are dynamically generated by a
puter program. Since a result page typically has multiple
s, it is reasonable to think that there is a loop in the program

 wraps up the data extracted from the underlying database
n producing the result page. As a result, the corresponding

-forests of SRRs all have identical or similar tag structures (the
ent-child relationships of tags), and the roots of all sub-forests
SRRs should be siblings. Thus we can identify SRRs by
tifying their corresponding sub-forests. In other words, we

 divide the descendants of t into a set of sub-forests, and
efully, each SRR corresponds a sub-forest. A separator can be
d to perform the segmentation. A valid separator satisfies the
owing conditions: (1) it is a common subset of the sub-forests
all SRRs (i.e., it appears in the sub-forest of each SRR and

itself is a sub-forest); (2) it appears in the sub-forest of each SRR
exactly one (otherwise it would incorrectly divide a single SRR
into multiple records); and (3) it contains the rightmost subtrees of
the sub-forest of each SRR (i.e., the separator that separates SRRi
and SRRi+1 is part of SRRi). Note that the separator here is
different from the content line separator introduced in section 4.1.
Here it is a tag structure (tag forest) while the separator in section
4.1 is a set of content lines.

It is possible that more than one separator is needed for some
search engine. This happens when a search engine arranges some
of its SRRs in a way that is different from other SRRs, for
example, an SRR may be arranged indented relative to the SRR
preceding it. Figure 2 in section 3.1 is an example. Figure 7 shows
the tag tree structure of such a case; the parent node n of the sub-
forest of SRRi+1 is at the same level as the sub-forest of SRRi.
Note that SRRi+1 still has the similar tag structure as SRRi. In
general, if the SRRs of a search engine are arranged in k different
ways, then k different kinds of separators need to be identified. In
practice, however, k is usually 1 and occasionally 2.

5.3 Wrapper Format Hypothesis
A wrapper defined over a tag tree needs to specify two things: (a)
the location of the minimal sub-tree t that contains all SRRs, and
(b) the separator set. The minimal sub-tree of t can be determined
by a tag path from the root of the tag tree to the root of t. Within t,
SRRs are separated by possibly different kinds of separators and
each separator is also (the ending) part of a record. In addition, a
search engine may display only certain number of SRRs on a
result page. Based on the above analysis, we hypothesize that a
wrapper can be represented as the following regular expression:

prefix (X (separator1 | separator2 | …))[min, max] (1)

where X is a wild card for sub-forests of the tag tree, prefix is a tag
path, separators are also sub-forests of the tag tree, “|” is the
alternation operator, the concatenation of X and a separator
corresponds to a record, min and max are used to select records
from a list of records. For example, if the wrapper without the
[min, max] restriction extracts a list of n records, then only the
records between the min-th and the max-th records are extracted.
In general, min ≥ 0 and max can be infinite (some search engines
do not limit the number of results that can be displayed on a result
page). The prefix determines the minimal sub-tree t that contains
all SRRs in the result page. The separators are used to segment all
descendants of t into SRRs.

Once such a wrapper is generated for a search engine, extracting
SRRs from a result page of the search engine is straightforward.
First we parse the result page and build the tag tree. Next, we
follow the prefix of the wrapper to locate the root of the minimal
sub-tree t that contains all SRRs. Then we find all existing
occurrences of the separators in the descendants of t, and arrange
them in the order of their appearances in the sub-tree t. We extract
the ith SRR from the descendant nodes of t located within the ith
and (i+1)th occurrences of separators (the nodes representing the
(i+1)th occurrence of separators are part of the ith SRR). Finally,
we extract the SRRs whose serial numbers are within the range
[min, max].

5.4 Initial Wrapper Building
For a give candidate record group, we form sub-groups of
consecutive records of size k (k = 3 is used in our experiment).
The first k records form one sub-group, the second to the (k+1)th
records form the next sub-group, and so on. With the tag paths of
the records in each sub-group and the hypothesis about the format

of the wrapper (expression (1)), we try to build an initial wrapper
for the records in each sub-group. It is possible that different
initial wrappers will be generated for different sub-groups. It is
also possible that no initial wrapper can be generated for some
sub-groups. All produced wrappers will be passed to the
refinement step of our method.

We now discuss how to generate an initial wrapper for a sub-
group G. In this step, we focus on identifying the prefix and the
separator(s) in expression (1). Parameters min and max will be
determined later in a refinement step (section 5.5). Suppose the
records in G appear in order r1, …, rk. Let path(ri) denote the tag
path of ri. The tag paths for the second, third and fourth records in
Table 1 will be used as a running example to explain our method.
The main ideas of our method are as follows.

1. We find the maximum common prefix PRE of all input tag
paths (i.e., those for records in G). For our running example,
we have PRE = <HTML>C<HEAD>S <BODY> C S
<CENTER>S<HR>SS<HR>S<DL>S. Note that this
PRE may be different from the prefix needed by expression
(1). The reason is that the first record of the group (the one
with the shortest tag path) may not be in G. In general, the
correct prefix is contained in PRE but PRE may contain extra
path nodes at the end. To identify the extra path nodes, we
first remove PRE from each tag path (let pi = path(ri) – PRE)
and then compute Diffi = pi+1 – pi (pi is a suffix of pi+1). If all
Diff’s are the same, then it is a separator for expression (1).
In our running example, Diff = <DL>S is the separator. We
now remove all occurrences of Diff from the end of PRE. Let
PRE1 be the new PRE and E be the last node of PRE1. At
this point, an effort is made to identify additional separators
based on whether the tag path of Diff is identical to the tag
pattern composed of the child node(s) of E and whether Diff
also appears immediately before E. When both conditions are
satisfied, the path node of E is identified as a new separator
and the occurrences of all separators (including previously
identified ones) are removed from the end of PRE1. This
process is repeated until no new separator can be identified
and the remaining tag path (of PRE1) is the prefix for
expression (1). For our running example, only one separator
is identified and the correct prefix is <HTML> C <HEAD> S
<BODY> C S <CENTER> S<HR>S S<HR>S.

2. If Diffs are different, three cases are identified. Case 1: A
common suffix of the Diffs does not exist. In this case, the
wrapper generating process fails and the process is
terminated. Case 2: A common suffix exists and it does not
have multiple occurrences in any Diff. In this case, this suffix
is a separator. We subtract from PRE any suffix that is
identical to any of the Diffs until no further subtraction is
possible and the remaining PRE is the prefix for expression
(1). Case 3: All common suffixes have multiple occurrences
in some Diffs. In this case, an attempt is made to expand
each Diff by taking the structure of the child nodes (or even
deeper descendant nodes) of the nodes in the Diff into
consideration (structures of child nodes help differentiate
different nodes in the Diff and therefore help to find a
separator that does not have multiple occurrences in Diffs).
The expanded Diffs are then used to identify separators as in
the second case. If the separator still cannot be found, the
wrapper building process fails.

3. Based on the prefix and separator(s) identified in the last two
steps, an initial wrapper is generated for G by assuming min
= 0 and max = ∞. For example, the initial wrapper generated
for the running example is <HTML>C<HEAD>S<BODY>C

71

S<CENTER>S<HR>SS<HR>S(X<DL>S)[0, ∞],
where X is a wild card. The initial wrapper is then used to
extract all matching records from the result page to see if all
records in G can be correctly extracted in consecutive order.
If this is true, the wrapper is accepted for further evaluation
(refinement in section 5.5). If this is not true, a possible
reason is that the separator used is incorrect. Therefore, an
attempt is made to expand the nodes in the separator by their
child (descendant) nodes as in Step 2 to see if a new
separator can be found. If it can be found, it is used to revise
the initial wrapper and repeat the above process. If the new
wrapper cannot be accepted or a new separator cannot be
found, the wrapper building process fails for G.

5.5 Wrapper Refining
This task is to determine the values of the parameters min and max
of a wrapper (see expression (1)). The input to the wrapper
refining process includes an initial wrapper (generated in section
5.4) and a list of consecutive records extracted by applying the
wrapper. Let these records be numbered from 1 to n, and let Rm
be the record in the middle. The wrapper refining process works
as follows. We start from Rm and move towards the two ends of
the list. Let’s consider the process of moving towards the
beginning of the list. When the next record is encountered, if it
does not contain a link or its block is not visually similar to the
block of Rm, the serial number of the record plus 1 becomes min.
Similarly, max can be determined when we consider the process
of moving towards the end of the list.

5.6 Wrapper Selection for One Sample Page
At this step, we have a set of wrappers and record groups
extracted by applying those wrappers. Among these wrappers,
four cases may occur. First, some wrappers can correctly extract
all SRRs and nothing else. Second, some may extract some but
not all correct SRRs. Third, some may retrieval all SRRs but also
some non-SRR records. Fourth, some may be suitable for other
neatly arranged information on the result page such as ads and
host information. The wrapper selection step is to determine the
wrapper that mostly likely belongs to the first case.

Our approach uses content features (both visual and non-visual) to
help find the correct SRR group hence the correct wrapper. It is
not difficult to observe that on the rendered result page, the
correct SRR group likely (1) occupies a large area, (2) is centrally
located, (3) contains many characters, (4) has a large number of
records. To utilize these content features, we define the following
four weights:

1. Rendering area weight (RAW). A group’s RAW is defined
as the relative rendering area of this record group over the
largest rendering area of all record groups.

2. Center distance weight (CDW). CDW is based on the
distance between the center of a group’s rendering box and
the center of the rendering box of the whole result page; this
distance is called the center distance of the group. Let p0 be
the center of the whole page’s rendering box. If the rendering
box of a group contains p0, its center distance is defined to be
0; otherwise we use the Euclid distance between the center of
the group’s rendering box and p0. We define CDW as the
relative center distance over the smallest center distance.

3. Number of records weight (NRW). A group’s NRW is
defined as the number of records of the group divided by the
number of records of the largest group.

4. Average number of characters weight (ACNW). The average
number of characters of a group is the average number of
characters in each block in this group. A group’s ACNW is
defined as the relative average number of characters of the
group over the largest average number of characters in all
groups.

We combine the above four weights by weighted summation, pick
the group with the highest combined weight as the search result
group and output its corresponding wrapper as the correct wrapper
for the input sample page.

5.7 Wrapper Integration
After wrapper selection, we are able to build a wrapper for each
sample result page. The wrappers built from different sample
result pages of the same search engine may be different even
though they are all correct with respect to their corresponding
sample result pages. The reason is that frequently search engines
may include information on a result page that is query dependent
or changes from time to time. As a result, the tag paths (prefixes
in wrapper expressions) of the minimal sub-tree that contains all
SRRs as well as the separator sets may vary. Thus, a wrapper built
from one sample page may not correctly extract SRRs when
applied to another page. Wrapper integration is to integrate the
wrappers built from multiple sample result pages of the same
search engine into a single robust wrapper for the search engine.

The integration involves three parts: separator integration, prefix
integration and [min, max] integration. During the integration
process, two wrappers are considered at a time. If both their
separator sets and their prefixes can be integrated, the two
wrappers are integrated. An integrated wrapper may then be
integrated with another (possibly integrated) wrapper. At the end
of this process, there may be multiple integrated wrappers and no
integration between them can be carried out. At this time, the
integrated wrapper with the largest support (i.e., it is integrated
from the largest number of input wrappers) will be selected as the
final wrapper for the search engine. In our current
implementation, tie is broken arbitrarily. In the following, we
outline how two wrappers are integrated.

Separator integration:
For two separator sets, if one set is a subset of the other set, we
take the larger set as the integrated separator set. The case that the
two separator sets are identical is a special case of the above case.
If none of the sets is a subset of the other, the integration of these
two separator sets fails.

Prefix integration:
Prefix integration is carried out by converting each prefix into a
compact form through the removal of unimportant path nodes.
This would remove “noises” from the prefixes.

The conversion is based on the following rules:

(1) Keep all path nodes with direction code of “C”.
(2) Keep path nodes with direction code of “S” only if their tag

name is the same as that of the closest future path node with
direction code of “C”.

(3) For any path node after the last node with direction code “C”,
if its tag name is identical to the tag name of the first node of
any separator in the wrapper, it is kept; otherwise it is
deleted.

For example, the prefix of the wrapper in Section 5.4 (item 3)
becomes <HTML>C<BODY>C. It is obvious that the compact
prefix will find the same minimal sub-tree as the original prefix.

72

Prefix integration can be carried out reasonably easily after
prefixes are converted into compact forms.

[min, max] integration:
Let the two input [min, max]’s be [min1, max1] and [min2,
max2], respectively. Let [min3, max3] be the integration result.
Then min3 = min {min1, min2} and max3 = max {max1, max2}.

6. EXPERIMENTS
We have built an operational wrapper generation prototype system
(ViNTs) based on our method. Result page rendering and tag tree
construction are performed by a commercial tool ICEbrowser [16].
On a Pentium 4 1.7GH PC, the current ViNTs can build a wrapper
for a search engine with 5 sample result pages and 1 no-result
page in 3 to 7 seconds. Once a wrapper is built for a search engine,
SRRs from a new result page of the search engine can be
extracted in a small fraction of a second (about 100 milliseconds).
Thus, the wrappers generated by ViNTs are practically useful in
real-time web applications. In fact, ViNTs has been used in the
development of a commercial news metasearch engine
(www.allinonenews.com). The ViNTs prototype system and the
data sets used to evaluate it can be accessed at
http://www.data.binghamton.edu/vints.html.

6.1 Data Sets
Three data sets are used to test ViNTs and they are described
below.

Data set 1 contains 100 search engines in 4 categories: education,
government, medical, and general. Search engines in the
education category are randomly selected from the Yahoo search
engine using query “American universities”. Search engines in
government and medical categories are collected from
search.com. The general category contains some general-purpose
search engines like Google, AltaVista, Yahoo, etc. This data set is
used as a training set for learning optimal performance parameters
(e.g., the weights in section 5.6). Almost all search engines in this
data set are document search engines, i.e., they search text
documents.

Data set 2 contains 100 search engines collected from
profusion.com and none of them is included in Data set 1. These
search engines are not exposed to ViNTs until they are tested. 20
of them are non-document search engines (they are for jobs, e-
commerce, and entertainment).

We should mention that the above data sets do not contain search
engines that return multiple sections of results since our current
method is designed to extract records from just the major section
of a search engine result page. Search engines whose result pages
cannot be rendered by ICEbrowser are also excluded (there are
very few such cases).

For each search engine in the above two data sets, 10 queries are
submitted and the 10 first result pages are manually collected. In
addition, a no-result page is also collected for each search engine
by submitting a non-existent term as a query to the search engine.
Most search engines limit the number of records displayed on
each result page, say 10. But a few search engines display all
results (could be hundreds) on their result page. To avoid the bias
that may be caused by these search engines on the overall
performance, only the first 25 records are used if a result page
contains more than 25 records.

Data set 3 is obtained from the Omini [5] testbed (available at
http://sourceforge.net/projects/omini/). Omini testbed consists of
more than 2,000 web pages collected from 50 websites (many of

them are e-commerce search engines). Since the number of web
pages per web sites is highly uneven, from 1 to several dozens, we
decide to take one random page per website. Thus, data set 3
consists of 50 web pages from 50 websites, one page per site.

Data set 3 is used to compare our method with MDR [20], which
is a state of the art web information extraction system based on
HTML tag structure analysis only and can be downloaded at
http://www.cs.uic.edu/~liub/MDR/MDR-download.html. There is
currently no standard testbed for web information extraction. As a
result, researchers always report the performance of their systems
based on their own testbed. This can easily cause biased results.
By using a data set from a third party, fairer comparison can be
made.

6.2 Performance Measures
We use the recall and precision measures (which are widely used
to evaluate information retrieval system) to evaluate the
performance of our system for extracting SRRs. Recall and
precision are defined below:

Nt
Ecrecall = and

Et
Ecprecision =

where Ec is the total number of correctly extracted SRRs, Nt is the
total number of SRRs on all result pages used, and Et is total
number of records extracted.

6.3 Experimental Results on Data Sets 1 and 2
To determine the impact of using visual content features on our
wrapper generation approach, we also implemented a version of
ViNTs that uses no visual content features. In this version, content
lines are identified by HTML tags (e.g., <p>,
 and <tr>),
block similarity is based on type distance only, and wrapper
selection does not use visual features such as rendering area.

For each search engine in data sets 1&2, we use 5 result pages and
the no-result page to build the wrapper, which is then applied to
extract SRRs for all the 10 result pages. Table 2 shows the results
when the wrapper is applied to the 5 pages that are used to build
the wrapper, and Table 3 shows the results when the wrapper is
applied to the 5 pages that are not used to build the wrapper. The
columns headed by VW are the results of the regular ViNTs, and
the columns headed by NV are the results when the visual content
features are not utilized.

Table 2. Results on samples used to build the wrapper
Data set 1 Data set 2 VW NV VW NV

#SRRs 6919 6919 6905 6905
#Extracted SRRs 6905 6833 6872 6465
#Correct SRRs 6901 6722 6740 6283

Recall 99.7% 97.2% 97.6% 91.0%
Precision 99.9% 98.4% 98.1% 97.2%

Table 3. Results on samples not used to build the wrapper
Data set 1 Data set 2 VW NV VW NV

#SRRs 6219 6219 5822 5822
#Extracted SRRs 6169 6111 5801 5525
#Correct SRRs 6164 6001 5673 5390

Recall 99.1% 96.5% 97.4% 92.6%
Precision 99.9% 98.2% 97.8% 97.6%

As it can be seen from Tables 2 and 3, ViNTs can generate very
high quality wrappers, with both recall and precision close to

73

http://www.data.binghamton.edu/vsewrapper.html

100% on data set 1 and close to 98% on data set 2. The small 2%
decrease in performance from using data set 2 to using data set 1
strongly indicates that our approach is very robust, considering the
facts that data set 2 is completely new and 20 of its search engines
are non-document search engines (our system is trained using
only document search engines). The main reason for the above
2% decrease in performance is due to the failure of ViNTs on 2
search engines in data set 2. One failure is caused by the wrapper
selection step (a wrong wrapper is selected by ViNTs) and the
reason for the other failure is not immediately clear.

By comparing the results under columns VW and NV, we can see
that utilizing visual content features has moderately increased the
precision but significantly increased the recall, especially for data
set 2. Note that even though the increases are not large in absolute
terms, they are highly significant because they are increases
beyond the 90+% base performance and the last several percentage
points are usually the most difficult to achieve. Since result pages
for non-document search engines are usually more complex than
those from document search engines and data set 2 has 20 non-
document search engines, it seems that utilizing visual content
features is more effective for complex result pages. We plan to
carry out more experiments in the future to verify this observation.

6.4 Comparison with MDR
MDR extracts from a single page at a time. To compare with
MDR, we configure ViNTs to build a wrapper from a single page,
and then apply the wrapper to extract SRRs from the page. ViNTs
returns only the SRRs in the major section of a web page, while
MDR reports all identified sections. Only the major section is
considered if there are multiple sections of SRRs. MDR has a
similarity threshold, which is set at 60% in our test, based on the
suggestion of the authors of MDR.

MDR could not produce any output for 8 web pages in data set 3
because the MDR program terminated abnormally, while ViNTs
worked on all 50 pages. These 8 pages are not used in our
comparison as the reason of the abnormal termination of the MDR
program on these pages during our test was not clear. Misaligned
SRRs, such as an extracted SRR consisting of part of an actual
SRR and part of the next SRR, are counted as error. Table 4
shows the summary of the test results using the 42 web pages
MDR produced results. The detailed test result can be accessed at
our ViNTs demo site.

As we can see from Table 4, the performance of ViNTs is
considerably better than that of MDR. Our test also found out that
MDR is much better at extracting records from HTML tables
(with recall 73.7% and precision 87.2% on data set 3) than from
non-tables (with recall 7.7% and precision 100%), while our
method performs well in both situations (recall and precision both
at 99.1% for tables and both at 98% for non-tables).

Table 4. Comparison results with MDR
 ViNTs MDR

#SRRs 795 795
#Extracted SRRs 795 479
#Correct SRRs 785 420

Recall 98.7% 52.8%
Precision 98.7% 87.7%

7. RELATED WORKS
The problem of extracting search results from search engine result
pages is an information extraction (IE) problem. IE has received a
lot of attention in recent years. A good survey about current works

on IE can be found in [19]. Earlier works are mainly semi-
automatic or even manual [1, 3, 9, 15, 18, 21, 23]. They rely on
training and human assistance to generate extraction rules for web
pages. Many new applications such as building large-scale
metasearch engines or building metasearch engines on-demand
[28] require fully automated wrapper generation techniques.
Several automated or nearly automated IE methods have been
proposed recently and the most representative ones are Omini [5],
the method in [12], IEPAD [6], MDR [20], RoadRunner [10],
EXALG [2], DeLa [26], PickUp [8].

RoadRunner extracts template by analyzing a pair of Web pages
of the same class at a time. It uses one page to derive an initial
template and then tries to match the second page with the
template. Mismatches are used to modify the template to
eventually fit all input pages to the template. EXALG works on a
set of Web pages of the same class. Equivalence classes that are
sets of tokens having the same frequency of occurrence on all
input pages are computed, and large and frequently occurring
equivalence classes (LFEQs) are extracted for template
generation. Dela employs a multi-level pattern extraction
algorithm to build regular expression to represent the nested
schema of data on the web page. PickUp identifies table structures
in web pages by mining repeated patterns in HTML tag sequence.
RoadRunner, EXALG, Dela and PickUp all support complicated
data types and are more general than works developed primarily
for flat record extraction. However, they only reported
experimental results when data at a level lower than search result
records are extracted. Consequently, their results are not directly
comparable with ours. While it is possible to use these systems to
extract data at record level, we are not able to implement their
complicated algorithms as a lot of details are left out in the
published papers. As a result, we are not able to compare them
with our method experimentally.

The methods of Omini, IEPAD, MDR and that in [12] are the
most relevant to our method because they all extract data at the
record level. IEPAD first symbolizes all HTML tokens of a parsed
web page into a string, and then uses a PAT tree and some
heuristics to find candidate patterns. Finally, a human user
selects the best pattern among the candidate patterns. As a result,
IEPAD is not fully automated. Omini and the method in [12] build
a tag tree for an input web page, then apply some heuristics to
extract a sub-tree that contains data objects of interest. Then
another set of heuristics is applied to find out a separator, which is
a tag that can segment the minimum object-rich sub-tree into data
objects. In addition, the method in [12] uses match heuristics
based on a manually constructed ontology; thus it is not truly
automatic. Omini does not use any ontology and uses a different
set of heuristics to achieve better performance. The idea of
separator in our method is similar to [12] and Omini but our
separators are more general. Their separators contain only one
HTML tag, which is insufficient in some samples we tested, while
our separator is a tag forest, which can be expanded to desired
depth if necessary. We also support optional separators. In [5] (for
Omini) and [12], only the experimental results on separator
identification were reported but no results on wrapper generation
were reported. The results reported in [20] indicate that Omini has
low effectiveness (recall 39% and precision 56%) for extracting
data records. MDR identifies data regions by finding the existence
of multiple similar generalized-nodes of a tag node, while a
generalized-node is a collection of child nodes of that tag node.
Then each generalized-node is checked to decide if it contains
multiple records or only one. Near perfect results (with recall
99.8% and precision 100%) are reported for MDR in [20].

74

However, when a third party data set is used, MDR has a much
lower performance than our method (see section 6). A major
reason for the discrepancy is probably due to the fact that MDR is
primarily designed to handle tables only. In addition, the
definition of record is MDR seems to be slightly different from
that of SRR as in this paper. MDR does not identify the correct
section for search result records and extracts records from all
sections. This will likely extract some advertisement records.
Furthermore, MDR does not generate wrapper and needs to
perform the complex and time-consuming extraction for each
result page. This is not practical when dealing with a large number
of result pages for each user query as in a metasearch engine
context.

The main difference between our method and existing techniques
is that our method is the only one that utilizes both visual content
features and HTML tag structure regularities, while existing
techniques use only HTML tag structures. This makes our method
less sensitive to the misuse of HTML tags. Our method also
utilizes HTML tag structure differently. For example, our
separators are more general and our wrapper generation process
(i.e., generating multiple candidate wrappers for each page,
selecting the best wrapper for each page and integrate the
wrappers for multiple pages) is also different. Our method is fully
automated and highly accurate (the average recall and precision
for the three data sets are 98.3% and 98.9%, respectively). We
should point out that, among similar studies, our experiments used
the largest number of search engines.

There are some works on using visual information to process web
pages in other applications (e.g., [14, 17, 29]) but none of them
are directly related to search engine result extraction. These
methods and our method also use different sets of visual features.

8. CONCLUSIONS
In this paper, we presented a fully automated technique to
generate wrappers for extracting search result records from result
pages dynamically generated by search engines. Our technique
utilizes both the visual content features on the result page as
displayed on a browser and the HTML tag structures of the
HTML source file of the result page. This differentiates our
technique from other competing techniques for similar
applications. Our experimental results indicate that our technique
can achieve high extraction accuracy. In the future, we plan to
utilize additional visual features (such as font type and color) to
further reduce the reliance on HTML tag structure.

9. ACKNOWLEDGMENTS
This work is supported in part by the following grants from NSF:
IIS-0208574 and IIS-0208434.

10. REFERENCES
[1] B. Adelberg. NoDoSE – A tool for semi-automatically

extracting structured and semistructured data from text
documents. ACM SIGMOD Conference, 1998.

[2] A. Arasu, H. Garcia-Molina. Extracting Structured Data from
Web Pages. ACM SIGMOD Conference, June 2003.

[3] R. Baumgartner, S. Flesca and G. Gottlob. Visual web
information extraction with Lixto. VLDB Conference, 2001.

[4] M. Bergman. The Deep Web: Surfacing Hidden Value.
White Paper, BrightPlanet, 2000 (www.completeplanet.com/
Tutorials/DeepWeb/index.asp)

[5] D. Buttler, L. Liu, C. Pu. A Fully Automated Object
Extraction System for the World Wide Web. International

Conference on Distributed Computing Systems (ICDCS
2001), 2001.

[6] C. Chang, S. Lui. IEPAD: Information Extraction based on
Pattern Discovery. World Wide Web Conference, 2001.

[7] K. Chang, B. He, C. Li, M. P, Z. Zhang. Structured
Databases on the Web: Observations and Implications.
Technical Report, UIUCDCS-R-2003-2321, UIUC, 2003.

[8] L. Chen, H. Jamil, N. Wang. Automatic Composite Wrapper
Generation for Semi-Structured Biological Data Based on
Table Structure Identification. SIGMOD Record, June 2004.

[9] B. Chidlowskii, J. Ragetli, M. de Rijke. Automatic Wrapper
Generation for Web Search Engines. WAIM Conf., 2000.

[10] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner:
Towards Automatic Data Extraction from Large Web Sites.
VLDB Conference, pp. 109-118, 2001.

[11] www.cs.binghamton.edu/~meng/metasearch.html.
[12] D. Embley, Y. Jiang, and Y. -K. Ng. Record-boundary

discovery in Web documents. ACM SIGMOD Conf., 1999.
[13] E. Gold. Language Identification in the Limit. Information

and Control, 10(5), 1967.
[14] X. Gu, J. Chen, W. Ma, G. Chen. Visual based Content

Understanding towards Web Adaptation. Int’l Conf. on
Adaptive Hypermedia & Adaptive Web-based Systems,
pp.164-173, 2002.

[15] C. Hsu and M. Dung. Generating finite-state transducers for
semi-structured data extraction from the Web. Information
Systems. 23(8): 521-538, 1998.

[16] http://www.icesoft.com
[17] M. Kovacevic, M. Diligenti, M. Gori, M. Maggini, V.

Milutinovic. Recognition of Common Areas in a Web Page
Using Visual Information: A Possible Application in a Page
Classification. ICDM Conference, 2002.

[18] N. Kushmerick, D. Weld, R. Doorenbos. Wrapper Induction
for Information Extraction. Int’l Joint Conf. on AI, 1997.

[19] A. Laender, B. Ribeiro-Neto, A. da Silva, and J. Teixeira. A
Brief Survey of Web Data Extraction Tools. ACM SIGMOD
Record, 31(2), 2002.

[20] B. Liu, R. Grossman and Y. Zhai. Mining Data Records in
Web Pages. SIGKDD’03, 2003.

[21] L. Liu, C. Pu and W. Han. XWRAP: An XML-enabled
wrapper construction system for web information sources.
Int’l Conf. on Data Engineering, 2000.

[22] W. Meng, C. Yu, K. Liu. Building Efficient and Effective
Metasearch Engines. ACM Computing Surveys, 34(1),
March 2002, pp.48-84.

[23] I. Muslea, S. Minton and C. Knoblock. A hierarchical
approach to wrapper induction. Int’l Conf. on Autonomous
Agents, 190-197, 1999.

[24] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web.
VLDB Conference, Italy, 2001.

[25] E. Ukkonen. On-line Construction of Suffix Trees.
Algorithmica, 14:249-260, 1995.

[26] J. Wang, F. H. Lochovsky. Data Extraction and Label
Assignment for Web Databases. WWW Conference, 2003.

[27] S. Wu and U. Manber. Fast Text Searching Allowing Errors.
Communications of the ACM, 35(10):83-91, 1992.

[28] Z. Wu, W. Meng, V. Raghavan, C. Yu, H. He, H. Qian, R.
Vuyyuru. Towards Automatic Incorporation of Search
Engines into a Large-Scale Metasearch Engine. IEEE/WIC
WI-2003 Conference, October 2003.

[29] Y. Yang, H. Zhang. HTML Page Analysis based on Visual
Cues. 6th International Conference on Document Analysis
and Recognition, 2001.

75

http://www.cs.binghamton.edu/~meng/metasearch.html
http://www.icesoft.com/

	ABSTRACT
	Categories and Subject Descriptors
	1. INTRODUCTION
	Figure 4. Some sample block shapes

	6. EXPERIMENTS
	
	6.1 Data Sets
	MDR could not produce any output for 8 web pages in data set 3 because the MDR program terminated abnormally, while ViNTs worked on all 50 pages. These 8 pages are not used in our comparison as the reason of the abnormal termination of the MDR program on
	7. RELATED WORKS

	9. ACKNOWLEDGMENTS
	This work is supported in part by the following grants from NSF: IIS-0208574 and IIS-0208434.

