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ABSTRACT 
When a query is submitted to a search engine, the search engine 
returns a dynamically generated result page containing the result 
records, each of which usually consists of a link to and/or snippet 
of a retrieved Web page. In addition, such a result page often also 
contains information irrelevant to the query, such as information 
related to the hosting site of the search engine and advertisements. 
In this paper, we present a technique for automatically producing 
wrappers that can be used to extract search result records from 
dynamically generated result pages returned by search engines. 
Automatic search result record extraction is very important for 
many applications that need to interact with search engines such 
as automatic construction and maintenance of metasearch engines 
and deep Web crawling. The novel aspect of the proposed 
technique is that it utilizes both the visual content features on the 
result page as displayed on a browser and the HTML tag 
structures of the HTML source file of the result page. 
Experimental results indicate that this technique can achieve very 
high extraction accuracy. 

Categories and Subject Descriptors 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services – Commercial Services, Web-based Services. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Information extraction, wrapper generation, search engine. 

 
1. INTRODUCTION 
Search engines are very important tools for people to reach the 
vast information on the World Wide Web. Recent studies indicate 
that Web searching, behind email, is the second most popular 
activities on the Internet. Surveys indicate that there are hundreds 
of thousands of search engines on the Web (e.g., [4, 7]. Not only 
Web users interact with search engines, many Web applications 
also need to interact with search engines. For example, 
metasearch engines utilize existing search engines to perform 
search [22] and need to extract the search results from the result 
pages returned by the search engines used. As another example, 
deep web crawling is to crawl documents or data records from 
(deep web) search engines [24] and it too needs to extract the 
search results from the result pages returned by search engines. 

This paper focuses on the issue of how to extract search result 
records (SRRs) from dynamically generated result pages returned 
by search engines in response to submitted queries. Each SRR 
typically consists of a link to a retrieved Web page and some 
pertinent information (snippet). A typical result page contains 
multiple SRRs plus some information irrelevant to the user query, 
such as information related to the hosting site of the search engine 
and advertisements. The objective is to extract SRRs and discard 
irrelevant information from a result page. For a given search 
engine, an experienced developer may manually write a program 
to extract the SRRs from the result pages returned by the search 
engine after manually analyzing some sample result pages. 
Manually generating SRR extraction programs (i.e., wrappers) is 
costly, time-consuming and impractical in many applications. For 
example, search engines frequently change their result display 
format and such changes will require manual maintenance of the 
extraction program. As another example, our WebScales project 
[11, 28] aims to connect to hundreds of thousands of search 
engines and it is not practical to manually construct a wrapper for 
each search engine. Therefore, we need an automated solution. 
For search engines that have a Web services interface like Google 
and Amazon.com, automated tools may be used to extract their 
SRRs because the result formats are clearly described in the 
WSDL file of the Web Services. However, our investigation 
indicates that very few search engines have Web services 
interfaces currently. One reason may be that Web services are 
designed to support B2B applications while most search engines 
are B2C applications. Therefore, we need to deal with search 
engines with no Web services interfaces and extract results that 
are presented in HTML files. 

In this paper, we describe our solution to the problem of 
automatically extracting the SRRs from dynamically generated 
HTML result pages returned by search engines. Specifically, we 
present ViNTs (Visual information aNd Tag structure based 
wrapper generator) – a tool for automatically producing the 
wrappers for any given search engines. Since the heart and soul of 
a search engine’s wrapper is a set of SRR extraction rules, 
wrapper and SRR extraction rules will be used interchangeably in 
this paper. On the one hand, there are several reasons that make it 
very difficult to derive accurate wrappers entirely based on 
HTML tags [29]. First, HTML tags are designed to describe the 
presentation of data to facilitate browsing by human users. As 
such, the tags themselves convey very limited semantic 
information about the data. Second, HTML tags have been used in 
ways far beyond the imagination of the HTML tag designers. As a 
result, little convention can be relied upon. Third, HTML has a 
rather loose grammar and browsers typically do not enforce the 
grammar when displaying Web pages, i.e., ill-formed HTML 
pages can often be “perfectly” displayed. Fourth, not only the 
script program that produces result pages generates tags, the SRRs 
themselves may also contain tags. On the other hand, as Web 
pages are designed to facilitate human browsing, they contain rich 
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visual content features to help people locate and understand 
information. In fact, users typically rely entirely on visual content 
features to recognize SRRs. Therefore, it is natural to consider 
utilizing visual content features for SRR extraction. 

The main contribution of this paper is the development and 
evaluation of a method that utilizes both the visual content 
features on the result page as displayed on a browser and the 
HTML tag structure of the HTML source file of the result page to 
derive SRR extraction rules. Unlike previous works [2, 5, 6, 8, 10, 
12, 20, 26] in this field that exploit regularities in the HTML tag 
structure directly, ViNTs first utilizes the visual content (without 
HTML tags) to identify the regularities from content itself, and 
then combines them with the HTML tag structure regularities to 
generate wrappers. Our method is fully automated and the 
experimental results indicate that this technique can achieve 
considerably higher extraction accuracy than that of the state of 
art web information extraction systems like MDR [20], which 
utilize only the HTML tag structures on result pages. 

The rest of this paper is organized as follows. Section 2 presents 
the architecture of ViNTs. Section 3 introduces the fundamentals 
of our method like the visual content features. Section 4 discusses 
how to find candidate SRRs. Section 5 presents our method for 
deriving wrappers. Section 6 reports the experimental results. 
Section 7 reviews related works. Section 8 concludes the paper. 

2. SYSTEM ARCHITECTURE 
Figure 1 shows the architecture of our automatic wrapper 
generation system. The input to the system is the URL of a search 
engine’s interface page, which contains an HTML form used to 
accept user queries. The output of the system is a wrapper for the 
search engine. The search engine form extractor figures out how 
to connect to the search engine using the information available in 
the HTML form. Based on the extracted form information, the 
query sender component sends queries to the search engine and 
receives result pages returned by the search engine. Readers may 
refer to [28] for more details about these two components. 
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Figure 1. System Architecture of ViNTs 

The wrapper-building module, shown in the dash-line box above, 
is the focus of this paper. The input to this module is a set of 
sample result pages produced by a search engine in response to 
automatically generated sample queries. The only requirement for 
a sample result page is that it contains a sufficient number of 
SRRs (at least four, and the more the better), to permit the 
regularities among the SRRs to be explored for wrapper building. 
The input to this module also contains a special result page called 
no-result page, which contains no SRRs. This page contains only 
information irrelevant to any user query and thus can be used to 

filter out useless information from other result pages. The sample 
query that yields the no-result page is called an impossible query. 
All sample queries are generated by the sample query generator. 
This component has been implemented in our system but it will 
not be discussed in this paper. 

To utilize the visual content features, we render each sample 
result page during wrapper building. There are many objects such 
as links and texts on each result page (Anchor text associated with 
a URL is called a link in this paper). When a result page is 
rendered, for each object on the result page, a rendering box – a 
rectangle containing the object – is produced. We use a coordinate 
system based on the browser window to help describe the 
positions of the rendering boxes. Our wrapper generation method 
is sketched below. First, for each sample result page, we analyze 
the types (say link or text) and the positions of all the rendering 
boxes to identify some candidate result records (section 4). Based 
on these records and a hypothesis about the general format of the 
SRR wrappers, we build some initial wrappers (sections 5.1-5.4). 
These wrappers are refined to enable the detection of the 
boundaries separating different types of records (e.g., SRRs and 
non-SRRs) (section 5.5). Next, the most promising wrapper is 
selected for this result page from the refined wrappers using 
additional visual features (section 5.6). Some search engines may 
produce different irrelevant information on different result pages 
(e.g., the advertisements may be query dependent). As a result, 
different sample result pages may lead to slightly different 
wrappers. Our final step is to integrate the wrappers for all sample 
result pages of the search engine to produce the final wrapper for 
the search engine (section 5.7). The detail of our method will be 
presented in the next several sections. 

3. METHOD FUNDAMENTALS 
As mentioned earlier, existing techniques on web information 
extraction are based on the analysis of HTML tag structures. We 
believe that regularities in visual content (strings, images, etc. as 
shown on web pages) should also be utilized to achieve higher 
performance. 

Many visual content features that are designed to help people 
locate and understand information on a web page can help 
information extraction. For example, the profile (or contour) of 
the left side of each SRR on the same result page tends to be very 
similar to each other, there are visual separators (e.g., blank lines) 
between consecutive SRRs, all SRRs tend to be arranged together 
in a special section on the result page, and this section occupies a 
large portion on the result page, and it also tends to be centrally 
located on the page.  We describe some basic visual content 
features that are used in this study in the following sub-sections. 

3.1 Content Line 
A result page usually consists of multiple sections, each 
containing information in one category. For example, the result 
page in Figure 2 consists of two sections: the one on the left 
contains SRRs and the one on the right contains sponsored links. 
The section containing SRRs will be called the SRR section. 

Definition 3.1 (Content line) A content line is a group of 
characters that visually form a horizontal line in the same section 
on the rendered page. 

In Figure 2, “Category: Home > Personal Finance > Tax 
Preparation” forms a content line. Note that “Tax Info Center” 
forms a different content line even though it is visually in the 
same line as the line starting with “Category:” because they 
appear in different sections on the result page. 
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Figure 2. A result page by Google 

Different types of content lines can be observed on typical result 
pages and their arrangements are useful for identifying records. In 
our approach, the following types of content lines are identified: 

• LINK – more than 90% of the area of the rendering box of 
this line is link area. Only anchor text (i.e., clickable text) 
with an underlying URL is considered a link in this paper. 
Thus, a URL that is not an anchor text is not considered as a 
link, but as a text. [code: 1] 

• TEXT – more than 90% of the area of the rendering box of 
this line is text area. [code: 2] 

• LINK-TEXT – it contains both link and text, none of them 
occupies more than 90% of the area. [code 3] 

• LINK-HEAD – link line but started with a number like 1, 2, 
3, … [code: 4] 

• TEXT-HEAD – text line but started with a number. [code: 5] 
• LINK-TEXT-HEAD – link-text line but started with a 

number. [code: 6] 
• HR-LINE – a visual line generated by HTML tag <HR>. 

[code: 7] 
• BLANK – the blank line. [code: 8] 

The record in Figure 3 contains 5 content lines. The first is a 
LINK line, followed by two TEXT lines, then another LINK line 
and the last (invisible) is a BLANK line. To facilitate 
computation, a code is assigned to each type of content line. 

Each content line has a rendering box and the left x coordinate of 
the rendering box is called the position code of the content line. 
The position code of a blank line is set to be the position code of 
the visible line immediately before it. To summarize, each content 
line is represented as a (type code, position code) pair. 

3.2 Shape of a Block 
A record consists of one or more content lines, which together 
form a block. An observation about the records on a result page is 
that the left side profiles of all records in the same section tend to 
be very similar, and records from different sections tend to have 
different left side profiles. This observation is consistent with the 
fact that result pages are generated by computer programs and 
different sections are usually generated by different scripts. We 
define block shape to represent the left side profile of a block. 

Definition 3.2 (Shape of a block) Let c1, …, ck be the content lines 
in a block in top-down order and let pci be the position code of ci, 
i=1,…,k. The shape of the block is an ordered list of the position 
codes of the member content lines of the block, namely (pc1, …, 
pck). (pc1, …, pck) is also called the shape code of the block. 

Consider the block in Figure 3. It has 5 content lines (the fifth is a 
blank line). Suppose the position codes of the 5 content lines from 

top to bottom are 8, 48, 48, 48 and 48, respectively. Then the 
shape of the block is represented as (8, 48, 48, 48, 48). 

 
Figure 3. A record block and its shape 

3.3 Block Similarity 
Each block consists of three pieces of information: the ordered 
(from top to bottom) type codes of its content lines, the position 
codes of its content lines and the block shape. We define three 
metrics to measure the similarity between two blocks of content 
lines:  type distance, shape distance and position distance.  

Type distance. The type distance between two blocks is to 
capture the difference in their content line type sequences. The 
detail is described below. We define the type code of a block as a 
sequence of the type codes of the content lines of the block. Let 
TCi be the type code of the ith content line in the block, then 
TC1…TCn is the type code of the block, where n is the number of 
content lines in the block. Furthermore, multiple consecutive 
TEXT type codes are compressed to one occurrence based on the 
observation that texts in snippets of SRRs often vary in length 
significantly. Based on the above definition, the type code for the 
block in Figure 3 is 1 2 1 8 (one TEXT type code 2 is suppressed). 
In our implementation, type distance between two blocks a and b 
is the edit distance [27] between the type codes of the two blocks. 

Shape distance. This distance is to measure difference between 
the indention sequences of the shapes of two blocks. To focus on 
the shape and ignore where a block starts in the coordinate 
system, we subtract the smallest position code in a shape code 
from each position code. This will convert (8, 48, 48, 48, 48) to 
(0, 40, 40, 40, 40). To concentrate on indentions, multiple 
consecutive occurrences of the same position code are suppressed 
to one. Consequently, (0, 40, 40, 40, 40) is transformed to (0, 40), 
indicating that the shape has one indention with indent value 40. 
The final list will be called the modified shape code of a block. 
Let MSC(u) denote the modified shape code of block u. For the 
block shapes in Figure 4, if we assume the value of each indent is 
10, then we have MSC(a) = (0), MSC(b) = (0, 10), MSC(c) = (0, 
10), MSC(d) = (0, 10, 20), MSC(e) = (10, 0) and MSC(f) = (0, 10, 
0). Note that blocks b and c have the same modified shape code 
while other blocks all have different modified shape codes.  

 

 

 

Figure 4. Some sample block shapes 

In summary, the shape of a block is represented as a sequence of 
indentions in our method. The shape distance of two blocks a and 
b is defined as the maximum difference between the 
corresponding modified shape codes of the two blocks; if one 
modified shape code is longer than the other, we pad the shorter 
one with 0’s at the end to make the lengths of the two shape codes 
the same before calculating their shape distance.  

Position distance. This distance measures the difference between 
the closest points of the two blocks to the left boundary of the 
rendered result page. In other words, the position distance 

  a   b   c    d    e   f
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between two blocks a and b is the difference between the smallest 
position code for any content line in a and that in b. 

4. FINDING CANDIDATE SEARCH 
RESULT RECORDS 
In this section, we discuss how to find some candidate SRRs from 
a given result page by exploiting regularities in visual content 
features. These candidate SRRs will be used to generate a wrapper 
for this result page in section 5. 

For a given result page of a search engine, we first render it and 
extract content lines from it. Then we remove those content lines 
that also appear in the no-result page of the search engine to get 
rid of some useless content lines. Now we use a three-step method 
to find some candidate SRRs. Visually, different records are 
separated by a certain separator. Therefore, in the first step, we 
try to identify all candidate content line separators (CCLSs) 
(section 4.1). Each CCLS is then used to tentatively segment the 
content lines into blocks. In the second step, these blocks are 
clustered into different groups such that the blocks in the same 
group appear on the result page consecutively and are all visually 
similar (section 4.2). Intuitively, each such group corresponds to a 
section on the result page. While a separator may help identify 
records, it may not reliably separate records correctly. To solve 
this problem, in the third step, we present an algorithm to identify 
the first line of each candidate record (section 4.3). Clearly, if we 
can find the first lines of multiple consecutive records correctly, 
we can identify candidate SRRs easily. 

4.1 Identifying Candidate Content Line 
Separators 
This task is to identify content lines that can be used to segment 
the result page into blocks. Visually, different records are often 
separated by a blank line (e.g., the <p> tag) or a visual line (e.g., 
the <HR> tag). But different records could also be organized into 
different items of a list (e.g., the <li> tag within the <ol> or <ul> 
tags) or different rows (e.g., the <tr> tag) of a table, or special 
image lines. The above tags may also appear in different records. 
Furthermore, our observation is that a separator may consist of 
multiple tags, for example, a sequence of tags may collectively 
form a separator. Consequently, the problem of correctly 
identifying content line separators for arbitrary search result pages 
is very challenging. Our solution to this problem is to first identify 
all CCLSs on a result page and let other steps determine which 
yielded wrapper is correct (section 5). In this subsection, we 
discuss how to identify all CCLSs.  

In our approach, a CCLS is a sequence of consecutive content 
lines, i.e., the pattern of the sequence of content lines is used to 
define a CCLS. Such a pattern is defined to be the sequence of 
(type code, position code) pairs of the content lines in the CCLS. 
When a CCLS is used to segment a result page into multiple 
blocks, the content lines in the CCLS are included in the blocks. 
In fact, the last content line in a CCLS is also the last content line 
of the block containing the CCLS. Since a sample result page is 
required to have at least four SRRs by our approach, the pattern 
that defines a CCLS must appear at least three times. To avoid 
missing any potentially correct content line separator, all content 
line patterns that appear at least three times on the result page are 
recognized as CCLSs. A suffix tree can be used to accomplish this 
step. To efficiently find all CCLSs, each distinct (type code, 
position code) pair is first represented as a special symbol. This 
will transform a result page of content lines to a string of symbols. 
Then a suffix tree is constructed for the symbol string with 

complexity O(n) [25], where n is the number of symbols in the 
string. From the suffix tree, all sub-strings appearing three or 
more times can be found in linear time complexity. 

4.2 Block Grouping 
Using a CCLS, the result page can be segmented into multiple 
blocks of content lines. As mentioned before, a result page 
consists of multiple sections and only one of them is the SRR 
section. Therefore, we divide the blocks into groups. Blocks that 
are consecutive and visually similar are put into one group. Two 
blocks are visually similar if their type distance, shape distance 
and position distance are all below certain thresholds. At this 
point, we do not know which group may contain SRRs. As a 
result, all groups are used for further analysis in section 5. 

4.3 Identifying the First Line of Record 
The blocks in a group may not be equivalent to the records in the 
group as the CCLS used to obtain the blocks may be incorrect. A 
nice feature of our approach is that it does not require the 
identification and use of the correct CCLS to correctly extract 
SRRs. As far as three or more SRRs can be correctly obtained 
first, we can build a wrapper based on these SRRs to extract other 
SRRs on the same page. To this end, we attempt to identify the 
first line of each record. Clearly, if the first line of every record is 
correctly identified, then all records will be correctly identified. 
The blocks we obtained play an important role in identifying the 
first lines of records. That is, in each block, we aim to identify 
exactly one line as the first line of some record. If each block 
contains exactly one first line of a record and this line can be 
correctly identified for some consecutive blocks, our approach can 
still extract all records correctly, even when the blocks do not 
correspond to records exactly. This feature of our approach 
reduces the reliance on correctly identifying the content separator.  

Based on our analysis of a large number of SRRs from different 
search engines, we developed a set of heuristic rules to identify 
the first line of a record from a given block. Some of these 
heuristic rules are: (1) the line following an HR-LINE is a first 
line; (2) if there is only one line starting with a number in a block, 
this line is a first line; (3) if only one line in a block has the 
smallest position code (i.e., the position codes of all other lines are 
strictly larger), this line is a first line; and (4) if there is only one 
BLANK line in a block, the line following the BLANK line is the 
first line. These heuristics are applied in certain order to reflect 
their priorities. 

5. WRAPPER BUILDING 
After the step described in section 4, for each result page, we have 
a set of block groups, each consisting of consecutive and visually 
similar blocks. We call these groups candidate groups, because 
they may contain SRRs. Each candidate group contains a number 
of candidate records obtained based on the first record lines of 
blocks (see section 4.3).  

In this section, we describe how to build wrappers (SRR 
extraction rules) by exploiting regularities in both visual content 
features and in the HTML tag structures. Note that the wrappers 
of our approach are expressed based on HTML tag structures only. 
One advantage of such a wrapper is that it can be efficiently 
applied on result pages of user queries to extract SRRs, as the 
rendering of the result pages can be avoided. 

In section 5.1, we first review the concepts of tag tree and tag 
paths, and then introduce how to obtain the tag paths of the 
candidate records in each group. The tag path of a record is the tag 
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path to its first line. Our observation indicates that even though 
SRRs on different result pages may be laid out differently, all 
SRRs on the same result page are usually arranged in the same 
sub-tree of the tag tree of the page and their tag paths follow 
certain pattern (section 5.2). Based on this observation, we 
propose a hypothesis about the general format of the wrappers for 
all search engines in the form of a regular expression (section 
5.3). On the basis of this hypothesis, we build some initial 
wrappers using the tag paths for the candidate records in each 
candidate group (section 5.4). The initial wrappers are refined to 
detect the boundaries separating different candidate groups 
(section 5.5). Since there may be multiple candidate groups for a 
result page and multiple initial wrappers may be built for each 
candidate group, multiple refined wrappers may be generated. 
Next, the most promising wrapper is selected for the result page 
from the refined wrappers using additional visual content features 
(section 5.6). Our final step is to integrate the wrappers for all 
sample result pages of the same search engine to produce the final 
wrapper for the search engine (section 5.7).  

5.1 Tag Paths of Records 
A result page can be transformed into a tree representation based 
on the tags in its source HTML file, which is called a tag tree. The 
root of a tag tree is the <HTML> tag, and all content nodes (texts, 
images, etc.) are leaf nodes. Each internal node represents a pair 
of tags (the starting tag and the corresponding ending tag) if the 
tag has an ending tag, or just one tag if the tag has no ending tag 
(<BR>, for example). The root tag and internal nodes are called 
tag nodes. A tag node and the sub-tree rooted at this tag represent 
the starting tag and its corresponding ending tag as well as all tags 
and elements in between. Figure 5 shows a sample result page and 
its partial tag tree. Note that many tag nodes such as <HEAD> 
and <CENTER> are not expanded. 

 
< H T M L >  
                 < H E A D >  
                 < B O D Y >  
                                 < IM G >  
                                 < C E N T E R >  
                                 < H R >  
                                 < B >  
                                 < H R >  
                                 < D L >  
                                                 < D T >  
                                                                 < S T R O N G >  
                                                                                 < A >  
                                                                                                 F in a l A id  F o rm s  
                                                                 < IM G >   
 
                                                 < D D >  
                                
                                 < D L >  
                                                 < D T >  
                                                                 < S T R O N G >  
                                                                                 < A >  
                                                                                                 B in gh a m t o n  U n iv e r s it y  M P A  …  
                                                                 < IM G >  
 
                                                 < D D >  
  

Figure 5.  A sample result page and its tag tree 

A node in a tag tree can be located by following a path from the 
root to the node. We call such a path a tag path. A tag path 
consists of a sequence of path nodes. Each path node pn consists 
of two components, the tag name (i.e., a tag node) and the 
direction, which indicates whether the next node following pn on 
the path is the next sibling of pn (indicated by “S”) or the first 
child of pn (indicated by “C”). As an example, the tag path of the 

first <IMG> tag in Figure 5 is “<HTML>C<HEAD> S <BODY> 
C”; and the tag path of the first link (i.e., Financial Aid Forms; 
note <A> is part of the link) of the first SRR is “<HTML>C 
<HEAD>S<BODY>C<IMG>S<CENTER>S<HR>S<B>S<HR>
S<DL>C<DT>C <STRONG>C”. 

Once we know the first line of a record, we can search the tag tree 
in reverse order from the first node of this line to the root of the 
tag tree to find the tag path of the record. From a given candidate 
group of size n, we get n tag paths. Table 1 lists some tag paths 
for the sample result page in Figure 5. 

It is not difficult to see that a regular expression exists for the tag 
paths in Table 1. But the problem of automatic regular expression 
grammar inference is known to be difficult and we generally 
cannot obtain a regular expression grammar using only positive 
samples [13], like in our case. Our approach is to provide a 
hypothesis about the general format of wrappers, and then try to 
build the wrappers based on the hypothesized format. 

Table 1. Tag paths extracted from result page in Figure 2 

5.2 Structure of the Minimal Sub-tree That 
Contains SRRs 
There exists a minimal sub-tree t of the tag tree of a result page 
such that all SRRs are located in t. The minimal here means that 
no proper sub-tree of t contains all SRRs. Each SRR corresponds 
to a sub-forest of t (see the dotted circles in Figure 6).  
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1 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 
<HR>S<B>S<HR>S<DL>C<DT>C<STRONG>C 

2 <HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 
<HR>S<B>S<HR>S<DL>S<DL>C<DT>C<STRONG>C 

3 
<HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 
<HR>S<B>S<HR>S<DL>S<DL>S<DL>C<DT>C 
<STRONG>C 

4 
<HTML>C<HEAD>S<BODY>C<IMG>S<CENTER>S 
<HR>S<B>S<HR>S<DL>S<DL>S<DL>S 
<DL>C<DT>C<STRONG>C 

Figure 7. A structure variation 
of the minimal sub-tree that 

contains SRRs 
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rch engine result pages are dynamically generated by a 
puter program. Since a result page typically has multiple 
s, it is reasonable to think that there is a loop in the program 

 wraps up the data extracted from the underlying database 
n producing the result page. As a result, the corresponding 

-forests of SRRs all have identical or similar tag structures (the 
ent-child relationships of tags), and the roots of all sub-forests 
SRRs should be siblings. Thus we can identify SRRs by 
tifying their corresponding sub-forests. In other words, we 

 divide the descendants of t into a set of sub-forests, and 
efully, each SRR corresponds a sub-forest. A separator can be 
d to perform the segmentation. A valid separator satisfies the 
owing conditions: (1) it is a common subset of the sub-forests 
all SRRs (i.e., it appears in the sub-forest of each SRR and 



  

itself is a sub-forest); (2) it appears in the sub-forest of each SRR 
exactly one (otherwise it would incorrectly divide a single SRR 
into multiple records); and (3) it contains the rightmost subtrees of 
the sub-forest of each SRR (i.e., the separator that separates SRRi 
and SRRi+1 is part of SRRi). Note that the separator here is 
different from the content line separator introduced in section 4.1. 
Here it is a tag structure (tag forest) while the separator in section 
4.1 is a set of content lines. 

It is possible that more than one separator is needed for some 
search engine. This happens when a search engine arranges some 
of its SRRs in a way that is different from other SRRs, for 
example, an SRR may be arranged indented relative to the SRR 
preceding it. Figure 2 in section 3.1 is an example. Figure 7 shows 
the tag tree structure of such a case; the parent node n of the sub-
forest of SRRi+1 is at the same level as the sub-forest of SRRi. 
Note that SRRi+1 still has the similar tag structure as SRRi. In 
general, if the SRRs of a search engine are arranged in k different 
ways, then k different kinds of separators need to be identified. In 
practice, however, k is usually 1 and occasionally 2. 

5.3 Wrapper Format Hypothesis 
A wrapper defined over a tag tree needs to specify two things: (a) 
the location of the minimal sub-tree t that contains all SRRs, and 
(b) the separator set. The minimal sub-tree of t can be determined 
by a tag path from the root of the tag tree to the root of t. Within t, 
SRRs are separated by possibly different kinds of separators and 
each separator is also (the ending) part of a record. In addition, a 
search engine may display only certain number of SRRs on a 
result page. Based on the above analysis, we hypothesize that a 
wrapper can be represented as the following regular expression: 

prefix (X (separator1 | separator2 | …))[min, max]     (1) 

where X is a wild card for sub-forests of the tag tree, prefix is a tag 
path, separators are also sub-forests of the tag tree, “|” is the 
alternation operator, the concatenation of X and a separator 
corresponds to a record, min and max are used to select records 
from a list of records. For example, if the wrapper without the 
[min, max] restriction extracts a list of n records, then only the 
records between the min-th and the max-th records are extracted. 
In general, min ≥ 0 and max can be infinite (some search engines 
do not limit the number of results that can be displayed on a result 
page). The prefix determines the minimal sub-tree t that contains 
all SRRs in the result page. The separators are used to segment all 
descendants of t into SRRs. 

Once such a wrapper is generated for a search engine, extracting 
SRRs from a result page of the search engine is straightforward. 
First we parse the result page and build the tag tree. Next, we 
follow the prefix of the wrapper to locate the root of the minimal 
sub-tree t that contains all SRRs. Then we find all existing 
occurrences of the separators in the descendants of t, and arrange 
them in the order of their appearances in the sub-tree t. We extract 
the ith SRR from the descendant nodes of t located within the ith 
and (i+1)th occurrences of separators (the nodes representing the 
(i+1)th occurrence of separators are part of the ith SRR). Finally, 
we extract the SRRs whose serial numbers are within the range 
[min, max]. 

5.4 Initial Wrapper Building 
For a give candidate record group, we form sub-groups of 
consecutive records of size k (k = 3 is used in our experiment). 
The first k records form one sub-group, the second to the (k+1)th 
records form the next sub-group, and so on. With the tag paths of 
the records in each sub-group and the hypothesis about the format 

of the wrapper (expression (1)), we try to build an initial wrapper 
for the records in each sub-group. It is possible that different 
initial wrappers will be generated for different sub-groups. It is 
also possible that no initial wrapper can be generated for some 
sub-groups. All produced wrappers will be passed to the 
refinement step of our method. 

We now discuss how to generate an initial wrapper for a sub-
group G. In this step, we focus on identifying the prefix and the 
separator(s) in expression (1). Parameters min and max will be 
determined later in a refinement step (section 5.5). Suppose the 
records in G appear in order r1, …, rk. Let path(ri) denote the tag 
path of ri. The tag paths for the second, third and fourth records in 
Table 1 will be used as a running example to explain our method. 
The main ideas of our method are as follows.  

1. We find the maximum common prefix PRE of all input tag 
paths (i.e., those for records in G). For our running example, 
we have PRE = <HTML>C<HEAD>S <BODY> C<IMG> S 
<CENTER>S<HR>S<B>S<HR>S<DL>S. Note that this 
PRE may be different from the prefix needed by expression 
(1). The reason is that the first record of the group (the one 
with the shortest tag path) may not be in G. In general, the 
correct prefix is contained in PRE but PRE may contain extra 
path nodes at the end. To identify the extra path nodes, we 
first remove PRE from each tag path (let pi = path(ri) – PRE) 
and then compute Diffi = pi+1 – pi (pi is a suffix of pi+1). If all 
Diff’s are the same, then it is a separator for expression (1). 
In our running example, Diff = <DL>S is the separator. We 
now remove all occurrences of Diff from the end of PRE. Let 
PRE1 be the new PRE and E be the last node of PRE1. At 
this point, an effort is made to identify additional separators 
based on whether the tag path of Diff is identical to the tag 
pattern composed of the child node(s) of E and whether Diff 
also appears immediately before E. When both conditions are 
satisfied, the path node of E is identified as a new separator 
and the occurrences of all separators (including previously 
identified ones) are removed from the end of PRE1. This 
process is repeated until no new separator can be identified 
and the remaining tag path (of PRE1) is the prefix for 
expression (1). For our running example, only one separator 
is identified and the correct prefix is <HTML> C <HEAD> S 
<BODY> C <IMG> S <CENTER> S<HR>S <B>S<HR>S. 

2. If Diffs are different, three cases are identified. Case 1: A 
common suffix of the Diffs does not exist. In this case, the 
wrapper generating process fails and the process is 
terminated. Case 2: A common suffix exists and it does not 
have multiple occurrences in any Diff. In this case, this suffix 
is a separator. We subtract from PRE any suffix that is 
identical to any of the Diffs until no further subtraction is 
possible and the remaining PRE is the prefix for expression 
(1). Case 3: All common suffixes have multiple occurrences 
in some Diffs. In this case, an attempt is made to expand 
each Diff by taking the structure of the child nodes (or even 
deeper descendant nodes) of the nodes in the Diff into 
consideration (structures of child nodes help differentiate 
different nodes in the Diff and therefore help to find a 
separator that does not have multiple occurrences in Diffs). 
The expanded Diffs are then used to identify separators as in 
the second case. If the separator still cannot be found, the 
wrapper building process fails. 

3. Based on the prefix and separator(s) identified in the last two 
steps, an initial wrapper is generated for G by assuming min 
= 0 and max = ∞. For example, the initial wrapper generated 
for the running example is <HTML>C<HEAD>S<BODY>C 
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<IMG>S<CENTER>S<HR>S<B>S<HR>S(X<DL>S)[0, ∞], 
where X is a wild card. The initial wrapper is then used to 
extract all matching records from the result page to see if all 
records in G can be correctly extracted in consecutive order. 
If this is true, the wrapper is accepted for further evaluation 
(refinement in section 5.5). If this is not true, a possible 
reason is that the separator used is incorrect. Therefore, an 
attempt is made to expand the nodes in the separator by their 
child (descendant) nodes as in Step 2 to see if a new 
separator can be found. If it can be found, it is used to revise 
the initial wrapper and repeat the above process. If the new 
wrapper cannot be accepted or a new separator cannot be 
found, the wrapper building process fails for G. 

5.5 Wrapper Refining 
This task is to determine the values of the parameters min and max 
of a wrapper (see expression (1)). The input to the wrapper 
refining process includes an initial wrapper (generated in section 
5.4) and a list of consecutive records extracted by applying the 
wrapper. Let these records be numbered from 1 to n, and let Rm 
be the record in the middle. The wrapper refining process works 
as follows. We start from Rm and move towards the two ends of 
the list. Let’s consider the process of moving towards the 
beginning of the list. When the next record is encountered, if it 
does not contain a link or its block is not visually similar to the 
block of Rm, the serial number of the record plus 1 becomes min. 
Similarly, max can be determined when we consider the process 
of moving towards the end of the list. 

5.6 Wrapper Selection for One Sample Page 
At this step, we have a set of wrappers and record groups 
extracted by applying those wrappers. Among these wrappers, 
four cases may occur. First, some wrappers can correctly extract 
all SRRs and nothing else. Second, some may extract some but 
not all correct SRRs. Third, some may retrieval all SRRs but also 
some non-SRR records. Fourth, some may be suitable for other 
neatly arranged information on the result page such as ads and 
host information. The wrapper selection step is to determine the 
wrapper that mostly likely belongs to the first case. 

Our approach uses content features (both visual and non-visual) to 
help find the correct SRR group hence the correct wrapper. It is 
not difficult to observe that on the rendered result page, the 
correct SRR group likely (1) occupies a large area, (2) is centrally 
located, (3) contains many characters, (4) has a large number of 
records. To utilize these content features, we define the following 
four weights: 

1. Rendering area weight (RAW). A group’s RAW is defined 
as the relative rendering area of this record group over the 
largest rendering area of all record groups. 

2. Center distance weight (CDW). CDW is based on the 
distance between the center of a group’s rendering box and 
the center of the rendering box of the whole result page; this 
distance is called the center distance of the group. Let p0 be 
the center of the whole page’s rendering box. If the rendering 
box of a group contains p0, its center distance is defined to be 
0; otherwise we use the Euclid distance between the center of 
the group’s rendering box and p0. We define CDW as the 
relative center distance over the smallest center distance. 

3. Number of records weight (NRW). A group’s NRW is 
defined as the number of records of the group divided by the 
number of records of the largest group. 

4. Average number of characters weight (ACNW). The average 
number of characters of a group is the average number of 
characters in each block in this group. A group’s ACNW is 
defined as the relative average number of characters of the 
group over the largest average number of characters in all 
groups.  

We combine the above four weights by weighted summation, pick 
the group with the highest combined weight as the search result 
group and output its corresponding wrapper as the correct wrapper 
for the input sample page.  

5.7 Wrapper Integration 
After wrapper selection, we are able to build a wrapper for each 
sample result page. The wrappers built from different sample 
result pages of the same search engine may be different even 
though they are all correct with respect to their corresponding 
sample result pages. The reason is that frequently search engines 
may include information on a result page that is query dependent 
or changes from time to time. As a result, the tag paths (prefixes 
in wrapper expressions) of the minimal sub-tree that contains all 
SRRs as well as the separator sets may vary. Thus, a wrapper built 
from one sample page may not correctly extract SRRs when 
applied to another page. Wrapper integration is to integrate the 
wrappers built from multiple sample result pages of the same 
search engine into a single robust wrapper for the search engine. 

The integration involves three parts: separator integration, prefix 
integration and [min, max] integration. During the integration 
process, two wrappers are considered at a time. If both their 
separator sets and their prefixes can be integrated, the two 
wrappers are integrated. An integrated wrapper may then be 
integrated with another (possibly integrated) wrapper. At the end 
of this process, there may be multiple integrated wrappers and no 
integration between them can be carried out. At this time, the 
integrated wrapper with the largest support (i.e., it is integrated 
from the largest number of input wrappers) will be selected as the 
final wrapper for the search engine. In our current 
implementation, tie is broken arbitrarily. In the following, we 
outline how two wrappers are integrated. 

Separator integration: 
For two separator sets, if one set is a subset of the other set, we 
take the larger set as the integrated separator set. The case that the 
two separator sets are identical is a special case of the above case. 
If none of the sets is a subset of the other, the integration of these 
two separator sets fails. 

Prefix integration: 
Prefix integration is carried out by converting each prefix into a 
compact form through the removal of unimportant path nodes. 
This would remove “noises” from the prefixes.  

The conversion is based on the following rules:  

(1) Keep all path nodes with direction code of “C”. 
(2) Keep path nodes with direction code of “S” only if their tag 

name is the same as that of the closest future path node with 
direction code of “C”. 

(3) For any path node after the last node with direction code “C”, 
if its tag name is identical to the tag name of the first node of 
any separator in the wrapper, it is kept; otherwise it is 
deleted. 

For example, the prefix of the wrapper in Section 5.4 (item 3) 
becomes <HTML>C<BODY>C. It is obvious that the compact 
prefix will find the same minimal sub-tree as the original prefix.  
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Prefix integration can be carried out reasonably easily after 
prefixes are converted into compact forms. 

[min, max] integration: 
Let the two input [min, max]’s be [min1, max1] and [min2, 
max2], respectively. Let [min3, max3] be the integration result. 
Then min3 = min {min1, min2} and max3 = max {max1, max2}.  

6. EXPERIMENTS 
We have built an operational wrapper generation prototype system 
(ViNTs) based on our method. Result page rendering and tag tree 
construction are performed by a commercial tool ICEbrowser [16]. 
On a Pentium 4 1.7GH PC, the current ViNTs can build a wrapper 
for a search engine with 5 sample result pages and 1 no-result 
page in 3 to 7 seconds. Once a wrapper is built for a search engine, 
SRRs from a new result page of the search engine can be 
extracted in a small fraction of a second (about 100 milliseconds). 
Thus, the wrappers generated by ViNTs are practically useful in 
real-time web applications. In fact, ViNTs has been used in the 
development of a commercial news metasearch engine 
(www.allinonenews.com). The ViNTs prototype system and the 
data sets used to evaluate it can be accessed at 
http://www.data.binghamton.edu/vints.html. 

6.1 Data Sets 
Three data sets are used to test ViNTs and they are described 
below. 

Data set 1 contains 100 search engines in 4 categories: education, 
government, medical, and general. Search engines in the 
education category are randomly selected from the Yahoo search 
engine using query “American universities”. Search engines in 
government and medical categories are collected from 
search.com. The general category contains some general-purpose 
search engines like Google, AltaVista, Yahoo, etc. This data set is 
used as a training set for learning optimal performance parameters 
(e.g., the weights in section 5.6). Almost all search engines in this 
data set are document search engines, i.e., they search text 
documents. 

Data set 2 contains 100 search engines collected from 
profusion.com and none of them is included in Data set 1. These 
search engines are not exposed to ViNTs until they are tested. 20 
of them are non-document search engines (they are for jobs, e-
commerce, and entertainment). 

We should mention that the above data sets do not contain search 
engines that return multiple sections of results since our current 
method is designed to extract records from just the major section 
of a search engine result page. Search engines whose result pages 
cannot be rendered by ICEbrowser are also excluded (there are 
very few such cases). 

For each search engine in the above two data sets, 10 queries are 
submitted and the 10 first result pages are manually collected. In 
addition, a no-result page is also collected for each search engine 
by submitting a non-existent term as a query to the search engine. 
Most search engines limit the number of records displayed on 
each result page, say 10. But a few search engines display all 
results (could be hundreds) on their result page. To avoid the bias 
that may be caused by these search engines on the overall 
performance, only the first 25 records are used if a result page 
contains more than 25 records. 

Data set 3 is obtained from the Omini [5] testbed (available at 
http://sourceforge.net/projects/omini/). Omini testbed consists of 
more than 2,000 web pages collected from 50 websites (many of 

them are e-commerce search engines). Since the number of web 
pages per web sites is highly uneven, from 1 to several dozens, we 
decide to take one random page per website. Thus, data set 3 
consists of 50 web pages from 50 websites, one page per site. 

Data set 3 is used to compare our method with MDR [20], which 
is a state of the art web information extraction system based on 
HTML tag structure analysis only and can be downloaded at 
http://www.cs.uic.edu/~liub/MDR/MDR-download.html. There is 
currently no standard testbed for web information extraction. As a 
result, researchers always report the performance of their systems 
based on their own testbed. This can easily cause biased results. 
By using a data set from a third party, fairer comparison can be 
made.  

6.2 Performance Measures 
We use the recall and precision measures (which are widely used 
to evaluate information retrieval system) to evaluate the 
performance of our system for extracting SRRs. Recall and 
precision are defined below: 
       

Nt
Ecrecall =  and 

Et
Ecprecision =  

where Ec is the total number of correctly extracted SRRs, Nt is the 
total number of SRRs on all result pages used, and Et is total 
number of records extracted. 

6.3 Experimental Results on Data Sets 1 and 2 
To determine the impact of using visual content features on our 
wrapper generation approach, we also implemented a version of 
ViNTs that uses no visual content features. In this version, content 
lines are identified by HTML tags (e.g., <p>, <br> and <tr>), 
block similarity is based on type distance only, and wrapper 
selection does not use visual features such as rendering area. 

For each search engine in data sets 1&2, we use 5 result pages and 
the no-result page to build the wrapper, which is then applied to 
extract SRRs for all the 10 result pages. Table 2 shows the results 
when the wrapper is applied to the 5 pages that are used to build 
the wrapper, and Table 3 shows the results when the wrapper is 
applied to the 5 pages that are not used to build the wrapper. The 
columns headed by VW are the results of the regular ViNTs, and 
the columns headed by NV are the results when the visual content 
features are not utilized. 

Table 2. Results on samples used to build the wrapper 
Data set 1 Data set 2  VW NV VW NV 

#SRRs 6919 6919 6905 6905 
#Extracted SRRs 6905 6833 6872 6465 
#Correct SRRs 6901 6722 6740 6283 

Recall 99.7% 97.2% 97.6% 91.0% 
Precision 99.9% 98.4% 98.1% 97.2% 

Table 3. Results on samples not used to build the wrapper 
Data set 1 Data set 2  VW NV VW NV 

#SRRs 6219 6219 5822 5822 
#Extracted SRRs 6169 6111 5801 5525 
#Correct SRRs 6164 6001 5673 5390 

Recall 99.1% 96.5% 97.4% 92.6% 
Precision 99.9% 98.2% 97.8% 97.6% 

As it can be seen from Tables 2 and 3, ViNTs can generate very 
high quality wrappers, with both recall and precision close to 
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100% on data set 1 and close to 98% on data set 2. The small 2% 
decrease in performance from using data set 2 to using data set 1 
strongly indicates that our approach is very robust, considering the 
facts that data set 2 is completely new and 20 of its search engines 
are non-document search engines (our system is trained using 
only document search engines). The main reason for the above 
2% decrease in performance is due to the failure of ViNTs on 2 
search engines in data set 2. One failure is caused by the wrapper 
selection step (a wrong wrapper is selected by ViNTs) and the 
reason for the other failure is not immediately clear. 

By comparing the results under columns VW and NV, we can see 
that utilizing visual content features has moderately increased the 
precision but significantly increased the recall, especially for data 
set 2. Note that even though the increases are not large in absolute 
terms, they are highly significant because they are increases 
beyond the 90+% base performance and the last several percentage 
points are usually the most difficult to achieve. Since result pages 
for non-document search engines are usually more complex than 
those from document search engines and data set 2 has 20 non-
document search engines, it seems that utilizing visual content 
features is more effective for complex result pages. We plan to 
carry out more experiments in the future to verify this observation. 

6.4 Comparison with MDR 
MDR extracts from a single page at a time. To compare with 
MDR, we configure ViNTs to build a wrapper from a single page, 
and then apply the wrapper to extract SRRs from the page. ViNTs 
returns only the SRRs in the major section of a web page, while 
MDR reports all identified sections. Only the major section is 
considered if there are multiple sections of SRRs. MDR has a 
similarity threshold, which is set at 60% in our test, based on the 
suggestion of the authors of MDR. 

MDR could not produce any output for 8 web pages in data set 3 
because the MDR program terminated abnormally, while ViNTs 
worked on all 50 pages. These 8 pages are not used in our 
comparison as the reason of the abnormal termination of the MDR 
program on these pages during our test was not clear. Misaligned 
SRRs, such as an extracted SRR consisting of part of an actual 
SRR and part of the next SRR, are counted as error. Table 4 
shows the summary of the test results using the 42 web pages 
MDR produced results. The detailed test result can be accessed at 
our ViNTs demo site. 

As we can see from Table 4, the performance of ViNTs is 
considerably better than that of MDR. Our test also found out that 
MDR is much better at extracting records from HTML tables 
(with recall 73.7% and precision 87.2% on data set 3) than from 
non-tables (with recall 7.7% and precision 100%), while our 
method performs well in both situations (recall and precision both 
at 99.1% for tables and both at 98% for non-tables). 

Table 4. Comparison results with MDR 
 ViNTs MDR 

#SRRs 795 795 
#Extracted SRRs 795 479 
#Correct SRRs 785 420 

Recall 98.7% 52.8% 
Precision 98.7% 87.7% 

7. RELATED WORKS 
The problem of extracting search results from search engine result 
pages is an information extraction (IE) problem. IE has received a 
lot of attention in recent years. A good survey about current works 

on IE can be found in [19]. Earlier works are mainly semi-
automatic or even manual [1, 3, 9, 15, 18, 21, 23]. They rely on 
training and human assistance to generate extraction rules for web 
pages. Many new applications such as building large-scale 
metasearch engines or building metasearch engines on-demand 
[28] require fully automated wrapper generation techniques. 
Several automated or nearly automated IE methods have been 
proposed recently and the most representative ones are Omini [5], 
the method in [12], IEPAD [6], MDR [20], RoadRunner [10], 
EXALG [2], DeLa [26], PickUp [8]. 

RoadRunner extracts template by analyzing a pair of Web pages 
of the same class at a time. It uses one page to derive an initial 
template and then tries to match the second page with the 
template. Mismatches are used to modify the template to 
eventually fit all input pages to the template. EXALG works on a 
set of Web pages of the same class. Equivalence classes that are 
sets of tokens having the same frequency of occurrence on all 
input pages are computed, and large and frequently occurring 
equivalence classes (LFEQs) are extracted for template 
generation. Dela employs a multi-level pattern extraction 
algorithm to build regular expression to represent the nested 
schema of data on the web page. PickUp identifies table structures 
in web pages by mining repeated patterns in HTML tag sequence.  
RoadRunner, EXALG, Dela and PickUp all support complicated 
data types and are more general than works developed primarily 
for flat record extraction. However, they only reported 
experimental results when data at a level lower than search result 
records are extracted. Consequently, their results are not directly 
comparable with ours. While it is possible to use these systems to 
extract data at record level, we are not able to implement their 
complicated algorithms as a lot of details are left out in the 
published papers. As a result, we are not able to compare them 
with our method experimentally.  

The methods of Omini, IEPAD, MDR and that in [12] are the 
most relevant to our method because they all extract data at the 
record level. IEPAD first symbolizes all HTML tokens of a parsed 
web page into a string, and then uses a PAT tree and some 
heuristics to find candidate patterns. Finally, a human user 
selects the best pattern among the candidate patterns. As a result, 
IEPAD is not fully automated. Omini and the method in [12] build 
a tag tree for an input web page, then apply some heuristics to 
extract a sub-tree that contains data objects of interest. Then 
another set of heuristics is applied to find out a separator, which is 
a tag that can segment the minimum object-rich sub-tree into data 
objects. In addition, the method in [12] uses match heuristics 
based on a manually constructed ontology; thus it is not truly 
automatic. Omini does not use any ontology and uses a different 
set of heuristics to achieve better performance. The idea of 
separator in our method is similar to [12] and Omini but our 
separators are more general. Their separators contain only one 
HTML tag, which is insufficient in some samples we tested, while 
our separator is a tag forest, which can be expanded to desired 
depth if necessary. We also support optional separators. In [5] (for 
Omini) and [12], only the experimental results on separator 
identification were reported but no results on wrapper generation 
were reported. The results reported in [20] indicate that Omini has 
low effectiveness (recall 39% and precision 56%) for extracting 
data records. MDR identifies data regions by finding the existence 
of multiple similar generalized-nodes of a tag node, while a 
generalized-node is a collection of child nodes of that tag node. 
Then each generalized-node is checked to decide if it contains 
multiple records or only one. Near perfect results (with recall 
99.8% and precision 100%) are reported for MDR in [20]. 
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However, when a third party data set is used, MDR has a much 
lower performance than our method (see section 6). A major 
reason for the discrepancy is probably due to the fact that MDR is 
primarily designed to handle tables only. In addition, the 
definition of record is MDR seems to be slightly different from 
that of SRR as in this paper. MDR does not identify the correct 
section for search result records and extracts records from all 
sections. This will likely extract some advertisement records. 
Furthermore, MDR does not generate wrapper and needs to 
perform the complex and time-consuming extraction for each 
result page. This is not practical when dealing with a large number 
of result pages for each user query as in a metasearch engine 
context. 

The main difference between our method and existing techniques 
is that our method is the only one that utilizes both visual content 
features and HTML tag structure regularities, while existing 
techniques use only HTML tag structures. This makes our method 
less sensitive to the misuse of HTML tags. Our method also 
utilizes HTML tag structure differently. For example, our 
separators are more general and our wrapper generation process 
(i.e., generating multiple candidate wrappers for each page, 
selecting the best wrapper for each page and integrate the 
wrappers for multiple pages) is also different. Our method is fully 
automated and highly accurate (the average recall and precision 
for the three data sets are 98.3% and 98.9%, respectively). We 
should point out that, among similar studies, our experiments used 
the largest number of search engines. 

There are some works on using visual information to process web 
pages in other applications (e.g., [14, 17, 29]) but none of them 
are directly related to search engine result extraction. These 
methods and our method also use different sets of visual features. 

8. CONCLUSIONS 
In this paper, we presented a fully automated technique to 
generate wrappers for extracting search result records from result 
pages dynamically generated by search engines. Our technique 
utilizes both the visual content features on the result page as 
displayed on a browser and the HTML tag structures of the 
HTML source file of the result page. This differentiates our 
technique from other competing techniques for similar 
applications. Our experimental results indicate that our technique 
can achieve high extraction accuracy. In the future, we plan to 
utilize additional visual features (such as font type and color) to 
further reduce the reliance on HTML tag structure. 
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