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Interactive Hyperspectral Image Visualization
Using Convex Optimization
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Abstract—In this paper, we propose a new framework to visual-
ize hyperspectral images. We present three goals for such a visu-
alization: 1) preservation of spectral distances; 2) discriminability
of pixels with different spectral signatures; 3) and interactive visu-
alization for analysis. The introduced method considers all three
goals at the same time and produces higher quality output than
existing methods. The technical contribution of our mapping is to
derive a simplified convex optimization from a complex nonlinear
optimization problem. During interactive visualization, we can
map the spectral signature of pixels to red, green, and blue colors
using a combination of principal component analysis and linear
programming. In the results, we present a quantitative analysis to
demonstrate the favorable attributes of our algorithm.

Index Terms—Hyperspectral image visualization, linear pro-
gramming, perceptual color distances, principal component
analysis (PCA).

I. INTRODUCTION

HYPERSPECTRAL images contain hundreds of spectral
samples per pixel. To visualize such images, the many

spectral bands must first be projected to a lower dimensional
space, typically the red, green, and blue (RGB) color space of a
monitor.

In this paper, we present a framework to visualize hyper-
spectral images. The problem can be formulated as follows.
A w × h hyperspectral image with d bands can be seen as a
higher dimensional tensor Td ∈ Rw×h×d where each of the wh
pixels is described by a vector Xi with d spectral samples. As
output of this algorithm, we want to map the image to a lower
dimensional display range, i.e., a tensor Tk ∈ Rw×h×k with all
entries constrained to lie between 0 and 1 (normalized display
range) and k < d. In this paper, we consider the k = 3 case to
map to the display range of a color monitor.
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We set out by defining three goals for such a visualization:
1) The distances from the input spectral space should be
preserved in the output color space to provide a perceptually
meaningful visualization; 2) the algorithm should make use
of the dynamic range of the display device to show details in
the image; and 3) the algorithm should allow for interactive
exploration.

Hyperspectral image visualization is usually provided as a
functionality in hyperspectral image analysis software such
as Multispec [1], ENVI [2], Geomatics [3], TnTlite [4],
HyperCube [5], and HIAT [6]. A direct visualization method is
to render the image as a 3-D cube [3], [6]. To explore different
bands as grayscale images, one set of tools allows a user to
cycle through all bands or to flicker between two bands [5].
To extract an RGB color image for visualization, interactive
tools can be used to pick three bands and assign them to the
RGB channels directly [1], [2]. More sophisticated mappings
can be created through user-specified linear combinations of
spectral bands [5], data-independent visually meaningful linear
combinations [7], or data-dependent automatically computed
combinations using principle component analysis (PCA) or
minimum noise fraction (a noise reduction version of PCA)
[2], [4]. Additionally, independent component analysis (ICA)
has been proposed for dimension reduction [8], [9], but ICA is
significantly slower than PCA, and it is not clear how to rank the
significance of different channels provided by ICA. An alterna-
tive idea for visualization would be to borrow from nonlinear
methods for dimension reduction, such as locally linear em-
bedding (LLE) and isometric feature mapping (ISOMAP). Two
recent nonlinear color mapping approaches by Gooch et al. [10]
and Rasche et al. [11] report running times of minutes to com-
pute a mapping for input images with three spectral samples.
In general, we expect these existing nonlinear techniques to re-
quire significantly more computation time than linear methods,
particularly for d � 3.

The main problem that we observed is that existing methods
map spectral samples to unbounded 3-D Euclidean space. After
dimension reduction, they all use not only a second nonuniform
mapping to color space that creates colorful images but also
the illusion of salient features that are not present in the data.
Examples are nonuniform scaling, standard deviation stretch,
and histogram equalization. Therefore, these algorithms sacri-
fice the first goal (preservation of spectral distances) to satisfy
the second one (using the dynamic range of the display).

In this paper, we propose a novel strategy for hyperspectral
image visualization that uses a higher quality mapping. The
main idea of our approach is to derive a fast optimization pro-
cedure that can perform dimension reduction while considering
the boundaries of the hue, saturation, and value (HSV) [12]

0196-2892/$25.00 © 2009 IEEE

Authorized licensed use limited to: Arizona State University. Downloaded on June 23, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.



1674 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009

color space (see Fig. 4 for a short introduction). During the
visualization, a user can interactively explore the hyperspectral
data set using spatial and spectral lenses to configure a nonlin-
ear mapping. Our major contribution is as follows.

• We present a high-quality framework for hyperspectral
image visualization. We provide the quality of nonlinear
methods while preserving much of the interactivity only
available with simple linear methods. Both visual and
quantitative comparisons suggest that our method satis-
fies the three goals simultaneously better than existing
methods.

II. RELATED WORK

We review related work in three categories: 1) hyperspectral
image visualization; 2) color to gray mapping; and 3) dimen-
sionality reduction.

A. Hyperspectral Image Visualization

Traditionally, hyperspectral images have been visualized as
a cube with a suite of interactive tools [13]. One set of tools
allows a user to extract one spectral band at a time or cycle
through spectral bands as an animation. To create RGB images,
interactive tools can be used to specify RGB values as linear
combinations of spectral bands. This means that an RGB value
is computed by a matrix vector multiplication. Along these
lines, several authors have suggested methods to automatically
create linear combinations of spectral bands to define the
RGB blue color channels of a visualization [7], [14]–[16].
In this paper, we compare our results to two such methods:
1) the color-matching function (CMF) algorithm proposed by
Jacobson et al. [7] and 2) a traditional PCA-based method
described in [14, Sec. 2]. The main problem in existing visu-
alization software toolkits is the application of postprocessing
algorithms to enhance the image. Examples are nonuniform
scaling, standard deviation stretch, and histogram equalization.
These algorithms disproportionately enhance minor features. It
is worth noting that a visualization can be specifically designed
for different applications. For example, a visualization can be
used as a postprocess for classification [17].

B. Color to Gray Mapping

In recent years, transforming color images to grayscale at-
tracted the interest of several researchers [10], [11], [18], [19].
The problem is to find a lower dimension embedding of the
original data that can best preserve the contrast between the data
points in the original data. While these papers are an inspiration
for our work, their methodologies do not easily extend to higher
dimensions due to memory consumption and computation time.

C. Dimensionality Reduction

There are a larger number of general dimensionality re-
duction algorithms in the literature. Prominent examples are
ISOMAP [20], LLE [21], Laplacian eigenmap embedding [22],
Hessian eigenmap embedding [23], conformal maps [24], and
diffusion maps [25]. These algorithms are theoretically very

strong. However, there are two issues. First, these algorithms
assume that the data lie in a nonlinear submanifold in the
original space. This assumption must be verified before these
nonlinear dimension reduction methods can be used on hyper-
spectral images. Although previous studies [26], [27] suggest
that nonlinearity exists in hyperspectral imagery, the nonlinear-
ity is typically data dependent. Second, nonlinear dimension
reduction methods are usually slow and memory intensive.
For example, a small 100 × 100 image gives rise to a dis-
tance matrix with 1004 = 100 million entries. Computing the
singular value decomposition (a typical step needed in these
methods) does not scale well to larger images, and a 500 ×
500 image is already out of reach for current workstations.
In [28], an accelerated version of ISOMAP is implemented
for hyperspectral images. The method greatly enhances the
algorithm speed, but running times are still not fast enough for
an interactive visualization.

III. OVERVIEW

Here, we give an overview of this paper. First, we lay out
three goals of the visualization and derive quantitative metrics
that we will use to compare our algorithm to previous work.
Second, we give the motivation for our algorithm and explain
how we derived it. Third, we give a short description of the
individual steps of the algorithm.

A. Goals

Preservation of Distances: The first goal of our visual-
ization is to create an image such that the perceptual color
distances are similar to the Euclidean distances between the
high-dimensional spectral samples. We follow the argumenta-
tion which suggests that the Euclidean distance in RGB color
space is not a good measure for the perceptual distance (see,
for example, [14] and [29]). Therefore, we attempt to preserve
Euclidean distances in a perceptual color space, L∗a∗b∗ [12].
To evaluate the preservation of distances in L∗a∗b∗, we define
a correlation-based metric similar to that in [7]. Let X be
the vector of all pairwise Euclidean distances of the pixels in
the high-dimensional spectral space, and let vector Y be the
corresponding pairwise Euclidean distances of the pixels in
L∗a∗b∗ space. The correlation γ can be calculated using the
following formula:

γ =
XT Y/|X| − X̄Ȳ

std(X) · std(Y )
. (1)

|X| denotes the number of elements in X , and X̄ and std(X)
denote the mean and standard deviation, respectively. In the
ideal case, the normalized correlation equals 1, and the closer
the correlation is to 1, the better the distance is preserved. In
practice, the images that we consider are too large to consider
all pairwise distances, so that we accelerate the computation by
subsampling.

It is important to discuss alternative design choices for metric
γ. An alternative to Euclidean distances in the original space
is to only consider the spectral angles in the original space
(e.g., [7]). While spectral angles contain enough information for
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endmember identification in classification applications, the ra-
diant intensities in the original space carry additional infor-
mation about ground textures that reflect shape and contours
[7]. This is very important for a series of tasks such as geo-
referencing [2], registration [30], and change detection [31].
Another idea suggested by Jacobson and Gupta [7] is to ignore
the luminance values in L∗a∗b∗ space. In our experience, better
performance can be achieved when making use of the full color
space including the luminance value.

Separability of Features: Correlation alone does not guaran-
tee that colors can be well distinguished. It is still possible that
the resulting image is too dark or too bright, because the color
space is not efficiently used and too many pixels fall within a
smaller part of the color space. Therefore, we use a metric δ that
measures how well pixels are mapped to distinguishable colors.
The key idea is that the average distance between two pixels in
perceptual color space should be as large as possible

δ = |Y |1/|Y | (2)

where Y is from (1), |Y |1 denotes the L1 norm, and |Y | is
the number of elements of the vector. Therefore, δ denotes the
average pairwise Euclidean distance in the L∗a∗b∗ color space.
The same metric was independently suggested by Du et al. [16].
Larger values of δ indicate a better separability of features, and
we therefore try to maximize δ.

Interactive Visualization: For an effective visualization, the
data set should be interactively explored by a human user. We
consider two aspects of the interactive visualization. First, the
computation time should not exceed a few seconds. Second, it is
important to have a method that is compatible with interactive
tools for data exploration. In this paper, we introduce spatial
and spectral lenses as example tools and show how the algo-
rithm can be integrated into an interactive hyperspectral image
visualization framework.

B. Design Choices

We first present our analysis of the state of the art and then
discuss three possible approaches to improve the visualization.
The third approach is the one we follow in this paper.

State of the Art: State-of-the-art techniques use a two-step
framework which is shown in the first row of Fig. 2. These
techniques map the high-dimensional spectral samples to an
unbounded 3-D Euclidean space in the dimension reduction
step. Even though the mathematical transformations, such as
PCA and ICA, perform typically well when mapping to an
infinite space, the color space has an actual boundary that needs
to be respected. We call this problem the boundary problem.
Please note that this problem is similar to the tone reproduction
problem in computer graphics [32]. For example, the RGB
color space has a cube as a boundary, and the Lab color space is
bounded by concave surfaces. Therefore, these methods need a
second transformation which actually maps 3-D points to RGB
triples for visualization purposes. The simplest transformation
is uniformly scaling the point set so that it fits into a cube.
The three coordinates of the scaled space can be used as the
RGB color values. Usually, the points are sparsely distributed
in the cube so that the resulting image tends to be too dark [see
Fig. 1(a)]. In the quantitative analysis, this visualization has

Fig. 1. Comparing two visualization algorithms for a multispectral data set.
(a) Visualization with PCA. (b) Visualization with enhanced PCA. Note how
smaller features are exaggerated. The first three eigenvectors are mapped to
(R, G, B) channels, respectively

Fig. 2. Four different strategies to address the hyperspectral image visual-
ization problem. The state of the art is shown in the top row. Two possible
alternatives are shown in rows 2 and 3. Our approach is shown in row 4 (these
alternatives are discussed in Section III-B).

good preservation of distances (γ) but not a high separability of
features (δ). Therefore, different alternatives to uniform scaling
have been proposed to enhance the separability of features (δ)
of the final image such as an exponential transform, nonuniform
scaling, standard deviation mapping, the auto normalization
transform, histogram equalization [33], and tone mapping [34]
techniques. An example of enhanced PCA visualization is
shown in Fig. 1(b). However, these techniques work on each
color channel separately and therefore distort perceptual color
distances nonuniformly. As a result, minor features in the data
can be disproportionably exaggerated, and the preservation of
distances is poor (γ).

Approach 1: The first idea that we considered was to replace
the second mapping with a mapping to L∗a∗b∗ color space
to better keep perceptual distances (see Fig. 2, row 2). The
L∗a∗b∗ color space is the most popular choice in this context.
However, the envelope of L∗a∗b∗ space has a concave and
curved boundary, and the cascading of two mappings produced
similar undesirable side effects to existing methods.

Approach 2: To avoid complications due to two mappings,
we intended to directly map points in Ed to L∗a∗b∗ space, pos-
ing the problem as a constrained optimization (see Fig. 2,
row 3).

Approach 3: Approach 2 seems to be the ideal solution
for preserving perceptual distance. However, the L∗a∗b∗ color
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Fig. 3. Pipeline of our framework. (Step 1) The points in high dimension
are first clustered, and representatives for clusters are extracted. (Step 2)
Representatives are projected to 2-D. (Step 3) The coordinates in the third
dimension are computed using linear programming. (Step 4) Interpolation of
other points.

space has concave nonlinear boundaries. A constrained op-
timization that maps the data set into L∗a∗b∗ is very time
consuming and does not meet our interactive speed require-
ment. Therefore, we opted for a third approach (see Fig. 2,
row 4) that uses the HSV color space instead of the L∗a∗b∗

color space. Although the HSV color space is not as good as
L∗a∗b∗ color space, it is still much better than the RGB color
space in preserving perceptual distance. Our experiments will
show that even though we optimize color distances in the HSV
color space, the distances in the L∗a∗b∗ color space are well
preserved according to our correlation metric. Additionally,
this simplification allowed us to derive a solution based on a
convex optimization that can be solved at interactive speeds.
Overall, using the HSV color space is a good compromise
between quality and speed requirements. Next, we present
an overview of our method and fill in algorithm details in
Section IV.

C. Pipeline

The proposed framework includes four steps (see Fig. 3)
described in the following.

1) Preprocessing: The motivation for preprocessing is to
accelerate the computation time. Preprocessing consists
of a vector quantization method to cluster the spectral
signature of image pixels into M clusters. Optimization
is performed on cluster representatives, and interpolation
is performed on the remaining spectral samples. We
implemented the faster median cut algorithm [35] and the
higher quality k-means algorithm [36]. For each cluster,
we select one representative point. The outputs of this
stage are the representative points and cluster member-
ship information for all the pixels (spectral samples). See
Section IV-A for details. The performance and parameter
settings for the number of clusters M are evaluated in
Section V.

2) Dimension Reduction: In this stage, we want to map the
representative points to the HSV color space. Our solu-
tion is a two-step algorithm that is tradeoff between com-
putation speed and quality according to the metrics γ and

δ. First, we project the representative points onto a 2-D
plane using PCA. The points are then enclosed by a circle
which constitutes the boundary in the hue–saturation
plane of the HSV color space. Second, we employ a
convex optimization to assign intensity values to the
representative points.

3) Interpolation and Color Mapping: The hue–saturation
components of the remaining points are computed by
projecting to the 2-D plane used in the previous step. The
intensity component of a point is decided by the distance
to its representative point. Finally, all points are mapped
into the HSV cone.

4) Interactive Visualization: We provide a suite of interac-
tive tools to explore and analyze a hyperspectral data set.
We provide three types of tools: 1) linear transformations
of the color space; 2) spatial lenses so that the user can
interactively select a subregion of the image and recalcu-
late a mapping that enhances the visual discriminability
of the features in the subregion; and 3) spectral lenses
that enhance the visual discriminability of pixels similar
to a user-specified spectral signature.

IV. METHODOLOGY

A. Preprocessing

The input to the preprocessing step is the original data set, a
high-dimensional tensor Td ∈ Rw×h×d where each of the w ×
h pixels is described by a vector Xi with d spectral samples.
The output of the preprocessing step is the following clustering
information: 1) a w × h integer map with values ranging from
1 to M ; the integer is the cluster ID for the corresponding pixel;
2) the centroid of each cluster, denoted as {Rd

1, R
d
2, . . . , R

d
M};

and 3) the average Euclidean distance of all points to their
representative point, denoted as {r1, r2, . . . , rM}.

We implemented dimension reduction as an option to accel-
erate the clustering. We use PCA to first reduce the number of
bands and keep 99.9% of information from the original data
sets. This results in keeping the first 10–20 eigenvectors. The
clustering algorithm is conducted in the projected subspace.
This acceleration is fairly conservative and has negligible in-
fluence on the output. Therefore, we use it for all results in
this paper. We use a C implementation of the k-means and
the median cut clustering algorithm. For both algorithms, we
tried various settings for the number of clusters (M). We found
that choosing median cut clustering with M = 50 gives a good
balance between speed and quality of the mapping. We analyze
clustering performance and the influence of parameter settings
in Section V-C.

B. Dimension Reduction

1) Problem Formulation: Our method for dimension reduc-
tion starts from a multidimensional scaling perspective. Given
the spectral samples in original d-dimensional Euclidean space
denoted as {X1,X2, . . . , Xn}, with each of them being a vector
in d-dimensions, we try to map them to 3-D color vectors
denoted as {C1, C2, . . . , Cn}. To introduce the problem, we
only consider the goal of preservation of distances and ignore
the boundaries of the color space, so that we allow any color
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vector in unbounded 3-D Euclidean space. That means that we
want to find a mapping that minimizes the objective function E

E =
N∑

i=1

N∑
j=i+1

(Dd(i, j) − D3(i, j))
2 (3)

or in compact form

E =
1
2
‖Dd − D3‖F . (4)

F denotes the Frobenius norm, Dd and D3 are matrices
so that Dd(i, j) denotes the Euclidean distance between Xi

and Xj , and D3(i, j) denotes the Euclidean distance between
Ci and Cj . It is possible to solve this optimization problem
using majorization [37] techniques. However, a more popular
approach is to center matrices Dd and D3 first. The centering
operator τ can be computed by τ(D) = −HSH/2, where S =
D2 and H = I − 1/N ∗ O, with O being a matrix of all ones
and N being the number of rows of square matrix D. This
transforms the problem to minimizing the objective function E

E = ‖τ(Dd) − τ(D3)‖F . (5)

The importance of the centering operator is that it transforms
the problem from a nonlinear optimization to an eigendecom-
position problem. The main idea is to replace distances with
dot products. The global optimum of (5) is selected as the
three eigenvectors of matrix τ(Dd) that are associated with
the largest three positive eigenvalues. Each color vector Ci can
map the first three eigenvectors to any combination of RGB.
This approach is called classical dimensional scaling. It can be
shown that the result is exactly the same as performing PCA on
the data set and computing the projection on the three principle
components associated with the first three largest eigenvalues
[37]. In summary, PCA is one of the best and most popular 3-D
projections in the sense of classical multidimensional scaling.
However, we need to find a mapping that constrains the vectors
Ci to lie within the boundaries of a color space.

2) Dimension Reduction Using Convex Optimization: The
main motivation and technical contribution of our approach is
to derive a convex optimization for the dimension reduction
step. Our main ingredients are the use of the HSV color space
and a novel solution to split the dimension reduction in two
steps. The envelope of the HSV color space is a right circular
cone whose height equals the radius of the base plane. The
HSV space is shown in Fig. 4. Our algorithm to map the points
from the original d-dimensional space into a 3-D cone shape
has the following steps. First, we compute the hue–saturation
component of the representative points using linear projection.
Second, we assign the intensity component of the representative
points. For the second step, we will explain how we model the
intensity assignment as a linear programming problem.

3) Projection to 2-D Hue–Saturation Space: The goal
of this step is to project the representative points {Rd

1, R
d
2,

. . . , Rd
M} in the original d-dimensional space to a 2-D space.

The projected points are denoted by {R2
1, R

2
2, . . . , R

2
M}. Note

that the superscripts denote the dimensionality of the space
where the points reside in. The 2-D space will be parallel to
the base plane of the HSV color cone. We use a fast projection

Fig. 4. HSV color space is bounded by a circular cone. (a) We show a cross
section of the cone. Hue ranges from 0 to 360 and describes the spectrum of
pure colors. Saturation is the distance to the center of the circle and describes
color strength. Adding more white will make the color weaker. (b) We show the
cone in 3-D. The value coordinate describes how bright or dark the color is.

Fig. 5. (a) Two-dimensional projection in a circle. (b) Range of the intensity
for each point. The X–Y plane is the hue–saturation plane, and the Z-axis
corresponds to value from the HSV color space.

using PCA for this step. Second, we need to find a circle in
the plane that describes the boundary of the HSV cone. We
use the centroid of the points {R2

1, R
2
2, . . . , R

2
M} as middle

point of the circle and set radius = ratio ∗ Far, where Far
denotes the distance of the centroid to the farthest point [see
Fig. 5(a)]. We need to slightly enlarge the circle because we
only use representative points at this step and other points will
still be further away. We use ratio = 1.2 as an initial heuristic,
but the user can modify this parameter interactively. Please note
that we do not want to enclose all projected points in the base
circle because this would make our method sensitive to outliers.
Up to now, the hue–saturation component of the representative
points are decided up to a rotation factor. This degree of free-
dom can also be set by the user during interactive exploration
(see Section IV-D1).

4) Computing the Intensity Component: In this step,
we compute the intensity components for all representa-
tive points denoted as {I1, I2, . . . , IM}. Note that (R2

1, I1),
(R2

2, I2), . . . , (R2
M , IM ) together fully describe the final pro-

jection in 3-D space (R3
1), (R

3
2), . . . , (R

3
M ). Please note that

we use negative intensity values between 0 and −1 since the
cone is upside down (−1 maps to black). The principal goal is
to preserve the mutual distances of representative points in the
original space as much as possible [see (3)] while respecting
several constraints. The problem can be modeled as a linear
programming problem. We will describe our solution in five
parts. First, we describe the objective function. Second, we
show how the objective function can be transformed to map
to a convex optimization algorithm. Third, we explain how
to incorporate the boundaries of the HSV cone as constraints.
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Fourth, we explain how to add cluster separability as constraint.
Finally, we show how to solve the problem numerically.

Objective Function: The objective in (3) is to keep D3 as
close to Dn as possible. At this step in the algorithm, we already
have a 2-D projection as a partial solution, and we only need to
solve for 1-D coordinates in the third dimension. We denote the
pairwise distance matrix for {R2

1, R
2
2, . . . , R

2
M} in 2-D space

as D2 and the pairwise distance matrix for {I1, I2, . . . , IM} as
D1. In the ideal case, D1(i, j) =

√
(Dd(i, j))2 − (D2(i, j))2

according to the Pythagorean theorem. Therefore, we want to
minimize the following objective function E:

E =
M∑
i=1

M∑
j=i+1

∣∣∣∣D1(i, j) −
√

(Dd(i, j))
2 − (D2(i, j))

2

∣∣∣∣ .

(6)

Transforming to a Linear Programming Problem: Even
though the term under the square root in (6) is a constant, the
resulting optimization is still nonconvex. The reason for this is
the absolute value in D1(i, j) = |Ii − Ij |. Therefore, we cannot
solve the minimization problem using linear programming. The
key insight to bypass this problem is to decide the order of
{I1, I2, . . . , IM} using a reasonable criterion beforehand. This
order becomes the first set of constraints

if Dist(i) ≥ Dist(j), Ii ≥ Ij . (7)

We will discuss the meaning of Dist(i) and why we impose
these constraints shortly. Now, D1(i, j) = Ii − Ij when Ii ≥
Ij , or D1(i, j) = Ij − Ii when Ii < Ij . The absolute value
disappears, and the problem is reduced to a linear programming
problem.

Cone Boundary Constraints: The second set of constraints
is straightforward: We want to restrict the position of the points
in the final 3-D space within a cone shape. Let us denote
Dist(i) as the distance from point R2

i to the origin of the
base circle. Since the height of the cone is equal to the radius
of base circle, we know that |Ii| + Dist(i) ≤ Radius must
be satisfied, as shown in Fig. 5(b). Therefore, if Range(i) =
Radius − Dist(i), the following two constraints must be ap-
plied to make R3

i stay in a cone:

Ii ≤ 0 Ii ≥ −Range(i). (8)

Transforming to LP Problem Constraints: Now, we look
back at the first set of constraints and explain why they make
sense. Since the smaller the Dist(i) is, the larger Range(i) is,
we intentionally make the final 3-D points appear more like a
cone shape by arranging their intensity values in descending
order according to Dist(i). It is worth mentioning that other
methods exist to decide the order of {I1, I2, . . . , IM}. For
example, we can use the total energy in the original space: |Rd

i |1
to order them. We tested this setting, and final results do not
form a good cone shape.

Cluster Separability Constraints: The third and last set of
constraints is designed to separate important points. Remember
the we define ri as the average distance to the ith representative
point for all points belonging to that cluster. We define two
representative points to be well separated if ri + rj ≤ Dd(i, j).
We want the cluster center to remain well separated in the final

3-D space: ri + rj ≤ D3(i, j). This boils down to the following
constraint:

if ri + rj ≤ Dd(i, j),

then
√

(ri + rj)2 − (D2(i, j))
2 ≤ D1(i, j). (9)

Solve Convex Optimization: Now, we have fully set up the
linear programming model: Minimize (6) subject to (7)–(9).
We solve it with CLP.1 CLP is a C++ library of several
linear programming solvers. We use the primal–dual method
implemented in the library. This is not the fastest method, but it
works fast enough for our application. Alternatively, instead of
minimizing (6), we can minimize the following term Ē:

Ē = max
i=1,...,M,j=i+1,...,M

×
∣∣∣∣D1(i, j) −

√
(Dd(i, j))

2 − (D2(i, j))
2

∣∣∣∣ . (10)

This formulation uses the infinity norm instead of the
1-norm. We believe that it gives a better theoretical guarantee.
Therefore, we use this objective function for all results in this
paper. The derivation of the corresponding linear programming
problem is analogous to the derivation presented in this section.

C. Interpolation and Color Mapping

1) Interpolate All Points: At this stage, the coordinates of
the representative points are fully determined in 3-D space
(HSV color space). In this step, we will map all the remaining
points based on the location of the representative points. The
coordinates in the hue–saturation plane are decided by project-
ing all other points in the original space to the same plane using
the first two principle components that we have used for the
representative points. Note that, alternatively, we can use the
first two principle components of all data points with similar
computation time. However, performing PCA on all points will
bias favorably toward the separability of clusters with a larger
number of members. The intensity Ip for a particular pixel P d

is decided by the following formula:

Ip =Ii+flag ∗
√

Edist
(
P d, Rd

i

) − Edist (P 2, R2
i ). (11)

In the formula, i denotes which cluster P d belongs to. Ii is
the intensity value that we have decided in the previous section.
Edist(p, i) denotes the Euclidean distance between p and i
in the original space. flag is either 1 or −1 denoting whether
pixel Ip should be darker or lighter than its representative point
intensity Ii, respectively. flag is decided by comparing the sum
of all band values for this pixel to the sum of all bands for the
representative point in the original space. In Fig. 6, we show the
mapped cone shape of a real data set (LunarLake02).

2) Fit the Color Cone to Data Cone: Now, the basic idea is
to make the color cone big enough to enclose the data cone such
that all points are mapped to different colors. This corresponds
to the largest red cone shown in Fig. 7(a). To fit the cone so
that it encloses all data points might not be the best strategy

1https://projects.coin-or.org/Clp
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Fig. 6. All data points are mapped to 3-D Euclidean space using our method
described in Section IV. Note how they form a cone shape. The units are
Euclidean distances in the original data set.

Fig. 7. (Left) How to fit the color cone to the data cone. (Right) HSV cone
can be rotated by the user.

due to outliers in the data. The display strategy is to allow the
user to shift the color cone up and down along the Z-axis and
scale the radius of the cone to enhance different parts of the
data. This idea is illustrated using the green and pink cones in
Fig. 7(a). Data points outside the color cone will be clamped to
the boundary of the cone.

D. Interactive Visualization

In the following, we outline three tools that are useful for
interactive visualization: 1) interactive tone rotation; 2) spatial
lenses; and 3) spectral lenses.

1) Interactive Tone Rotation: The user can rotate the ori-
entation of the base plane. This is shown in Fig. 7(b). Note
that the intensities do not need to be recalculated due to the
symmetric structure of the cone. Remapping can be computed
in less than a second for millions of points. We found that
functionality is very helpful to enhance the contrast and to
change the visualization to more aesthetic color choices.

2) Spatial Lens: We propose to use spatial lenses to improve
the contrast in selected regions. We can specify a region in-
teractively and recompute a mapping only on that part of the
data. The region is treated as an input image itself. Although
we still use the same thematic labeling which we got from
the preprocessing step for the whole data set, we remap these
colors to a cone shape in itself. This allows us to enhance
smaller features while locally keeping proportional perceptual
distances. A local mapping is also achievable with PCA on
the subregion. The PCA will also perform well if the selected
region is sufficiently small. This is shown in Fig. 8: We see in
CMF that the features are distinguished fairly well; however,
the overall contrast can be improved. In the PCA without

Fig. 8. (Top left) Result using our spatial lens. (Top right) Result of CMF,
zoomed in. (Bottom left) Result using PCA. (Bottom right) Result using PCA
HE. The rectangular region is selected within the yellow border in the top-left
image of Fig. 12. Algorithmic details are described in Section V-A.

enhancement, the features are not easily distinguished, partic-
ularly for the slim white branches at the upper right corner. In
the PCA with enhancement setting, the results are very colorful,
and features are distinguishable. However, the color mapping
does not correspond to the true distance and is misleading.
For example, at the middle part near the bottom, we see a big
contrast of yellow and pink areas, even though these regions
have similar spectral signatures. More results for the spatial lens
are available in Section V.

3) Spectral Lens: Another tool that we offer is to enable
the user to interactively pick one particular pixel in the result
image and highlight pixels that have a similar spectral signature
to the pixel in the original space. This way, we can use a
larger portion of the color space for selected features and their
surrounding. We implement this functionality by creating a new
cluster whose centroid is set to be the pixel that the user has
picked and the members to be all the pixels within some radius
in the original space. We call this new center Rd

M+1. Note
that the thematic labeling map is changed due to insertion of
the new cluster. Then, the mapping algorithm is recomputed
with a new constraint specifying IM+1 ≥ Ii for all i ≤ M . The
goal of this constraint is to guarantee that the neighborhood
of this pixel is “highlighted.” The results are shown in the
middle image of the top row of Figs. 11 and 12. Note that there
are also some other algorithms available to achieve a similar
goal. For example, a well-known technique is to set the hue
and saturation components of all the points within a distance
directly to the same as that of the selected pixels and keep their
intensity values untouched. We argue that our approach is more
systematic by intentionally making the rest of the points less
“highlighted.” Additionally, our approach can provide more
hue–saturation variations within the cluster.

V. RESULTS

A. Implementation Details

We implemented our algorithm in Matlab on a 3.6-GHz Xeon
processor. The algorithm takes less than 1000 lines of code
including the display, input, and output routines. While Matlab
greatly helps the simplicity of implementation, a complete C++
implementation would be faster. However, since our algorithm
speed is already very competitive, we opted against further low-
level optimizations and porting our code to C++.
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TABLE I
COMPARISON OF CORRELATION γ

TABLE II
COMPARISON OF AVERAGE DISTANCE δ

We use the AVIRIS data which are available for download
online.2 Each data set has 219 bands ranging from 400 to
2500 nm with uniform steps of 10 nm. The image size is usually
around 500 × 500. We picked seven data sets: scenes 01, 02,
and 03 from site Moffett Field, scenes 01 and 02 from site Lunar
Lake, and scenes 01 and 02 from site Cuprite.

We compared our method against several previously pub-
lished algorithms: CMF, PCA, PCA with outlier reduction
(PCA 2%), PCA with histogram equalization (PCA HE), spec-
tral band sampling (SBS), and ISOMAP. Note that ISOMAP
is a nonlinear dimension reduction method. ISOMAP preserves
geodesic distances rather than Euclidean distances. Therefore,
we only visually compare ISOMAP results to ours.

CMF linearly projects the data set using three fixed basis
vectors which are called CMFs in [7]. The PCA method uses
the largest three principle components (P1, P2, P3) to map
all pixels to 3-D Euclidean space and then linearly scales the
whole data set so that it fits into the (unit) RGB cube. The
projection on (P1, P2, P3) is mapped to (R,G,B) channels,
respectively. The PCA 2% method also uses PCA and scaling to
the RGB cube, but instead of linearly scaling, 2% of the pixels
at the ends of each channel are saturated in order to enhance the
contrast. A saturated pixel value is one that is moved outside
the RGB cube through scaling and subsequently clamped to
the boundaries of the cube. Similarly, PCA HE uses PCA for
dimension reduction and scaling to the RGB cube but then uses
histogram equalization for each color channel. SBS is the sim-
plest algorithm that directly maps the 6th, 20th, and 40th bands
to RGB color bands, respectively. Finally, we also implemented
a method that uses ISOMAP to do dimension reduction. The
implementation of ISOMAP follows [38]. The algorithm takes
0.5 h to get a mapping for an image of 500 × 500 × 219. The
implementation of ISOMAP in [28] reports 4.4 h on images
with 1.8 × 106 samples, where each sample has 124 bands.
Since the algorithm complexity is O(N log2(N)), we estimate
that the running time on an image of 500 × 500 × 124 will take
at least 500 s. We therefore believe that current implementations
do not meet the interactive display requirement.

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html

TABLE III
COMPARING RUNNING TIME IN SECONDS OF DIFFERENT NUMBER OF

CLUSTERS AND CLUSTERING METHODS FOR OUR METHOD

(UNITS ARE IN SECONDS)

TABLE IV
COMPARING CORRELATION γ AND AVERAGE DISTANCE δ OF

DIFFERENT NUMBER OF CLUSTERS AND CLUSTERING

METHODS FOR OUR METHOD

B. Quantitative Comparison

We measure the quality of the mapping based on the two
metrics γ, indicating the preservation of distances [see (1)], and
δ, indicating the separability of features [see (2)]. The result
for γ is shown in Table I, and that for δ is shown in Table II.
Note that a good mapping should have γ close to 1 and δ as
high as possible. To accelerate the quantitative comparison, we
randomly subsample pixels so that, in each row and column,
only every fifth pixel is used in the computation of the pairwise
distances. That means that only 4% of the pixels are used.

The values of SBS are not competitive, and we did not
include them in the table. Since ISOMAP preserves geodesic
distances rather than Euclidean distances, it is not meaningful
to apply the correlation metric to ISOMAP results.

The comparison of γ values reveals that PCA 2% and PCA
HE strongly exaggerate features and therefore have a low cor-
relation score. CMF produces solid results, but our method and
PCA are generally better than CMF. Even though our method is
better than PCA in some cases, we consider PCA to be the most
stable according to γ and, therefore, the best method to preserve
the distances. We consider our method the second best.

However, the comparison of δ shows the significant draw-
back of PCA. The separability of features is low, and this
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Fig. 9. (Left) CMF result: γ = 0.82 and δ = 5.6. (Middle) Our result with Kd-tree: γ = 0.95 and δ = 50.9. (Right) Our result with k-means: γ = 0.95 and
δ = 50.5.

Fig. 10. (Left) CMF result: γ = 0.88 and δ = 7.7. (Middle) Our result with Kd-tree: γ = 0.91 and δ = 73.0. (Right) Our result with k-means: γ = 0.90 and
δ = 76.2.

Fig. 11. (Top left) Result using our method. (Top middle) Result using our spectral lens. (Top right) Result using ISOMAP. (Bottom left) Stretched CMFs
[7]. (Bottom middle) PCA without enhancement. (Bottom right) Result using three bands directly chosen from the original data. The data set is scene 2 from
Moffettfield.

results in dark images that are not useful for visualization.
The δ values are a factor of three to five times lower than our
method. The δ values of CMF are comparable to that of our

method for the first three data sets, but other data sets exhibit
δ values that are up to ten times lower. As expected, PCA
2% is comparable to our method, and PCE HE has the best δ
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Fig. 12. (Top left) Result using our method. (Top middle) Result using our spectral lens. (Top right) Result using ISOMAP. (Bottom left) Stretched CMFs [7].
(Bottom middle) PCA HE. (Bottom right) Result using three bands directly chosen from the original data. The data set is scene 2 from Lunarlake.

Fig. 13. Application of the spatial lens on three examples. Each of the three examples compares four methods: our algorithm in the top left, CMF in the top right,
PCA in the bottom left, and PCA HE in the bottom right. (Left) Spatial lens is applied to the yellow rectangle shown in the left image of Fig. 11. (Middle) Red
rectangle in top-left image of Fig. 11. (Right) Red rectangle in the top-left image of Fig. 12. For each example, the layout is the same as that in Fig. 8.

values. However, note that these two algorithms did not perform
well according to our metric γ and are generally not distance
preserving.

We conclude that our method is the best tradeoff and achieves
both goals of preserving spectral distances and separating fea-
tures in the visualization.

C. Parameter Selection for Our Algorithm

We evaluated the parameter for the number of clusters M
and the two implemented clustering algorithms k-means and
median cut. We use two data sets Moffett01 and LunarLake01
for the evaluation, and for each of the two data sets, we
additionally create 25% and 50% downsampled versions
(in spatial dimensions only), giving a total of six data sets. The
original size of both the data sets is 512 × 614 × 219.

In Table III, we compare the running time of different
settings for the number of clusters, clustering algorithm, and
input image size. The two most time-consuming steps in our
algorithm are clustering and convex optimization on represen-
tative points (interactive visualization tools, such as the rotation
of the color wheel and the spatial lens on a small subset of
the data, have response times of less than 0.1 s). The table
shows that k-means clustering is much slower than median
cut. Note that our recommended setting of M = 50 results in
visualization time of about 10 s which is reasonable for inter-
active software. We also see that increasing the image size has
less impact on the running time than increasing the number of
clusters.

In Table IV, we present a quantitative evaluation of the
parameter setting. We can observe that the quality for using
50 clusters is only slightly worse than using 100 clusters.

Authorized licensed use limited to: Arizona State University. Downloaded on June 23, 2009 at 18:19 from IEEE Xplore.  Restrictions apply.



CUI et al.: INTERACTIVE HYPERSPECTRAL IMAGE VISUALIZATION USING CONVEX OPTIMIZATION 1683

D. Visual Comparison

In Figs. 9 and 10, we show the comparison between our
algorithm and the CMF algorithm. While CMF tries to preserve
the influence of the visible spectral bands, we can see that
several features are lost in the visualization.

In Fig. 11, we see the results of different algorithms on
data set Moffettfiled02. In the top-left image, which is our
result, the urban area looks very clear, with several details being
nonobservable in other methods. The lake is relatively dark
but can be made clearer with a spatial or spectral lens. Please
also note how the PCA without any enhancement produces a
visualization that is too dark, as indicated by low values of δ
in our quantitative comparison. In Fig. 12, we show a visual
comparison of selected algorithms on the Lunarlake02 data set.
See that, in our result, features are again easily distinguishable.
For this data set, we use PCA HE. Note that histogram equal-
ization can provide colorful results but that the interpretation is
difficult because the distances in the original spectral space are
not preserved resulting in low values of γ.

In Fig. 13, we see three more examples of the application of
a spatial lens. For each example, we compare our method to
CMF, PCA, and PCA HE. We have the following few remarks
about the results. In example 1, the curved strip in the left
middle part of the image is very clear, while CMF fails to
show this. The straight strip does not show up in the PCA
without enhancement. In the PCA with enhancement, the body
of two parts in the lake has too much perceptual difference:
One part is pink, and the other part is green. From the original
data, we know that they should not be that dissimilar to each
other. In example 2, both our method and CMF appear to do a
good job, but in the PCA without enhancement, the features are
less clear. In PCA HE, the two different kinds of materials are
mapped to blue and red, respectively, which is not desirable. In
example 3, CMF cannot distinguish the features very well,
while our method and the PCA without enhancement get simi-
lar results.

VI. DISCUSSION

Advantages: This new framework provides a good visualiza-
tion result for hyperspectral images while avoiding distortion
of significant features. It also provides real-time interaction to
further facilitate exploration. Based on the visual and quantita-
tive comparisons, we argue that we outperform state-of-the-art
techniques.

Limitations and Future Work: There are several aspects of
our algorithm that we want to improve in future work. One
limitation of the current algorithm is that it does not try to map
high-dimensional pixel signatures to natural colors. Although
we can partially meet this requirement by rotating the color
wheel to make a particular part of the image look natural, we do
not have a systematic way to guarantee that all features satisfy
this criterion at the same time. We would also like to experiment
with using ICA instead of PCA for projecting the colors to the
2-D plane.

It is also worth mentioning that the two goals that we set
up at the beginning, namely, preserving spectral distance and
obtaining high feature separability, may be two contradictory
goals. In the current algorithm, these two goals are unified in

the optimization process by explicitly setting the preservation of
spectral distances as the objective function and casting feature
separability as a set of constraints. We would like to explore the
possibility of putting both goals in the objective function with a
parameter to balance their relative weights in the future.

VII. CONCLUSION

In this paper, we propose a new framework for hyperspectral
image visualization. We are the first to consider the final color
space in our computation, and therefore, we are able to derive
a higher quality mapping than previous work. Experiments
show that the visual quality of the final mapping improves over
state-of-the-art approaches. The framework also provides some
interaction abilities which are important for a human analyst to
explore the data.
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