
1 Probabilistic Visual Learning forObject RepresentationBaback Moghaddam and Alex PentlandMassachusettes Institute of TechnologyAbstractWe present an unsupervised technique for visual learning which is basedon density estimation in high-dimensional spaces using an eigenspace de-composition. Two types of density estimates are derived for modeling thetraining data: a multivariate Gaussian (for unimodal distributions) and aMixture-of-Gaussians model (for multimodal distributions). These proba-bility densities are then used to formulate a maximum-likelihood estima-tion framework for visual search and target detection for automatic objectrecognition and coding. Our learning technique is applied to the probabilis-tic visual modeling, detection, recognition, and coding of human faces andnon-rigid objects such as hands.1. IntroductionVisual attention is the process of restricting higher-level processing to a subset ofthe visual �eld, referred to as the focus-of-attention (FOA). The critical compo-nent of visual attention is the selection of the FOA. In humans this process is notbased purely on bottom-up processing and is in fact goal-driven. The measure ofinterest or saliency is modulated by the behavioral state and the demands of theparticular visual task that is currently active.Palmer [24] has suggested that visual attention is the process of locating theobject of interest and placing it in a canonical (or object-centered) reference framesuitable for recognition (or template matching). We have developed a computa-tional technique for automatic object recognition, which is in accordance withPalmer's model of visual attention (see section 4.1.). The system uses a proba-bilistic formulation for the estimation of the position and scale of the object inthe visual �eld and remaps the FOA to an object-centered reference frame, whichis subsequently used for recognition and veri�cation.At a simple level the underlying mechanism of attention during a visual searchtask can be based on a spatiotopic saliency map S(i; j) which is a function of the1



2 MOGHADDAM AND PENTLAND(a) (b) (c) (d)Figure 1: (a) input image, (b) face detection, (c) input image, (d) hand detectionimage information in a local region RS(i; j) = f [fI(i+ r; j + c) : (r; c) 2 Rg] (1)For example saliency maps have been constructed which employ spatio-temporalchanges as cues for foveation [1] or other low-level image features such as localsymmetry for detection of interest points [30]. However bottom-up techniquesbased on low-level features lack context with respect to high-level visual taskssuch as object recognition. In a recognition task, the selection of the FOA isdriven by higher-level goals and therefore requires internal representations of anobject's appearance and a means of comparing candidate objects in the FOA tothe stored object models.In view-based recognition (as opposed to 3D geometric or invariant-basedrecognition), the saliency can be formulated in terms of visual similarity using avariety of metrics ranging from simple template matching scores to more sophis-ticated measures using, for example, robust statistics for image correlation [5].In this paper, however, we are primarily interested in saliency maps which havea probabilistic interpretation as object-class membership functions or likelihoods.These likelihood functions are learned by applying density estimation techniquesin complementary subspaces obtained by an eigenvector decomposition. Our ap-proach to this learning problem is view-based| i.e., the learning and modeling ofthe visual appearance of the object from a (suitably normalized and preprocessed)set of training imagery. Figure 1 shows examples of the automatic selection ofFOA for detection of faces and hands. In each case, the target object's probabilitydistribution was learned from training views and then subsequently used in com-puting likelihoods for detection. The face representation is based on appearance(normalized grayscale image) whereas the hand's representation is based on theshape of its contour. The maximum likelihood (ML) estimates of position andscale are shown in the �gure by the cross-hairs and bounding box, respectively.1.1. Object DetectionThe standard detection paradigm in image processing is that of normalized cor-relation or template matching. However this approach is only optimal in the



1. PROBABILISTIC VISUAL LEARNING 3simplistic case of a deterministic signal embedded in additive white Gaussiannoise. When we begin to consider a target class detection problem | e.g, �ndinga generic human face or a human hand in a scene | we must incorporate the un-derlying probability distribution of the object. Subspace methods and eigenspacedecompositions are particularly well-suited to such a task since they provide acompact and parametric description of the object's appearance and also automat-ically identify the degrees-of-freedom of the underlying statistical variability.In particular, the eigenspace formulation leads to a powerful alternative tostandard detection techniques such as template matching or normalized corre-lation. The reconstruction error (or residual) of the eigenspace decomposition(referred to as the \distance-from-face-space" in the context of the work with\eigenfaces" [34]) is an e�ective indicator of similarity. The residual error is easilycomputed using the projection coe�cients and the original signal energy. Thisdetection strategy is equivalent to matching with a linear combination of eigentem-plates and allows for a greater range of distortions in the input signal (includinglighting, and moderate rotation and scale). In a statistical signal detection frame-work, the use of eigentemplates has been shown to yield superior performance incomparison with standard matched �ltering [18][26].In [26] we used this formulation for a modular eigenspace representation offacial features where the corresponding residual | referred to as \distance-from-feature-space" or DFFS | was used for localization and detection. Given aninput image, a saliency map was constructed by computing the DFFS at eachpixel. When using M eigenvectors, this requires M convolutions (which can bee�ciently computed using an FFT) plus an additional local energy computation.The global minimum of this distance map was then selected as the best estimateof the location of the target.In this paper we will show that the DFFS can be interpreted as an estimateof a marginal component of the probability density of the object and that acomplete estimate must also incorporate a second marginal density based on acomplementary \distance-in-feature-space" (DIFS). Using our estimates of theobject densities, we formulate the problem of target detection from the point ofview of a maximum likelihood (ML) estimation problem. Speci�cally, given thevisual �eld, we estimate the position (and scale) of the image region which ismost representative of the target of interest. Computationally this is achieved bysliding an m-by-n observation window throughout the image and at each locationcomputing the likelihood that the local subimage x is an instance of the targetclass 
 | i.e., P (xj
). After this probability map is computed, we select thelocation corresponding to the highest likelihood as our ML estimate of the targetlocation. Note that the likelihood map can be evaluated over the entire parameterspace a�ecting the object's appearance which can include transformations suchas scale and rotation.



4 MOGHADDAM AND PENTLAND1.2. Relationship to Previous ResearchIn recent years, computer vision research has witnessed a growing interest ineigenvector analysis and subspace decomposition methods. In particular, eigen-vector decomposition has been shown to be an e�ective tool for solving problemswhich use high-dimensional representations of phenomena which are intrinsicallylow-dimensional. This general analysis framework lends itself to several closelyrelated formulations in object modeling and recognition which employ the princi-pal modes or characteristic degrees-of-freedom for description. The identi�cationand parametric representation of a system in terms of these principal modes is atthe core of recent advances in physically-based modeling [25], correspondence andmatching [32], and parametric descriptions of shape [7].Eigenvector-based methods also form the basis for data analysis techniques inpattern recognition and statistics where they are used to extract low-dimensionalsubspaces comprised of statistically uncorrelated variables which tend to sim-plify tasks such as classi�cation. The Karhunen-Loeve Transform (KLT) [19] andPrincipal Components Analysis (PCA) [14] are examples of eigenvector-basedtechniques which are commonly used for dimensionality reduction and featureextraction in pattern recognition.In computer vision, eigenvector analysis of imagery has been used for charac-terization of human faces [17] and automatic face recognition using \eigenfaces"[34][26]. More recently, principal component analysis of imagery has also been ap-plied for robust target detection [26][6], nonlinear image interpolation [3], visuallearning for object recognition [22][36], as well as visual servoing for robotics [23].Speci�cally, Murase & Nayar [22] used a low-dimensional parametric eigenspacefor recovering object identity and pose by matching views to a spline-based hyper-surface. Nayar et al. [23] have extended this technique to visual feedback controland servoing for a robotic arm in \peg-in-the-hole" insertion tasks. Pentland etal. [26] proposed a view-based multiple-eigenspace technique for face recognitionunder varying pose as well as for the detection and description of facial features.Similarly, Burl et al. [6] used Bayesian classi�cation for object detection using afeature vector derived from principal component images. Weng [36] has proposeda visual learning framework based on the KLT in conjunction with an optimal lin-ear discriminant transform for learning and recognition of objects from 2D views.However, these authors (with the exception of [26]) have used eigenvector anal-ysis primarily as a dimensionality reduction technique for subsequent modeling,interpolation, or classi�cation. In contrast, our method uses an eigenspace de-composition as an integral part of an e�cient technique for probability densityestimation of high-dimensional data.2. Density Estimation in EigenspaceIn this section we present our recent work using eigenspace decompositions forobject representation and modeling. Our learning method estimates the complete



1. PROBABILISTIC VISUAL LEARNING 5probability distribution of the object's appearance using an eigenvector decom-position of the image space. The desired target density is decomposed into twocomponents: the density in the principal subspace (containing the traditionally-de�ned principal components) and its orthogonal complement (which is usuallydiscarded in standard PCA). We derive the form for an optimal density estimatefor the case of Gaussian data and a near-optimal estimator for arbitrarily complexdistributions in terms of a Mixture-of-Gaussians density model.We note that this learning method di�ers from supervised visual learning withfunction approximation networks [28] in which a hypersurface representation ofan input/output map is automatically learned from a set of training examples.Instead, we use a probabilistic formulation which combines the two standardparadigms of unsupervised learning | PCA and density estimation | to arriveat a computationally feasible estimate of the class conditional density function.Speci�cally, given a set of training images fxtgNTt=1, from an object class 
, wewish to estimate the class membership or likelihood function for this data | i.e.,P (xj
). In this section, we examine two density estimation techniques for visuallearning of high-dimensional data. The �rst method is based on the assumption ofa Gaussian distribution while the second method generalizes to arbitrarily complexdistributions using a Mixture-of-Gaussians density model. Before introducingthese estimators we brie
y review eigenvector decomposition as commonly usedin PCA.2.1. Principal Component ImageryGiven a training set of m-by-n images fI tgNTt=1, we can form a training set ofvectors fxtg, where x 2 RN=mn, by lexicographic ordering of the pixel elementsof each image I t. The basis functions for the KLT [19] are obtained by solvingthe eigenvalue problem � = �T�� (2)where � is the covariance matrix, � is the eigenvector matrix of � and � isthe corresponding diagonal matrix of eigenvalues. The unitary matrix � de�nes acoordinate transform (rotation) which decorrelates the data and makes explicit theinvariant subspaces of the matrix operator �. In PCA, a partial KLT is performedto identify the largest-eigenvalue eigenvectors and obtain a principal componentfeature vector y = �TM ~x, where ~x = x� �x is the mean-normalized image vectorand �M is a submatrix of � containing the principal eigenvectors. PCA can beseen as a linear transformation y = T (x) : RN ! RM which extracts a lower-dimensional subspace of the KL basis corresponding to the maximal eigenvalues.These principal components preserve the major linear correlations in the data anddiscard the minor ones.11In practice the number of training imagesNT is far less than the dimensionality of the imageryN , consequently the covariance matrix � is singular. However, the �rst M < NT eigenvectorscan always be computed (estimated) from Nt samples using, for example, a Singular ValueDecomposition [12].



6 MOGHADDAM AND PENTLAND
DIFS

F

F

DFFS

1 M N

F F(a) (b)Figure 2: (a) Decomposition into the principal subspace F and its orthogonalcomplement �F for a Gaussian density, (b) a typical eigenvalue spectrum and itsdivision into the two orthogonal subspaces.By ranking the eigenvectors of the KL expansion with respect to their eigenval-ues and selecting the �rstM principal components we form an orthogonal decom-position of the vector space RN into two mutually exclusive and complementarysubspaces: the principal subspace (or feature space) F = f�igMi=1 containing theprincipal components and its orthogonal complement �F = f�igNi=M+1. This or-thogonal decomposition is illustrated in Figure 2(a) where we have a prototypicalexample of a distribution which is embedded entirely in F . In practice there isalways a signal component in �F due to the minor statistical variabilities in thedata or simply due to the observation noise which a�ects every element of x.In a partial KL expansion, the residual reconstruction error is de�ned as�2(x) = NXi=M+1 y2i = jj~xjj2 � MXi=1 y2i (3)and can be easily computed from the �rst M principal components and the L2norm of the mean-normalized image ~x. Consequently the L2 norm of every ele-ment x 2 RN can be decomposed in terms of its projections in these two sub-spaces. We refer to the component in the orthogonal subspace �F as the \distance-from-feature-space" (DFFS) which is a simple Euclidean distance and is equivalentto the residual error �2(x) in Eq.(3). The component of x which lies in the featurespace F is referred to as the \distance-in-feature-space" (DIFS) but is generallynot a distance-based norm, but can be interpreted in terms of the probabilitydistribution of y in F .



1. PROBABILISTIC VISUAL LEARNING 72.2. Gaussian DensitiesWe begin by considering an optimal approach for estimating high-dimensionalGaussian densities. We assume that we have (robustly) estimated the mean �xand covariance � of the distribution from the given training set fxtg.2 Under thisassumption, the likelihood of an input pattern x is given byP (xj
) = exp h�12(x� �x)T��1(x� �x)i(2�)N=2 j�j1=2 (4)The su�cient statistic for characterizing this likelihood is the Mahalanobis dis-tance d(x) = ~xT��1~x (5)where ~x = x��x. However, instead of evaluating this quadratic product explicitly,a much more e�cient and robust computation can be performed, especially withregard to the matrix inverse ��1. Using the eigenvectors and eigenvalues of � wecan rewrite ��1 in the diagonalized formd(x) = ~xT��1~x= ~xT h���1�Ti ~x= yT��1y (6)where y = �T~x are the new variables obtained by the change of coordinates ina KLT. Because of the diagonalized form, the Mahalanobis distance can also beexpressed in terms of the sum d(x) = NXi=1 y2i�i (7)In the KLT basis, the Mahalanobis distance in Eq.(5) is conveniently decoupledinto a weighted sum of uncorrelated component energies. Furthermore, the like-lihood becomes a product of independent separable Gaussian densities. Despiteits simpler form, evaluation of Eq.(7) is still computationally infeasible due tothe high-dimensionality. We therefore seek to estimate d(x) using only M pro-jections. Intuitively, an obvious choice for a lower-dimensional representation isthe principal subspace indicated by PCA which captures the major degrees ofstatistical variability in the data.3 Therefore, we divide the summation into two2In practice, a full rank N -dimensional covariance � can not be estimated from NT indepen-dent observations when NT < N . But as we shall see our estimator does not require the fullcovariance, but only its �rst M principal eigenvectors where M < NT .3We will see shortly that given the typical eigenvalue spectra observed in practice (e.g.,Figure 2(b)), this choice is optimal for a di�erent reason: it minimizes the information-theoreticdivergence between the true density and our estimate of it.



8 MOGHADDAM AND PENTLANDindependent parts corresponding to the principal subspace F = f�igMi=1 and itsorthogonal complement �F = f�igNi=M+1d(x) = MXi=1 y2i�i + NXi=M+1 y2i�i (8)We note that the terms in the �rst summation can be computed by projecting xonto theM -dimensional principal subspace F . The remaining terms in the secondsum fyigNi=M+1, however, can not be computed explicitly in practice because ofthe high-dimensionality. However, the sum of these terms is available and is infact the DFFS quantity �2(x) which can be computed from Eq.(3). Therefore,based on the available terms, we can formulate an estimator for d(x) as followsd̂(x) = MXi=1 y2i�i + 1� 24 NXi=M+1 y2i 35= MXi=1 y2i�i + �2(x)� (9)where the term in the brackets is �2(x), which as we have seen can be computedusing the �rst M principal components. We can therefore write the form of thelikelihood estimate based on d̂(x) as the product of two marginal and independentGaussian densitieŝP (xj
) = 26666664 exp0@� 12 MXi=1 y2i�i1A(2�)M=2 MYi=1�1=2i 37777775 � 24 exp�� �2(x)2� �(2��)(N�M)=235= PF (xj
) P̂ �F (xj
) (10)where PF (xj
) is the true marginal density in F -space and P̂ �F (xj
) is the esti-mated marginal density in the orthogonal complement �F -space. The optimal valueof � can now be determined by minimizing a suitable cost function J(�). Froman information-theoretic point of view, this cost function should be the Kullback-Leibler divergence or relative entropy [9] between the true density P (xj
) and itsestimate P̂ (xj
)J(�) = Z P (xj
) log P (xj
)P̂ (xj
) dx = E "log P (xj
)P̂ (xj
)# (11)Using the diagonalized forms of the Mahalanobis distance d(x) and its estimated̂(x) and the fact that E[y2i ] = �i , it can be easily shown thatJ(�) = 12 NXi=M+1 ��i� � 1 + log ��i� (12)



1. PROBABILISTIC VISUAL LEARNING 9The optimal weight �� can be then found by minimizing this cost function withrespect to �. Solving the equation @J@� = 0 yields�� = 1N �M NXi=M+1�i (13)which is simply the arithmetic average of the eigenvalues in the orthogonal sub-space �F . 4 In addition to its optimality, �� also results in an unbiased estimateof the Mahalanobis distance | i.e., E[d̂(x; ��)] = E[d(x)]. This derivation showsthat once we select the M -dimensional principal subspace F (as indicated, forexample, by PCA), the optimal estimate of the su�cient statistic d̂(x) will havethe form of Eq.(9) with � given by Eq.(13).It is interesting to consider the minimal cost J(��)J(��) = 12 NXi=M+1 log ���i (14)from the point of view of the �F -space eigenvalues f�i : i = M + 1; � � � ; Ng. It iseasy to show that J(��) is minimized when the the �F -space eigenvalues have theleast spread about their mean ��. This suggests a strategy for selecting the prin-cipal subspace: choose F such that the eigenvalues associated with its orthogonalcomplement �F have the least absolute deviation about their mean. In practice,the higher-order eigenvalues typically decay and stabilize near the observationnoise variance. Therefore this strategy is usually consistent with the standardPCA practice of discarding the higher-order components since these tend to cor-respond to the \
attest" portion of the eigenvalue spectrum (see Figure 2(b)). Inthe limit, as the �F -space eigenvalues become exactly equal, the divergence J(��)will be zero and our density estimate P̂ (xj
) approaches the true density P (xj
).We note that in most applications it is customary to simply discard the �F -space component and simply work with PF (xj
). However, the use of the DFFSmetric or equivalently the marginal density P �F (xj
) is critically important informulating the likelihood of an observation x| especially in an object detectiontask | since there are an in�nity of vectors which are not members of 
 whichcan have likely F -space projections. Without P �F (xj
) a detection system canresult in a signi�cant number of false alarms.2.3. Multimodal DensitiesIn the previous section we assumed that probability density of the training im-ages was Gaussian. This lead to a likelihood estimate in the form of a product oftwo independent multivariate Gaussian distributions (or equivalently the sum oftwo Mahalanobis distances: DIFS + DFFS). In our experience, the distribution4Cootes et al. [8] have used a similar decomposition of the Mahalanobis distance but insteaduse an ad-hoc parameter value of � = 12�M+1 as an approximation.
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Figure 3: Decomposition into the principal subspace F and its orthogonal comple-ment �F for an arbitrary density.of samples in the feature space is often accurately modeled by a single Gaussiandistribution. This is especially true in cases where the training images are accu-rately aligned views of similar objects seen from a standard view (e.g., alignedfrontal views of human faces at the same scale and orientation). However, whenthe training set represents multiple views or multiple objects under varying il-lumination conditions, the distribution of training views in F -space is no longerunimodal. In fact the training data tends to lie on complex and non-separablelow-dimensional manifolds in image space. One way to tackle this multimodalityis to build a view-based (or object-based) formulation where separate eigenspacesare used for each view [26]. Another approach is to capture the complexity ofthese manifolds in a universal or parametric eigenspace using splines [22], or localbasis functions [3].If we assume that the �F -space components are Gaussian and independent ofthe principal features in F (this would be true in the case of pure observation noisein �F ) we can still use the separable form of the density estimate P̂ (xj
) in Eq.(10)where PF (xj
) is now an arbitrary density P (y) in the principal component vectory. Figure 3 illustrates the decomposition, where the DFFS is the residual �2(x)as before. The DIFS, however, is no longer a simple Mahalanobis distance butcan nevertheless be interpreted as a \distance" by relating it to P (y) | e.g., asDIFS = � logP (y).The density P (y) can be estimated using a parametric mixture model. Specif-ically, we can model arbitrarily complex densities using a Mixture-of-GaussiansP (yj�) = NcXi=1 �i g(y;�i;�i) (15)where g(y;�;�) is an M -dimensional Gaussian density with mean vector � andcovariance �, and the �i are the mixing parameters of the components, satis-



1. PROBABILISTIC VISUAL LEARNING 11fying P�i = 1. The mixture is completely speci�ed by the parameter � =f�i; �i;�igNci=1. Given a training set fytgNTt=1 the mixture parameters can be esti-mated using the ML principle�� = argmax 24NTYt=1 P (ytj�)35 (16)This estimation problem is best solved using the Expectation-Maximization (EM)algorithm [11] which consists of the following two-step iterative procedure:� E-step: hki (t) = �ki g(yt;�ki ;�ki )NcXj=1 �kj g(yt;�kj ;�ki ) (17)� M-step: �k+1i = NTXt=1 hki (t)NcXi=1 NTXt=1 hki (t) (18)�k+1i = NTXt=1 hki (t)ytNTXt=1 hki (t) (19)�k+1i = NTXt=1 hki (t)(yt � �k+1i )(yt � �k+1i )TNTXt=1 hki (t) (20)The E-step computes the a posteriori probabilities hi(t) which are the expectationsof \missing" component labels zi(t) = f0; 1g which denote the membership of ytin the i-th component. Once these expectations have been computed, the M-stepmaximizes the joint likelihood of the data and the \missing" variables zi(t). TheEM algorithm is monotonically convergent in likelihood and is thus guaranteed to�nd a local maximum in the total likelihood of the training set. Further detailsof the EM algorithm for estimation of mixture densities can be found in [29].Given our operating assumptions | that the training data is M -dimensional(at most) and resides solely in the principal subspace F with the exception ofperturbations due to white Gaussian measurement noise, or equivalently that



12 MOGHADDAM AND PENTLANDthe �F -space component of the data is itself a separable Gaussian density | theestimate of the complete likelihood function P (xj
) is given byP̂ (xj
) = P (yj��) P̂ �F (xj
) (21)where P̂ �F (xj
) is a Gaussian component density based on the DFFS, as before.3. Maximum Likelihood DetectionThe density estimate P̂ (xj
) can be used to compute a local measure of targetsaliency at each spatial position (i; j) in an input image based on the vector xobtained by the lexicographic ordering of the pixel values in a local neighborhoodR S(i; j; 
) = P̂ (xj
) ; x = # [fI(i+ r; j + c) : (r; c) 2 Rg] (22)where # [�] is the operator which converts a subimage into a vector. The MLestimate of position of the target 
 is then given by(i; j)ML = argmax S(i; j; 
) (23)This ML formulation can be extended to estimate object scale with multiscalesaliency maps. The likelihood computation is performed (in parallel) on linearlyscaled versions of the input image I(�) corresponding to a pre-determined set ofscales f�1; �2; � � ��ngS(i; j; k; 
) = P̂ �# fI(�k)(�ki+ r; �kj + c) : (r; c) 2 Rg j 
� (24)where the ML estimate of the spatial and scale indices is de�ned by(i; j; k)ML = argmax S(i; j; k ; 
) (25)4. ApplicationsThe above ML detection technique has been tested in the detection of complexnatural objects including human faces, facial features (e.g., eyes), and non-rigidarticulated objects such as human hands. In this section we will present severalexamples from these application domains.4.1. FacesOver the years, various strategies for facial feature detection have been proposed,ranging from edge map projections [15], to more recent techniques using general-ized symmetry operators [30] and multilayer perceptrons [35]. In any robust faceprocessing system this task is critically important since a face must be �rst geo-metrically normalized by aligning its features with those of a stored model beforerecognition can be attempted.
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(a) (b)Figure 4: (a) Examples of facial feature training templates and (b) the resultingtypical detections.The eigentemplate approach to the detection of facial features in \mugshots"was proposed in [26], where the DFFS metric was shown to be superior to standardtemplate matching for target detection. The detection task was the estimation ofthe position of facial features (the left and right eyes, the tip of the nose and thecenter of the mouth) in frontal view photographs of faces at �xed scale. Figure 4shows examples of facial feature training templates and the resulting detectionson the MIT Media Laboratory's database of 7,562 \mugshots".We have compared the detection performance of three di�erent detectors onapproximately 7,000 test images from this database: a sum-of-square-di�erences(SSD) detector based on the average facial feature (in this case the left eye),an eigentemplate or DFFS detector and a ML detector based on S(i; j; 
) asde�ned in section 2.2.. Figure 5(a) shows the receiver operating characteristic(ROC) curves for these detectors, obtained by varying the detection thresholdindependently for each detector. The DFFS and ML detectors were computedbased on a 5-dimensional principal subspace. Since the projection coe�cientswere unimodal a Gaussian distribution was used in modeling the true distributionfor the ML detector as in section 2.2.. Note that the ML detector exhibits thebest detection vs. false-alarm tradeo� and yields the highest detection rate (95%).Indeed, at the same detection rate the ML detector has a false-alarm rate whichis nearly 2 orders of magnitude lower than the SSD.Figure 5(b) provides the geometric intuition regarding the operation of thesedetectors. The SSD detector's threshold is based on the radial distance betweenthe average template (the origin of this space) and the input pattern. This leads tohyperspherical detection regions about the origin. In contrast, the DFFS detector
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DIFSFigure 5: (a) Detection performance of an SSD, DFFS and a ML detector, (b)geometric interpretation of the detectors.measures the orthogonal distance to F , thus forming planar acceptance regionsabout F . Consequently to accept valid object patterns in 
 which are very dif-ferent from the mean, the SSD detector must operate with high thresholds whichresult in many false alarms. However, the DFFS detector can not discriminatebetween the object class 
 and non-
 patterns in F . The solution is providedby the ML detector which incorporates both the �F -space component (DFFS) andthe F -space likelihood (DIFS). The probabilistic interpretation of Figure 5(b) isas follows: SSD assumes a single prototype (the mean) in additive white Gaussiannoise whereas the DFFS assumes a uniform density in F . The ML detector, onthe other hand, uses the complete probability density for detection.We have incorporated and tested the multiscale version of the ML detectiontechnique in a face detection task. This multiscale head �nder was tested onthe ARPA FERET database where 97% of 2,000 faces were correctly detected.
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Figure 6: Examples of multiscale face detection.
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) were computed based on thelikelihood estimate P̂ (xj
) in a 10-dimensional principal subspace using a Gaus-sian model (section 2.2.). Note that this detector is able to localize the positionand scale of the head despite variations in hair style and hair color, as well aspresence of sunglasses. Illumination invariance was obtained by normalizing theinput subimage x to a zero-mean unit-norm vector.4.1.1. Using ML detection for codingWe have also used the multiscale version of the ML detector as the attentionalcomponent of an automatic system for recognition and model-based coding offaces. The block diagram of this system is shown in Figure 7 which consists of atwo-stage object detection and alignment stage, a contrast normalization stage,and a feature extraction stage whose output is used for both recognition andcoding. Figure 8 illustrates the operation of the detection and alignment stage ona natural test image containing a human face. The function of the face �nder isto locate regions in the image which have a high likelihood of containing a face.The �rst step in this process is illustrated in Figure 8(b) where the ML estimateof the position and scale of the face are indicated by the cross-hairs and boundingbox. Once these regions have been identi�ed, the estimated scale and position
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(a) (b) (c) (d)Figure 8: (a) original image, (b) position and scale estimate, (c) normalized headimage, (d) position of facial features.

(a) (b) (c)Figure 9: (a) aligned face, (b) eigenspace reconstruction (85 bytes) (c) JPEGreconstruction (530 bytes).are used to normalize for translation and scale, yielding a standard \head-in-the-box" format image (Figure 8(c)). A second feature detection stage operates atthis �xed scale to estimate the position of 4 facial features: the left and righteyes, the tip of the nose and the center of the mouth (Figure 8(d)). Once thefacial features have been detected, the face image is warped to align the geometryand shape of the face with that of a canonical model. Then the facial region isextracted (by applying a �xed mask) and subsequently normalized for contrast.The geometrically aligned and normalized image (shown in Figure 9(a)) is thenprojected onto a custom set of eigenfaces to obtain a feature vector which is thenused for recognition purposes as well as facial image coding.Figure 9 shows the normalized facial image extracted from Figure 8(d), itsreconstruction using a 100-dimensional eigenspace representation (requiring only85 bytes to encode) and a comparable non-parametric reconstruction obtainedusing a standard transform-coding approach for image compression (requiring 530bytes to encode). This example illustrates that the eigenface representation usedfor recognition is also an e�ectivemodel-based representation for data compression.The �rst 8 eigenfaces used for this representation are shown in Figure 10.
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Figure 10: The �rst 8 eigenfaces.4.1.2. Using ML detection for RecognitionFigure 11 shows the results of a similarity search in an image database tool calledPhotobook [27]. Each face in the database was automatically detected and alignedby the face processing system in Figure 7. The normalized faces were then pro-jected onto a 100-dimensional eigenspace. The image in the upper left is the onesearched on and the remainder are the ranked nearest neighbors in the FERETdatabase. The top three matches in this case are images of the same person takena month apart and at di�erent scales. The recognition accuracy (de�ned as thepercent correct rank-one matches) on a database of 155 individuals is 99% [21].4.1.3. Recognition on Large DatabasesIn order to have an estimate of the recognition performance on much largerdatabases, we have conducted tests on a database of 7; 562 images of approxi-mately 3; 000 people. The images were collected in a small booth at a Bostonphotography show, and include men, women, and children of all ages and races.Head position was controlled by asking people to take their own picture whenthey were lined up with the camera. Two LEDs placed at the bottom of holesadjacent to the camera allowed them to judge their alignment; when they couldsee both LEDs then they were correctly aligned.The eigenfaces for this database were approximated using a principal compo-nents analysis on a representative sample of 128 faces. Recognition and matchingwas subsequently performed using the �rst 20 eigenvectors.To assess the average recognition rate, 200 faces were selected at random, anda nearest-neighbor rule was used to �nd the most-similar face from the entiredatabase. If the most-similar face was of the same person then a correct recog-nition was scored. In this experiment the eigenvector-based recognition systemproduced a recognition accuracy of 95%. This performance is somewhat surpris-ing because the database contains wide variations in expression, and has relativelyweak control of head position and illumination. In a veri�cation task, our systemyielded a false rejection rate of 1.5% at a false acceptance rate of 0.01%.
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Figure 11: Photobook: FERET face database.4.1.4. View-Based RecognitionThe problem of face recognition under general viewing conditions (change in pose)can also be approached using an eigenspace formulation. There are essentiallytwo ways of approaching this problem using an eigenspace framework. Given Nindividuals under M di�erent views, one can do recognition and pose estimationin a universal eigenspace computed from the combination of NM images. In thisway a single \parametric eigenspace" will encode both identity as well as pose.Such an approach, for example, has recently been used by Murase and Nayar [22]for general 3D object recognition.Alternatively, given N individuals under M di�erent views, we can build a\view-based" set of M distinct eigenspaces, each capturing the variation of theN individuals in a common view. The view-based eigenspace is essentially anextension of the eigenface technique to multiple sets of eigenvectors, one for eachcombination of scale and orientation. One can view this architecture as a setof parallel \observers" each trying to explain the image data with their set ofeigenvectors (see also Darrell and Pentland [10]). In this view-based, multiple-observer approach, the �rst step is to determine the location and orientationof the target object by selecting the eigenspace which best describes the inputimage. This can be accomplished by calculating the likelihood estimate usingeach viewspace's eigenvectors and then selecting the maximum.
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Figure 12: Some of the images used to test accuracy at face recognition despitewide variations in head orientation. Average recognition accuracy was 92%, theorientation error had a standard deviation of 15�.The key di�erence between the view-based and parametric representations canbe understood by considering the geometry of facespace. In the high-dimensionalvector space of an input image, multiple-orientation training images are repre-sented by a set of M distinct regions, each de�ned by the scatter of N individ-uals. Multiple views of a face form non-convex (yet connected) regions in imagespace [2]. Therefore the resulting ensemble is a highly complex and non-separablemanifold.The parametric eigenspace attempts to describe this ensemble with a projec-tion onto a single low-dimensional linear subspace (corresponding to the �rst neigenvectors of the NM training images). In contrast, the view-based approachcorresponds to M independent subspaces, each describing a particular region ofthe facespace (corresponding to a particular view of a face). The relevant analogyhere is that of modeling a complex distribution by a single cluster model or bythe union of several component clusters. Naturally, the latter (view-based) repre-sentation can yield a more accurate representation of the underlying geometry.This di�erence in representation becomes evident when considering the qual-ity of reconstructed images using the two di�erent methods. Figure 13 comparesreconstructions obtained with the two methods when trained on images of facesat multiple orientations. In Figure 13(a) we see �rst an image in the training set,followed by reconstructions of this image using �rst the parametric eigenspaceand then the view-based eigenspace. Note that in the parametric reconstructionneither the pose nor the identity of the individual is adequately captured. Theview-based reconstruction, on the other hand, provides a much better character-ization of the object. Similarly, in Figure 13(b) we see a novel view (+68�) withrespect to the training set (�90� to +45�). Here, both reconstructions correspondto the nearest view in the training set (+45�) but the view-based reconstructionis seen to be more representative of the individual's identity. Although the qual-
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V6(a) (b)Figure 13: (a) parametric vs. view-based eigenspace reconstructions for a train-ing view and a novel testing view. The input image is shown in the left column.The middle and right columns correspond to the parametric and view-based re-constructions, respectively. All reconstructions were computed using the �rst 10eigenvectors. (b) a schematic representation of the two approaches.ity of the reconstruction is not a direct indicator of the recognition power, froman information-theoretic point-of-view the multiple eigenspace representation is amore accurate representation of the signal content.We have evaluated the view-based approach with data similar to that shown inFigure 12. This data consists of 189 images consisting of nine views of 21 people.The nine views of each person were evenly spaced from �90� to +90� along thehorizontal plane. In the �rst series of experiments the interpolation performancewas tested by training on a subset of the available views f�90�;�45�; 0�g andtesting on the intermediate views f�68�;�23�g. A 90% average recognition ratewas obtained. A second series of experiments tested the extrapolation performanceby training on a range of views (e.g., �90� to +45�) and testing on novel viewsoutside the training range (e.g., +68� and +90�). For testing views separated by�23� from the training range, the average recognition rates were 83%. For �45�testing views, the average recognition rates were 50% (see [26] for further details).4.1.5. Modular RecognitionThe eigenface recognition method is easily extended to facial features as shownin Figure 14(a). This leads to an improvement in recognition performance byincorporating an additional layer of description in terms of facial features. Thiscan be viewed as either a modular or layered representation of a face, where acoarse (low-resolution) description of the whole head is augmented by additional(higher-resolution) details in terms of salient facial features.
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+  -  combined(a) (b)Figure 14: (a) facial eigenfeature regions, (b) recognition rates for eigenfaces,eigenfeatures and the combined modular representation.The utility of this layered representation (eigenface plus eigenfeatures) wastested on a small subset of our large face database. We selected a representativesample of 45 individuals with two views per person, corresponding to di�erentfacial expressions (neutral vs. smiling). These set of images was partitionedinto a training set (neutral) and a testing set (smiling). Since the di�erencebetween these particular facial expressions is primarily articulated in the mouth,this feature was discarded for recognition purposes.Figure 14(b) shows the recognition rates as a function of the number of eigen-vectors for eigenface-only, eigenfeature-only and the combined representation.What is surprising is that (for this small dataset at least) the eigenfeatures alonewere su�cient in achieving an (asymptotic) recognition rate of 95% (equal to thatof the eigenfaces). More surprising, perhaps, is the observation that in the lowerdimensions of eigenspace, eigenfeatures outperformed the eigenface recognition.Finally, by using the combined representation, we gain a slight improvement inthe asymptotic recognition rate (98%). A similar e�ect was reported by Brunelliand Poggio [4] where the cumulative normalized correlation scores of templates forthe face, eyes, nose and mouth showed improved performance over the face-onlytemplates.A potential advantage of the eigenfeature layer is the ability to overcome the



22 MOGHADDAM AND PENTLAND(a)(b)(c)Figure 15: (a) Test views, (b) Eigenface matches, (c) Eigenfeature matches.shortcomings of the standard eigenface method. A pure eigenface recognitionsystem can be fooled by gross variations in the input image (hats, beards, etc.).Figure 15(a) shows additional testing views of 3 individuals in the above dataset of45. These test images are indicative of the type of variations which can lead to falsematches: a hand near the face, a painted face, and a beard. Figure 15(b) showsthe nearest matches found based on standard eigenface matching. Neither of the3 matches correspond to the correct individual. On the other hand, Figure 15(c)shows the nearest matches based on the eyes and nose, and results in correctidenti�cation in each case. This simple example illustrates the potential advantageof a modular representation in disambiguating low-con�dence eigenface matches.4.1.6. Recognition using Edge-based FeaturesWe have also extended the normalized eigenface representation into an edge-baseddomain for facial description. We simply run the normalized facial image througha Canny edge detector to yield an edge map as shown in Figure 16(a). Such anedge map is simply an alternative representation which imparts mostly shape (asopposed to texture) information and has the advantage of being less susceptibleto illumination changes. The recognition rate of a pure edge-based normalizedeigenface representation (on a FERET database of 155 individuals) was foundto be 95% which is surprising considering that it utilizes what appears to be (tohumans at least) a rather impoverished representation. The slight drop in recog-nition rate is most likely due to the increased dimensionality of this representation



1. PROBABILISTIC VISUAL LEARNING 23(a)(b)Figure 16: (a) Examples of combined texture/edge-based face representations and(b) few of the resulting eigenvectors.space and its greater sensitivity to expression changes, etc.Interestingly, we can combine both texture and edge-based representationsof the object by simply performing a KL expansion on the augmented imagesshown in Figure 16. The resulting eigenvectors conveniently decorrelate the jointrepresentation and provide a basis set which optimally spans both domains si-multaneously. With this bimodal representation, the recognition rate was foundto be 97%. Though still less than a normalized grayscale representation, we be-lieve a bimodal representation can have distinct advantages for tasks other thanrecognition, such as detection and image interpolation.4.2. HandsWe have also applied our eigenspace density estimation technique to articu-lated and non-rigid objects such as hands. In this particular domain, however, theoriginal intensity image is an unsuitable representation since, unlike faces, handsare essentially textureless objects. Their identity is characterized by the variety ofshapes they can assume. For this reason we have chosen an edge-based represen-tation of hand shapes which is invariant with respect to illumination, contrast andscene background. A training set of hand gestures was obtained against a blackbackground. The 2D contour of the hand was then extracted using a Canny edge-operator. These binary edge maps, however, are highly uncorrelated with eachother due to their sparse nature. This leads to a very high-dimensional principal



24 MOGHADDAM AND PENTLAND(a)(b)Figure 17: (a) Examples of hand gestures and (b) their di�used edge-based repre-sentation.
(a) (b)Figure 18: (a) a random collection of hand gestures (b) images ordered by simi-larity (left-to-right, top-to-bottom) to the image at the upper left.subspace. Therefore to reduce the intrinsic dimensionality, we induced spatial cor-relation via a di�usion process on the binary edge map, which e�ectively broadensand \smears" the edges, yielding a continuous-valued contour image which rep-resents the object shape in terms of the spatial distribution of edges. Figure 17shows examples of training images and their di�used edge map representations.We note that this spatiotopic representation of shape is biologically motivatedand therefore di�ers from methods based purely on computational considerations(e.g., moments [13], Fourier descriptors [20], \snakes" [16], Point DistributionModels [7], and modal descriptions [32]).It is important to verify whether such a representation is adequate for discrim-inating between di�erent hand shapes. Therefore we tested the di�used contourimage representation in a recognition experiment which yielded a 100% rank-oneaccuracy on 375 frames from an image sequence containing 7 hand gestures. The
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(a) (b)Figure 19: (a) Distribution of training hand shapes (shown in the �rst two dimen-sions of the principal subspace) (b) Mixture-of-Gaussians �t using 10 components.matching technique was a nearest-neighbor classi�cation rule in a 16-dimensionalprincipal subspace. Figure 18(a) shows some examples of the various hand ges-tures used in this experiment. Figure 18(b) shows the 15 images that are mostsimilar to the \two" gesture appearing in the top left. Note that the hand gesturesjudged most similar are all objectively the same shape.Naturally, the success of such a recognition system is critically dependenton the ability to �nd the hand (in any of its articulated states) in a clutteredscene, to account for its scale and to align it with respect to an object-centeredreference frame prior to recognition. This localization was achieved with the samemultiscale ML detection paradigm used with faces, with the exception that theunderlying image representation of the hands was the di�used edge map ratherthe grayscale image.The probability distribution of hand shapes in this representation was auto-matically learned using our eigenspace density estimation technique. In this case,however, the distribution of training data is multimodal due to the di�erent handshapes. Therefore the multimodal density estimation technique in section 2.3. wasused. Figure 19(a) shows a projection of the training data on the �rst two dimen-sions of the principal subspace F (de�ned in this case by M = 16) which exhibitthe underlying multimodality of the data. Figure 19(b) shows a 10-componentMixture-of-Gaussians density estimate for the training data. The parameters ofthis estimate were obtained with 20 iterations of the EM algorithm. The orthog-onal �F -space component of the density was modeled with a Gaussian distributionas in section 2.3..
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(a) (b) (c)Figure 20: (a) Original grayscale image, (b) negative log-likelihood map (at mostlikely scale) and (c) ML estimate of position and scale superimposed on edge map.The resulting complete density estimate P̂ (xj
) was then used in a detectionexperiment on test imagery of hand gestures against a cluttered background scene.In accordance with our representation, the input imagery was �rst pre-processedto generate a di�used edge map and then scaled accordingly for a multiscalesaliency computation. Figure 20 shows two examples from the test sequence,where we have shown the original image, the negative log-likelihood saliency map,and the ML estimates of position and scale (superimposed on the di�used edgemap). Note that these examples represent two di�erent hand gestures at slightlydi�erent scales.To better quantify the performance of the ML detector on hands we carriedout the following experiment. The original 375-frame video sequence of traininghand gestures was divided into 2 parts. The �rst (training) half of this sequencewas used for learning, including computation of the KL basis and the subsequentEM clustering. For this experiment we used a 5-component mixture in a 10-dimensional principal subspace. The second (testing) half of the sequence wasthen embedded in the background scene, which contains a variety of shapes. Inaddition, severe noise conditions were simulated as shown in Figure 21(a).We then compared the detection performance of an SSD detector (based onthe mean edge-based hand representation) and a probabilistic detector based onthe complete estimated density. The resulting negative-log-likelihood detectionmaps were passed through a valley-detector to isolate local minimum candidateswhich were then subjected to a ROC analysis. A correct detection was de�nedas a below-threshold local minimum within a 5-pixel radius of the ground truthtarget location. Figure 21(b) shows the performance curves obtained for the two
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(a) (b)Figure 21: (a) Example of test frame containing a hand gesture amidst severebackground clutter and (b) ROC curve performance contrasting SSD and ML de-tectors.detectors. We note, for example, that at an 85% detection probability the MLdetector yields (on the average) 1 false alarm per frame, where as the SSD detectoryields an order of magnitude more false alarms.5. DiscussionIn this paper we have described an eigenspace density estimation technique forunsupervised visual learning which exploits the intrinsic low-dimensionality ofthe training imagery to form a computationally simple estimator for the completelikelihood function of the object. Our estimator is based on a subspace decompo-sition and can be evaluated using only the M -dimensional principal componentvector. We derived the form for an optimal estimator and its associated expectedcost for the case of a Gaussian density. In contrast to previous work on learningand characterization | which uses PCA primarily for dimensionality reductionand/or feature extraction | our method uses the eigenspace decomposition as anintegral part of estimating complete density functions in high-dimensional imagespaces. These density estimates were then used in a maximum likelihood formu-lation for target detection. The multiscale version of this detection strategy wasdemonstrated in applications in which it functioned as an attentional subsystemfor object recognition. The performance was found to be superior to existingdetection techniques in experiments with large numbers of test data.



28 MOGHADDAM AND PENTLANDWe note that from a probabilistic perspective, the class conditional densityP (xj
) is the most important object representation to be learned. This densityis the critical component in detection, recognition, prediction, interpolation andgeneral inference. For example, having learned these densities for several objectclasses f
1;
2; � � � ;
ng, one can invoke a Bayesian framework for classi�cationand recognition: P (
ijx) = P (xj
i)P (
i)nXj=1 P (xj
j)P (
j) (26)where now a maximum a posteriori (MAP) classi�cation rule can be used forobject/pose identi�cation.Such a framework is also important in detection. In fact, the ML detectionframework can be extended using the notion of a \not-class" �
, resulting in aposteriori saliency maps of the formS(i; j; k; 
) = P (
jx) = P (xj
)P (
)P (xj�
)P (�
) + P (xj
)P (
) (27)where now a maximum a posteriori (MAP) rule can be used to estimate the po-sition and scale of the object. One di�culty with such a formulation is that the\not-class" �
 is, in practice, too broad a category and is therefore multimodaland very high-dimensional. One possible approach to this problem is to use MLdetection to identify the particular subclass of �
 which has high likelihoods (e.g.,false alarms) and then to estimate this distribution and use it in the MAP frame-work. This can be viewed as a probabilistic approach to learning using positiveas well as negative examples.In fact, such a MAP framework can be viewed as a Bayesian formulation ofsome neural network approaches to target detection. Perhaps the most closely re-lated is the neural network face detector of Sung & Poggio [33] which is essentiallya trainable nonlinear binary pattern classi�er. They too learn the distribution ofthe object class with a Mixture-of-Gaussians model (using an elliptical k-meansalgorithm instead of EM). Instead of likelihoods, however, input patterns are rep-resented by a set of distances to each mixture component (similar to a combinationof the DIFS and DFFS), thus forming a feature vector indicative of the overallclass membership. In addition, Sung & Poggio explicitly model the \not-class"by learning the distribution of nearby non-face patterns. The set of distancesto both classes are then used to train a neural network to discriminate betweenface and non-face patterns (similar to computing a likelihood ratio in MAP). An-other recent example of a neural network technique for object detection whichalso utilizes negative examples is the face-�nder system of Rowley et al. [31]. Theexperimental results obtained with these methods clearly demonstrate the needfor incorporating negative examples in building robust detection systems.
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