
The Duality of Time and Information

Vaughan R. Pratt∗

Stanford University
pratt@cs.stanford.edu

June 1, 1992

Abstract

The states of a computing system bear information and change time,
while its events bear time and change information. We develop a primitive
algebraic model of this duality of time and information for rigid local com-
putation, or straightline code, in the absence of choice and concurrency,
where time and information are linearly ordered. This shows the duality
of computation to be more fundamental than the logic of computation for
which choice is disjunction and concurrency conjunction.

To accommodate flexible distributed computing systems we then bring
in choice and concurrency and pass to partially ordered time and informa-
tion, the formal basis for this extension being Birkhoff-Stone duality. A
degree of freedom in how this is done permits a perfectly symmetric logic
of computation amounting to Girard’s full linear logic, which we view as
the natural logic of computation when equal importance is attached to
choice and concurrency.

We conclude with an assessment of the prospects for extending the du-
ality to other organizations of time and information besides partial orders
in order to accommodate real time, nonmonotonic logic, and automata
that can forget, and speculate on the philosophical significance of the
duality.

1 Introduction

The behavior of an automaton is to alternately wait in a state and perform a
transition or event. We may think of the state as bearing information repre-
senting the “knowledge” of the automaton when in that state, and the event
as modifying that information. At the same time we may think of the event as
taking place at a moment in time, and the state as modifying or whiling away
time.

∗This work was supported by the National Science Foundation under grant number CCR-
8814921 and a gift from Mitsubishi.

1



Thus states bear information and change time, while events bear time and
change information.

We often speak of events as “time-stamped;” we might similarly speak of
states as “information-stamped.”

One way of viewing this is to think of computational behavior as motion or
flow in a space whose two dimensions are time and information, which we will
conventionally plot horizontally and vertically respectively. Horizontal motion
denotes a state, a quiescent period in which time passes while information is
held constant. Vertical motion denotes an event, a transient phenomenon in
which information changes but time does not. This accounts at least for rigid
local behavior or nonbranching sequential computation; to extend it to flexible
distributed behavior we might extend the linear geometry of each of time and
space to spaces that can branch and increase in dimension, and to permit com-
putation to be a broad flow like a river as opposed to motion of just a point.
In this paper we confine attention to motion upwards (monotonically increas-
ing information) and to the right (monotonically increasing time), leaving open
the proper algebraic treatment of downward motion (forgetful automata and
nonmonotonic logic), and raising as an interesting philosophical question what
meaning might be attached to motion to the left, a feature of both Feynman
diagrams and time machines.

Conventional automata are asymmetric with respect to time and informa-
tion: states are vertices (points, 0-cells) while events are edges (line segments,
1-cells). Petri nets [Pet62, Rei85] on the other hand are symmetric: both states
and events are vertices of a bipartite graph. The states, called places, are on
one side, the transitions are on the other. The edges of a Petri net denote nei-
ther states nor events but rather connections between places and transitions.
Edges from places to transitions specify static preconditions for a transition to
fire, those from transitions to places specify the effect of the firing of a transi-
tion on the places. A Petri net may “be in” multiple places at the same time,
represented by tokens placed on those places it is “in,” the “token game.” A
conventional automaton can then be viewed as the special case of a Petri net
whose every transition has both indegree and outdegree one, and corresponds
to computation without concurrency. The dual notion in which every place has
indegree and outdegree one is called an occurrence net or causal net, and corre-
sponds to conflict-free computation, the notion of a deterministic computation
or particular run of a net.

The token game can be formalized via a notion of global state as the multiset
of marked places (two or more tokens may occupy the same place simultane-
ously). This however raises the “true concurrency” question of whether simul-
taneity of remote events is well-defined. One is therefore interested in models
that are equally formal but manage somehow to sidestep this question. The
occurrence subnets of an “unfolded” net, viewed as one run of the net, provide
such a notion.

The algebra of Petri nets, under what we may view as their monotone com-

2



binators including (asynchronous) concurrency and choice, has been elegantly
worked out, most notably by Winskel [Win86]. One might compare this “pro-
grammer’s” algebra to the algebra of regular expressions [Kle56], whose opera-
tions are all monotone and analogous to program connectives.

Elsewhere [Pra90] we described a conservative extension of regular expres-
sions to what we called “action logic,” by adding two implications, had-then
and if-ever. This made it into a logic by introducing nonmonotonicity, from
which two negations, never-before and never-again, are derivable. The chief
improvements over regular expressions are that the resulting equational theory
is finitely axiomatizable (due to the nonmonotonicity permitting the expression
of induction), and that it uniquely determines star in terms of union and con-
catenation, which the equational theory of regular expressions fails to do even
in finite models (a four-element counterexample suffices).

Here we analogously extend the monotone algebra of Petri nets to a full logic,
by adding implication to introduce nonmonotonicity as with action logic, this
time with only one implication, and deriving a negation, namely the duality of
schedules and automata, also describable as the duality of time and information.
This extension is not strictly a conservative extension, the monotone operations
being only loosely related to those of the extant algebras of Petri nets. The
resulting logic while resembling action logic in some respects is much closer to
Girard’s full linear logic, in particular satisfying De Morgan’s laws and thus
having a Boolean-like symmetry of and and or absent from action logic.

In our system the Petri net formalism of a single bipartite graph is replaced
by a dual pair of graphs, the schedule and its dual automaton. A schedule is
a set of events distributed in time (temporal space). An automaton is a set of
states distributed in information space. This reformulation is foreshadowed in
Nielsen, Plotkin, and Winskel [NPW81], where Birkhoff-Stone duality makes its
first albeit cryptic appearance in the theory of concurrent computation. The
algebraic advantages of this passage from one bipartite graph to two dual graphs
might loosely be compared to those of the passage from Aristotelian syllogistic
to Boolean logic.

In practice events are distributed in space as well as time. Other than
remarking that space seems to us to belong to the temporal side of the time-
information duality, we shall make no attempt in this paper to incorporate space
into our picture.

The information side of this duality ties in very satisfactorily with (Scott)
domain theory, which emphasizes elements partially ordered by information
content. The viewpoint of this paper adds the further interpretation that those
elements are states, as opposed say to recursively defined functions, the moti-
vating interpretation of domain theory.

It is possible, though not necessary, to make the duality of time and in-
formation perfectly symmetric, via our notion of event and state spaces. A
considerable portion of domain theory (though not that involving stable func-
tions) then can be reflected via this duality to apply not only to “information

3



systems” but equally well to “temporal systems.”

2 Rigid Local Computation and Chains

Straightline code contains neither branches nor concurrency but merely specifies
a fixed sequence of operations. We think of a nonbranching program as rigid or
inflexible, and one without concurrency as local or sequential.

Yet even in this computationally sterile setting one can not only find the
duality of time and information but treat it algebraically. This simple setting
has the virtue of revealing some of the basic principles of the duality without the
distraction of such issues as choice and concurrency, respectively the disjunction
and conjunction of computation. In this respect then the duality of time and
information is more fundamental than its logic.

We now study certain categories of chains and their maps. The chains will be
used to formalize both schedules and automata, with their elements correspond-
ing respectively to events and states, and with the edges between consecutive
elements corresponding respectively to states and events. Our goal here is to
work out in detail the mathematics of this cross-connection, both as interest-
ing mathematics in its own right and as a special case of a similar but richer
cross-connection in the case of flexible distributed computation.

This paper is written for an audience interested in approaches to the for-
malization of concurrency, and assumes relatively little algebraic sophistication
or familiarity with categories.. That we bring in category theory at all reflects
the nature of duality as categorical rather than set-theoretic. The categories
of finite chains that we begin with are simple enough that any mathematically
mature reader should be able to follow every step and acquire the necessary
category theory along the way.

A chain is a linearly ordered set C = (X,≤). For simplicity of exposition
we shall restrict ourselves in this section to finite chains. The popularity of the
term “fencepost error” suggests that we visualize a chain as made up of posts
(the elements) and fences (consecutive pairs of elements).

A map f : C → D of chains is a monotone function, one such that x ≤ y
implies f(x) ≤ f(y). We denote by Fchn the category1 of all finite chains and
their maps.

A variant on Fchn is Fchn0, the category of finite chains with bottom.
The objects are those objects of Fchn that have a least element 0, namely
all but the empty chain, and its maps are those maps of Fchn that preserve
that least element, that is, f(0) = 0. The dual of this is Fchn1, the category

1A category is a reflexive multigraph, that is, a graph permitting multiple edges or mor-
phisms from one vertex or object to another, including a distinguished self-loop at each vertex,
along with an associative composition law for which the self-loops are identities. Any collection
of sets and functions between them closed under ordinary function composition and containing
the identity function for every set automatically forms a category. The reader should verify
that our purported examples of categories are indeed so closed.

4



of chains with top 1 and top-preserving maps, f(1) = 1. The intersection of
these categories, Fchn01, consists of chains with top and bottom, with maps
preserving both.

Let m denote the m-element chain ({0, 1, . . . ,m−1},≤) standardly ordered
by ≤. Of particular importance is 2, the two-element chain. For any chain C
define the chain 2C to consist of all maps f : C → 2, ordered pointwise, that
is, f ≤ g just when f(x) ≤ g(x) for all x in C. It is readily seen that the
maps f : C → 2 are in bijective correspondence with the fences of C: each f
corresponds to the fence whose posts are the greatest element mapped to 0 and
the least element mapped to 1.

There are two issues here. First, the existence of the constantly 0 function
K0 and its dual K1 demonstrates the need for two additional fences not meeting
our description as consecutive pairs of posts, namely the fences lying outside
the whole chain at either end. In order for this bijection to exist Fchn must
admit both outlying fences, Fchn0 must rule out the lower fence (K1 does not
exist), dually Fchn1 the upper fence (K0 is out), and Fchn01 must rule out
both.

Second, there is the question of the order of the fences (the alert reader will
have noted the paradox of the largest function K1 corresponding to the bottom
fence and vice versa). The larger functions are those with more 1’s, but those
correspond to the fences closer to the bottom. Hence although it is indeed a
chain of fences of C, the pointwise order of 2C is the reverse of the order in C
of its posts.

Let C˘ denote the order dual or converse of C, C turned upside down. Then
either 2C˘ or (2C )̆ denotes the fences of C in their natural order as defined by
the order of their posts in C.

We now have three operations, 2C , C ,̆ and their composition 2C˘. We call
these respectively the dual, converse, and complement of C, and denote them
respectively C⊥, C ,̆ and C−.

Our next goal is to show that all three operations are involutions (self-
inverses), and commute with each other. It is clear that converse is an involution,
and we have noted that it commutes with dual. The remaining commutativities
then follow by expanding the definition of complement. We now show that dual
is also an involution, from which it immediately follows that complement is an
involution.

One thing that dualizing does is to turn fences into posts. The posts of C
then can be viewed as turning into fences of C⊥. Although the transformation
takes place in one step we could imagine it happening continuously, with the
fences of C shrinking to become posts of C⊥, and the posts of C then stretching
to fill in the resulting spaces, in parallel with rotating the whole chain so as to
reverse the order. Complement also has this effect, but without the side effect
of order reversal.

Given a chain C of Fchn, if we take C⊥ to also belong to Fchn then C,
C⊥, C⊥⊥, and so on will be progressively longer chains. But if we regard C⊥

5



as belonging to Fchn01, with bottom K0 (the constantly 0 function) and top
K1, then although C⊥ will be one larger than C, C⊥⊥ will shrink back down to
the size of C again, and hence be isomorphic to C. If in addition, for any chain
D in Fchn01 we regard D⊥ as belonging to Fchn, if C is in Fchn then so is
C⊥⊥. (We can rationalize this choice of category for D⊥ with the observation
that D⊥ contains neither K0 nor K1 and so is a chain with neither a significant
bottom nor top.) Moreover if D is in Fchn01 so is D⊥⊥. That is, dual switches
back and forth between the two categories, and double dual is an isomorphism
of Fchn and also of Fchn01. (Double dual of course reverses order twice.)

We thus have that converse is an isomorphism of Fchn with itself, as well
as of Fchn01 with itself, while dual is an isomorphism between Fchn and
Fchn01. Converse is a true involution (composing it with itself yields the
identity on Fchn, and similarly with Fchn01), while dual is an involution up
to isomorphism, that is, C⊥⊥ is isomorphic to C though not equal to it. We
could turn isomorphism into equality by cutting Fchn and Fchn01 down to
what is called their skeletons, an arbitrarily chosen full subcategory consisting
of one representative of each class of isomorphic objects, but the arbitrariness
should serve to warn against such radical surgery.

We chose the terms “complement” and “converse” by analogy with the cal-
culus of binary relations. Converse of course has its standard relational meaning
with respect to the binary relation ≤ defining a chain. The converse R−˘ of the
Boolean complement R− of a binary relation R behaves analogously to dual,
when 2 is replaced by the complement 0’ of the identity relation 1’, and expo-
nentiation RS is taken to mean the left residuation operation R/S = (R−;S )̆−

where R;S is composition of binary relations (the right residual S\R will do
just as well). Although no separate term for R−˘ has emerged in the relation
calculus literature, as we have pointed out elsewhere [Pra92b] the significance of
this operation as a form of negation was recognized by C.S. Peirce as long ago as
1882, in a Johns Hopkins circular Remarks on [B.I. Gilman’s “On Propositions
and the Syllogism”] [Klo86, p.345]. The same relationships obtain between rela-
tional converse, complement, and their composition thought of as dual, as with
the operations of those names for chains. The two points of contact between
relations and chains are via converse and dual, and the notion of complement
for chains is then taken to be a derived notion by analogy with relations, namely
as the composition of the other two operations. But whereas for relations com-
plement is a Boolean operation, for chains it has no special Boolean character.

Now let us turn attention to Fchn0 and Fchn1. Here dual performs the
same exchange of posts and fences, but without growth or shrinkage of chains.
For C in Fchn0 the question arises as to whether C⊥ should be considered as
belonging to Fchn0 or Fchn1. Following our earlier reasoning about constant
functions, we observe that C⊥ contains K0 but not K1, whence it belongs to
Fchn0, K0 being the bottom of C⊥. (Admittedly it is not clear why constancy
is the appropriate criterion for this choice. However in the case of flexible
distributed computation, where the appropriate generalizations of Fchn0 and

6



Fchn1 are respectively state spaces and event spaces, this is the only possible
choice.)

Converse on the other hand is a map from Fchn0 to Fchn1, and its in-
verse (which we shall also call converse) going from Fchn1 to Fchn0. Hence
complement also runs between Fchn1 and Fchn0.

So far we have only described the behavior of converse, dual, and comple-
ment on the objects of the categories. We shall now describe their behavior
on the maps of the categories as well, making them into true functors between
categories. In doing so we shall be obliged to distinguish between functors that
preserve map direction and those that reverse it, called respectively covariant
and contravariant functors. We shall follow the usual practice of dispensing
altogether with the notion of a contravariant functor F : A → B from category
A to category B by describing it instead as the covariant functor F : A → Bop,
where Bop, the opposite of B, denotes B with its maps reversed.

For more insight into the significance of reversing maps, let us consider the
maps of our four categories in more detail. In particular let us count the number
of maps from a given chain m to n. We call the set of such maps the homset
from m to n, notated Hom(m,n) or A(m,n) if we wish to specify the category
A to which the homset belongs.

We can easily enumerate such a homset using the following notation for a
map f : C → D. For each element d of D in order, list in order the elements
of f−1(d) followed by d itself, creating a list of lists that we then “flatten” to a
single list. Since f is monotone, the resulting list notating this function will be
some merge of the elements of C with those of D. The last element of D must
be the last element of this merge and hence is redundant, so we modify this
notation to omit the last element of D. In Fchn, every merge of the elements
of C with all but the last element of D arises in this way. There are

(
m+n

m

)
merges of two lists having respectively m and n elements. Hence the number
of monotone functions from the chain m to the chain n is

(
m+n−1

m

)
(since we

omitted the last element of n).
As an example take the three maps from 2 to itself, namely K0, I (the

identity), and K1. Write the elements of 2 as a < b when 2 is the domain of
the maps and as 0 < 1 when the codomain (target). Then these three maps
notated in full are respectively ab01, a0b1, and 0ab1. When modified to omit
the last element of the codomain these shorten to ab0, a0b, and 0ab. These are
all the possible merges of ab with 0.

In Fchn0 the first element of the domain must occur first in our notation,
whence we may omit it as well, leaving only

(
m+n−2

m−1

)
maps from m to n. But

this of course equals
(
n+m−2

n−1

)
, whence in Fchn0 the number of maps from m

to n equals the number from n to m. Put differently, Fchn0 has the same
number of maps from m to n as Fchn0op. Hence as graphs (i.e. ignoring the
composition law making a graph into a category), Fchn0op is isomorphic to
Fchn0. (Recall that we are allowing a graph to have a set of edges from one

7



vertex to another.)
When A is isomorphic to Bop we say that A is dual to B. Thus we have

shown that Fchn0 is self-dual as a graph.
This proof is not constructive in that it does not specify any particular

bijection of the set of edges from m to n with the equinumerous set from n to
m. In the case of Fchn0, note that the first element of m and the last element
of n is omitted, and dualizing reverses order. Thus an obvious choice of f⊥ is
just the function represented by writing our notation for f in reverse order. For
example among the six functions from 3 to itself is 0bc1 (mapping a to 0 and
b and c to 1), whose dual is therefore 1cb0 mapping 2 and 1 to c and 0 to a.
(We adopt the convention, at least for Fchn0, of naming a function to 2 by the
largest element it sends to 0. With this convention in Fchn0 the dual of the
chain 012 is written simply 210.)

In fact Fchn0 is self-dual as a reflexive graph, noting that every chain has
at least one map to itself, namely the identity map, and that the above bijection
pairs up identities.

A similar duality holds between Fchn and Fchn01. The reader may verify
that in Fchn01 there are only

(
m+n−3

m−2

)
maps from m to n. But the dual of m

in Fchn grows to m + 1 in Fchn01, so the set of
(
m+n−1

m

)
maps from m to n

in Fchn should be compared with the set of
(
(n+1)+(m+1)−3

n−1

)
maps from n + 1

to m + 1, and indeed these quantities are equal.
We now show that Fchn0 is self-dual not only as a reflexive graph but as

a category, by extending C⊥ to a functor and then showing that it is still an
isomorphism, but now between Fchn0 and Fchn0op rather than from Fchn0
to itself (i.e. the object part of C⊥ did not tell the whole story).

Given f : C → D in Fchn0, define 2f , or f⊥, to be the function which, given
a function g : D → 2, i.e. an element of D⊥, yields the function g ◦ f : C → 2
(an element of C⊥), monotone since composition preserves monotonicity. This
then defines the dual of f : C → D to be a function f⊥ : D⊥ → C⊥. Since C⊥

and D⊥ are objects of Fchn0 and f⊥ is a monotone function between them,
this makes f⊥ a map of Fchn0, but running contravariantly to f .

We now have two competing very reasonable ways to create a bijection be-
tween Fchn0(m,n) and Fchn0(n,m), notation reversal and dualization. For-
tunately they are the same (exercise). The advantage of the latter description
of this bijection is that it makes it easy to show that the bijection is functorial
(is a homomorphism with respect to composition), as follows.

(g ◦ f)⊥(h)=h ◦ (g ◦ f)
=(h ◦ g) ◦ f

=f⊥(h ◦ g)
=f⊥(g⊥(h))
=(f⊥ ◦ g⊥)(h)

8



(The interchange of f and g is a side effect of f⊥ being a duality as opposed to
an isomorphism.)

We now similarly extend converse to a functor, in the process showing that
Fchn0 is isomorphic to Fchn1 as a category. Define the converse of f : C → D,
namely f˘ : C˘ → D ,̆ to be the same function as f on the underlying sets of
C and D. Since the order of both domain and codomain have been reversed,
f˘ remains monotone. And this description of converse makes it clear that
(g ◦ f )̆ = g˘◦ f ,̆ and that the converse of the identity map is still the identity
map. Hence converse is functorial.

Since complement is the composition of converse and dual, it follows that
complement is also a functor.

We then have the following two diagrams showing all the above isomorphisms
as functors between the indicated categories.

Fchn ˘↔ Fchn
⊥ l ⊥ l

Fchn01op ˘↔Fchn01op

Fchn0 ˘↔ Fchn1
⊥ l ⊥ l

Fchn0op ˘↔Fchn1op

In each diagram the complement functor, as the composition of converse with
dual, or vice versa, runs along both diagonals. Technically speaking all arrows
with distinct domain or codomain should be considered distinct, so in the case
of the right hand diagram we really have a total of twelve functors consisting of
four distinct clones of each of converse, dual, and complement. The left diagram
has only six distinct functors since each appears twice.

Since each of Fchn0 and Fchn1 are self-dual, unlike either of Fchn and
Fchn01, all four of Fchn0, Fchn1, Fchn0op, and Fchn1op appear in the
one diagram, and hence all four are isomorphic to one another via the indicated
isomorphisms. In the case of Fchn and Fchn01 however, the only isomorphisms
we have are between Fchn and Fchn01op; there is an analogous but separate
set of isomorphisms between Fchnop and Fchn01 which we did not bother to
diagram. So counting only up to isomorphism, we have only three nonisomorphic
categories of chains, Fchn, Fchn01, and Fchn0.

None of these categories have products or sums (coproducts), except for the
empty sum or initial object (the object with exactly one map to every object
including itself) and the empty product or final object (dually the object with
exactly one map from every object including itself). In the case of Fchn the
empty chain is initial and the unit chain is final. For Fchn01 the two element
chain is initial (both 0 and 1 must be sent to 0 and 1 in any map) and the one
element chain is final (while any map to the unit chain is uniquely determined
there are no maps from the one element chain to any chain of Fchn01 except
itself); in Fchn01op these are reversed. The isomorphism between Fchn and
Fchn01op must therefore on these structural grounds pair the empty schedule
with the unit automaton and the unit schedule with the two-element automaton
(but we knew this already anyway).

9



In Fchn0 and Fchn1 the unit chain can be seen to be both initial and final,
that is, a zero object.

3 Computational Interpretation of Chains

In any of the dualities we have seen, we want one chain to play the role of
schedule and its complement the role of the corresponding automaton. There
are four ways to do this depending on which of our four categories of chains we
take as supplying the schedules.

When we choose Fchn for the schedules we are saying that a computation is a
schedule S consisting of a finite sequence of 0 or more events. The corresponding
complementary automaton S− then consists of one or more states indicating how
many events have been performed thus far. S− has both a first and last state,
which coincide just for the case when S is empty. In the first state nothing has
been done, while in the last state everything is finished.

Now consider the choice of Fchn01 for the schedules. What significance are
we to attach to the initial and final events? Well, look at the complementary
automaton to see what it permits. The first state records that the initial event
has already been done, while the last state records that the final event still has
not been done. We infer that the initial event is one that has always been done
(was never not done), while the final event will never be done, the mathematical
version of “over my dead body.”

It is quite reasonable to have these “preordained events,” since they can be
used as single placeholders for the collection of all events of a schedule that we
wish to consider as earlier than we care to think about, and dually those events
we wish to imagine as happening later than we are interested in. This can
be quite useful when using maps to massage or edit schedules. Each schedule
consists of the pre-event, the active events, and the post-event. We think of a
map as describing an editing operation in which the domain of the map is the
schedule to be edited and the codomain the result of editing it. (Don’t think
of this as a function describing a generic editing operation applicable to many
schedules, the map includes the particular schedule the operation was applied
to. This is in general a good way to think about the role of maps when thinking
of an object as an individual datum as opposed to a type of data.) Maps can
add new active events, delete active events by moving them earlier to merge in
with the pre-event or later to merge with the post-event, and combine active
events. They can also combine the pre-event and post-event, but this yields
inconsistency and prevents any further editing.

Now consider Fchn1 for the schedules. Combining the reasoning for the two
previous cases we infer that each schedule S has an impossible final event while
its complementary automaton S−, which must be in Fchn0op, has an initial
state in which nothing has yet been done, but no final state in which everything
has been done. If we reverse this by taking Fchn0 for the schedules then S has

10



an always-done initial event while S− has a final state in which everything has
been done, but no initial state in which nothing has been done.

One can imagine uses for all four of these choices. If one’s primary program-
ming language is schedules rather than automata then Fchn is a natural choice
in that always-done and never-done events might seem like redundant bells and
whistles. As much could be said for automata, forcing the choice of Fchn01op

for schedules. But if one wants schedules and automata to be perfectly sym-
metric then one assigns Fchn0 and Fchn1op to them, one way round or the
other.

4 Flexible Distributed Computation and Birkhoff-
Stone Duality

For conventional automata the passage from linear to nonlinear computation is
associated with the introduction only of branching as choice. For the notion of
automaton that we shall treat in this paper the passage from linear computation
as chains to nonlinear computation as posets is associated with the introduction
of both branching and concurrency.

On the mathematical side, our categories of chains are not closed under
three natural operations that we would like to bring in: sum, product, and
exponentiation (though they are closed under equalizers and coequalizers). It
is natural to think of the sum of two schedules, and dually the product of
two automata, as their concurrent or conjunctive composition. The sum of
automata (and hence by duality, but less obviously, the product of schedules)
should represent their alternative or disjunctive composition. Exponentiation
AB is also useful, as the system resulting from A observing B. Fchn is not
closed under the sum of two nonempty chains, the product of two chains with
two or more elements, nor under CD for C with at least three elements and D
at least two. With small variations in these parameters the other categories of
chains are similarly not closed.

The problem is the assumption of linearity of order, which so far has helped
us by keeping the model very simple. Merely dropping it, thereby passing to
partial orders, yields closure under sum and product, and in suitable analogues
of Fchn0 and Fchn1 also exponentiation, which seems to thrive on symmetry.

Fchn most naturally turns into the category Fpos of finite posets (partially
ordered sets), while its dual Fchn01 turns into the category FDL of finite
distributive lattices with top and bottom. The operations of converse, dual,
and complement that we described for chains carries over without any essential
changes, yielding diagrams of isomorphic categories exactly analogous to those
for chains. Converse A˘ continues to be the result of reversing order, whether
of posets or distributive lattices, and is obviously an isomorphism of Fpos with
itself and of FDL with itself. Dual continues to be defined as before: if P is

11



a finite poset, 2P is a finite distributive lattice, and vice versa, making Fpos
dual to FDL (isomorphic to FDLop) just as for Fchn and Fchn01, shown by
Birkhoff in 1933 [Bir33]. Stone [Sto37] a little later found one extremal extension
of this duality to infinite objects, much later characterized nicely by Priestley
[Pri70] as the duality of partially ordered Stone spaces and distributive lattices;
the other extremal extension is between posets and profinite distributive lattices,
for whose definition, history, and many further extensions see Johnstone [Joh82,
Ch.VII].

Complement continues to be 2A˘. All three of converse, dual, and comple-
ment continue to commute with each other and be involutions. And the same
arguments showing that they are functorial continue to apply.

Fpos and FDL are each closed under finite sum (juxtaposition in the case
of Fpos) and finite product (cartesian product in both cases), and the passage
to infinite objects is then accompanied by an extension of sum and product to
infinite arities referred to as closure under arbitrary sums and products. (An
infinite sum of nonempty finite posets is necessarily infinite, and likewise for
products of posets with at least two elements.) With regard to closure under
exponentiation the situation is as for Fchn and Fchn01: like Fchn we may
consider Fpos to be closed under exponentiation (since the set of monotone
functions from poset P to poset Q forms a poset under pointwise order), but
prefer not to since as we have seen we wish to view 2P as a distributive lattice,
just as we viewed 2C as in Fchn01 even though it was eligible for Fchn. And
since any poset can arise as 2L for some L in DL, DL is certainly not closed
under exponentiation.

We now consider corresponding generalizations for Fchn0 and Fchn1. It
will turn out that in this symmetric situation infinite objects are handled with
less fuss than in any previous situation, allowing us to dispense with the ped-
agogy of starting out with finite objects. And as we remarked earlier the sym-
metry also greatly helps exponentiation.

The most straightforward generalization of Fchn0, chains with the empty
join (bottom), is to CSLat, posets with arbitrary joins, called join-complete
semilattices. Their order dual, posets with arbitrary meets, called meet-complete
semilattices, is isomorphic to itself, to its opposite, and to CSLat, whence if you
are of the school of thought that routinely takes skeletal categories, i.e. recog-
nizes only two groups of order four and one set of cardinality four, you would not
give it a separate abbreviation (nor would you distinguish the categories Fchn0
and Fchn1). For convenience in distinguishing the three isomorphisms of con-
verse, dual, and complement we shall distinguish these anyway as CSLat∨ and
CSLat∧. With regard to the three isomorphisms these are the exact analogues
of Fchn0 and Fchn1 respectively, the corresponding diagram being as follows.

CSLat∨
˘↔ CSLat∧

⊥ l ⊥ l
CSLat∨op ˘↔CSLat∧op

12



These being isomorphic, it suffices to consider closure properties of CSLat.
CSLat can be readily shown to be closed under arbitrary (including empty and
infinite) sums and products (indeed under all limits and colimits), as well as
under exponentiation.

However it turns out that sum and product are the same operation in CSLat.
A logic using these connectives for disjunction and conjunction would be unde-
sirably degenerate: what use would or be when it meant the same as and?

There is a small variation on this generalization that has exactly the right
effect. Instead of generalizing Fchn0 to finite join semilattices, use posets that
have bottom (as with Fchn0), but whose nonempty subsets have meets instead
of joins (and with maps preserving bottom and nonempty meets). We have
elsewhere [Pra91a, Pra92a] called such a structure a state space, forming the
category St. The dual notion is a poset with top and all nonempty joins, called
an event space, forming the category Ev. The isomorphisms are thus:

St ˘↔ Ev
⊥ l ⊥ l
Stop ˘↔Evop

All the properties we have enumerated thus far for complete semilattices also
obtain for event and state spaces, except for the degeneracy of or and and.
Converse reverses the order, while the dual of A is still 2A and complement is
their composition.

There is a simple alternative description of complement of an event space.
Simply remove ∞ from the top and install q0 at the bottom, leaving the other
elements unchanged. Complement of chains can be seen to be a special case
of this. The patient reader can confirm this by direct calculation with a few
examples, for a proof see [Pra91a].

But this suggests that all the active (non-∞) events of an event space actually
become the active (non-q0) states of a state space. With the chains we were
imagining that the fences between the elements (as posts) of a schedule were
states, and that complementation turned those fences into posts and vice versa.
In this new view we are leaving the whole of the active structure fixed and
adjusting only the top and bottom. This new view appears to represent a slight
phase shift. We do not have a good explanation of this shift, although it seems
to us that there should be some way to explain the duality in the same fence-post
terms that worked well for chains.

Now has this very small variation on CSLat broken the degeneracy suffi-
ciently to be useful? Indeed it has, as we shall now argue briefly, more detailed
discussion appears elsewhere [Pra91a, Pra92a].

In an event space, we take the final event, denoted ∞, to be the never-done
event, as in Fchn1, and we take the join of a nonempty set Y of events, denoted∨

Y , to be the event expressing the completion of all events in the set. It is
possible that

∨
Y = ∞, in which case we say that Y is in conflict: it is not

13



permitted for all events of Y to finish. This gives us a way of expressing conflict
between events that a naive notion of schedule as a poset of events does not
offer.

Dually in a state space, we take the initial state, denoted q0, to be the state
of ignorance (“original sin”), and we take the meet of a nonempty set Y of
states, denoted

∧
Y , to be the last state at which every state of Y remains a

possible future state. It is possible that
∧

Y = q0, in which case we say that
Y is in dilemma: knowing nothing, the automaton is nevertheless obliged to
choose a proper subset of Y .

These notions of conflict and dilemma are internal to event and state spaces.
External are the notions of sum, product, and exponential used to form larger
spaces from smaller.

We can gain some insight into how these operations work by applying them
to two-element event and state spaces, each of which represents one “active”
event or state and one “dummy,” either the final event or the initial state.
Because they contain only one active event or state we think of them as the
unit event space and unit state space respectively.

The sum and product of two unit event spaces are given respectively by

•
• +

•
• =

•
•

��@@• •
and

•
• ×

•
• =

•
��@@•
@@

•
��•

,

where time is assumed to flow from bottom to top. Sum represents asyn-

chronous concurrent composition, with the leaves of
•
•

��@@• •
representing the

two concurrent events, their join representing their concurrent execution, and
∞ representing the unperformed event. Product represents choice, with the

basic events being the two side events of
•

��@@•
@@

•
��•

, in conflict because their join

is ∞, and with the bottom event denoting the information needed to make the
choice.

The same concepts appear in complementary form on the automaton side.
In lieu of sum and product we have the product and sum of two unit state spaces
given respectively by

•
• ×

•
• =

•
��@@•
@@

•
��•

and
•
• +

•
• =

•
@@

•
��•
•

.

The product automaton can be thought of as accepting ab+ba, the “interleaving”2

2The representation of concurrent composition as interleaving may seem like a violation
of true concurrency. The solution we have proposed elsewhere [Pra91b] to this apparent
mismatch in the duality is to regard the product automaton as a 2D surface rather than a
hollow square along the lines of [Pap86] and [Shi85].

14



of the basic events a and b, with the northwest axis corresponding to the a tran-

sition and the northeast the b. The sum denotes choice; just as
•
•

��@@• •
contains

no conflict, so does
•
@@

•
��•
•

contain no dilemma: it first performs a transition

interpretable as the gathering of information for the choice, and then chooses
one of the two transitions at the branch.

5 Linear Logic

We may find linear logic [Gir87] in event spaces in a natural way as follows.
We start with two primitive operations: product A×B, called with by Girard,
defined as cartesian product of event spaces, and exponentiation AB , called
linear implication and written A −◦ B, defined as the event space of all event
space maps from A to B.

We also have two primitive constants 1 and 2 denoting the event spaces
of those cardinalities. The two so-called additive constants of linear logic, the
respective units of the additive connectives, are both 1, while the two multi-
plicative constants are both 2. These are the only glaring degeneracies in this
model of linear logic.

We then derive dual (called perp in linear logic) as A⊥ = A −◦ 2. Next we
obtain sum A + B as the De Morgan dual of product, A + B = (A⊥ × B⊥)⊥.
Sum and product are linear logic’s “additive” connectives.

We next define tensor product A⊗B via A⊗B = (A −◦ B⊥)⊥, and the tensor
sum A⊕B (Girard notates this with an inverted ampersand) as the De Morgan
dual of tensor product, A ⊕ B = (A⊥ ⊗ B⊥)⊥. These are the multiplicative
connectives. The meaning of A ⊗ B is the flow of A through B, a symmetric
relationship.

We now define a third primitive operation: !A is the free event space on (gen-
erated by) the underlying poset of A, see [Pra91a, Pra92a] for details. Lastly we
derive ?A as its dual, ?A = (!A⊥)⊥, and an additive or intuitionistic implication
A ⇒ B defined by A ⇒ B = !A −◦ B.

To remove these last degeneracies, take a larger model containing both event
and state spaces mingled. Think of this as the product of Ev with the two-
element category 2 with objects 0,1 and one nonidentity map from 0 to 1, and
on which the operations of linear logic are all assigned their natural Boolean
interpretation. For the event space A, interpret (A, 1) as an event space and
(A, 0) as a state space. The operations are now all determined: dual for example
becomes complement, while the product of an event space with a state space is
a state space, which can be seen to be calculated by taking the converse of the
event space to make it a state space and then multiplying by the state space. It

15



should be noted that the same trick when applied to CSLat also removes some
of its degeneracies, though not the degeneracy !A=?A.

6 The Duality of Branching Time and True Con-
currency

Branching time refers to the timing of decisions in semantic models: can all
decisions be regarded as having been made at the beginning of time, or should
the model record when (relative to other operations) a given decision was com-
mitted to? Prior to Milner’s work on CCS this timing was not recognized as
an essential feature of a semantic model, and continued not to be so recognized
during the eighties, witness the number of papers in temporal logic that pitted
linear time against branching.

True concurrency refers to whether there is any branching other than decision
branching. That is, given the outcome of all decisions, is the resulting completely
deterministic computation then a linear sequence of events? Or can two events
occur in no particular order, suggesting that a deterministic computation might
be a partially rather than linearly ordered set of events? Certainly there exist
independent events, but their relative timing could be considered an either-or
proposition—the events can happen in either order, as opposed to no well-
defined order—with the (admittedly noncausal) choice of their relative order
being lumped together with all the other choices. True concurrencists take the
position that “either order” is different from “no order.” Like branching time,
true concurrency has its proponents and opponents.

We demonstrate here a connection between branching time and true con-
currency that makes a much stronger connection between them than as mere
coexisting imponderables of the eighties. We shall show that they are in fact
dual phenomena structurally. That is, the dual of one in the sense of this paper
is the other.

The following diagram depicts branching time on the left and true concur-
rency on the right. The upper row gives the state space perspective, the lower
row the complementary event space account. In each of these four groups of
two figures, the left figure is “before” or “bad” and the right “after” or “good.”

Branching Time True Concurrency

State Spaces
• •
•
@@

•
��•

•
@@

•
��•
•

• •
•
@@

•
��•

•
��@@•
@@

•
��•

Event Spaces
•

��@@• •
• •

•
��@@•
@@

•
��•

•
��@@• •
• •

•
•

��@@• •

In the state space depiction of branching time (upper left), we give the con-
ventional automata distinguishing ab + ac from a(b + c) (the initial state is at

16



the bottom). The corresponding event spaces below are obtained as usual by
deleting the initial state and installing the final event.

In the event space depiction of true concurrency (lower right), we have on
the left two sequences of two events, corresponding to the choice ab or ba. On
the right is the event space expressing the truly concurrent execution of a and
b. The state spaces above are obtained as before.

The striking feature of this diagram is that the branching time contrast for
state spaces is the order dual of the true concurrency contrast for event spaces,
and vice versa (the other cross-connection), as promised.

We have shown only the structural similarity (no labels). The difference
is that whereas with branching time the two sequences are ab and ac, with
true concurrency they are ab and ba. The duality of branching time and true
concurrency is therefore a structural one, and a distinction emerges when labels
are introduced. Labels however are beyond the scope of this paper, which has
focused exclusively on the underlying structure.

7 Future Work

The “automata” we have presented here are really “unfolded” automata, at least
with respect to choice and iteration. Any choice leads to disjoint sets of states,
the automaton accepting a + b must be implemented with three states rather
than two. (We think of the two-state version as one that, having made a choice
of transitions, forgets the choice by coming back to a fixed state independent of
that choice.) Furthermore iteration must be unwound, no state may be visited
twice in a computation.

The question then naturally arises, can this duality be extended to handle
automata that forget, and/or automata containing cycles?

One direction to pursue here is Pontryagin duality in locally compact Abelian
groups. Consider the group G of complex numbers on the unit circle under
multiplication. It is the dualizer (in the sense that the dual of H is GH) for
Pontryagin duality. Its own dual is the group of integers under addition, while
the group of reals under addition is self-dual.

Groups rather than monoids make sense for automata that can forget be-
cause the inverse gives a means of taking things back, whether information or
time. And of course groups are a natural setting for cyclic behavior.

There is also a connection with nonmonotonic logic here, whose essential
characteristic is its ability to take back information that has accumulated in a
theory. We view the problem of duality for forgetting automata and the problem
of formalizing nonmonotonic logic as at least intimately related if not in fact
the same problem.

Lastly we mention real time. We have only discussed ordered temporal and
information spaces, whose metric is essentially two-valued: one event either
does or does not precede another, and one state either does or does not contain

17



less information than another. A natural extension of this notion that we have
pursued elsewhere [CCMP91] is to richer measures of temporal distance between
events such as causal time and real time. We have not explored the connection
between these rich temporal structures with the duality of time and information,
but it seems to us that such a connection should yield much additional insight
into the nature of computation broadly construed to cover a wide range of such
metric spaces of events and states.

8 Philosophical Significance

It seems that almost every proverb has its counterproverb. The sayings “Time
is money” and “Look before you leap” express a tradeoff between response time
and information gathered.

Theoretical computer science, at least at its most incestuous, i.e. not con-
cerned for specific applications, can be broadly divided into those concerned
about performance, the complexity theorists, backed by combinatorics, and
those concerned about information without regard for time, once taken to be
automata theory and formal languages but nowadays semantics and verification,
backed by logic. This boundary of course is not hard and fast, and the advent of
probabilistic computing has led to some rapprochement between these two foci.
But it would seem that probabilistic computing gives up such a tiny amount of
confidence in the answer that the rapprochement should be greatly improvable
by giving up a much greater degree of confidence in return for yet more time.

In the silicon business, time to market is critical, but so is the correctness of
large chips, calling for a similar juggling of priorities. This generalizes readily
to almost any line of work: accuracy and response time are almost always both
important.

A strikingly similar duality is found in quantum mechanics, where time is
dual to energy, and space to momentum, to name two dualities. By setting c = 1
to eliminate the unit of time by equating nanoseconds to feet, the analogous
complementarity of space and momentum becomes the same complementarity
(but in 3D) by conferring its units, say CGS, namely cm and dyne-sec (gm-cm
sec−1), on time and energy respectively. By setting Planck’s constant h̄ = 1 the
now common unit of momentum and energy becomes simply cm−1. These two
simplifications are frequently adopted in quantum field theory.

We could just as well take as the unit of space-time the second, a mere
3× 1010 longer, making the unit of momentum-energy sec−1 or Hz. This brings
quantum mechanics within striking distance of computation: we are compar-
ing QM’s duality of time and energy with computation’s duality of time and
information. Now information is negative entropy, and incremental entropy is
proportional to incremental energy, with temperature as the “constant” of pro-
portionality, that is, dQ = TdS where dQ is energy change and dS entropy
change. But conventional computation is isothermal, with T held fixed at a few

18



hundred degrees Kelvin, 300 for slow CMOS, closer to 350 for fast ECL, but in
either case not varying significantly in the course of the computation. Somehow
physics factors in temperature (as unrelated information competing for limited
bandwidth?) in a way our account has not.

This raises the question, is complementarity a feature of quantum mechanics
because the universe is basically an information processor, with computation’s
duality of time and information showing up somehow as the duality of time
and energy? We find this highly plausible. Another clue is Birkhoff and von
Neumann’s quantum logic, which resembles linear logic more closely than say
intuitionistic logic in its lack of distributivity of conjunction over disjunction yet
satisfying double negation. We are presently looking for more such clues and
trying to fit them together into a comprehensive account of the relationship. One
goal of this investigation is a less mystical explanation of quantum mechanics
than the Copenhagen interpretation of Bohr, which on the one hand has had
no really successful challengers in the past sixty years but on the other has left
many physicists and philosophers very dissatisfied with the amount of disbelief
that must be suspended.

References

[Bir33] G. Birkhoff. On the combination of subalgebras. Proc. Cambridge
Phil. Soc, 29:441–464, 1933.

[CCMP91] R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal
structures. Math. Structures in Comp. Sci., 1(2):179–213, July 1991.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Joh82] P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[Kle56] S.C. Kleene. Representation of events in nerve nets and finite au-
tomata. In Automata Studies, pages 3–42. Princeton University
Press, Princeton, NJ, 1956.

[Klo86] Christian Kloesel, editor. Writings of Charles S. Peirce: A Chrono-
logical Edition, volume 4, 1879-1884. Indiana University Press,
Bloomington, IN, 1986.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures,
and domains, part I. Theoretical Computer Science, 13, 1981.

[Pap86] C. Papadimitriou. The Theory of Database Control. Computer Sci-
ence Press, 1986.

19



[Pet62] C.A. Petri. Fundamentals of a theory of asynchronous information
flow. In Proc. IFIP Congress 62, pages 386–390, Munich, 1962.
North-Holland, Amsterdam.

[Pra90] V.R. Pratt. Action logic and pure induction. In J. van Eijck, editor,
Logics in AI: European Workshop JELIA ’90, LNCS 478, pages 97–
120, Amsterdam, NL, September 1990. Springer-Verlag.

[Pra91a] V.R. Pratt. Event spaces and their linear logic. In Proc. Second
International Conference on Algebraic Methodology and Software
Technology, Workshops in Computing, Iowa City, 1991. Springer-
Verlag, to appear.

[Pra91b] V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th
Ann. ACM Symposium on Principles of Programming Languages,
pages 311–322, January 1991.

[Pra92a] V.R. Pratt. Arithmetic + logic + geometry = concurrency. In Proc.
First Latin American Symposium on Theoretical Informatics, LNCS
583, pages 430–447, São Paulo, Brazil, April 1992. Springer-Verlag.

[Pra92b] V.R. Pratt. Origins of the calculus of binary relations. In Proc. 7th
Annual IEEE Symp. on Logic in Computer Science, Santa Cruz,
CA, June 1992.

[Pri70] H.A. Priestley. Representation of distributive lattices. Bull. London
Math. Soc., 2:186–190, 1970.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[Shi85] M. Shields. Deterministic asynchronous automata. In E.J. Neuhold
and G. Chroust, editors, Formal Models in Programming. Elsevier
Science Publishers, B.V. (North Holland), 1985.

[Sto37] M. Stone. Topological representations of distributive lattices and
brouwerian logics. Časopis Pěst. Math., 67:1–25, 1937.

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Re-
lationships to Other Models of Concurrency, Advances in Petri Nets
1986, LNCS 255, Bad-Honnef, September 1986. Springer-Verlag.

20


