

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

188 Vol. 1,Issue 2,pp.188-193

COVERAGE BASED TEST SUITE AUGMENTATION

TECHNIQUES-A SURVEY

Bharti Suri
1
, Prabhneet Nayyar

2

1
Assistant Professor, USIT

Guru Gobind Singh Indraprastha University, Delhi, INDIA
bhartisuri@gmail.com

2
M.Tech, USIT

Guru Gobind Singh Indraprastha University, Delhi, INDIA
prabhneetnayyar@gmail.com

ABSTRACT

Regression testing is the activity of retesting a program so as to ensure that no new errors have been

introduced into the previously tested code. However this activity does not involve rerunning the entire

test suite but selecting only a few test cases that exercise the changes. Suppose there is a program P

and P’ is it’s modified version. The regression test suite so selected must be able to reveal the

differences between P and P’ that would help the developer discover errors caused by changes. More

and more emphasis has been laid in identifying the regression test suites and ordering them.

However, less focus have been laid on the effectiveness of regression test suite in response to changes.

While performing regression testing we also need to check whether the existing test suites are

sufficient for handling the changes that are introduced. If they are not adequate then providing

guidance for creating the new test cases that would be targeting the changed behavior of the

program. This problem is called as test suite augmentation. Many test suite augmentation techniques

have been proposed in this regard. The main aim of this paper is to explain the concept of test suite

augmentation and review the existing techniques based on coverage criteria.

KEYWORDS: Test Suite Augmentation, Matrix, Directed Test Suite Augmentation

1. INTRODUCTION

One of the fundamental activities during software evolution is regression testing. Regression testing

[4] is the testing of the modified software to ensure that the changed parts of the software behave as it

is intended to behave and to ensure that no new errors have been introduced as a result of these

changes. This activity however does not involve rerunning the entire suite but selecting a subset of it

that exercise the changes. More and more emphasis has been laid on majorly three activities namely:

regression test selection, test suite reduction and test suite prioritization. Regression test selection

basically identifies test cases that we do not need to rerun on the modified version of the software.

Test suite reduction on the other hand takes criteria into consideration and accordingly eliminates

redundant test cases in a test suite. Test suite prioritization [19] [20] is a concept related to finding the

defects earlier by ordering test cases in a test suite. However little attention have been paid to

determining whether the existing test suite adequately exercises the modified software and if not

providing a suitable guidance for creating new test cases for the same. This problem is called as test

suite augmentation problem. This research is divided into four sections. The first section describes

about test suite augmentation. In the next section the techniques proposed for solving the test suite

augmentation problem and mainly focuses on identifying the affected portions[2][3][4][12] .In the

next section other techniques for test suite augmentation that mainly focuses on test case

generation[24][25] along with augmentation algorithm [13] are discussed. A comparative analysis is

also obtained after the techniques have been reviewed.

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

189 Vol. 1,Issue 2,pp.188-193

2. BACKGROUND

2.1 Test Suite Augmentation [7]

Consider a program P and let P’ be its modified version. Let T be a test suite for P. Regression testing

is concerned with validating P’ and to facilitate this engineers often begin by reusing T. On the other

hand test suite augmentation is not concerned with reusing the test suite rather concerned with two

basic tasks. Firstly it is used to identify all the affected elements that are those portions of P’ for

which new test cases are needed. Secondly it is also concerned with creating or providing a suitable

guidance or creating test cases that exercise these affected elements.

2.2 Augmentation Basics [13]

Test suite augmentation mainly consists of two main activities. The first activity is concerned with

identifying all the affected portions .Second activity is concerned with creation of test cases for the

affected elements. This section describes some of the augmentation basics that are needed to be

considered while performing augmentation process. Following three factors are mainly considered.

• Coverage Criterion: Most augmentation techniques operate on specific code coverage criteria.

The focus has been on branch coverage and it is more likely to scale to larger systems.

• Identifying Affected Elements: Test suite augmentation techniques involve identifying the

affected elements .So this factor affects the augmentation process.

• Ordering Affected Elements: This factor also affects the augmentation process that is the

order in which the affected elements are considered.

3. AUGMENTATION TECHNIQUES FOR IDENTIFYING AFFECTED

ELEMENTS

This section discusses the augmentation techniques and lays more emphasis on identifying the

affected portions and correspondingly providing guidance for generating the test requirements for

those affected portions. However these techniques do not actually generate the test cases.

3.1 Matrix [1]

The augmentation technique proposed by Apiwattanapong et al MATRIX [1] stands for maintenance

oriented testing requirement identifier and examiner. It is a technique that made use of dependence

analysis [5] and partial symbolic execution [9][23] and a tool was also used that implemented it

partially. The technique used the information obtained between the two versions of the program so as

to identify the program elements affected by changes and accordingly created a set of testing

requirements. However, the technique worked on a single change at a time .Another shortcoming of

this technique was that it could not handle some of the program constructs like unbounded

dynamically allocated objects. The algorithm proposed for finding out the testing requirements works

as follows. In the first step it uses the data based on difference between the original program and the

modified programs so as to identify the pairs of corresponding statements in them. The technique also

made use of symbolic execution [9] so as to find the statements in original and modified programs

that can be executed after the changes. In the next step it brings out a comparison in path conditions

and symbolic states and generates testing requirements based on the changes. In order to identify the

testing requirements the algorithm performs testing requirement identification that computes each

statement and its counterpart in terms of their path conditions and symbolic states to identify test

requirements. The algorithm was applied on nine versions of two Siemens programs Tcas and

Schedule that generated the testing requirements. The information was then fed to the Matrix

Analyzer to determine which testing requirements were satisfied by the test suite.

3.2 Augmentation Technique for Evolving Software [5]

Santelices et al [5] proposed an augmentation technique which was an improvement of Matrix

technique as it identified all the change propagation paths. The technique also handles complex and

multiple changes. It also provided with a tool that fully implemented the technique as compared to

matrix[1] .The approach combines dependence analysis[5] and partial symbolic execution[9]. The

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

190 Vol. 1,Issue 2,pp.188-193

technique is based on two main intuitions[5].The first intuition is that test criteria for changed

software must require test cases to reach potentially affected areas of the code along different relevant

paths therefore, approach requires that specific chains of data and control dependences be exercised.

The second intuition is that test requirements for changed software must account for the state of the

software and the effects of changes on that state. This approach limits its analysis to a given distance

from the changes considered. The technique uses the concept of chain and state requirements. State

requirements were the requirements that are generated to test single changes. Chain requirements

were the requirements that take into consideration a particular dependence distance from the change.

These requirements were used to find the output differencing between the two programs.

This approach performed four main steps. In the first step the approach computed all chains of

dependences from the changes to statements at distance up to d from the changes. Next the approach

evaluated certain conditions under the identified chains behave differently in P and P’. Thirdly both

chains and conditions were evaluated as test requirements .It then assessed the extent to which T

satisfied the identified requirements. The computed coverage indicated the adequacy of T with respect

to the changes between P and P’. The algorithm to compute chain and state requirements evaluated

the testing requirements for a set of changes. The inputs to the algorithm are the original and the

modified programs ,a set of changes in modified programs and a parameter max used to identify the

maximum length of the chain and a set of output statements in P’. The outputs are the chain and state

requirements. The algorithm aligns the original and the modified programs so as to match all the

dependence points. It also obtains a chain set having chains of length zero. It checks whether each and

every chain in the chain set has reached the output or not. If the chain reached the output it was

added as a requirement. All the chains that have maximum length were added to chain requirements.

The affected portions were identified by utilizing forward direct dependence that identified the

statements that were control dependent on input statement and data dependent on the definition of a

variable at a dependence distance. For all the affected statements in the modified program the

algorithm finds the corresponding matching statements in the original version. The testing

requirements were generated for all the affected elements. The algorithm uses partial symbolic

evaluation that is used to identify all the path conditions and symbolic states. The algorithm computes

the state requirements so as to ensure the propagation of the infection at the end of each chain. The

technique was applied on three programs namely Tcas, Nanoxml-v1, Nanoxml-v3 and the technique

was found to be effective and scalable.

4. AUGMENTATION TECHNIQUES FOR TEST CASE GENERATION

This section explains the main augmentation algorithm and other techniques for test suite

augmentation.

4.1 Main Augmentation Algorithm [6]

The main augmentation algorithm [6] initialized with a set of test cases and an ordered set of affected

elements that were to be covered. The algorithm also specifies an iteration limit. Each branch to be

covered was taken one by one from the ordered set and it was checked whether it had been covered or

not by the test cases. If it was not covered then test case generation algorithms were called so as to

generate new test cases. The algorithm is successful if new test cases were generated and these test

cases were augmented with the original test cases.

4.2 Genetic Test Suite Augmentation [13]

Genetic algorithms [8] are widely used for structural test case generation [24] [25].The algorithm

begins with an initial test data population and the population continuously evolves. Two parameters

are defined in using genetic approach. Chromosome represents test inputs and a fitness function that

defines how well a chromosome satisfies the intended goal. The main genetic algorithm evaluates all

the chromosomes and selects a subset fittest to mate. These are then combined in the crossover stage

where one half of the population is exchanged with other half of the population to generate new

population and a small percentage is mutated to add diversity back into the population. Since

augmentation technique used genetic algorithms for test case generation therefore the technique was

named as genetic test suite augmentation [13]. The algorithm for genetic test suite augmentation [13]

accepts four inputs: existing test suite T set of affected elements, uncovered branch b and an iteration

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

191 Vol. 1,Issue 2,pp.188-193

limit. The population corresponds to the existing test cases. The algorithm was run on each branch in

the set of affected elements. Initial test data population starts by selecting those test cases that reach

uncovered branch b. An iteration limit was set that determines the number of generations to be

repeated by that algorithm. The algorithm first computes a fitness of the population of the test cases

which was done by executing all the test cases. In the next step ordering and selection of

chromosomes (test data population) was done. The population is then divided into two halves in

which first chromosome in the first half is mated with the first chromosome in the second half.

Mutation is done so as to add diversity back into the population. All the test cases in the current

population were then executed. The technique was applied to non trivial java application nano xml

that has multiple versions. Augmentation was performed as the system goes through three iterations of

evolution. The test cases so generated provided 74.7%, 83.6% and 78.5% of the branches in version1,

version 2 and version 3 respectively.

4.3 Directed Test Suite Augmentation [7]

The technique worked by reuse of existing test suite [7] and an incremental concolic testing [11]

approach. It presented an algorithm that operated in three main steps. A technique Dejavu [4] which

was a regression test selection technique was used to identify the affected and unaffected test cases.

The next step of the algorithm reruns all the affected test cases and accordingly a testing objective was

calculated and returned a set of branches that need to be covered. The algorithm operates as follows.

The algorithm selects a branch from a set of uncovered branch set. Next it locates all the branches in

the branch set for which source node is a predicate node as these are the immediate targets for test

generation. The branches are then ordered. For each branch with a source node the algorithm finds all

the path conditions for test cases whose execution trace reach the source node. For each path

condition the algorithm then deletes all the predicate nodes following the source node and then this

source node was then negated so as to generate another path condition. If the path condition is not

encountered before then a constraint solver [11] is called to generate test cases. The technique was

applied to 42 versions of Tcas program and it provided a better branch coverage.

5. ANALYSIS AND DISCUSSION

This section brings out a comparative analysis of augmentation techniques in the form of a table based

on some specified parameters.

Table1: Comparative analysis Of Test Suite Augmentation Techniques

Technique Matrix Augmentation

technique for

evolving software

Directed test suite

augmentation

Genetic test suite

augmentation

Proposed By Tawees

Apiwattanapong et

al[1](2006)

Raul santelices et

al[5](2008)

Zhihong Xu et al

[7](2009)

Zhihong Xu et al

[13](2010)

Technique To

identify

Affected

Portions

Dependence analysis

and symbolic

execution

Dependence analysis

and symbolic

execution

Dejavu[4] Not Applicable

Technique for

Test generation

Not Applicable Not Applicable Incremental

concolic testing

Genetic algorithm

Coverage Path coverage Path coverage Branch coverage Branch coverage

Tool used Matrix using Java Matrix reloaded using

Java

Java Sofya[26]

Advantages Generated testing

requirements for

modified software

Effective and more

scalable and cost

effective

Relies on symbolic

execution which is

impractical

More flexible than directed

test suite augmentation and

generated good quality test

cases

Disadvantages Does not focuses on

complex changes

Relies on symbolic

execution which is

impractical

Less Flexible More expensive

Size of LOC 134 LOC 131,3497 and 4782

LOC for tcas,nanoxml

v1 and v2 resp

200 LOC 7000LOC

Artifacts Tcas and schedule

programs

Tcas and nanoxml v1

and nanoxml v3

Applied to 42

versions of Tcas

Applied to three versions of

nanoxml programs

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

192 Vol. 1,Issue 2,pp.188-193

programs programs

The four techniques have been studied in detail. The analysis suggests that Apiwattanapong et al [1]

and Santelices et al [5] proposed techniques in which more emphasis was given on path coverage.

These techniques [1] [5] focused on single and multiple changes. The techniques proposed by

Zhihong Xu et al [7] [13] focused on branch coverage. Genetic technique for augmentation was more

flexible but expensive than the directed test suite augmentation technique. Genetic technique for

augmentation also focused on generating good quality test cases.

6. RELATED WORK

There are many techniques that are related to test suite augmentation approach. These techniques are

broadly divided into four categories. The first category takes into account the coverage of program

entities namely statement, branches and definition use pairs [4] [14] [15] and defines testing criteria

for the software. Techniques that fall into the second category generate testing requirements based on

program modifications. Binkley [12][21] and Rothermel and Harrold [2] uses System Dependence

Graph based slicing to generate testing requirements on the basis of data and control flow relations

involving a change. Another technique based on slicing[21] proposed by Gupta and colleagues [3]

overcame the costs associated with building system dependence graphs .The technique computes

chains of data and control dependences from the change to the output statements. The third category

of techniques produce requirements for fault based testing that also incorporates propagation

conditions. RELAY framework given by Richardson and Thompson [16] computes a set of conditions

to propagate the effects of faults to the output. A fault based testing given by Morell [17] uses

symbolic evaluation to find out fault propagation equations. A fourth class of techniques usually adds

existing test suites to improve their fault revealing capability [22]. Harder and colleagues [18]

proposed a technique that was based on a model of the behavior of methods.

7. CONCLUSION

 In this research various augmentation techniques based on coverage criteria have been studied. Based

on review a table has been formulated which compares the techniques on different parameters. It was

found that these techniques provided a suitable guidance for generating the test cases. Genetic and

directed test suite augmentation techniques not only provided guidance but also created test cases.

REFERENCES

[1] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and M. J. Harrold. Matrix: Maintenance-

oriented testing requirements identifier and examiner. In Test.: Acad. Ind Conf. Pract. Res. Techn., pages 137–

146, Aug. 2006.

[2] G. Rothermel and M. J. Harrold. Selecting tests and identifying test coverage requirements for modified

software. In Int’l Symp. Softw. Test. Anal., Aug 1994.

[3]R. Gupta, M. Harrold, and M. Soffa. Program slicing-based regression testing techniques. J. Softw. Test.,

Verif. Rel., 6(2):83–111, June 1996.

[4] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM Trans. Softw.

Eng. Meth, 6(2):173–210, Apr. 1997.

[5] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.Harrold. Test-suite augmentation for

evolving software. In Auto. Softw.Eng, Sept. 2008.

[6]Z. Xu and G. Rothermel. Directed test suite augmentation. In Asia-Pac.Softw. Eng. Conf., Dec.2009.

[7] S. Yoo and M. Harman. Test data augmentation: Generating new test data from existing test data. Technical

Report TR-08-04, Dept. of ComputerScience, King’s College London, July 2008.

[8] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation using genetic algorithms. Softw. Test.,

Verif. Rel., 9:263–282, Sept. 1999

[9] S. Person, M. B. Dwyer, S. Elbaum, and C. S. P˘as˘areanu. Differential symbolic execution. In Int’l. Symp.

Found. Softw. Eng., pages 226–237, Nov. 2008.

[10] Z. Xu, M. Cohen, and G. Rothermel. Factors affecting the use of genetic algorithms in test suite

augmentation. In Gen.Evol. Comp. Conf, July 2010

[11K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proc. Int’l Symp. Found.

Softw. Eng, pages 263–272, Sept. 2005.

International Journal of Advances in Engineering & Technology, May 2011.

©IJAET ISSN: 2231-1963

193 Vol. 1,Issue 2,pp.188-193

[12] D. Binkley. Semantics guided regression test cost reduction.IEEE Trans. Softw. Eng., 23(8), Aug.1997.

[13] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, Myra B, Cohen, Directed Test suite

Augementation: Techniques and TradeOffsACM November 7-11 2010

[14] P.Frankl and E.J. Weyuker An application family of data flow criteria. IEEE Trans on softw

Eng...14(10):1483-1498, Oct 1988

[15] J.W Laski and B.Korel. A data flow oriented program testing strategy. IEEE Trans on softw.Eng. 9(3):347-

354, May 1983

[16] D.Richardson and M.C Thompson The RELAY model of error detection and its application. In Proc of

Workshop on Softw.Testing, Analysis and Verif. Pp223-230, July 1988

[17]L.Morell A Theory of Fault Based Testing, IEEE Transactions on Software Engineering, 16(8):844-847,

August 1990

[18] M.Harder, J Mallen and M.D Ernst. Improving test suites via operational abstraction. In Proceedings of the

25
th

 IEEE and ACM SIGSOFT International Conference on Software Engineering (ICSE 2003), pages 60-71,

May 2003

[19] A Srivastava and J.Thiagarajan.Effectively prioritizing tests in development environment. In Proc of Int’l

Symp.on Softw.Testing and Analysis, pp 97-106, July 2002

[20] G.Rothermel, R.Untch, C.Chu and M.Harrold .Test case Prioritization .IEEE Trans on softw Eng.,

27(10):929-948, Oct .2001

[21]S. Horwitz, T.Reps, and D.Binkley Interprocedural slicing using dependence graphs.ACM Trans on

Prog.Lang and Systems, 12(1):26-60, Jan 1990

[22] G. Rothermel, M.J Harrold, J.Ostrin and C.Hong.An empirical study of the effects of minimization on the

fault detection capabilities of test suites. In Proceedings of the international Conference on Software

Maintenance, pages 34-43, November 1998

[23] L.A Clarke and D.J Richardson .Applications of symbolic evaluations .Journal of systems and software,

5(1):15-35, February 1985

[24]H.Waeselynck, P.Thevenod-Fosse and O.Abdellatif-Kaddour,”Simulated annealing applied to test

generation: Landscape characterization and stopping criteria,”Emp.Softw Eng, vol 12, no.1, pp.35-63, 2007

[25]G.Wasserman, D.Yu, A.Chander, D.Dhurjati, H.Inamura, and Z.SU,”Dynamic test input generation for web

applications”in Prac Int’l Symp Softw Test Anal, July.2008, pp.249-260

[26] A. Kinneer, M. Dwyer, and G. Rothermel, “Sofya: A flexible framework for development of dynamic

program analysis for Java software,” University of Nebraska - Lincoln, Tech. Rep.TR-UNL-CSE-2006-0006,

Apr.2006

Author Biographies:

Bharti Suri is an Asst. Professor at the University School of Information Technology,

Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi, India. She holds

master’s degrees in computer science and information technology. She is pursuing

PhD in the area of software testing. Her areas of interest are software engineering,

software testing, software project management, software quality, and software metrics.

She is a lifetime member of CSI. She has completed University Grants Commission

(UGC) funded major research project as co-investigator in the area of software testing.

She has many publications in national and international journals and conferences to her

credit. She can be contacted by e-mail at bhartisuri@gmail.com.

Prabhneet Nayyar is currently pursuing master’s degree (M.Tech) in Information

Technology (IT) from the University School of Information Technology, Guru Gobind

Singh Indraprastha University, Kashmere Gate, Delhi, India. She holds bachelor’s

degree (B.Tech) in Information technology (IT). Her areas of interest are software

engineering, software testing and software development. She can be contacted by e-

mail at prabhneetnayyar@gmail.com.

