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Abstract

We investigate a generalized linear model for
dimensionality reduction of binary data. The
model is related to principal component anal-
ysis (PCA) in the same way that logistic re-
gression is related to linear regression. Thus
we refer to the model as logistic PCA. In this
paper, we derive an alternating least squares
method to estimate the basis vectors and gen-
eralized linear coefficients of the logistic PCA
model. The resulting updates have a simple
closed form and are guaranteed at each iter-
ation to improve the model’s likelihood. We
evaluate the performance of logistic PCA—as
measured by reconstruction error rates—on
data sets drawn from four real world applica-
tions. In general, we find that logistic PCA is
much better suited to modeling binary data
than conventional PCA.

1 Introduction

Principal component analysis (PCA) is a canonical
and widely used method for dimensionality reduction
of multivariate data. Applications include the ex-
ploratory analysis[9] and visualization of large data
sets, as well as the denoising and decorrelation of in-
puts for algorithms in statistical learning[2, 6]. PCA
discovers the linear projections of the data with max-
imum variance, or equivalently, the lower dimensional
subspace that yields the minimum squared reconstruc-
tion error. In practice, model fitting occurs either by
computing the top eigenvectors of the sample covari-
ance matrix or by performing a singular value decom-
position on the matrix of mean-centered data.

While the centering operations and least squares cri-
teria of PCA are naturally suited to real-valued data,

they are not generally appropriate for other data types.
Recently, Collins et al.[5] derived generalized criteria
for dimensionality reduction by appealing to proper-
ties of distributions in the exponential family. In their
framework, the conventional PCA of real-valued data
emerges naturally from assuming a Gaussian distribu-
tion over a set of observations, while generalized ver-
sions of PCA for binary and nonnegative data emerge
respectively by substituting the Bernoulli and Pois-
son distributions for the Gaussian. For binary data,
the generalized model’s relationship to PCA is anal-
ogous to the relationship between logistic and linear
regression[12]. In particular, the model exploits the
log-odds as the natural parameter of the Bernoulli dis-
tribution and the logistic function as its canonical link.
In this paper we will refer to the PCA model for bi-
nary data as logistic PCA, and to its counterpart for
real-valued data as linear (or conventional) PCA.

Collins et al.[5] proposed an iterative algorithm for all
of these generalizations of PCA, but the optimizations
required at each iteration of their algorithm do not
have a simple closed form for the logistic PCA case.
In this paper, we derive an alternating least squares
method to estimate the basis vectors and generalized
linear coefficients of logistic PCA. Our method adapts
an algorithm, originally proposed by Tipping[15], for
fitting the parameters of a closely related generative
model. Like Tipping’s algorithm, it also relies on a
particular convexity inequality introduced by Jaakkola
and Jordan[10] for the logistic function. Our algorithm
is easy to implement and guaranteed at each iteration
to improve the logistic PCA log-likelihood. Thus, it
provides a simple but powerful tool for dimensionality
reduction of binary data.

We evaluate the performance of our algorithm on data
sets drawn from four real world applications. Perfor-
mance is measured by the ability to compress and re-
construct large binary matrices with minimum error.



Our experimental results add significantly to those of
Collins et al[5], who looked only at simulated data, and
Tipping[15], who mainly considered the application to
visualization. In the majority of experiments, we find
that logistic PCA is much better suited to binary data
than conventional PCA.

2 Model

Logistic PCA is based on a multivariate generalization
of the Bernoulli distribution. The Bernoulli distribu-
tion for a univariate binary random variable x∈{0, 1}
with mean p is given by:

P(x|p) = px(1 − p)1−x. (1)

We can equivalently write this distribution in terms
of the log-odds parameter θ = log( p

1−p
) and the logis-

tic function σ(θ) = [1 + e−θ]−1. In these terms, the
Bernoulli distribution is given by:

P(x|θ) = σ(θ)xσ(−θ)1−x. (2)

The log-odds and logistic function are, respectively,
the natural parameter and canonical link function of
the Bernoulli distribution expressed as a member of
the exponential family.

A simple multivariate generalization of eq. (2) yields
the logistic PCA model. Let Xnd denote the elements
of an N×D binary matrix, each of whose N rows stores
the observation of a D-dimensional binary vector. A
probability distribution over matrices of this form is
given by:

P(X |Θ) =
∏

nd

σ(Θnd)
Xndσ(−Θnd)

1−Xnd , (3)

where Θnd denotes the log-odds of the binary random
variable Xnd. The log-likelihood of binary data under
this model is given by:

L =
∑

nd

[Xnd log σ(Θnd) + (1−Xnd) log σ(−Θnd)] .

(4)
Low dimensional structure in the data can be discov-
ered by assuming a compact representation for the
log-odds matrix Θ and attempting to maximize this
log-likelihood. A compact representation analogous to
PCA is obtained by constraining the rows of Θ to lie
in a latent subspace of dimensionality L≪D. To this
end, we parameterize the log-odds matrix Θ in terms of
two smaller matrices U and V and (optionally) a bias
vector ∆. In terms of these parameters, the N ×D
matrix Θ is represented as:

Θnd =
∑

ℓ

UnℓVℓd + ∆d, (5)

Table 1: Summary of the logistic PCA model nota-
tion.

N number of observations
D dimensionality of binary data
L dimensionality of latent space

Xnd binary data (N×D matrix)
Θnd log-odds (N×D matrix)

P[Xnd = 1|Θnd] = σ(Θnd)

Unℓ coefficients (N×L matrix)
Vℓd basis vectors (L×D matrix)
∆d bias vector (1×D vector)

Θnd = (UV )nd + ∆d

where U is an equally tall but narrower N×L matrix,
V is a shorter but equally wide L×D matrix, ∆ is a D-
dimensional vector, and the sum over the subscript ℓ
in eq. (5) makes explicit the matrix multiplication of U
and V . Note that the parameters U , V and ∆ in this
model play roles analogous to the linear coefficients,
basis vectors, and empirical mean computed by PCA
of real-valued data. The model is summarized in Ta-
ble 1. Though the bias vector ∆ in this model could
be absorbed by a redefinition of U and V , its presence
permits a more straightforward comparison to linear
PCA of mean-centered data.

Logistic PCA can be applied to binary data in largely
the same way that conventional (or linear) PCA is ap-
plied to real-valued data. In particular, given binary
data X , we compute the parameters U , V and ∆ that
maximize (at least locally) the log-likelihood in eq. (4).
An iterative least squares method for maximizing (4) is
described in the next section. While the log-likelihood
in eq. (4) is not convex in the parameters U , V , and ∆,
it is convex in any one of these parameters if the oth-
ers are held fixed. Thus, having estimated these pa-
rameters from training data X , we can compute a low
dimensional representation U ′ of previously unseen (or
test) data X ′ by locating the global maximum of the
corresponding test log-likelihood L′ (with fixed V and
∆).

Logistic and linear PCA can both be viewed as spe-
cial cases of the generalized framework described by
Collins et al[5]. This is done by writing the log-
likelihood in eq. (4) in the more general form:

L =
∑

nd

ΘndXnd − G(Θnd) + log P0(Xnd), (6)

where it applies to any member distribution of the ex-



ponential family. In this more general formulation,
the function G(θ) in eq. (6) is given by the integral of
the distribution’s canonical link, while the term P0(x)
provides a normalization but otherwise has no depen-
dence on the distribution’s natural parameter. As be-
fore, the rows of Θ are constrained to lie in a low di-
mensional subspace. Linear PCA for real-valued data
emerges naturally in this framework from the form of
the Gaussian distribution[17, 18], while logistic PCA
emerges from the form of the Bernoulli distribution.
Other examples and a fuller treatment are given by
Collins et al[5].

Note that logistic PCA has many of the same short-
comings as linear PCA. In particular, it does not de-
fine a proper generative model that can be used to
handle missing data or infer a conditional distribution
P[U |X ] over the coefficients U given data X . Factor
analysis[1, 15] and related probabilistic models[14, 16]
exist to address these shortcomings of linear PCA.
Generalized models of factor analysis have also been
proposed for binary data[1, 15]. These models typ-
ically assume that the coefficients U obey a multi-
variate Gaussian distribution. In such models, how-
ever, exact probabilistic inference is intractable, and
approximations are required to compute the expected
values for maximum likelihood estimation. Logistic
PCA can be viewed as a simpler non-probabilistic al-
ternative to these models that does not make an ex-
plicit assumption about the distribution obeyed by the
coefficients U .

3 Algorithm

Logistic PCA models the structure of binary data by
maximizing the log-likelihood in eq. (4), subject to the
constraint that the rows of the log-odds matrix Θ lie
in the linear subspace defined by the parameters U , V
and ∆ in eq. (5). Our method for fitting these param-
eters is an iterative scheme that alternates between
least squares updates for U , V and ∆. Essentially, one
set of parameters is updated while the others are held
fixed, and this procedure is repeated—cycling through
U -updates, V -updates and ∆-updates—until the log-
likelihood converges to a desired degree of precision.
In the appendix, an auxiliary function is used to de-
rive the alternating least squares (ALS) updates and
to prove that they lead to monotonic increases in the
log-likelihood. In this section, we present the ALS
updates with a minimum of extra formalism, noting
similarities and differences with other approaches.

U-Update:
Holding the parameters V and ∆ fixed, we obtain a
simple update rule for the matrix U that stores the
reconstruction coefficients of the log-odds matrix Θ.

We begin by computing intermediate quantities:

Tnd =
tanh(Θnd/2)

Θnd

, (7)

Anℓℓ′ =
∑

d

TndVℓdVℓ′d, (8)

Bnℓ =
∑

d

[2Xnd−1−Tnd∆d] Vℓd. (9)

Note that Tnd depends on Θnd and (hence) the current
estimate of U through eq. (5). In terms of the matri-
ces in eqs. (7–9), the updates for different rows of the
matrix U are conveniently decoupled. In particular,
we update the nth row of the matrix U by solving the
L×L set of linear equations:

∑

ℓ′

Anℓℓ′Unℓ′ = Bnℓ. (10)

V -Update
Holding the parameters U and ∆ fixed, we obtain a
similar update rule for the matrix V that stores the
basis vectors of the log-odds matrix Θ. Again, we
compute the matrix Tnd as in eq. (7), as well as the
intermediate quantities:

Adℓℓ′ =
∑

n

TndUnℓUnℓ′ , (11)

Bdℓ =
∑

n

[2Xnd−1−Tnd∆d] Unℓ. (12)

In terms of these quantities, the updates for different
columns of the matrix V are conveniently decoupled.
In particular, we update the dth column of the matrix
V by solving the L×L set of linear equations:

∑

ℓ′

Adℓℓ′Vℓ′d = Bdℓ. (13)

∆-Update
Finally, holding the parameters U and V fixed, we ob-
tain a simple update rule for the bias vector ∆. With
Tnd computed as in eq. (7), we update the elements of
the bias vector by:

∆d =

∑

n [2Xnd−1−Tnd(UV )nd]
∑

n′ Tn′d

. (14)

To compute the coefficients U ′ for test data X ′ from a
previously trained model of logistic PCA, one iterates
just the U -updates while holding the parameters V
and ∆ fixed. This is done until the log-likelihood for
X ′, based on the coefficients U ′, converges to a desired
degree of accuracy. The optimization of U ′ for fixed
V and ∆ is convex, so that for test data X ′, the U -
updates converge (except in degenerate cases) to the
same result independent of the starting point for U ′.



The ALS updates have a simple closed form that
make them easier to implement than completely gen-
eral algorithms for convex optimization. Thus, for di-
mensionality reduction of binary data, they provide
a simpler approach than the general procedure out-
lined in Collins et al.[5] for models of the form in
eq. (6). The ALS updates are closely related to Tip-
ping’s procedure[15] for fitting a factor analysis model
of binary data[1], though in the factor analysis model,
they are used to approximate a posterior distribution
over the matrix U . The model of dimensionality re-
duction in this paper is simpler by comparison, as it
requires only point estimates of U .

4 Experiments

We compared the performance of logistic and linear
PCA on data sets of varying size, dimensionality and
sparsity. To ensure a high degree of convergence we
employed 300 iterations of ALS to fit the logistic
PCA model. A singular value decomposition of mean-
centered data served to fit the linear PCA model. For
latent spaces of equal dimensionality, these two models
involve the same number of fitted parameters, making
a direct comparison fairly straightforward. We em-
ployed latent spaces of dimensionality L=1, 2, 4 and 8
in our experiments.

We evaluated logistic and linear PCA by measuring
how well their low dimensional representations could
reconstruct large matrices of binary data from four
real world application domains. Note that the low di-
mensional representations of both models yield contin-
uous real-valued predictions for these reconstructions;
these were converted to binary values {0, 1} by simple
thresholding. For each data set and for each hypoth-
esized dimensionality L of the latent space, we report
results from logistic and linear PCA in terms of two
error rates: a minimum overall error rate and a bal-
anced error rate. These error rates were obtained by
choosing the models’ binary decision thresholds in two
different ways. In the first case, the thresholds were
chosen to minimize the overall error rates, counting
equally those errors due to false positives and false neg-
atives. In the second case, the thresholds were chosen
to equalize the false positive and false negative error
rates; this has the effect, in sparse data sets, of giving
more weight to errors from false positives. Both types
of error rates are revealing, as they capture different
notions of error cost. The results are summarized in
Table 2. Note that logistic PCA outperformed lin-
ear PCA on the task of binary data reconstruction in
nearly every one of our experiments, with exceptional
performance gains under the balanced error rate crite-
rion.

The individual data sets are described in greater detail
below. The density of each data set was measured by
the mean value of elements in the N×D binary data
matrix X and is indicated in Table 2 by the symbol ρ.

4.1 Microsoft Web Data

The anonymous Microsoft Web Database is available
from the UCI machine learning repository1. It has
been used previously to evaluate collaborative filtering
algorithms[3]. The data was generated by sampling
logs at www.microsoft.com that recorded (anony-
mously) the behavior of N = 32711 users. The ex-
tracted portion of the logs consists of binary variables
indicating whether a user visited a URL over a one
week period. There are data for D = 285 “vroots” or
URL prefixes. In our experiments, each user was rep-
resented by a row in the binary data matrix X . The
data is very sparse, with density ρ=0.011.

4.2 MovieLens Data

The MovieLens data set contains movie ratings by a
large number of users[7]. It was collected in order to
evaluate the performance of automated recommender
systems. In our experiments we ignore the actual rat-
ings except to obtain a binary matrix indicating which
of D = 1682 movies were rated by N = 993 users.
Each user was represented by a row in the binary
data matrix X . The data is fairly sparse, with density
ρ=0.063.

4.3 Gene Expression Data

The gene expression data of Causton et al.[4] was
generated by measuring gene expression levels on
an Affymetrix2 gene chip. The experimental design
called for genome-wide expression analysis of Saccha-
romyces cerevisiae to detect transcriptional change un-
der various environmental conditions. The measure-
ments were converted to binary values by Affymetrix
GeneChip software and provided in this form to the
authors. The binary values are noisy indicators of
the presence or absence of mRNA in a Saccharomyces
cerevisiae cell. There are measurements for N =6015
genes in D =46 environmental conditions. Each gene
was represented by a row in the binary data matrix X .
The data is fairly balanced between positive and neg-
ative indicators, with density ρ=0.738.

4.4 Advertisement Data

The advertisement data is available from the UCI
machine learning repository. The data was collected

1http://www.ics.uci.edu/~mlearn/MLRepository.html
2Affymetrix, Inc. Santa Clara, CA



Table 2: Minimum and balanced error rates on four different data sets for the task of binary data reconstruction.
The data sets were N×D binary matrices with ρND nonzero elements.

Microsoft Web Log (N = 32711, D = 285, ρ = 0.011)

Minimum Error Rates (%)
L Linear PCA Logistic PCA
1 0.0886 0.0959
2 0.0831 0.0701
4 0.0661 0.0502
8 0.0475 0.0237

Balanced Error Rates (%)
L Linear PCA Logistic PCA
1 1.52 1.28
2 1.41 1.15
4 1.36 0.760
8 1.11 0.355

MovieLens (N = 943, D = 1682, ρ = 0.063)

Minimum Error Rates (%)
L Linear PCA Logistic PCA
1 0.557 0.555
2 0.528 0.518
4 0.498 0.479
8 0.457 0.428

Balanced Error Rates (%)
L Linear PCA Logistic PCA
1 1.73 1.64
2 1.57 1.42
4 1.34 1.18
8 1.15 0.993

Gene Expression (N = 6015, D = 46, ρ = 0.738)

Minimum Error Rates (%)
L Linear PCA Logistic PCA
1 1.24 1.21
2 1.04 1.02
4 0.884 0.758
8 0.667 0.393

Balanced Error Rates (%)
L Linear PCA Logistic PCA
1 1.46 1.43
2 1.28 1.20
4 1.03 0.804
8 0.766 0.499

Advertising (N = 3279, D = 1555, ρ = 0.072)

Minimum Error Rates (%)
L Linear PCA Logistic PCA
1 0.0709 0.700
2 0.0682 0.0591
4 0.0616 0.0388
8 0.0576 0.0124

Balanced Error Rates (%)
L Linear PCA Logistic PCA
1 2.68 1.97
2 2.39 1.20
4 2.17 0.626
8 1.76 0.268
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A) Linear PCA Biplot of Advertising Data

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

B) Logistic PCA Biplot of Advertising Data

Ad
Non−Ad

Figure 1: Separation of advertisements and non-advertisements by the first two components of (A) linear PCA
and (B) logistic PCA applied to their surrounding features.

to predict whether or not images are advertisements,
based on a large number of their surrounding features.
To generate binary data for our experiments, we re-
moved the three continuous features in this data set,
as well as the one feature with missing values. We
also removed the class labels distinguishing advertise-
ments from non-advertisements. The data for our ex-
periments consisted of D = 1555 binary features for
N = 3279 images. Each image was represented by a
row in the binary data matrix X . The data is very
sparse, with density ρ=0.072.

Besides the error rates in Table 2, for this data we
also plotted the first two principal components for the
first fifty points of each class (advertisement and non-
advertisement). The results in Fig. 1 show that both
linear and logistic PCA separate the classes with only
a moderate number of outliers. Curiously, though, the
data is much more uniformly distributed in the plot
for logistic PCA. These results suggest, as in previ-
ous studies[15], that logistic PCA may be useful for
continuous visualization of multivariate binary data.

5 Discussion

Our experimental results show conclusively that lo-
gistic PCA is better suited to reconstruction of bi-
nary data than linear PCA. They also establish the
practical utility of the ALS updates for optimizing the
log-likelihood in eq. (4). The results are noteworthy
in the absence of any theoretical guarantee that the
ALS updates converge to a global maximum of the
log-likelihood. It is not currently known whether this
log-likelihood has local maxima to confound optimal
model fitting. Our experimental results leave room for

optimism that this is not the case. Currently we know
that the maximum likelihood value of the logistic PCA
model will not have unique estimates for U and V as
we can always permute these matrices.

There are many promising areas for future work. In
many applications involving binary data, dimension-
ality reduction has been performed by singular value
decomposition (SVD). For these applications, logistic
PCA provides a natural and compelling alternative.
It will also be useful to develop algorithms for di-
mensionality reduction of hybrid data (c.f. [1]); this
could be done by combining ALS methods for bi-
nary features and SVD methods for real-valued ones.
Empirical comparisons should also be made between
logistic PCA and the models of nonnegative ma-
trix factorization[11] and probabilistic latent semantic
analysis[8]. These models, unlike conventional PCA,
are tailored to the dimensionality reduction of nonneg-
ative and stochastic matrices. Difficulties have been
reported when these models were used to fit extremely
sparse data from word document counts[13]. We have
not encountered such difficulties in our investigations
of logistic PCA. Finally, we need to develop a bet-
ter understanding of the relationship between logistic
PCA and factor analysis models of binary data[1, 15].
This relationship is not as well understood as the re-
lationship between non-probabilistic and probabilistic
models of PCA[14, 16] for real-valued data.
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A Derivation

The ALS updates are derived from a lower bound on
the log-likelihood L(Θ) in eq. (4). To establish the
bound, we begin by noting that the sigmoid function
in eq. (4) obeys:

log σ(θ) = − log 2 + (θ/2) − log cosh(θ/2). (15)

Consider the rightmost term in this equation. A bound
on this term is obtained by noting that log cosh(

√
z)

is a concave function of z. It follows that the value
of this function at ẑ is upper bounded by its linear
extrapolation from z:

log cosh(
√

ẑ) ≤ log cosh(
√

z) + (ẑ − z)

[

tanh(
√

z)

2
√

z

]

.

(16)
This bound was introduced by Jaakkola and
Jordan[10] for Bayesian logistic regression and subse-
quently applied to factor analysis of binary data by

Tipping[15]. Substituting
√

z = θ
2

and
√

ẑ = θ̂
2

into
eq. (16) gives:

log cosh(θ̂/2) ≤ log cosh(θ/2)+(θ̂2−θ2)

[

tanh(θ/2)

4θ

]

.

(17)



Finally, combining eqs. (4) and (15–17), we obtain a
lower bound on the log-likelihood:

L(Θ̂) ≥
∑

nd

[

log 2 − log cosh(Θnd/2) +
TndΘ

2

nd

4

+
(2Xnd − 1)Θ̂nd

2
− TndΘ̂

2

nd

4

]

, (18)

with Tnd defined as in eq. (7). Note that this bound
on L(Θ̂) is quadratic in the matrix elements of Θ̂ and
holds for all matrices Θ̂ and Θ.

Let the auxiliary function Q(Θ̂, Θ) be defined by the
right hand side of eq. (18). The auxiliary function
satisfies the key property that L(Θ̂) ≥ Q(Θ̂, Θ) for
all matrices Θ̂ and Θ, with equality holding only if
Θ̂=Θ. If we choose Θ̂ to maximize the auxiliary func-
tion Q(Θ̂, Θ), then it follows that:

L(Θ̂) ≥ Q(Θ̂, Θ) ≥ Q(Θ, Θ) = L(Θ). (19)

Thus, updates derived in this way are guaranteed to
lead to monotonic increases in the log-likelihood. As-
suming furthermore that the functions in eq. (19) are
smooth and well-behaved, it follows that the updates
converge only to stationary points of the log-likelihood.

This procedure leads to the ALS updates for lo-
gistic PCA. The U -update is obtained by setting
Θ̂nd = (ÛV )nd + ∆d and Θnd = (UV )nd + ∆d and

maximizing the auxiliary function Q(Θ̂, Θ) with re-

spect to Û . Since the auxiliary function is quadratic
in the elements of the matrix Θ̂, it is also quadratic in
the elements of the matrix Û . The required maximiza-
tion therefore reduces to a least squares problem that
can be solved in closed form. In particular, setting

0 =
∂Q

∂Ûnℓ

=
∑

d

∂Q

∂Θ̂nd

(

∂Θ̂nd

∂Ûnℓ

)

=
∑

d

∂Q

∂Θ̂nd

Vℓd (20)

and solving for Û leads to the U -update in eq. (10).
The V -update and ∆-update are obtained in an anal-
ogous way.


