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Abstract
We present an activity-based framework that links information and energy. The activity-based framework uses a
quantization-based approach for modeling information processing and defines weighted activity to model the energy
consumption of information processing. We provide a formal description of this framework and use simulation to show
how it enables one to study the interaction between information and energy in energy-aware information processing.
An existing discrete event system specification (DEVS)-based simulation environment, DEVS-FIRE, is employed to model
wireless sensor nodes for detecting and monitoring wildfires. Simulation experimental results confirm the utility of the
activity-based framework to support the analysis and design of energy-aware information processing systems.
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1. Introduction

Energy is the general concept that represents the phys-
ical cost of action in the real world. Information is the
general concept that enables us to model how systems
decide on, manage, and control their actions. As in
Figure 1(a), information and energy are two key con-
cepts whose interaction is well understood in the fol-
lowing common sense manner: on one hand,
information processing takes energy; on the other
hand, getting that energy requires information process-
ing to find and consume energy-bearing resources.
Systems that sustain themselves in the real world
must somehow balance these quantities, but without a
more rigorous formulation of this relationship it is dif-
ficult to study this balance in a general way. We need a
more formal concept of activity (Figure 1(b)) to enable
us to link energy and information.

Activity is a measure of change in system behavior –
when it is divided by a quantum it gives the least
number of events required to simulate the behavior
with that quantum size.1 One of the unique properties
of discrete event system specification (DEVS)2 (a brief
description of DEVS is given in Section 2) is the intrin-
sic ability of the simulator to be aware of and,

therefore, count internal and external state transitions
in the model components. Let us measure information
processing in a model by such state-to-state transition
counts over some time interval, and call this the activity
measure. Intuitively, components with higher counts
over this interval are more actively involved in the
information processing than those with low counts.
This makes the connection between activity and infor-
mation. To make the connection with energy, we need
to link transition counts with the actual cost of infor-
mation processing in terms of energy.

It would be nice to postulate that every state transi-
tion consumes the same amount of energy, since then
the number of transitions relates directly to energy con-
sumed. However, for reasons we discuss later, this is
not a practical option. Instead, we allow the modeler
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to define a weighted transition mapping and consider
this definition to be part of the model itself. In other
words, the declaration concerning relative weights of
state transitions is a property of a model. It is this
property that enables a modeler to abstract the under-
lying details of energy consumption and directly link
energy consumption to information processing. As is
usual in modeling methodology, the level of detail
required to adequately describe the transition weighting
depends on the modeler’s objectives. For example, if
the objective is to manage energy at coarse levels,
such as low, medium, and high, then fairly coarse rep-
resentation of the transition weights may well be mean-
ingful. ‘Activity’ in this sense is an abstraction intended
to help describe the energy consumption of complex
and disparate information processes using a common
approach.

Linking information and energy using the concept of
activity makes it possible to study the relationship and
interaction between information and energy under a
formal and integrated framework. On one hand, by
modeling the activity we can monitor, in real time,
the energy consumption of information processing.
On the other hand, the energy-consumption measure-
ment can be used as a controlling parameter for steer-
ing the information processing to support energy-aware
management. An application of this activity-based
framework is to support the analysis and design of
energy-aware information processing systems. In this
paper, we provide a formal description of this frame-
work and show how it can support the design and anal-
ysis of energy-aware wireless sensor nodes for detecting
and monitoring wildfires.

2. The activity-based framework to link
information and energy

The activity-based framework that links information
and energy is based on DEVS where information pro-
cessing is modeled by state transitions of DEVS models.
DEVS is a formalism derived from generic dynamic
systems theory.2 A basic DEVS component (an
atomic model) is described by a structure <X, Y, S,
dint, dext, dcon, l, ta>, where the sets X, Y, and S are
the input, output, and state sets, respectively. The func-
tions dint, dext, and dcon are the internal, external, and
confluent state transition functions, respectively. The
internal transition function dint: S! S specifies the sys-
tem’s state change due to internal time events. The
external transition function dext: Q3X ! S specifies
the system’s state change in response to external
inputs, where Q 2 {(s,e) | s 2 S, 0� e� ta(s)} is the
total state set, e is the time elapsed since last transition,
and ta is the time advance function. The confluent tran-
sition function describes the evolution of the system
state when internal and external events coincide. The
function l is the output function, and ta is the time
advance function, which is used to schedule output
and internal events. More details of DEVS and the
DEVS formalism can be found in Zeigler et al.2

Building on the DEVS formalism, this section pro-
vides a formal description of the activity-based frame-
work. We first establish the link between activity and
energy by defining weighted activity as weighted state
transitions, which allow modelers to specify the energy
consumption (the weights) associated with the transi-
tions of states. Then we present the link between infor-
mation and activity. This is achieved through a
quantization-based approach for modeling information
processing as state transitions defined by a quantizer. In
the theory of quantization,2 a quantizer is a significant
event detector that monitors its input and uses a logical
condition to decide when a significant change occurs. A
quantum is measure of how big a change must be to be
considered significant. We then describe the two aspects
of a quantizer, the information aspect (measured by
activity) and the energy aspect (measured by weighted
activity), to complete the link between information and
energy. Finally, we present an activity-based energy-
aware information processing framework that utilizes
the feedback from weighted activity to the quantizer for
supporting energy-aware information processing.

2.1. Linking activity and energy – measuring
energy using weighted activity

Given a DEVS model that models information process-
ing as state transitions, the energy consumption of
information processing can be computed from
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Figure 1. Activity as the concept linking information and
energy.
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individual state transition energy consumptions, which
are specified by the modeler using a weighting function
associated with the state transitions. In this paper, we
define weighted activity as the sum of weighted state
transitions over some time interval. This weighted
activity is a direct measure of energy consumption
based on the weighting functions specified by the mod-
eler. Note that we use the term weighted activity to
differentiate it from the previous definition of activity,
which was defined for continuous time functions1,3,4

(see Section 2.2). The weighted activity is measured
by the weighted transition counts. As will be shown
later, the weighted activity and activity is directly
related.

Corresponding to the internal transition function dint
and external transition function dext of a DEVS model,
the internal transition weighting function wtint and
external transition weighting function wtext need to
be specified (the weighting function for confluent tran-
sitions can also be specified if needed). Then the inter-
nal transition weighted activity nint and external
transition weighted activity next can be computed.
Mathematically, the semantics of weighting is formal-
ized as follows.

The internal transition weighting function:

wtint: S! Integer

whenever

s! dintðsÞ ) nint ¼ nint þ wtintðsÞ

The average weighted activity accumulated over an
interval (t, t9) from internal transitions:

Aint t,t9
� �

¼ nint
t9 � t

The external transition weighting function:

wtext: Q3X! Integer

whenever

s! dext s, e, xð Þ
)
next ¼ next þ wtext s, e, xð Þ

The average weighted activity accumulated over an
interval (t, t9) from external transitions:

Aext t,t9
� �

¼ nint
t9 � t

The average weighted activity accumulated over an
interval (t, t9) from all transitions:

A t, t9
� �

¼ Aint t, t9
� �

þ Aext t, t9
� �

Default definitions set the weighting functions to
unity:

wtintðsÞ ¼ wtextðs, e, xÞ ¼ 1

Under these conditions, transitions are counted over a
period of time and the average weighted activity over
the interval is the number of transitions divided by the
interval length.

Another common possibility is to set

wtintðsÞ ¼ intTimeðtaðsÞÞ
wtextðs, e, xÞ ¼ intTimeðeÞ

where the weight of a transition is proportional to the
time spent in the state before the transition. The
intTime() is a rounding function or other means of turn-
ing a real number into an integer. For example, if a
processor remains in a processing state for time 10.1,
then the number of transitions is incremented by
intTime(10.1)¼ 10 when it leaves the state. Likewise if
it is interrupted by an external event after time e while
processing, then the number is incremented by
intTime(e). To get this same effect, we could redefine
the model to make actual transitions proportional to
the time spent in processing. However, this would incur
unnecessary inefficiency that contradicts the very basis
of discrete event modeling.

Note that we could model processing in a more
detailed manner, for example, by including a descrip-
tion of the job being performed and thereby obtain a
more refined estimate of the weighted activity involved.
However, there is no natural place to stop such refine-
ment – other than letting our objectives guide such ter-
mination, as discussed above. Finally, if we are not
interested in observing the weighted activity of some
components, we can selectively set their weighting func-
tions identically zero.

The weighting functions described above make it
possible to calculate the weighted activity as a measure-
ment of energy consumption for a given model with
discrete transitions. This makes the connection between
activity and energy. To make the connection between
activity and information, one needs to model informa-
tion processing as a discrete event model from which
weighted activity can be calculated. Developing a dis-
crete event model is straightforward if the information
processing is discrete by nature, for example, the
change of system state from active to passive and then
to sleep, and vice versa. However, for systems that have
continuous components, this straightforward approach
is not possible. One approach is to measure the discrete
activity for a discrete event approximation and ascribe
that to the original continuous model. However, with
myriad approximations to consider, there is no guaran-
tee that there will be a consistent result. Fortunately,
for differential equation models there is concept
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of activity that provides an intrinsic measure that
relates to the number of transitions of an approximat-
ing discrete event model through quantization. The
quantization-based approach is presented below.

2.2. Linking information and activity –
quantization-based information processing

Activity is a measure of change in system behavior. The
following is the definition of activity for a continuous
segment (the description is adapted from Muzy et al.3).
It provides a precise measure of the computational effort
required by an ideal quantizer. In fact, we will show that
it is a reasonable estimate of the computational effort
required by implementations of these devices.

In Figure 2, F(t) is a continuous function of time; D
corresponds to the quantum (the minimum threshold
for change below which no processing occurs), and mi

corresponds to the maxima and minima of the curve,
where the first and last mi are the values of the function
at the initial and final times.

The activity in an interval [0, T] can be calculated by
summing the differences between the adjacent maxima
and minima, that is

AðTÞ ¼
X

i

miþ1 �mij j ð1Þ

The average activity in an interval [0, T] is given by

AvgActivityðTÞ ¼ A

T

The following fact is important because it relates the
number of threshold crossings made by a DEVS simu-
lator, the activity over a time interval T, and the quan-
tum size D.

Fact: The number of threshold crossings in an interval

of length T for threshold levels that are equally spaced

by quantum size, D, is:

NumberofThresholdCross T, qð Þ ¼ AðTÞ
D

ð2Þ

Proof: Break up a curve with a finite number of extrema

(minima and maxima) into segments between succes-

sive extrema (i.e. between a minimum and the next

maximum, or a maximum and the next minimum).

These segments are either non-decreasing or non-

increasing, as illustrated in Figure 3, showing a non-

decreasing segment with minimum, a and maximum, b.

Divide up the interval of length b – a into intervals of

size D (the quantum size) by a grid as shown. There are

(b – a)/D such intervals and no matter what the con-

tinuous curve f(t) looks like, it must cross each of the

grid lines exactly once (where, if as illustrated by the

last crossing, it stays on the grid line we count this as

one crossing). Thus for any non-increasing segment, the

number of threshold crossings is the distance from the

minimum to the maximum divided by the quantum

size. It is easy to see that a similar situation holds for

a non-decreasing segment (where the distance is the

absolute value of the difference). So in any inter-

extrema segment we have

#crossing ¼ miþ1 �mij j
D

Now since the activity is the sum of successive distances

between extrema (Equation (1)), it easily follows that

the number of threshold crossings is the activity divided

by the quantum size (Equation (2)). Equation (2) holds

for continuous curves with a finite number of extrema

in an interval – there will be slight error that is bounded

by the quantum size, which will disappear as the quan-

tum goes to zero. By definition, Equation (2) will be

true for any quantizer that takes exactly one quantum

step at each transition and tracks the curve exactly. �

2.3. Information and energy – activity and
weighted activity of quantizer

Consider a quantizer that processes information (the
external input) using the quantization-based principle
described above. The activity of the input stream is

( )tΦ

it1t

nm

tnt

3m

1m

T

D

2t 3t

2m

Figure 2. Definition of activity for continuous time segments.

Activity = |b-a|

)(tf

t

D
quantumsize

=
b

a

Figure 3. Activity of a non-decreasing segment.
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measured by its activity A, as computed in Equation (1).
This represents the amount of information that needs to
be processed by the quantizer. We now show that activ-
ity A is directly relatable to the weighted activity of the
quantizer. As described before, the weighted activity is
measured by the number of transitions counted with its
transition weighting functions. The weighted activity
indicates the energy consumption of the quantizer.
Belowwe examine a close relationship between the activ-
ity and the weighted activity.

Fact: The weighted activity experienced by a quantizer

with a quantum size D is approximately equal to A/D

where A is the activity of the input segment for suitable

choice of weighting functions. As shown above for con-

tinuous curves, A is easily computed from their succes-

sive extrema (maxima and minima).

Proof: As D gets smaller, the number of threshold

crossings of any continuous curve with activity A

approaches the ratio A/D. We choose weighting func-

tions for the quantizer so that a transition is counted as

unity just in case the input differs from the last value by

more than the quantum. Under these conditions the

number of transitions counted in an interval is equal

to the number of threshold crossings for the same

quantum. Thus the weighted activity of the quantizer

approaches the input activity divided by the quantum

size, an approximation that becomes better as the

quantum size becomes smaller.

From the above proposition, we can see a close rela-
tionship between the two activity perspectives – in the
ideal case the weighted activity (measurement of
energy) is proportional to the activity (measurement
of information). In general we can expect that for a
well-designed real-world quantizer, the major contribu-
tion of its weighted activity would come from the
(external) activity of its sensed input stream (with the
other part considered as overhead). When we relate
weighted activity to energy, say in terms of battery
power consumption, then a useful prediction of such
consumption will come from the anticipated pattern
of activity of the input stream.

Section 3 examines such a relationship using an
example of a quantization-based wireless sensor node
for information processing.

2.4. Activity-based energy-aware information
processing

The foregoing activity results provide a formal founda-
tion to study the relationship and interaction between
energy and information. Among the myriad of uses of
this framework is to control the operation of the

information processing model, such as a quantizer, exe-
cuted in real time. As illustrated in Figure 4, the con-
troller can adjust parameters of the quantizer, such as
the size of the quantum, based on the weighted activity
that represents the energy consumption. Given a certain
‘energy budget’ (the total energy that can be con-
sumed), a control policy might be to increase the quan-
tum size when the remaining energy is insufficient to
support information processing under the current
quantum size and to decrease the quantum size other-
wise (the remaining energy is the total energy minus
the consumed energy, which is measured by the
weighted activity). In this way, the controller can
adjust the sensitivity of the quantizer in line with the
energy left, and thus support energy-aware information
processing.

Consider a wireless sensor node for detecting and
monitoring wildfires as an example. When the sensor
node runs low on power, increasing the quantum size
(thereby decreasing the transition rate) will save drain-
ing the battery and result in increased life time for the
sensor to monitor the fire temperature. Conversely,
when the sensor node has sufficient energy to cover
the fire event, decreasing the quantum size will provide
more accurate sensor data for monitoring the fire tem-
perature. As a result, the ‘smart’ sensor node is able to
trade energy consumption in for information precision
and vice versa by adaptively adjusting its quantum size
in information processing. Section 3 gives a concrete
example of such a ‘smart’ sensor node for detecting
and monitoring wildfires.

2.5. Implementation

To implement the weighted activity in DEVS needs
extensions at both the modeling level and simulation
level. At the modeling level, a modeler defines the
weighted transition mapping and considers this defini-
tion to be part of the model itself. This means each
atomic model is extended to include an internal transi-
tion weighting function and an external transition
weighting function (a confluent transition weighting

QuantizerQuantizer

ControllerController

SimulatorSimulator

Simulator 
provides 
activity 
feedback to 
controller 

Controller can 
adjust parameters 
of the model such 
as  quantum size

Figure 4. Activity feedback to a controller.
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function can be defined too if needed). At the simula-
tion level, the weighted counting of transitions is readily
implemented in the DEVS Abstract Simulator. The
simulator for atomic models can tell when a particular
transition is about to occur and can therefore invoke
the appropriate transition weighting function just
before it makes this transition happen. The following
modifies the atomic model simulator to implement this
concept.

Algorithm 1. Simulator for Atomic DEVS modified
to accumulate weighted transitions

The coordinator of a coupled model is extended to
include collaboration with all the simulators of its cou-
pled model in which the coordinator can query the sim-
ulators to obtain the weighted activity each has
accumulated. Through a method, for example,
getSimActivity(), an atomic model simulator can
make the collected weighted activity of its model avail-
able upon request. Such requests might come from the
coordinator of a coupled model in which the atomic
model is a component. The coordinator can in turn
provide an array of weighted activities collected from
the component simulators for use by the simulation
experimenter, whether human or programmatic.

This implementation can easily support the function-
ality shown in Figure 4. We can place the controller and
quantizer into a coupled model to be executed by a real-

time coordinator (denoted as Simulator in Figure 4).
The real-time coordinator obtains the weighted activity
from the atomic simulator as the real-time simulation
proceeds (see Algorithm 1). The activity outputs of the
coordinator can be sent to the controller as external
inputs through a dedicated activity input port (e.g. as
in DEVSJAVA). Alternatively, the controller can query
the coordinator to get the current weighted activity.
This activity is used by the controller to adjust param-
eters of the model, such as the quantum size.

3. A wireless sensor node example

We consider a wireless sensor node for detecting and
monitoring wildfires. The sensor node has a global posi-
tioning system (GPS) sensor and a temperature sensor
for sensing its location and the temperature of the envi-
ronment. It has a microcontroller for processing data
and sending output (here we treat the memory and
radio as part of the microcontroller). The sensor node
uses a quantization-based temperature sensor (a quan-
tizer) that outputs a temperature to the microcontroller
only when the temperature change reaches the quantum
size. The quantum size can be set by the microcontroller.
The sensor node starts in the inactive state and after
activation via an activating input will remain active for
a finite time before deactivation. The activating input
may come from another sensor node or be triggered
internally when detecting some events. Here we assume
the activating input is internally generated when there is
significant rise in temperature (e.g. the change of tem-
perature bypasses a pre-defined threshold).While active,
the sensor node can process temperature as well as GPS
location updates, both of which impact its time to
remain active. The sensed temperature is paired with
the current location to provide location-based output.
Such a device has a myriad of applications when repli-
cated and deployed to multiple monitoring locations.
Once deployed it can sense its location and remain
fixed in place as in a network to detect wildfire behavior.
Alternatively, it can bemobile and report geo-referenced
data on the move. This would be the case if worn by fire-
fighters in their hats, providing dynamic information on
the fire-front perimeter.

3.1. The DEVS model with weighted state
transitions

A DEVS model that implements the behavior of the
sensor node is given below. Tables 1 and 2 show the
external transition function dext(s, e, x), the internal
transition functions dint(s), the time advance function
ta(s), and the output function l(s) of the model. In
the tables, the inNextValue port receives inputs from
the quantization-based temperature sensor, and the
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inLocation port receives inputs from the GPS sensor.
The timeToDeactivate is a parameter determining how
long the sensor node stays in the active state before
automatically returning to the inactive state. Another
important parameter not shown in the tables is the
quantum size of the temperature sensor.

It would be crucial for such a sensor node to be
designed with battery power consumption in mind.
Both the quantum size of the temperature sensor and
the timeToDeactivate duration are design choices in
configuring the sensor node to optimize power con-
sumption in a particular environment. In this paper,
we focus only on the quantum size of the temperature
sensor.

The weighted activity approach provides a well-
defined basis for studying and designing the energy-
aware sensor node. Table 3 lists the parameters of
energy-consumption weights that need to be considered
in the design decisions. These parameters and their
values are derived from the wireless sensor literature
(see, e.g. Sinha and Chandrakasan,5 He et al.,6

Raghunathan et al.7 Antoine-Santoni et al.8,9). Some
adjustments are made in order to better illustrate the
activity-based framework. For example, we use a one-
time value processingInput¼ 500 to represent the energy
consumption for processing a temperature input. This
is abstracted from the real energy consumption, which
actually depends on the duration for processing the
input. In addition, we do not consider the latency over-
head associated with transitioning to, and from, the
inactive state. The latency overhead exists due to the
transition interval – for example, when a processor
wakes up, it spends the transition time waiting for the
phase-locked loops to lock, the clock to stabilize, and
the processor context to be restored. During the tran-
sition interval, no productive work can be done and the
sensor could miss detecting important events.5

Tables 4 and 5 show the internal and external
weighting functions defined in terms of these parame-
ters. Note that in the active state, transition counts
accrue at the same rate with respect to elapsed time
whether accumulated at internal or external transitions.

Table 3. Parameters of energy consumption weights

Parameter Definition Sample value

whileInactiveRate Time rate at which transition counts increase while not active 1 (per second)

whileActiveRate Time rate at which transition counts increase while active 10 (per second)

processingActivation Transition weighting for processing activation input 20

processingLocation Transition weighting for processing location input 50

processingInput Transition weighting for processing temperature input 500

sendingOutput Transition weighting for sending location-based output 20

Table 2. External transition function

Phase Input port dextðs, e, xÞ

WaitForActivation inActivation WaitForNextValue

WaitForNextValue inNextValue(val) lastValue ¼ val

WaitForNextValue

inLocation(loc) location ¼ loc

WaitForNextValue

Table 1. Internal transition function, time advance function, and output function

Phase dintðsÞ taðsÞ lðsÞ

WaitForActivation ‘

WaitForNextValue WaitForActivation timeToDeactivate

sendValue WaitForNextValue 0 (lastValue, location)
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This kind of consistency is facilitated by defining
parameters such as whileActiveRate, which can be
used in different places to convey equivalent meanings.

The well-defined weighting functions make it possi-
ble to analyze some of the weighted transition accumu-
lations. The accumulation for a single activating input
after an elapsed time e with no subsequent inputs and
ending at the return to inactive state is (for simplicity,
in the following, we omit the intTime function from the
equations)

processingActivationþ whileInactiveRate 3e

þ whileActiveRate 3 timeToDeactivate

which represents the overhead incurred by activating
the device with no subsequent sensing.

The accumulation for m temperature inputs and n
location updates spread anywhere over an active period
of time t is

Accum¼m 3ðprocessingInputþ sendingOutputÞ
þn 3 processingLocationþwhileActiveRate 3 t

which represents the part attributable to the external
activity of the temperature input stream – m3

(processingInputþ sendingOutput) – plus the rest,
which is the overhead incurred by processing GPS
inputs and the continuous consumption of power
while active during the period t. Clearly, the design
should attempt to make whileActiveRate as small as
possible while also reducing whileInactiveRate, recog-
nizing that the former will always be larger than the
latter. Of course, the processing and transmitting
energy consumption should be minimized as well.

3.2. Activity-based energy-aware sensing using
changing quantum size

Let us consider only the processing of temperature data
and analyze how the activity-based approach can

support energy-aware sensing by dynamically changing
the quantum size of the temperature sensor. Omitting
the part related to the GPS data, the accumulated activ-
ity for m temperature inputs over an active period of
time t is

AccumðtÞ ¼ m 3 ð processingInputþ sendingOutputÞ
þ whileActiveRate 3 t

Recall Equation (2), for a quantization-based tem-
perature sensor m is the number of threshold crossings:
m¼A(t)/D, where A(t) is the external activity (the tem-
perature change) in time interval [0, t]. Assuming
that the quantum size is constant, this leads to an
expression for the weighted activity accumulated over
the interval:

Accum ðtÞ ¼ AðtÞ=Dð Þ 3 ð processingInput
þ sendingOutputÞ þ whileActiveRate3t ð3Þ

In a typical wildfire scenario, when the fire spreads
and gets closer to a sensor node, the sensed temperature
gradually increases and reaches its peak point when the
fire spreads to the location of the sensor node. After
that the fire burns the biomass (represented by a fuel
model) in the area and gradually dies out when the
biomass is consumed. The expected temperatures at
any height above a surface fire can be estimated or
calculated from ambient temperature and fireline inten-
sity.10,11 We denote the peak temperature as Rmax, and
the ambient temperature as Rambient. The ambient tem-
perature usually does not vary much and can be treated
as a constant. Figure 5 illustrates the typical pattern of
temperature change of a sensor node in a wildfire field.
At time Tstart the fire approaches the sensor node and
thus the temperature begins to rise above the ambient
temperature. At time Tend the fire dies out and the tem-
perature returns back to the ambient temperature.
The time duration between when the temperature
begins to rise and when the temperature drops
to normal is the duration of the fire event, denoted
as T (T¼Tend –Tstart). Ideally, the sensor node
should monitor the entire duration of the fire event
before running out of energy. Note in this paper we do
not consider the case that the sensor may be destroyed
by the fire.

The overall external activity (the temperature
change) of a fire event, as shown in Figure 5, is A(T)

Table 5. External transition weighting function

Phase Input port wtext (s, e, x)

WaitForActivation inActivation processingActivation þ whileInactiveRate3 intTime(e)

WaitForNextValue inNextValue processingInput þ whileActiveRate3 intTime(e)

inLocation processingLocation þ whileActiveRate3 intTime(e)

Table 4. Internal transition weighting function

Phase wtint (s)

WaitForNextValue whileActiveRate3 intTime(s)

sendValue sendingOutput
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¼23 (Rmax –Rambient). Replacing A(T) in Equation (3),
we have

Accumtotal ¼ 2 3 Rmax � Rambientð Þ=Dð Þ
3 processingInputþ sendingOutputð Þ
þ whileActiveRate 3 T ð4Þ

Equation (4) shows that the total weighted activity
(the energy consumption) of the sensor node for mon-
itoring the whole fire event is a function of the quantum
size D, the peak temperature Rmax, and the duration of
the fire event T. The quantum size D is a parameter that
can be controlled by the sensor node. When D is small,
the energy consumption would be higher and when D is
large the energy consumption would be lower. Different
from D, both Rmax and T are determined by the fire
behavior and cannot be controlled by the sensor node.
The peak temperature Rmax depends on the fuel type,
terrain, and weather condition of the place. The fire
duration T depends on how fast the fire spreads, as
well as the fuel model at the location. In general, T is
smaller if the location is at the head of the fire where fire
spreads fast; it is larger if the location is at the tail of the
fire. This is because the spreading speed at the tail is
much slower. As a result, the biomasses at the tail area
are ignited at a slower rate, leading to a longer duration
before the fire dies out. Some experimental results of
energy consumption with different D and different fire
behaviors are given in Section 4.1.

Since quantum size D is a parameter that can be
controlled to affect energy consumption, next we
study the control policies that dynamically change D
for supporting energy-aware sensing. Let us define an
energy budget Ebudget, representing the total energy that
is available for monitoring the fire event. We assume
the sensor node knows its energy consumption at real
time at any given time t. One way it can monitor its
energy consumption is to use the accumulated weighted
activity computed from weighted state transitions.
In this approach, the energy consumption at time

t: Accum(t)¼m3 (processingInputþ sendingOutput) þ
whileActiveRate3 (t-Tstart), where m is the number
of temperature inputs and Tstart is the start time of
the fire event. Here, the device maintains the count
m of inputs at any time. This can be called a model-
based approach and depends on accurate calibration
of parameters (processingInput, sendingOutput, and
whileActiveRate), as well as the validity of the
weighted transition model.

Let E(t) denote the energy consumption at time t, and
Eremaining(t) denote the remaining energy budget. We
have: Eremaining(t)¼Ebudget –E(t). The goal of dynami-
cally changing D at time t is to compute a new quantum
size so that the sensor node can finish monitoring the fire
event (or monitor the fire event as long as possible)
before running out of the remaining energy.

We define R(t) as the sensed temperature at time t,
and Aremaining(t) as the expected remaining external
activity (temperature change) for the fire event. Based
on the observation (see Figure 5) that the temperature
always increases to the peak point Rmax and then
decreases to the ambient temperature Rambient at the
end of the fire event, we can calculate Aremaining(t) at
time t, regardless of the temperature change curve.
To do this, we need to know if at time t the peak tem-
perature has been reached or not (this can be decided,
e.g. based on if the current temperature is increasing or
decreasing). Figure 5 illustrates two sample time points
t1 (where the peak temperature is not reached yet), and
t2 (where the peak temperature has been reached). The
values of Aremaining(t) for these two time points are cal-
culated as below:

Aremainingðt1Þ ¼ Rmax � Rðt1Þ þ Rmax � Rambient

Aremainingðt2Þ ¼ Rðt2Þ � Rambient

Knowing the expected remaining external activity
Aremaining(t), the expected energy consumption for the
sensor node to cover the rest of the fire event can be
computed from Equation (3). This energy consumption
should not be larger than the remaining energy
Eremaining(t). Thus we have

EremainingðtÞ
� AremainingðtÞ=D
� �

3 processingInputð
þsendingOutputÞ þ whileActiveRate 3 Tend � tð Þ

This equation defines the constraint for selecting the
new quantum size. Let Dnew(t) be the new quantum size
at time t. Dnew(t) is computed as

DnewðtÞ
� AremainingðtÞ 3 processingInputþ sendingOutputð Þ=
EremainingðtÞ � whileActiveRate 3 Tend� tð Þ
� �

ð5Þ

Tstart Tend

T

time

temperature Rmax

Rambient Rambient

t1

R(t1)

R(t2)

t2

Figure 5. The temperature change pattern of a sensor node.
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This constraint first imposes the precondition that
Eremaining(t)�whileActiveRate 3 (Tend–t)) so that the
remaining energy covers the remaining power con-
sumption just for being active. It then stipulates that
the quantum be big enough so that the weighted tran-
sitions for processing the remaining activity are
possible.

There are two unknown parameters in Equation (5)
in order to compute Dnew(t). The first one is Rmax,
which may be needed to calculate Aremaining(t) (Rmax is
needed only when the peak temperature is not reached
yet at time t). For this unknown parameter, we pro-
pose to use some empirically defined value based on
the fuel model and typical weather condition10,11 as an
estimation of Rmax. We note even if the real Rmax is
different from the empirically defined value, the system
still works because eventually the real Rmax will be
recorded (when the peak is detected). The second
unknown parameter in Equation (5) is Tend, that is,
the ending time of the fire, which is determined by the
fire behavior. Below we present two different ways to
treat this unknown parameter, which result in two dif-
ferent control policies for dynamically changing the
quantum size. We name them the Adjusted
Quantization Policy and the Adaptive Quantization
Policy, respectively.

3.2.1. Adjusted quantization policy. In the adjusted
quantization policy, we do not estimate the remaining
duration of the fire event, denoted as (Tend – t) in
Equation (5). The simplest way of doing this is to
totally ignore the whileActiveRate3 (Tend–t) element,
that is, setting (Tend–t)¼ 0. In this way, the result is
always optimistic in the sense that the computed Dnew

is always smaller than it should be. This is because the
energy consumption of staying in the active state is not
taken into account for computing Dnew. To alleviate
this problem, an alternative approach is to always
treat (Tend – t) as a constant number, which can be
empirically defined. Section 4.2 shows some results of
the adjusted quantization policy by setting (Tend – t)¼ 0
all the time.

3.2.2. Adaptive quantization policy. In the adaptive
quantization policy, we dynamically estimate the
remaining duration (Tend–t) of the fire event and use
that estimation to calculate the quantum size D.
We carry out the estimation based on a simple tech-
nique similar to extrapolating the slope of a curve in
numerical solutions. Specifically, we compute the rate
of temperature change from the last quantized input,
and use this rate to estimate the duration for the
remaining temperature change Aremaining(t). Let c(t)
denote the rate of change computed from the last quan-
tized input, then the remaining during (Tend – t) is

estimated as (Tend – t)¼Aremaining(t)/c(t). The adaptive
quantization policy is more ‘intelligent’ in the sense that
it adaptively adjusts the quantum size based on what is
the current rate of temperature change. Section 4.3
shows some experimental results of the adaptive quan-
tization policy.

Since several estimations are used in computing the
quantum size D, the effectiveness of adjusting D will
depend on the accuracy of these estimations.
However, even when imprecise estimations are used,
the control policies still work to some extent. This is
because D is dynamically computed at every update
and the system has the capability of adjusting itself to
overcome the estimation errors.

4. Experimental results

We present several experiment results to demonstrate
the activity-based approach described in this paper.
The experiments are carried out using wildfire spread
simulations based on the DEVS-FIRE model.12,13 The
sensor node model and the state transition weighting
functions are described in Section 3.1. Since we
focus on the temperature sensor data only, the logic
corresponding to the GPS sensor is not implemented in
the experiments. In addition, we set the time
ToDeactivate¼ 600, which is long enough so the
sensor node will not transition to the inactive state
before the fire event ends. This allows us to study the
quantum size as the only factor for affecting the energy
consumption of the sensor node.

Figure 6 shows a snapshot of the wildfire spread
simulation and the corresponding temperature map at
the moment. In Figure 6(a), the different colors in the
background represent different fuel models. The wind
speed used in the simulation is 12 miles/hour, while
the wind direction is from south to north. The fire
front is depicted in red, while the burned area is
depicted in black. Figure 6(b) shows the temperature
map in the fire field. The temperatures range from 27 to
about 300 Celsius, which are displayed in different
colors. We consider two identical sensor nodes placed
at two different locations in the fire field, as marked in
Figure 6(b). Sensor node 1 (denoted as sensor1) is
placed at the head of the fire (because the fire spreads
from south to north due to wind direction). Sensor
node 2 (denoted as sensor2) is placed at the left flank
of the fire.

4.1. Quantum size, sensor data and energy
consumption

Our first experiment aims to show the effect of quantum
size to the sensor data and to the energy consumption

444 Simulation: Transactions of the Society for Modeling and Simulation International 89(4)

 at PENNSYLVANIA STATE UNIV on September 11, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


of the sensor nodes. Figure 7(a) show the actual tem-
perature of the locations and the sensed temperatures
from the two sensors when both sensors use a fixed
quantum size D¼ 10. The actual temperature is calcu-
lated in the simulation based on a temperature model
that takes into account the distance to the closest fire
front and the diminish effect of temperature after the
area is burned out. Figure 7(b) shows the same infor-
mation when quantum size D¼ 30. The figures show
that the two sensor nodes have different temperature
curves. Sensor1’s temperature starts to increase (at a
rapid pace) at time 260 s. It reaches its peak tempera-
ture at time 580 s, and returns to the ambient temper-
ature at time 1340 s. At time 960 s sensor1’s
temperature fluctuates due to the non-linear fire-

spreading behavior caused by the non-uniform terrain
and fuel model around the location of sensor1. Note
that sensor1’s temperature changes faster than sen-
sor2’s temperature, because it is located at the head
of the fire where the fire spreads fast. Different from
sensor1, sensor2’s temperature rises at time 360 s at a
much slower pace. It reaches its peak at time 1400 s,
and returns to the ambient temperature at time 2860 s.
The duration of the fire event (between temperature
rises and returns) as sensed by sensor2 is 2500 s,
which is much longer than that of sensor1 (1080 s).
Figures 7(a) and (b) show that the quantization-based
sensors are able to keep track of the curve of the actual
temperature. The max error between the sensor data
and actual temperature is constrained by the quantum
size. The sensed temperatures are stepwise constants
due to the discrete event-based updates of the sensor
data. Comparing Figures 7(a) and (b), one can see that
the smaller the quantum size, the more accurate the
sensor data.

Figure 7(c) shows the energy consumption of the two
sensors when using the two different quantum sizes.
The two sensors have different rates of consuming the
energy. In the beginning, sensor1 consumes more
energy because it has more frequent temperate updates.
Then sensor1 becomes inactive after the fire burns out.
Sensor2 has a smaller rate of energy consumption in the
beginning. However, in the end sensor2 consumes more
energy than sensor1 consumes because it stays active
for a longer duration. In this example, sensor1 deacti-
vates at time 1340 s, while sensor2 deactivates at time
2860 s. For the same sensor node, as predicted, when
the quantum size increases, the number of temperature
updates decreases. As a result, the energy consumption
becomes smaller. Below we show how the quantum size
can be dynamically changed based on the energy
budget.

4.2. Results of adjusted quantization policy

Our second experiment shows results of adjusted quan-
tization policy. The experiment uses the same configu-
rations as in Section 4.1. The only difference is that
instead of maintaining a fixed quantum size, the two
sensor nodes dynamically change their quantum sizes
according to the adjusted quantization policy described
in Section 3.2. In the experiment, the initial quantum
size for both sensors is 10. We define an upper bound,
50, and a lower bound, 10, for the quantum size adjust-
ment. We carried out the experiment using two different
energy budgets: one is 35,000 and the other is 25,000.
Figure 8(a) show the results of sensor data when the
energy budget is 35,000; Figure 8(b) shows the results
of sensor data when the energy budget is 25,000.
Figure 8(c) shows the adjusted quantum sizes over

Figure 6. Wildfire spread simulation, temperature map, and
sensor nodes. (a) A wildfire spread simualtion. (b) The temper-
ature map and sensor nodes (color online only).
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time for both sensor nodes under the two different
energy budgets.

Figure 8 shows that the quantum sizes of the two
sensors are not fixed any more – they increase dynam-
ically based on the remaining energy budget. When the
energy budget is 35,000, sensor1’s quantum size is
maintained at 10 (because there is enough energy for
sensor1); sensor2’s quantum size increases to 11, 12, 14,
and finally to 48. When the energy budget is 25,000,
sensor1’s quantum size slightly increases to 12; sen-
sor2’s quantum size quickly increases and finally
reaches the upper bound of 50. Figure 8(c) shows that
the smaller the energy budget is, the more likely it is
that the quantum size increases to a large value. This is
expected because a large quantum size leads to less
energy consumption and thus can better meet the
energy budget. Figures 8(a) and (b) show that because
of the adjusted quantum size the sensor nodes are able
to monitor the fire event for longer (compared to using
a fixed quantum size 10) under a given energy budget.
In this example, when the energy budget is 35,000,
sensor2 runs out of energy at time 2340 s. This is
longer than 2260 s if a fixed quantum size 10 is used
(see the energy-consumption figure in Section 4.1).

When the energy budget is 25,000, sensor2 runs out
of energy at time 1940 s. This compares to 1740 s if a
fixed quantum size 10 is used. For both energy budgets,
sensor1 was able to finish monitoring the whole fire
event, which ends at time 1340 s. However, if a fixed
quantum size 10 is used, sensor1 will run out of energy
at time 1280 s.

This experiment demonstrates how the adjusted
quantization policy works. It shows that the adjusted
quantization policy is able to dynamically increase the
quantum size of a sensor node based on the remaining
energy budget and thus increases the life time of the
sensor node. However, the adjusted quantization
policy does not work in a very effective manner.
This is because the policy does not take the
whileActiveRate into account for adjusting the quan-
tum size (see Section 3.2).

4.3. Results of adaptive quantization policy

Our third experiment shows results of adaptive quanti-
zation policy. The experiment setup is the same as in
Section 4.2, with the only difference being changing the
quantum size according to the adaptive quantization

(a) (b)

(c)

Figure 7. Temperature data and energy consumptions when using different quantum sizes. (a) Quantum size D¼ 10. (b) Quantum
size D¼ 30. (c) Energy consumptions.
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policy instead of the adjusted quantization policy.
Figure 9(a) show the results of sensor data when the
energy budget is 35,000; Figure 9(b) shows the results
of sensor data when the energy budget is 25,000. Figure
9(c) shows the changing quantum sizes over time for
both sensor nodes under the two different energy
budgets.

From Figure 9(c) we can see that the quantum sizes
of the two sensor nodes change dynamically too.
However, different from the adjusted quantization
policy that increases (not decreases) the quantum size
only, the adaptive quantization policy increases and
decreases the quantum size adaptively according to
the remaining energy budget. In addition, the adaptive
quantization policy gives better results than the
adjusted quantization policy in terms of the sensor
nodes’ life time. For example, when the energy budget
is 25,000, sensor2 runs out of energy at time 2340 s.
This compares to 1940 s if using the adjusted quantiza-
tion policy and 1740 s if using a fixed quantum size of
10. When the energy budget is 35,000, sensor2 is able to
finish the whole fire event, which ends at time 2860 s.
However, sensor2 runs out of energy at time 2340 s if
using the adjusted quantization policy.

Figure 10 compares the energy consumptions
of the adjusted quantization policy and the adaptive
quantization policy. Figure 10(a) shows the energy
consumptions of sensor1 and sensor2 for energy
budget¼ 25,000. It can be seen that the adjusted quan-
tization policy and the adaptive quantization policy
result in different trajectories of energy consumptions.
Compared to the adjusted quantization policy, the
adaptive quantization policy gives a slower rate of
energy consumption. This is especially obvious for
sensor2 – sensor2 was able to monitor the fire event
for a significantly longer time period when using adap-
tive quantization policy. Figure 10(b) shows the
energy consumptions of sensor1 and sensor2 for
energy budget¼ 35,000. Similar to in Figure 10(a),
sensor2 has a slower energy-consumption rate when
using adaptive quantization policy. The energy con-
sumption of sensor1 follows about the same rate
for the two quantization policies. This is because
there is enough energy to monitor the whole fire event
for sensor1, and thus both policies suggest using
the smallest quantum size (quantum size¼ 10).
Figure 10 clearly shows the advantage of the adaptive
quantization policy over the adjusted quantization

(a) (b)

(c)

Figure 8. Temperature data and quantum sizes when using adjusted quantization policy. (a) Energy budget¼ 35,000. (b) Energy
budget¼ 25,000. (c) Quantum size adjustment over time.

Hu and Zeigler 447

 at PENNSYLVANIA STATE UNIV on September 11, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


policy in situations when there is a limited energy
budget.

The adaptive quantization policy gives better results
because it takes into account the whileActiveRate, as
explained in Section 3.2, and dynamically estimates

the remaining duration of the fire event. In this sense,
the adaptive quantization policy is ‘smarter’ than the
adjusted quantization policy. We note that an accurate
estimation of the remaining duration of the fire event is
important for the adaptive quantization policy to work

(a) (b)

(c)

Figure 9. Temperature data and quantum sizes when using adaptive quantization policy. (a) Energy budget¼ 35,000. (b) Energy
budget¼ 25,000. (c) Quantum size adjustment over time.

(a) (b)

Figure 10. Energy consumptions of adjusted quantization policy and adaptive quantization policy.
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well. In our current implementation, the controller of
the adaptive quantization policy computes the temper-
ature change rate from the most recent quantized input
for calculating the remaining duration of the fire event.
Better results could be reached if the temperature
change rate is computed from the last several inputs
instead of only the most recent input.

5. Conclusions

We presented an activity-based framework that links
information and energy, and showed how this frame-
work can be used to support energy-aware information
processing. For sensing applications, the activity con-
cept links the time course of a signal to the energy
required by a quantizer to monitor it over a finite inter-
val. An application to a wireless sensor node for detect-
ing and monitoring wildfires was presented. Two
policies of dynamically changing quantum size based
on energy budget were studied. Results obtained from
simulation experiments show that effective policies for
setting the quantum size can be developed to provide
energy-aware sensing using the activity-based frame-
work developed in this paper. From the application
point of view, the activity awareness sensing discussed
in this paper can be expanded in two directions in
future work. The first involves direct hardware imple-
mentation as in the DEVS System-on-a-Chip.14

The other direction is the application of activity in
learning and adapting to provide lower cost and
power consumption, and increased life time for sensor
nodes in deployments in stressful environments. More
generally, the activity concept might prove to be a
useful concept in the design of cyber-physical, and
other information technology systems, that need to
account for their use of energy, as well as their other
requirements.
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