Measuring the dynamics of information
processing on a local scale in time and space

Joseph T. Lizier

Abstract Studies of how information is processed in natural systems, in particular
in nervous systems, are rapidly gaining attention. Less known however is that the lo-
cal dynamics of such information processing in space and time can be measured. In
this chapter, we review the mathematics of how to measure local entropy and mutual
information values at specific observations of time-series processes. We then review
how these techniques are used to construct measures of local information storage
and transfer within a distributed system, and we describe how these measures can
reveal much more intricate details about the dynamics of complex systems than their
more well-known “average” measures do. This is done by examining their applica-
tion to cellular automata, a classic complex system, where these local information
profiles have provided quantitative evidence for long-held conjectures regarding the
information transfer and processing role of gliders and glider collisions. Finally, we
describe the outlook in anticipating the broad application of these local measures of
information processing in computational neuroscience.

1 Introduction

Analysis of directed information transfer between variables in time-series brain
imaging data and models is currently gaining much attention in neuroscience. Mea-
sures of information transfer have been computed, for example, in fMRI measure-
ments in the human visual cortex between average signals at the regional level [38]]
and between individual voxels [8]], as well as between brain areas of macaques from
local field potential (LFP) time-series [48]. A particularly popular topic in this do-
main is the use of information transfer measures to infer effective network connec-
tivity between variables in brain-imaging data [39} |91} 149, 188, 169, 154, |63], as well
as studying modulation of connection strength with respect to an underlying task
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[94]. Furthermore, measures of information transfer are used to reveal differences
between healthy and diseased states in neural data (e.g. for EEG measurements of
epilipsy patients in [[L0]) and in models (e.g. for Parkinson’s disease in [43])).

Much of this work quantifies information transfer from a source variable to a
target variable using the information-theoretic measure known as the transfer en-
tropy [182l], or its equivalent under linear-Gaussian conditions, the Granger causality
[28]. This information-theoretic approach to studying directed interactions in neural
systems can be viewed as part of a more broad effort to study distributed compu-
tation in complex systems in terms of how information is stored, transfered and
modified (e.g. [59, 60, |62]]). The approach is highly appropriate in computational
neuroscience, and indeed for complex systems in general, because:

e these concepts of computation are meaningful and well-understood (e.g. infor-
mation transfer as reflecting directed coupling between two variables, informa-
tion storage as predictability or structure in a time-series process);

o the quantities measured (e.g. transfer entropy for measuring information transfer)
are well-defined and can be measured on any type of time-series data (continuous
or discrete-valued);

e the quantities are at heart model-free (in contrast to the Granger causality lineari-
sationﬂ and detect non-linear interactions and structure; and

e distributed computation is the language in which dynamics are often described
in neuroscience (e.g. “the brain represents and processes information in a dis-
tributed fashion and in a dynamical way” [27]) and complex systems in general
(e.g. claims that small-world structures have “maximum capability to store, pro-
cess and transfer information” [42]).

Now, such work on distributed computation to date typically focuses on the
(time) average information transfer, which is how the transfer entropy and other
information-theoretic measures are traditionally defined. Yet the dynamics of trans-
fer from a source to a target can also be quantified at individual observations or
configurations of the variables using the local transfer entropy [59]. Such local mea-
sures can be defined for any traditional information-theoretic variable, including for
related measures of information storage and processing (e.g. [62]). To be explicit,
local information-theoretic measures characterise the information attributed with
specific measurements x and y of variables X and Y, rather than the average infor-
mation associated with these variables.

This local perspective can reveal dynamical structure that the average cannot.
Applied to time-series data, local measures tell us about the dynamics of information
in the system, since they vary with the specific observations in time, and local values
are known to reveal more details about the system than the averages alone [16) 83|
84]. To be specific, a measured average of transfer entropy does not tell us about
how the directed relationship between two variables fluctuates through time, how
different specific source states may be more predictive of a target than other states, or
how coupling strength may relate to changing underlying experimental conditions.

! This also contrasts with dynamic causal modeling, a model-based approach that compares a set
of a priori defined neural models and tests how well they explain the experimental data [25].
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Indeed, the ability to investigate time-series dynamics of distributed computation
in complex systems provides an important connection from information theory to
dynamical systems theory or non-linear time-series analysis (e.g. see [81} 41]). We
use the term information dynamics to describe the study of distributed computation
in complex systems in terms of how information is stored, transferred and modified
591160, 62]]. The word dynamics is a key component of this term, referring to both:

1. That we study the dynamic state updates of variables in the system, decompos-
ing information in the measurement of a variable in terms of information from
that variable’s own past (information storage), information from other variables
(information transfer) and how those information sources are combined (infor-
mation modification);

2. That we study local information-theoretic measures for each of these variables,
quantifying the dynamics of these operations in time and space.

In this chapter, we review how such local information-theoretic measurements
can be made, and describe how they are used to define local measures of informa-
tion storage and transfer in distributed computation in complex systems. We begin
by describing the relevant information-theoretic concepts in Sect. [2] before provid-
ing a detailed presentation of how local information-theoretic measures are defined
in Sect. [3] We then provide an overview of our framework for information dynam-
ics in Sect. 4] describing the measures used for information storage and transfer,
and how they can be localised within a system in space and time using the tech-
niques of Sect.[3] Next, we review in Sect. [5]the application of these local measures
of computation to cellular automata, a simple discrete dynamical model which is
known to exhibit complex behaviour and emergent coherent structures (known as
particles or gliders) resembling coherent waves in neural dynamics [27]. This appli-
cation demonstrates the utility of these local measures of information storage and
transfer, by providing key insights into the dynamics of cellular automata, includ-
ing demonstrating evidence for long-held conjectures regarding the computational
role of the emergent structures (e.g. gliders as information transfer entities). Most
importantly, the local measures are shown to provide insights into the dynamics
of information in the system that are simply not possible to obtain with traditional
averaged information-theoretic methods.

We finish the chapter by describing in Sect. [6] further such insights into the dy-
namics of information that have since been obtained with these local measures for
other systems. For example, the measures have revealed coherent information cas-
cades spreading across flocks (or swarms) [92] and in modular robots [S7], in anal-
ogy to the aforementioned gliders in cellular automata. They have also demonstrated
the key role of information transfer in network synchronization processes, in partic-
ular in indicating when a synchronized state has been “computed” but not yet ob-
viously reached [9]. Just like the cellular automata examples, these demonstrate the
ability of local information dynamics to reveal how the computation in a system un-
folds in time, and the dynamics of how separate agents or entities interact to achieve
a collective task. Crucially, they allow one to answer meaningful questions about
the information processing in a system, in particular: “when and where is informa-
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tion transferred in the brain during cognitive tasks?”, and we describe a preliminary
study where this precise question is explored using fMRI recordings during a but-
ton pressing task. As such, we demonstrate that local information dynamics enables
whole new lines of inquiry which were not previously possible in computational
neuroscience or other fields.

2 Information-theoretic preliminaries

To quantify the information dynamics of distributed computation, we first look to
information theory (e.g. see [85,113,165]]) which has proven to be a useful framework
for the design and analysis of complex self-organized systems, e.g. 14,77} 78 66].
In this section, we give a brief overview of the fundamental quantities which will be
built on in exploring local information dynamics in the following sections.

The fundamental quantity of information theory is the Shannon entropy, which
represents the average uncertainty associated with any measurement x of a random
variable X (logarithms are taken by convention in base 2, giving units in bits):

H(X)=-Y p(x)log, p(x). 40

The uncertainty H(X) associated with such a measurement is equal to the informa-
tion required to predict it (see self-information below).

The Shannon entropy was originally derived following an axiomatic approach.
This is important because it gives primacy to desired properties over candidate mea-
sures, rather than retrospectively highlighting properties of an appealing candidate
measure. It shifts the focus of any arguments over the form of measures onto the
more formal ground of selecting which axioms should be satisfied. This is partic-
ularly useful where a set of accepted axioms can uniquely specify a measure (as
in the cases discussed here). We highlight the axiomatic approach here because it
has persisted in later developments in information theory, in particular for the local
measures we discuss in Sect. [3|(as well as more recently in debate over measures of
information redundancy [95} 135, 153])).

So, the Shannon entropy was derived as the unique formulation (up to the base
of the logarithm) satisfying a certain set of properties or axioms [85] (with property
labels following [[76]):

e continuity with respect to the underlying probability distribution function p(x)
(PDF). This sensibly ensures that small changes in p(x) only lead to small
changes in H(X).

e monotony: being a monotonically increasing function of the number of choices
n for x when each choice x; is equally likely (with probability p(x;) = 1/n). In
Shannon’s words, this desirable because: “With equally likely events there is
more choice, or uncertainty, when there are more possible events” [85]].
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e grouping: “If a choice (can) be broken down into two successive choices, the
original H should be the weighted sum of the individual values of H” [85]]. That
is to say, “H is independent of how the process is divided into parts” [76]. This
is crucial because the intrinsic uncertainy we measure for the process should not
depend on any subjectivity in how we divide up the stages of the process to be
examined.

Further, note that the Shannon entropy for a measurement can be interpreted as
the minimal average number of bits required to encode or describe its value without
losing information [65} 13]].

The joint entropy of two random variables X and Y is a generalization to quan-
tify the uncertainty of their joint distribution:

H(X,Y) ==Y p(x,y)log, p(x,y). )

Xy

The conditional entropy of X given Y is the average uncertainty that remains
about x when y is known:

H(X|Y) ==Y p(x,y)log, p(x] ). 3)

x,y

The conditional entropy for a measurement of X can be interpreted as the minimal
average number of bits required to encode or describe its value without losing infor-
mation, given that the receiver of the encoding already knows the value of Y. The
previous quantities are related by the following chain rule:

HX,Y)=HX)+H(Y | X). “)

The mutual information (MI) between X and Y measures the average reduction
in uncertainty about x that results from learning the value of y, or vice versa:

I(X;Y) ==Y p(x,y)log, péx(l)y ) (5)
X,y
—H(X)—H(X|Y). (©6)

The MI is symmetric in the variables X and Y. The mutual information for measure-
ments of X and Y can be interpreted as the average number of bits saved in encoding
or describing X given that the receiver of the encoding already knows the value of Y,
in comparison to the encoding of X without the knowledge of Y. These descriptions
of X with and without the value of Y are both minimal without losing information.
Note that one can compute the self-information 1(X;X), which is the average in-
formation required to predict the value of X, and is equal to the uncertainty H(X)
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associated with such a measurement.

The conditional mutual information between X and Y given Z is the mutual
information between X and Y when Z is known:

I(X;Y Z)=—Zp(x,y7Z)10gzm @)
_H(X|Z)—H(X |Y.2). )

One can consider the MI from two variables Y1, Y, jointly to another variable X,
I(X;Y1,Y>), and using (@), (6) and (8) decompose this into the information carried
by the first variable plus that carried by the second conditioned on the first:

[(X;Yl,YQ):I(X;Yl)-‘rl(X;Yz|Y1). (9)

Of course, this chain rule generalises to multivariate Y of dimension greater than
two.

Note that a conditional MI I(X;Y | Z) may be either larger or smaller than the
related unconditioned MI I(X;Y) [65]. The conditioning removes information re-
dundantly held by the source Y and the conditioned variable Z about X (e.g. if both
Y and Z were copies of X). Furthermore, the conditioning also includes synergistic
information about X which can only be decoded with knowledge of both the source
Y and conditioned variable Z (e.g. where X is the result of an exclusive-OR or XOR
operation from Y and Z). These components cannot be teased apart with traditional
information-theoretic analysis; the partial information decomposition approach was
introduced for this purpose [95] (and see also [35} 132} 53]]).

We now move on to consider measures of information in time-series processes X
of the random variables {...X,_1, X, X,+1 ...} with process realisations {...x,—1, X, Xp+1 ...}
for countable time indices n. We refer to measures which consider how the informa-
tion in variable X, is related to previous variables, e.g. X,,_1, of the process or other
processes as measures of information dynamics.

The entropy rate is defined by [13]:

1
! 1 -
Hy(X) = lim ~H(X1,Xs,....Xy) (10)
o Lo o(n)
= lim —H(X;"), (11)
n—e n

(where the limit exists) where we have used Xg,k) ={Xy ki1, Xn—1,Xn} to de-
note the k consecutive variables of X up to and including time step n. This quantity
describes the limiting rate at which the entropy of n consecutive measurements of X

grow with n. A related definition is given byﬂ

2 Note that we have reversed the use of the primes in the notation from [13], in line with [14].
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Hy(X) = lim H[X, | X1, X3,..., Xy 1] (12)
. -1
= lim # [, | X" (13)

Cover and Thomas [[13]] point out that these two quantities correspond to two subtly
different notions: the first is something of an average per symbol entropy, while the
second is a conditional entropy of the last random variable given the past. These
authors go on to demonstrate that for stationary processes X, the limits for the two
quantities H[/l (X) and Hy (X) exist (i.e. the average entropy rate converges) and are
equal.

For our purposes in considering information dynamics, we are interested in the
latter formulation Hy, (X ), since it explicitly describes how one random variable X,
is related to the previous instances X,(f:ll). For practical usage, we are particularly
interested in estimation of H,, (X) with finite-lengths &, and in estimating it regard-
ing the information at different time indices n. That is to say, we use the notation

Hy; (X,41,k) to describe the conditional entropy in X, | given XSLM:

Hy (X ,K) = H [ X1 | X1 (14)

Of course, letting k = n and joining and (14) we have lim, e Hy (Xy41,n) =
Hy(X).

3 Local information theoretic measures

In this section, we describe how one may obtain /ocal information measures with
reference to their more well-known average information-theoretic counterparts. Lo-
cal information-theoretic measures characterise the information attributed with spe-
cific measurements x and y of variables X and Y, rather than the average information
associated with these variables. Local values within a global average are known to
provide important insights into the dynamics of nonlinear systems [[16].

We begin by defining local values of the entropy and conditional entropy (Shan-
non information content values) in Sect. 3.1} and then describe local mutual in-
formation and conditional mutual information in Sect. 3.2} Next, in Sect. 3.3] we
consider the meaning and properties of these local values where where X and Y are
time-series processes and local information-theoretic measures characterise the in-
formation attributed at each local point in time in these series. Finally, we describe
in Sect. 3.4 the mechanics of how these local information-theoretic measures can be
practically quantified, using various types of estimators.

Before beginning, we note that such local information-theoretic measures have
been used (with less explicit presentation) in various earlier studies in complex sys-
tems science, e.g. for the local excess entropy [83]], the local statistical complexity
[83, 184]], and the local information [36]. Yet relatively little exploration has been
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made into the dynamics of these local information measures in complex systems,
and certainly none had been made into the local dynamics of information storage,
transfer and modification, as we will review in Sect. 4]

3.1 Shannon information content and its meaning

The Shannon information content or local entropy of an outcome x of measure-
ment of the variable X is [65]:

h(x) = —log, p(x). (15)

Note that by convention we use lower-case symbols to denote local information-
theoretic measures throughout this chapter. The Shannon information content can
be shown to be the unique formulation (up to the base of the logarithm) satisfying
the following properties [[1]:

o grouping (pi(x1) x p2(x2)) = h(p1 (x1)) +h(pa(x2)). where h(p(x)) = ~log, p(x) =
h(x), and p; and p; (both satisfying 0 < p < 1) can be interpreted as representing
the probabilities of two independent events x| and x;

e monotonically decreasing with p(x); and

e continuity with p(x).

Note that these three properties map directly to the three properties for the (average)
Shannon entropy (see Sect. [2). Also, noting that this quantity is also equivalent to a
local self-information, it can also be derived (see [22, Chapter 2]) by starting with
the local mutual information (see Sect. 3.2).

Now, the quantity %(x) is simply the information content attributed to the spe-
cific symbol x, or the information required to predict or uniquely specify that spe-
cific value. Less probable outcomes x have higher information content than more
probable outcomes, and we have i(x) > 0. Specifically, the Shannon information
content of a given symbol x is the code-length for that symbol in an optimal encod-
ing scheme for the measurements X, i.e. one that produces the minimal expected
code lengthﬂ

In this light, one views the Shannon entropy as the “entropy of an ensemble” [65]]
of the outcomes x of the random variable X, with probabilities p defined over the
alphabet A, of possible outcomes. That is, H(X) is the average or expectation value
of the Shannon information content for each symbol x € A, (compare to (IJ)):

H(X) =Y p(x)h(x), (16)
= (h(x))- (17)

3 Note that this “optimal code-length” may specify non-integer choices; full discussion of the im-
plications of this, practical issues in selecting integer code-lengths, and block-coding optimisations
are contained in [[13| Chapter 5].
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As we will see, each average information-theoretic measure is an average over its
associated local quantity.

In the mathematics above, we see the average or expectation value as being taken
over each symbol x = m (where m € {0,...,M — 1} without loss of generality for
some M discrete symbols). We can also view it however as being an average over
each observation or measurement x; (where i is a measurement index) of X that
we used to construct our probability distribution function p(x). To do this, we start
from the operational definition of the PDF for each symbol: p(x = m) = C(X;m),
where ¢(x = m) is the count of observations of the symbol m out of the N total
observations. To precisely compute this probability, the ratio should be composed
over all realisations of the observed variables (as described in [83]); realistically
however, estimates will be made from a finite number of observations N. We then
re-write (I using this definition:

c(x=m)

N log, p(x =m), (18)

HX)=-)

and then further expand using the identity c(x = m) = ¥<“7" 1.

g=1
c(x=m) 1
HX) ==Y ) ylogplx=m). (19)
m  g=1

This leaves a double sum running over i. each actual observation g, ii. for each
possible observation x = m. This is equivalent to a single sum over all N observations
xi, i =1...N, giving:

1 N

H(X)= N Z log, p(xi), (20)
i=1

= (h(x1));; @2n

as required. To reiterate, we refer to h(x;) as a local entropy because it is defined
locally for each observation x;.

At this point, we note that the above derivation shows that the PDF p(x) for the
local value h(x) is evaluated at a specific local observation x, but the function p is
defined using all of the relevant observations. This is a subtle point - the evaluation
of p is local to the observation x, but we need other observations to define the func-
tion p in order to make this evaluation. We revisit this concept when we consider
time-series processes in Sect. [3.3]

Now, we note that one can also define conditional Shannon information con-
tent (or local conditional entropy) [65]:

h(x|y) = —logy p(x|y), (22)

and that these quantities satisfy the chain rule in alignment with their averages:
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h(x,y) = h(y) +h(x|y). (23)

In this way, we see that the information content of a joint quantity (x,y) is the code
length of y plus the code length of x given y. Finally, we note that this quantity is also
referred to as conditional self-information and can also be derived (see [22, Chapter
2]) by starting with the local conditional mutual information (see Sect. [3.2).

3.2 Local mutual information and conditional mutual information

Next, we consider localisations of the mutual information. One way to think about
this quantity is to build the local mutual information directly from Shannon infor-
mation content or local entropy measures, in alignment with its average definition,
ie.

i(x;y) = h(x) —h(x|y), (24)
~ooplxly)
= log, o) (25)

In this way, we see that the local mutual information is the difference in code lengths
between coding the value x in isolation (under the optimal encoding scheme for X),
or coding the value x given y (under the optimal encoding scheme for X given Y). In
other words, this quantity captures the coding “cost” for x in not being aware of the
value y. Similarly, the local conditional mutual information can be constructed as:

i(xy|z) =h(x|z) —h(x|yz2), (26)
. plx|yz)
=log, 7[)()6'2) . 27

Here, we see that the local conditional mutual information is the difference in code
lengths (or coding cost) between coding the value x given z (under the optimal en-
coding scheme for X given Z), or coding the value x given both y and z (under the
optimal encoding scheme for X given Y and Z).

More formally however, Fano [22] ch. 2] set out to quantify “the amount of infor-
mation provided by the occurrence of the event represented by y; about the occur-
rence of the event represented by x;.” He derived the local mutual information i(x;y)
to capture this concept, as well as the local conditional mutual information
i(x;y | z) (27), directly from the following four postulates:

o once-differentiability with respect to the underlying probability distribution
functions p(x) and p(x | y);

o identical mathematical form for the conditional MI and local conditional
MI, only with p(x) replaced by p(x | z) and p(x | y) replaced by p(x | y,2);

e additivity for the information provided by y and z about x, i.e.: i({y,z};x) =
i(ysx) +i(zx | y);
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e separation for independent ensembles XY and UV, i.e. where we have p(x,y,u,v) =
p(x,y)p(u,v) then we must have i({x,u};{y,v}) = i(x;y) +i(u;v).

Crucially, Fano’s derivation means that i(x;y) and i(x;y | z) are uniquely specified,
up to the base of the logarithm.

Of course, we have I(X;Y) = (i(x;y)) and I(X;Y | Z) = (i(x;y | z)) as per the
averaged entropy quantities in the previous section. It is particularly interesting that
Fano made the derivation for local mutual information directly, and only computed
the averaged quantity as a result of that. This contrasts with contemporary perspec-
tives which generally give primary consideration to the averaged quantity. (This is
not the case however in natural language processing for example, where the local
MI is commonly used and known as the point-wise mutual information, e.g. [68]]).

We also note that i(x;y) is symmetric in x and y (like I(X;Y)), though this was
not explicitly built into the above postulates.

Next, consider that the local MI and conditional MI values may be either posi-
tive or negative, in contrast to the local entropy which cannot take negative values.
Positive values are fairly intuitive to understand: the local mutual information in
is positive where p(x | y) > p(x), i.e. knowing the value of y increased our
expectation of (or positively informed us about) the value of the measurement x.
The existence of negative values is often a concern for readers unfamiliar with
the concept, however they too are simple to understand. Negative values simply
occur in (25) where p(x | ¥) < p(x), i.e. knowing about the value of y actually
changed our belief p(x) about the probability of occurrence of the outcome x to
a smaller value p(x | y), and hence we considered it less likely that x would occur
when knowing y than when not knowing y, in a case were x nevertheless occurred.
As an example, consider the probability that it will rain today, p(rain = 1), and
the probability that it will rain given that the weather forecast said it would not,
p(rain=1|rain_forecast =0). Being generous to weather forecasters for a
moment, let’s say that p(rain =1]| rain_forecast =0) < p(rain = 1), so
we would have i(rain = l;rain_forecast = 0) < 0, because we considered it
less likely that rain would occur today when hearing the forecast than without the
forecast, in a case where rain nevertheless occurred. These negative values of MI are
actually quite meaningful, and can be interpreted as there being negative informa-
tion in the value of y about x. We could also interpret the value y as being misleading
or misinformative about the value of x, because it had lowered our expectation of
observing x prior to that observation being made in this instance. In the above ex-
ample, the weather forecast was misinformative about the rain today. One can also
view the negative values using , seeing that i(x;y) is negative where knowing y
increased the uncertainty about x.

Importantly, these local measures always average to give a non-negative value.
Elaborating on an example from Cover and Thomas [13| p.28], “in a court case,
specific new evidence” y “might increase uncertainty” about the outcome x, “but
on the average evidence decreases uncertainty”. Similarly, in our above example,
while the weather forecast might misinform us about the rain on a particular day, on
average the weather forecast will provide positive (or at least zero!) information.



12 Joseph T. Lizier

Finally, we note that the local mutual information i(x;y) measures we consider
here are distinct from partial localization expressions, i.e. the partial mutual infor-
mation or specific information I(x;Y') [18]], which consider information contained in
specific values x of one variable X about the other (unknown) variable Y. Crucially,
there are two valid approaches to measuring partial mutual information, one which
preserves the additivity property and one which retains non-negativity [[18]. As de-
scribed above however, there is only one valid approach for the fully local mutual
information i(x;y) (and see further discussion in [56]).

3.3 Local information measures for time series

Now, consider X, ¥, and Z, as the variables of time-series processes X, Y and Z
with specific measurements (x,,yn,z,) at each time point n = 1,... N (though the
specific time interval is arbitrary).

The local information-theoretic measures, e.g. i(x,;y,), then characterise the in-
formation attributed at each local point in time in these series. Furthermore, where
X is a multivariate spatiotemporal series with measurements x;, at spatial points i
for each time n, then local information-theoretic measures, e.g. i(X; 55 %; n+1), charac-
terise the information attributed at each local spatiotemporal point in the series, and
one can form spatiotemporal profiles of the information characteristics. Such local
characterisation is what we mean by the local measures being useful for studying
the dynamics of information in space and time. We shall explore examples of such
dynamics in the next sections.

As described earlier for /(x), computing a local measure requires evaluating the
probability distribution function (PDF) p(x) for the given local observation x, how-
ever the PDF itself must be defined using all of the relevant observations of the
variable X. Furthermore, where X is a time series, it is clear that the observations
to construct the PDF for evaluating p(x,) at x, are not local in time to that obser-
vation x,. We must carefully consider which parts of the time series X are used to
construct the PDF — one should select observations across which the time series
is stationary or in the same phase of a cyclostationary process when constructing
PDFs for information-theoretic functions.

Often, this may mean using a sliding window technique to construct the PDF
— i.e. to evaluate p(x,) we may use observations {x,_r,...,Xy+7 } (for some T) to
construct the PDF, assuming that the time series is stationary over that time-interval.
While one would wish to maximise the size of the time-window in order to have
many samples to estimate the PDF, this must be balanced against these stationarity
considerations.

An alternate ensemble approach may be to sample many repeat time series X;
(where i is an instance, trial or realisation index of the time-series) with measure-
ments x; ,, where stationarity is assumed at fixed time points n over all samples
i. In this case, p(x;,) is constructed for each x;, using the ensemble of samples
for all time-series instances i but with the same 7, and the PDF is then somewhat
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local in time. Gémez-Herrero et al. [26] use a hybrid ensemble — sliding-window
approach, estimating PDFs over values x; , for all trials i within some time-window
t—o <n<t+ 0, giving the measures a local flavour (discussed further in the chap-
ter by Vicente in this book). Also, note that TRENTOOL (transfer entropy toolbox)
[49]] implements such an ensemble approach for PDF estimation. For ergodic pro-
cesses, the time-window and ensemble approaches are theoretically equivalent.

Now, note that the sliding-window technique described above only refers to con-
structing the PDF using all observations from that window — it does not force us
to compute the average measure, e.g. H(X), over all observations in that window
{Xn-7, ..., Xnt1 } Instead, once the PDF is obtained, we may evaluate the local val-
ues of entropy and (conditional) mutual information. Averaging can of course be
done, e.g. [90]], but while averaging in a sliding-window approach does provide a
more local measure than averaging over all available observations in the time series
X, it is not local in the same sense as the term is used here (i.e. it does not look at
the information involved in a computation at a single specific time step).

Still on averages, recall that average information-theoretic measures represent
averages over local measures at each observation (see ). For time-series X, if
the whole series is stationary (or if we look at data from identical phases of a cyclo-
stationary process) then we can take the time-average of all local values in order to
compute the relevant averaged information-theoretic measure, i.e.:

H(X) = (h(xa)) (28)

"

Alternatively, if we are taking an ensemble approach with observations x; , for
each time series realisation or trial X;, then we can take an average across all reali-
sations, e.g.:

H(Xy) = (h(xin));, (29)

to compute an average measure at the given time index n (across realisations or
trials). Indeed, this approach can be quite useful to obtain a “local” quantity in time
H(X,), while mitigating against the large variance in local values (noted in [26]).
Of course, the PDFs could be estimated using a hybrid ensemble — sliding-window
approach, as noted above [26]].

3.4 Estimating the local quantities

As described above, appropriately selecting the observations to use in the PDF is
one challenge associated with estimating these local quantities properly. Another
challenge is to select the type of estimator to use, and to properly extract local prob-
ability estimates from it for evaluating the local information quantities. Full details
on information-theoretic estimators are given in a separate chapter of this book by
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Vicente. In this subsection we specifically describe evaluation of the local quantities
using various estimators.

When we have discrete-valued data, estimating the local measures is relatively
straightforward. One simply counts the matching configurations in the available data
to obtain the relevant probability estimates (p(x | y) and p(x) for mutual informa-
tion), and then uses these values directly in the equation for the given local quantity
(e.g. for local mutual information) as a plug-in estimate.

For continuous-valued data where we deal with the differential entropy [13]] and
probability density functions, estimation of the local quantities is slightly more com-
plicated and depends on the estimator being used.

Using kernel-estimators (e.g. see 82, 41])), the relevant probabilities (e.g. p(x | y)
and p(x) for mutual information) are estimated with kernel functions, and then these
values are used directly in the equation for the given local quantity (e.g. (23)) as a
plug-in estimate (see e.g. [61]]).

With the improvements to kernel-estimation for mutual information suggested by
Kraskov et al. |45, 144] (and extended to conditional mutual information and trans-
fer entropy by [24} 126]), the PDF evaluations are effectively bypassed, and for the
average measure one goes directly to estimates based on nearest neighbour counts
ny and n, in the marginal spaces for each observation. For example, for Kraskov’s
algorithm 1 we have:

1(X:;Y) = y(k) — (y(ne+ 1)+ y(n,+1)) + y(N), (30)

where y denotes the digamma function, and the values are returned in nats rather
than bits. Local values can be extracted here simply by unrolling the expectation
values and computing the nearest neighbour counts only at the given observation
(x,), e.g. for algorithm 1:

i(x:5) = Y(k) = Yo+ 1) =y, + 1)+ (V). G1)

This has been observed as a “time-varying estimator” in [26] and used to estimate
the local transfer entropy in [S0] and [89].

Using permutation entropy approaches [3] (e.g. symbolic transfer entropy [87]),
the relevant probabilities are estimated based on the relative ordinal structure of
the joint vectors, and these values are directly used in the equations for the given
quantities as plug-in estimates (e.g. see local symbolic transfer entropy in [[72]).

Finally, using a multivariate Gaussian model for X (which is of d dimensions),
the average entropy has the form [[13]:

H(X) = 3n((27e)! | 2 ) (32)

(in nats) where | Q | is the determinant of the d x d covariance matrix Q = X7X
(for row vectors X), and the overbar “represents an average over the statistical en-

4 Open-source code is available for local information-theoretic measures (using all of the estimator
types considered here) in the Java Information Dynamics Toolkit on Google code [51].
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semble” [6]]. Any standard information-theoretic measure of the variables (at the
same time step), e.g. mutual information, can then be obtained from sums and dif-
ferences of these joint entropies. While the PDFs were again effectively bypassed in
the average, the local entropies (and by sums and difference other local measures)
can be obtained by first reconstructing the probability of a given observation x in a
multivariate process with covariance matrix (2 :

1
Vamyd [ @2 7P

(where u is the expectation value of x), then using these values directly in the equa-
tion for the given local quantity as a plug-in estimateE]

P = (3w wewr), o

4 Local measures of information processing

In this section, we build on the fundamental quantities of information theory, our
first look at dynamic measures of information, and on the dynamics of local in-
formation measures in time, to present measures of the dynamics of information
processing. We briefly review the framework for information dynamics which was
recently introduced in [58 159,160 62| 52]].

The fundamental question the measures of this framework address is: “where
does the information in a random variable X, 1 in a time series come from?”. This
question is addressed in terms of information from the past of process X (i.e. the
information storage), information contributed from other source processes Y (i.e. the
information fransfer), and how these sources combine (information modification).
Here we describe local measures of information storage and transfer, and refer the
reader to [60, 23} 53] regarding information modification.

4.1 Local information storage

The active information storage Ay was introduced [62]] to measure how much of
the information from the past of the process is observed to be in use in computing
its next stateE] The active information storage Ay is the average mutual information

between realizations xg,k) of the past state Xﬁ,k) (as k — o) and the corresponding

5 See the next section, Sect. regarding how this method can be used to produce a local Granger
causality, as a local transfer entropy using a Gaussian model estimator.

6 This contrasts with related measures including: the statistical complexity [1S] which measures
all information stored by the system which may be used in the future; and the excess entropy
[311114] which measures that information which is used by the system at some point in the future.
Of course, this means that the excess entropy measures information storage that will possibly but
not necessarily be used at the next time step n+ 1, which is greater than or equal to that measured
by the active information storage. See further discussion in [62].
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realizations x4 of the next value X, 11 of a given time series process X:

AX = khm Ax(k), (34)
—So00
Ax (k) =1 [ X3 X1 (35)

We note that the limit k — oo is required in general so as to capture all relevant
information in the past of X, unless the next value x, 1 is conditionally independent
()

of the far past values x, , given xﬁlk) [62]. Empirically of course, one is limited to

finite-k estimates Ay (k)n

Now, the local active information storage ax (n+ 1) is the local mutual informa-
tion between realizations xslk) of the past state Xg,k) (as k — o0) and the corresponding
realizations x,,y| of the next value X, 1. This is computed as described for local mu-
tual information values in Sect. The average active information storage Ay is

the expectation of these local values:

Ax = (ax(n+1)), (36)

ax(n—l—l):klimax(n—i—l,k), 37)

Ax (k) = (ax(n+1,k)), (38)

ax (n+1,k) = i(xsx5,41), (39)
Pl | x0)

=log, 17 /) 40

& p(xn-H) “0)

The local values of active information storage measure the dynamics of information
storage at different time points within a system, revealing to us how the use of mem-
ory fluctuates during a process. Where the observations used for the relevant PDFs
are from the whole time series of a process (under an assumption of stationarity, as
outlined in Sect. , then the average Ax (k) is the time-average of the local values
ay (n +1, k)

We also note that since [62]:

A(X) = H(X) — Hy (X), (41)

then the limit in (34) exists for stationary processes (i.e. A(X) converges with k —
o). A proof for convergence of a(x,.1) with k — oo remains a topic for future work.

As described for the local mutual information in Sect. ax (n+1) may be pos-
itive or negative, meaning the past history of the process can either positively inform
us or actually misinform us about its next value [62]. An observer of the process is
misinformed where, conditioned on the past history the observed outcome was rel-
atively unlikely as compared to the unconditioned probability of that outcome (i.e.
(X1 | x,(f{)) < p(xn+1)). In deterministic systems (e.g. CAs), negative local active
information storage means that there must be strong information transfer from other
causal sources.
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4.2 Local information transfer

Information transfer is defined as the amount of information that a source process
provides about a target (or destination) process’ next state that was not contained in
the target’s past. This definition pertains to Schreiber’s transfer entropy measure
[82], which has become a very popular tool in complex systems in general (e.g.
[96, 164! (73115, 159, 155, [7]]) and in computational neuroscience in particular (e.g. [91}
491140, (88,154, 19])).

The transfer entropy (TE) [82] captures the average mutual information from re-

alizations yff) of the state Yg,l) of a source time-series process Y to the corresponding
realizations x,.1 of the next value X, of the target time-series process X, condi-

tioned on realizations xﬁ,k) of the previous state Xﬁ,k):

Ty_x(l) = ]}1_{210 Ty x (k,1), (42)
Tyx (k) =1 Y X0 | XP]. (43)

Schreiber emphasized that, unlike the (unconditioned) time-differenced mutual in-
formation, the transfer entropy was a properly directed, dynamic measure of infor-
mation transfer rather than shared information.

There are a number of important considerations regarding the use of this mea-
sure. These are described more fully in the chapter by Wibral in this book, and
summarised as follows.

First, in general, one should take the limit as k — oo in order to properly embed

or represent the previous state X,(qk) as relevant to the relationship between the next

value X,y and the source YS,” [S9]. Note that k can be limited here where the next
value x,,+ is conditionally independent of the far past values x,(fj)k given (x,(lk) yVn)-
We observe that this historical information conditioned on by the transfer entropy is
exactly that provided by the active information storage. As such, setting k properly
in this manner gives the observer the perspective to properly separate information
storage and transfer in the distributed computation in the systems, and allows one to
interpret the transfer entropy as properly representing information transfer [59,156].
Empirically of course one is restricted to finite-k estimates Ty _,x (k, ).

Also, note that the transfer entropy can be defined for an arbitrary source-target
delay, i.e. measuring / [YEQM;XHI | Xf,k)}, and indeed that this should be done for
the appropriate causal delay u > 0 [93]]. For ease of presentation here, we describe

the measures for # = 1 only, though all are straightforward to generalise.

Furthermore, considering the source state y,(ll) rather than a scalar y,, is most ap-

propriate where the observations y mask a hidden Markov process which is causal to
X, or where multiple past values of Y in addition to y, are causal to x, . Otherwise,
where y, is directly causal to x,+1, and where it is the only direct causal source in
Y, weuse only I =1 [59,156].
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Finally, for proper interpretation as information transfer, Y is constrained among
the causal information contributors to X [56]]. We have also provided a thermody-
namic interpretation of transfer entropy in [[79]], as being proportional to external
entropy production, possibly due to irreversibility.

Now, we continue on to extract the local transfer entropy ty_,x (n+ 1) [39] as
a local conditional mutual information using the approach described in Sect. It
is the amount of information transfer attributed to the specific configuration or real-
ization (X, ,x,S’”,y,S”) at time step n+ 1; i.e. the amount of information transfered
from process Y to X at time step n+ 1:

Ty—x (1) = (ty=x(n+1,1)), (44)

ty_>x(n+1 l) 1m tY_)X(n+l k l) 45)

Ty_>x(k l) <lyﬁx(l’l+1 k l)> 46)

tyox (n+ 1k D) = iy e | x5, 47
p(xn+l |Xn 7y£ll))

=logy ——MmM8M8M8M8 —~—. (48)

Pl | x5

These local information transfer values measure the dynamics of transfer in time be-
tween any given pair of processes within a system, revealing to us how information
is transferred across the system in time and space. Fig. indicates a local transfer
entropy measurement for a pair of processes ¥ — X.

As above, where the observations used for the relevant PDFs are from the whole
time series of the processes (under an assumption of stationarity, as outlined in
Sect. then the average Ty _,x (k,1) is the time-average of the local transfer values
tYﬁX(n"' lvk’l)'

As described for the local conditional mutual information in Sect. tysx(n+
1) may be positive or negative, meaning the source process can either positively
inform us or actually misinform us about the next value of the target (in the context
of the target’s past state) [59]. An observer of the process is misinformed where,
conditioned on the source and the past of the target the observed outcome was rel-

atively unlikely, as compared to the probability of that outcome conditioning on the

past history only (i.e. p(x,+1 |x,<1k)7y,(f)) < (st | xﬁ,k))).

Noting the equivalence of the transfer entropy and the concept of Granger causal-
ity [28] when the transfer entropy is estimated using a Gaussian model [4]], we ob-
serve that the local transfer entropy — when estimated with a Gaussian model as
described in Sect.[3.4]- directly gives a local Granger causality measurement .

Now, the transfer entropy may also be conditioned on other possible sources Z
to account for their effects on the target. The conditional transfer entropy was
introduced for this purpose [59, 160]:
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space/variables
n-k+1
n-l+1
variable Y
time
_____ . n-1
L n
t (n+lkI)
e A n+1
Y

Fig. 1 Local transfer entropy ty_,x (n+ 1,k,I = 1) indicated by the blue arrow: information con-
tained in the realization y, of the source variable Y about the next value x,; of the destination
variable X at time n+ 1, in the context of the corresponding realization xs,k) of the destination’s
past state.

Tyxz(1) = ]}1_{130 Ty x|z (k,1), (49)
Ty izl ) =1 Y X1 | X, 2] (50)

Note that Z may represent an embedded state of another variable and/or be explicitly
multivariate. Transfer entropies conditioned on other variables have been used in
several biophysical and neuroscience applications, e.g. [20, 21} 88].

We also have the corresponding local conditional transfer entropy:

Tyxiz(k,0) = (ty xjz(n+ 1,k 1)), (51)

(0

k 1
p(anrl ‘ XEE )7Yn 7Zn)

tY~>X|Z(n+ 17ka1) = 10g2 (k) ) (52)
Pns1 | X0, 2n)
= iy 531 1%, 20). (53)

Of course, this extra conditioning can prevent the (redundant) influence of a com-
mon drive Z from being attributed to Y, and can also include the synergistic contri-
bution when the source Y acts in conjunction with another source Z (e.g. where X is
the outcome of an XOR operation on Y and Z).
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We specifically refer to the conditional transfer entropy as the complete transfer
entropy (with notation 7y, (k,/) and #y_,y(n+ 1,k,1) for example) when it con-
ditions on all other causal sources Z to the target X [59]]. To differentiate the condi-
tional and complete transfer entropies from the original measure, we often refer to
Ty —x simply as the apparent transfer entropy [59] - this nomenclature conveys that
the result is the information transfer that is apparent without accounting for other
sources.

Finally, note that one can decompose the mutual information from a set of
sources to a target as a sum of incrementally conditioned mutual information terms
[60, 156, 153]]. For example, for a two source system we have:

I 14X V10 Yo ) = 1% 1 X))+ 1K 131 | X))+
HI(Xpi1: Yo | X 1100, (54)

= AX (k) + TY] —X (k) + TYQ*}X‘Y] (k)

This equation could be reversed in the order of ¥; and Y, and its correctness is
independent of k (so long as k is large enough to capture the causal sources in the
past of the target). Crucially, this equation reveals the nature in which information
storage (Ax) and transfer (Ty, - x, etc.) are complementary operations in distributed
computation.

5 Local information processing in cellular automata

In this section, we review the application of local information storage and transfer
measures to cellular automata (as first presented in [58} 159,156,160} 162, 61]]), in order
to demonstrate the ability of the local measures to reveal deeper insights into the dy-
namics of complex systems than their averaged and more well-known counterparts.

Cellular automata (CAs) are discrete dynamical systems with an array of cells
that synchronously update their value as a function of a fixed number of spatial
neighbours cells using a uniform rule [97]. The update rule is specified by listing
the next value for a given cell as a function of each possible configuration of its
neighbourhood in a rule table — see Table [I]— and summarising this specification in
a single number (known as a Wolfram number; see [97]). We focus here on Elemen-
tary CAs (ECAs), which are 1D arrays of binary-valued cells with one neighbour
on either side.

Although the behaviour of each individual cell in a CA is very simple, the (non-
linear) interactions between all cells can lead to very intricate global behaviour,
meaning CAs have become a classic example of self-organised complex dynamics.
Of particular importance, CAs have been used to model real-world spatial dynamical
processes, including fluid flow, earthquakes and biological pattern formation [70].
Indeed, CAs have even been used in neural network models to study criticality in
avalanches of activity [[75,167]. While they may not be the most realistic microscopic
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Table 1 Rule table for ECA rule 54. The Wolfram rule number for this rule table is composed
by taking the next cell value for each configuration, concatenating them into a binary code starting
from the bottom of the rule table as the most significant bit (e.g. b00110110 here), and then forming
the decimal rule number from that binary encoding.

Neighbourhood configuration for cell i at time n Next cell value x: at time 7 4 1
cell x;_1 , value (Ieft)[cell x;,, value[cell xiy , value (right) it
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

neural model available, it is certainly true that CAs can exhibit certain phenomena
that are of particular interest in neuroscience, including avalanche behaviour (e.g.
[[750 180,47, 167]) and coherent propagating wave-like structures (e.g. [27, [L7]).

Indeed, the presence of such coherent emergent structures: particles, gliders,
blinkers and domains; is what has made CAs so interesting in complex systems
science in general. A domain is a set of background configurations in a CA, any of
which will update to another configuration in the set in the absence of any distur-
bance. Domains are formally defined by computational mechanics as spatial pro-
cess languages in the CA [33]. Particles are considered to be dynamic elements of
coherent spatiotemporal structure, which are disturbances or lie in contrast to the
background domain. Gliders are regular particles, blinkers are stationary gliders.
Formally, particles are defined by computational mechanics as a boundary between
two domains [33]; as such, they can be referred to as domain walls, though this term
is usually reserved for irregular particles. Several techniques exist to filter particles
from background domains (e.g. 29,130, 33} 34} 98} 136, 137, 184} 159, 160, [62]).

These emergent structures have been quite important to studies of distributed
computation in CAs, for example in the design or identification of universal compu-
tation (see [70]), and analyses of the dynamics of intrinsic or other specific computa-
tion (46,33, 71]]). This is because these studies typically discuss the computation in
terms of the three primitive functions of computation and their apparent analogues
in CA dynamics [70,46]:

e blinkers as the basis of information storage, since they periodically repeat at a
fixed location;

e particles as the basis of information transfer, since they communicate information
about the dynamics of one spatial part of the CA to another part; and

e collisions between these structures as information modification, since collision
events combine and modify the local dynamical structures.

Previous to the work reviewed here however, these analogies remained conjecture
only, based on qualitative observation of CA dynamics. In the following subsections,
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we review the applications [39, 160, 62} 58, 56] of the local information storage and
transfer measures described in Sect. 4l to cellular automata.

These experiments involved constructing 10 000 cell 1-dimensional CAs, and
executing the relevant update rules to generate 600 time steps of dynamics. All
resulting 6 x 10° observations of cell-updates are then used to compose the relevant
PDFs, and the local measures of information storage and transfer were computed
for each observation using these PDFs. Specifically, local active information storage
ax (n,k = 16) is computed for each cell X for each time step n, while local transfer
entropy ty_,x (n,k = 16,1 = 1) is computed for each time step n for each target cell
X and for the two causal sources Y on either side of X (referred to as channels j =1
and —1 for transfer across 1 cell to the right or left). The use of all observations
across all cells and time steps implies an assumption of stationarity here. This is
justified in that the large CA length and relativity short number of time steps (and
ignoring of initial steps) is designed to ensure that an attractor is not reached while
the typical transient dynamics of the CA are well-sampled. Note also that [ =1 is
used since we directly observe the interacting values and only one previous time
step is a causal source here. As such, in line with we have

I(Xn+l;{Xl(1k)7Yl,naYr,n}) = AX(k) + TYlﬂx(k) + TY,%X‘Yl(k)a (55)

where Y; represents the causal source to the left (channel j = 1) and Y, the causal
source to the right (channel j = —1) — although their placement is interchangeable
in this equation.

Sample results of this application are displayed for rules 54 and 18 in Fig. [2]
and Fig. |3| The figures displayed here were produced using the open source Java
Information Dynamics Toolkit (JIDT) [51], which can be used in Matlab, Octave
and Python as well as Java. All results can be reproduced using the Matlab/Octave
script DirectedMeasuresChapterDemo2013.minthe demos/octave/-
CellularAutomata example distributed with this toolkit.

These applications provided the first quantitative evidence for the above conjec-
tures, and are discussed in the following subsections. But the most important result
for our purposes is that the local measures reveal richly-structured spatiotem-
poral profiles of the information storage and transfer dynamics here, with in-
teresting local features revealed at various points in space-time. It is simply not
possible for these dynamics to be revealed by the average measures, be they aver-
ages across all cells and times or averages just across all cells in time. These features
are uniquely provided by considering the local dynamics of information processing
in CAs, and are discussed in the following subsections.
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Fig. 2 Local information dynamics in ECA rule 54 for the raw values in|(a)|(black for “1”, white
for “0”). 35 time steps are displayed for 35 cells, and time increases down the page for all CA
plots. All units are in bits. [(b)] Local active information storage; Local apparent transfer entropy:
one cell to the right, and @]one cell to the left per time step.

5.1 Blinkers and background domains as information storage
entities

The first and most expected result is that blinkers (regular, stationary particles)
and regular background domains are dominant information storage entities
[62]], e.g. see Fig.[2(b)} This is because these structures are temporally periodic, and

so the past state of a cell X,(lk) is highly predictive of the next value x,,; | — this means
that we have p(x,41 | x ) > p(xy41), giving large positive values of ax(n+ 1,k)

via (@0).

In contrast, we see in Fig.[2(b)|and Fig. that moving particle structures (both
regular gliders and domain walls) are associated with negative local information
storage ay (n+ 1,k). This is because at these locations, the past state of a cell x,(,k)
is part of the background domain and observing it would normally predict that the

background domain continues. Since a particle is encountered at the cell instead



24 Joseph T. Lizier
S— - " 11
10 10 1o
2
: :
20 ] 20¢ . .
12
s
30F 30F
13
.
:
a0l J a0t g
b
sof " 50 I-s
- 10 20 30 40 50 10 20 30 40 50
(a) Raw CA (b) ax(n,k=16)
. - 7 . - 8
. =
6
10 10} 7
L] 5 L 6
14
20 = 20 = 5
13
- 1, - .
. F
30 L L 30+ u o
11 3
a0t i a0l 2
4 _1 1
50k . | _ w . 4 -'2 50k . . _ w . 4 0
10 20 30 40 50 10 20 30 40 50

(c) tyx(n,k =16) left — j = —1 channel

(d) ty_x(n,k=16) left — j = —1 channel

Fig. 3 Local information dynamics in ECA rule 18 for the raw values in (black for “17,
white for “0”). 50 time steps are displayed for 50 cells, and all units are in bits. Local active
information storage; [(c)] Local apparent transfer entropy one cell to the left per time step; [(d)] Local
complete transfer entropy one cell to the left per time step.

(k)

however, this past state x;, ’ is in fact misinformative about the next value x,,; .

That is to say, we have p(x,+1 | x,(f)) < p(x4+1), giving negative values of ax (n +
1,k) via . We note that these misinformative values can only occur (for this
deterministic system) where another information source is having a relatively large
predictive effect on the target — to explore these further, we turn our attention to
local information transfer in the next subsection.

Finally, we note that these results required a large enough k to properly capture
the past state of the cell, and could not be observed with a value say of k =1 (as
discussed in [62]).
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5.2 Particles, gliders and domain walls as dominant information
transfer entities

Perhaps the most important result from our application to CAs is that local infor-
mation transfer is typically strongly positive at moving particles in comparison to
blinkers and background domains [S9]. To clarify, this is when the local information
transfer is measured at a particle in the same direction or channel j as the macro-
scopic motion of that particle. For example, see the highlighting of left and right
moving gliders for rule 54 in Fig. and Fig. 2(d)| by transfer entropy to the left
and right respectively, and similarly for the left moving sections of domain walls for
rule 18 in Fig. and Fig. [3(d)| by transfer entropy to the left (TE to right omit-
ted). In these examples, the past state of the target cell xﬁk) is part of the background
domain and so is misinformative about the next value x,; where the particle is
encountered. In contrast, the source cell y, which is in the particle at the previous
time step n (be that the left or right neighbour, as relevant for that particular parti-
cle) is highly predictive about the next value of the target (in the context of its past).

As such, we have p(x,11 | X,(lk>,yn) > p(Xnt1 | xs,k)), giving large positive values of
l‘y_>x(l’l + 1,k> via .

These results for local transfer entropy are particularly important because they
provided the first quantitative evidence for the long-held conjecture that par-
ticles are the dominant information transfer agents in CAs. As stated above, it
is simply not possible for these space-time specific dynamics to be revealed by the
average transfer entropy, it specifically requires the local transfer entropy. Further-
more, the average values do not give so much as a hint towards the complexities of
these local dynamics: ECA rule 22 has much larger average transfer entropy val-
ues than rule 54 (0.19 versus 0.08 bits for each, respectively, in both left and right
directions), yet has no emergent self-organized particle structures [61]].

As per the information storage results, we note that these results required a large
enough k to properly capture the past state of the cell, and could not be observed
with a value say of k = 1 (as discussed in [59]). When linked to the result of mis-
informative storage at the particles from Sect. we see again the complementary
nature of information storage and transfer.

It is important to note that particles are not the only points with positive lo-
cal transfer entropy. Small positive non-zero values are also often measured in the
domain and in the orthogonal direction to glider motion in space-time (e.g. see
Fig. [39]. These correctly indicate non-trivial information transfer in these
regions (e.g. indicating the absence of a glider), though they are dominated by the
positive transfer in the direction of glider motion.
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5.3 Sources can be locally misinformative

Next, we note that local information transfer is often found to be negative at moving
particles, when measured in the orthogonal direction to macroscopic particle motion
in space-time [59]]. For example, see the right-moving gliders in Fig. or right-
moving domain walls in Fig. [3(c)). This is because the source Y here, being on the
opposite side of the target to the incoming particle and therefore still part of the
domain observed in the target’s past, would suggest that this domain pattern would
continue, which is misinformative. That is to say, we have here p(x,1 | xf,k) n) <
p(xnt1 | xﬁ,k)), giving negative values of ty_x (n+ 1,k) via .

As described in Sect. [4.2] a source can be locally misinformative but must be
positively informative on average (or at least provide zero information). These neg-
ative or misinformative values are quite useful, since they imply that there is an extra
feature in the dynamics that is unaccounted for in the past of the source and target
alone. In the case of deterministic systems, this means that more sources must be
examined to explain the dynamics, as explored in the next subsection.

5.4 Conditional transfer entropy is complementary

Fig. @ displays a profile of the local conditional transfer entropy fy x|z applied
to rule 18 (discussed in detail in [59])). This is the transfer entropy from the source
cell Y on the right of the target X, conditioned on the other source cell Z on the left.
Because we condition on all of the other causal sources here, this measurement may
also be referred to as a complete transfer entropy [39].

This profile is rather different to that of the apparent transfer entropy ty_,x for
the same channel (i.e. from the same relative source) displayed in Fig. The
first noticeable difference is the checkerboard pattern of transfer in the background
domain, which is only visible with the conditional measure. This pattern forms due
to complex dynamics in the domain here, with two interleaving phases. The first
phase occurs at every second cell (both in space and time), and is simply a ‘0’ —
at these cells there is strong information storage alone (see Fig. [3(b)) because the
cell value is predictable from its past (which predicts the phase accurately). The
other phase occurs at the alternate cells, and is a ‘0’ or a ‘1’ as determined via an
exclusive OR (or XOR) operation between the neighbouring left and right cells. As
such, apparent transfer entropy from either left or right cell alone provides almost no
information about the next value (hence absence of apparent transfer in the domain
— see Fig. [3(c)), whilst conditional transfer entropy provides full information about
the next value because the other contributing cell is taken into account (hence the
strong conditional transfer at every second cell in Fig. 3(d)).

The other noticeable difference between these profiles is that the conditional
transfer entropy does not have any negative local values, unlike the apparent trans-
fer entropy. This is because examining the source in the context of all other causal
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sources in this deterministic system necessarily provides more information than not

examining the source. That is to say, there are no unaccounted sources here which

could mislead the observer, unlike that possibility for the apparent transfer entropy.
There are two key messages from the comparison of these measures:

1. The apparent and conditional transfer entropy reveal different aspects of
the dynamics of a system — neither is more correct than the other; they are both
useful and complementary. This is a particularly important message, since often
the importance of conditioning “out” all other sources using a conditional mea-
sure is emphasised, without acknowledging the complementary utility retained
by the pairwise transfer entropy. Both are required to have a full picture of the
dynamics of a system;

2. The differences in local dynamics that they reveal simply cannot be observed
here by using the average of each measure alone.

5.5 Contrasting information transfer and causal effect

Finally, we note that differences between the concepts of information transfer (as
captured by the transfer entropy) and causal effect are now well established [2} 156}
11]]. We briefly review how the local perspective of transfer entropy was used to
provide insight into these differences in [S6].

Causal effect refers to the extent to which the source variable has a direct influ-
ence or drive on the next state of a target variable, i.e. “if I change the value of the
source, to what extent does that alter the value of the target?” [74, [2, [56]. In this
light, consider the causal effect of the left cell x;_; , in the seventh row of the rule
table for rule 54 in Table[I} i.e. “1 1 0 — 0”. Altering the value of this source has a
clear causal effect on the target, since it changes the rule being executed to “0 1 0 —
17 (i.e. we have a different outcome at the target). Crucially though, this particular
configuration (“1 1 0 — 07) is observed both in the (right-moving) gliders and in
the background domain of rule 54. This means that the same causal effect occurs in
both types of dynamics[]

This is quite different to our interpretation of information transfer in the previ-
ous sections however. This interpretation can be restated as: predictive information
transfer refers to the amount of information that a source variable adds to the state
change of a target variable; i.e. “if I know the state of the source, how much does that
help to predict the state change of the target?” [56]. In dealing with state updates
of the target, and in particular in separating information storage from transfer, the
transfer entropy has a very different perspective to causal effect. As we have seen,
local transfer entropy attributes large positive local values at the gliders here, be-
cause the source cells help prediction in the context of a target’s past, but attributes

7 Reference [56]), which covers this issue in more depth, explores measuring the causal effect in
these dynamics using the measure presented in [2].
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vanishing amounts in the domain, where stored information from a target’s past is
generally sufficient for prediction.

Again, neither perspective is more correct than the other — they both provide
useful insights and are complementary. This argument is explored in more depth in
[56]. Crucially, these insights are only fully revealed with our local perspective of
information dynamics here.

6 Discussion: relevance of local measures to computational
neuroscience

In the previous section, we have demonstrated that local transfer entropy and the
associated measures of local information dynamics provide key insights into local
information processing in cellular automata that cannot be provided with traditional
average information-theoretic measures. We have gone on to use these local tech-
niques to provide similar insights in other systems, such as:

e visualising coherent waves of motion in flocks (or swarms) as information cas-
cades spreading across the flock (as previously conjectured, [12]) using local
transfer entropy [92;
revealing coherent information transfer waves in modular robots [57];
demonstrating information transfer as a key driver in the dynamics of network
synchronization processes, with local values dropping to zero (i.e. the synchro-
nized state has been “computed”) before it is otherwise apparent that a synchro-
nized state has been either reached or determined [9].

We can reasonably expect local information transfer and storage to provide
new insights in a computational neuroscience setting also. As described earlier,
avalanche behaviour (e.g. [80, 147, [75]) and coherent propagating wave-like struc-
tures (e.g. [27,117]) are of particular interest in neuroscience, and particles and glid-
ers bear more than a passing resemblance to these coherent structures. Given that
local transfer entropy has been used to provide the first quantitative evidence that
similar propagating coherent structures in other domains are information transfer
entities (e.g. particles and gliders in cellular automata [59]], above, motion in flocks
and swarms [92], and in modular robotics [57]]), one expects that this measure will
be used to provide similar insights into these structures in neural systems.

Yet local transfer entropy will find much more broad application than simply
identifying local coherent structure. It offers the opportunity to answer the question:

“Precisely when and where is information transferred between brain regions?”

The where is answerable with average transfer entropy, but the when is only pre-
cisely answerable with a local approach. This is a fundamentally important question
for us to have the opportunity to answer, because it will provide insight into the pre-
cise dynamics of how information is stored, transferred and modified in the brain
during neural computation.
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For example, we have conducted a preliminary study applying this method to a
set of fMRI measurements where we could expect to see differences in local infor-
mation transfer between two conditions at specific time steps [50]. The fMRI data
set analyzed (from [86]]) is a ‘Libet’-style experiment, which contains brain activity
recorded while subjects were asked to freely decide whether to push one of two but-
tons (with left or right index finger). Significant differences (at the group level) were
found in the local transfer entropy between left and right button presses from a sin-
gle source region (e.g. pre-SMA) into the left and right motor cortices respectively.
Furthermore, simple thresholding of these local transfer entropy values provides a
statistically significant prediction of which button was pressed.

These results are a strong demonstration that local transfer entropy can usefully
provide task-relevant insights into when and where information is transferred be-
tween brain regions. Once validation studies have been completed in this domain,
we expect that further utility will be found for these local information-theoretic mea-
sures in computational neuroscience. There are many studies in this domain which
will benefit from the ability to view local information storage, transfer and modifi-
cation operations on a local scale in space and time in the brain.
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