
A Quantum Bit Commitment SchemeProvably Unbreakable by both PartiesGilles Brassard �Universit�e de Montr�eal y Claude Cr�epeau z�Ecole Normale Sup�erieure x Richard JozsaUniversit�e de Montr�eal y Denis Langlois zUniversit�e Paris{Sud {AbstractAssume that a party, Alice, has a bit x in mind, towhich she would like to be committed toward anotherparty, Bob. That is, Alice wishes, through a proce-dure commit(x), to provide Bob with a piece of evi-dence that she has a bit x in mind and that she cannotchange it. Meanwhile, Bob should not be able to tellfrom that evidence what x is. At a later time, Alicecan reveal, through a procedure unveil(x), the valueof x and prove to Bob that the piece of evidence sentearlier really corresponded to that bit. Classical bitcommitment schemes (by which Alice's piece of ev-idence is classical information such as a bit string)cannot be secure against unlimited computing powerand none have been proven secure against algorith-mic sophistication. Previous quantum bit commit-ment schemes (by which Alice's piece of evidence isquantum information such as a stream of polarizedphotons) were known to be invulnerable to unlimitedcomputing power and algorithmic sophistication, butnot to arbitrary measurements allowed by quantumphysics: perhaps more sophisticated use of quantumphysics could have defeated them.We present a new quantum bit commitmentscheme. The major contribution of this work is toprovide the �rst complete proof that, according tothe laws of quantum physics, neither participant inthe protocol can cheat, except with arbitrarily smallprobability. In addition, the new protocol can be im-plemented with current technology.�Supported in part by Nserc's E.W.R. Steacie MemorialFellowship and Qu�ebec's Fcar.yD�epartement d'Informatique et R.O., Universit�e de Montr�eal,C.P. 6128, succursale \A", Montr�eal (Qu�ebec), Canada H3C 3J7.e-mail: fbrassardgfjozsag@iro.umontreal.ca.z Part of this work was performed while visiting y.x Laboratoire d'Informatique de l'�Ecole Normale Sup�erieure,(CNRS ura1327), 45 rue d'Ulm, 75230 Paris CEDEX 05, France.e-mail:crepeau@dmi.ens.fr.{ Labo. de Recherche en Informatique, Universit�e Paris{Sud,Bâtiment 490, 91405 Orsay, France. e-mail: langlois@lri.lri.fr.

1 IntroductionAssume that a party, Alice, has a bit x in mind, towhich she would like to be committed toward anotherparty, Bob. That is, Alice wishes, through a proce-dure commit(x), to provide Bob with a piece of evi-dence that she has a bit x in mind and that she cannotchange it. Meanwhile, Bob should not be able to tellfrom that evidence what x is. At a later time, Alicecan reveal, through a procedure unveil(x), the valueof x and prove to Bob that the piece of evidence sentearlier really corresponded to that bit.Bit commitment schemes have several applicationsin the �eld of cryptographic protocols. In particularone can implement zero-knowledge proofs of a varietyof statements using bit commitment schemes [GMR89,GMW91, BCC88]. The �rst implementations of bitcommitment schemes were given in a computationalcomplexity scenario [Blu82]. Unfortunately, proofs oftheir (computational) security have always requiredan unproved assumption since otherwise they wouldimply very strong results such as P 6= NP.Over the last two decades a number of researchershave investigated the connection between cryptogra-phy and quantum physics, starting with the work ofWiesner in the late 1960's (though published muchlater [Wie83]), and continuing with the work of Ben-nett and Brassard [BBBW83, BB84, BB85, BBR88,BB89, BBBSS92] and later of Cr�epeau [CK88, Cr�e90,BC91, BBCS92, Cr�e93]. The security of these proto-cols would not be compromised if a cheater had un-limited computing power, but in essentially all cases ithas not yet been ruled out that still more sophisticateduse of quantum physics might defeat them.The �rst quantum bit commitment scheme everproposed is due to Bennett and Brassard [BB84] (ac-tually, the protocol they describe is only claimed toimplement coin tossing, but implicitly it implementsbit commitment). Their scheme had two major aws:it was impossible to use in practice because faint pulses



of light would compromise the security of the scheme(it required individual photons to be transmitted), andthe scheme could actually be cheated by Alice usingthe Einstein{Podolsky{Rosen e�ect [EPR35]. A laterprotocol of [BC91] did not su�er from these problemsbut was sensitive to transmission errors in the quan-tum channel and no formal proof of its security was,at the time, available.The protocol we describe in this current paper isan improvement on the protocol of [BC91], which candeal with transmission errors and is more e�cient. Wealso provide the �rst mathematical proof that the pro-tocol is perfectly secure, in the sense that neither partycan cheat without arbitrarily high probability of de-tection, according to the laws of quantum physics.As a side bene�t, the current result and proof pro-vide the missing piece to the protocol of [BBCS92] forquantum oblivious transfer. Thus, it is now possibleto prove the security of that scheme as well. In turn,this unconditionally secure quantum oblivious trans-fer protocol allows for provably unconditionally securediscreet two-party computation and decision making.2 The New Quantum Bit Com-mitment SchemeLet cj p denote the random variable that takes the bi-nary value 0 with probability p and 1 with probability1� p. We often drop the index when p = 12 and writecj instead of cj 12 . Also, denote by [ ]i the selectionfunction such that [a0; a1; :::; ak]i = ai. Let x � y de-note the Boolean scalar product, i.e. if xi; yi are theith bits of x and y we have x� y = nMi=1 xi ^ yi.Let$l = (j$i; jli) and %.&- = (j%. i; j&- i) denote re-spectively the bases of rectilinear and diagonal polar-ization in the quantum state space of a photon. Pleaseconsult the Appendix for an explanation of this nota-tion and a summary of relevant basic quantum physics.2.1 The formal protocolsLet " be an upper bound on the error rate of the quan-tum channel, i.e. the probability that a j$i polarizedphoton is detected as jli. In order for Alice to com-mit to a bit x, she uses protocol commit(x) with Bob.(an informal description of the protocol follows in Sub-section 2.2)

Protocol 2.1 ( commit(x) )1: Bob chooses a Boolean matrix G as the generat-ing matrix of a binary linear (n; k; d)-code C suchthat the ratio d=n > 10" and the ratio k=n = 0:52and announces it to Alice2: Alice chooses a non-zero random n-bit stringr  ( cj 1 cj 2::: cj n) and announces it to Bob3: Alice chooses a random n-bit codewordc ( cj 1::: cj k)G from C such that c� r = x4: nDOi=1� Alice chooses a random bit bi  cjand de�nes her transmission basis('i; '?i ) [$l ; %.&- ]bi� Alice sends to Bob a photon �i withpolarization ['i; '?i ]ci5: nDOi=1� Bob chooses a random bit b0i  cjand measures photon �i in basis(�i; �?i ) [$l ; %.&- ]b0i� Bob sets c0i  � 0 if �i is seen as �i1 if �i is seen as �?iLet c0; b and b0 be the vectors c0 = (c01c02 : : : c0n) ; b =(b1b2 : : : bn) ; b0 = (b01b02 : : : b0n) : Alice keeps x; c and bsecret until (and if) unveiling takes place, whereas Bobkeeps c0 and b0 secret forever. Theorem 3.4 shows thatan honest Alice does not reveal much about her secretbit x by sending codeword c on the quantum channel.If Alice subsequently decides to unveil her commit-ment, she initiates the following protocol with Bob.Protocol 2.2 ( unveil((c; b; x); (c0; b0)) )1: Alice reveals c, b and x to Bob2: Bob sets �  Xi j b0i=bi ci � c0in=23: if (� < 1:4"), (x = c�r) and (c is a codeword)then Bob outputs \accept"else Bob outputs \reject"



2.2 Intuition behind the protocolsIntuitively,Alice chooses a random vector r and a ran-dom codeword c such that c�r = x. She tells r to Bobin the clear, but she sends him c through the quan-tum channel. For this, she encodes each bit of c by aphoton polarized in a randomly chosen basis (rectilin-ear or diagonal): bit ci = 0 is thus encoded as j$i ifbi = 0 or as j%. i if bi = 1, whereas bit 1 may be en-coded either as jli or j&- i. Since Bob does not knowin which bases the photons are polarized, he measuresthem in randomly chosen bases. When he chooses thecorrect basis (b0i = bi), which happens with probabil-ity 12 , he obtains the correct bit (c0i = ci) except witherror probability at most ". On the other hand, whenhe chooses the wrong basis (b0i 6= bi), his bit is uncor-related with Alice's bit (c0i = ci with probability 12).Therefore Bob's reading of Alice's word c is correcton roughly 75% of the bits. (We shall see later that acheating Bob is able to get as much as about 85% ofthe bits correctly, and that this is the best possible.)The binary linear code C is chosen so that thereare exponentially many codewords around Bob's re-ceived c0 that are at the same Hamming distance asAlice's transmitted c. For this, the minimumdistancebetween codewords should not be too large. Becauser is chosen randomly, knowledge of r and c0 give Boban exponentially small amount of expected Shannoninformation on x = c� r. (See Theorem 3.4.) On theother hand, the minimumdistance between codewordsmust be su�ciently large to prevent Alice from �nd-ing two di�erent codewords c0 and c1 (together withpossibly fake sending bases b0 and b1) so that Bobwould be willing to blame on transmission errors thedi�erences between either codeword and his measuredc0. (See Theorem 3.7.) Thus we see that a balancingact is needed in the choice of code C to prevent bothAlice and Bob from cheating, thence the mysteriousparameters 10" and 0:52 in protocol commit.3 AnalysisThere are very few ways in which the above protocolsmight fail. This section is divided into four parts, eachanalysing one way in which failure could occur.� Bob gets too much information about x� Bob chooses an unsuitable G� Alice changes x without detection� Bob rejects a valid c

3.1 Analysis of Bob's informationabout xGiven the public parameters G and r, all the infor-mation available to Bob about x is provided to himthrough the quantum transmission of c in step 4. Weidentify the measurement that Bob may perform instep 5 which will maximize his information about c(and x). Let us �rst de�ne two magic constants thatwill be used later in the analysis:� = cos(�=8) � 0:9238795and � = sin(�=8) � 0:3826834:Let jBi denote the state midway between j$i andj%. i, and let jB?i denote the state midway betweenjli and j&- i, i.e.jBi = �j$i+ �jli and jB?i = ��j$i + �jli:3.1.1 Optimal measurementTheorem 3.1 The quantum measurement that willmaximize (cheating) Bob's information about x is themeasurement of each photon �i separately in the basis(�i; �?i ) = (B;B?).Proof. The density matrix �0 (please consult the Ap-pendix) describing the quantum mixture of states sentto Bob to represent a 0 in step 4 of the original pro-tocol commit is given by�0 = 12 j$ih$j+ 12 j%. ih%. j= 12 � 1 00 0 �+ 12 � 12 1212 12 � = � 34 1414 14 �and for a bit 1, the density matrix �1 is given by�1 = 12 jlihlj+ 12 j&- ih&- j =12 � 0 00 1 �+ 12 � 12 �12�12 12 � = � 14 �14�14 34 � :Consider a protocol commit0 that is identical tocommit except that step 4 becomes40: nDOi=1� Alice chooses a random bit bi  cj �2� Alice sends to Bob a photon �i withpolarization [jBi; jB?i]ci�bi



For the modi�ed protocol commit0 the density ma-trices �00; �01 describing the quantum mixtures sent toBob to represent a 0 and a 1 in step 4' are the sameas in commit:�00 = �2jBihBj + (1� �2)jB?ihB?j =�2� �2 ���� �2 �+ �2� �2 ������ �2 � = � 34 1414 14 ��01 = (1 � �2)jBihBj+ �2jB?ihB?j =�2� �2 ���� �2 �+�2� �2 ������ �2 � = � 14 �14�14 34 � :Furthermore, if we call �c the density matrix associ-ated with the mixture of states used in commit to sendc and similarly, �0c for commit0 we get�c = �c1 
 �c2 
 � � � 
 �cn = �0c1 
 �0c2 
 � � � 
 �0cn = �0cwhere the operation 
 is the tensor product. Finally,the density matrices %0; %1; %00; %01 describing the quan-tum mixtures of states sent to Bob to commit to a 0(or a 1) with the protocols commit and commit0 aregiven by%0 = Xfc2Cjc�r=0g �c2k�1 = Xfc2Cjc�r=0g �0c2k�1 = %00and%1 = Xfc2Cjc�r=1g �c2k�1 = Xfc2jc�r=1g �0c2k�1 = %01:Thus Bob is able to get exactly the same informa-tion about c and x in protocol commit as in commit0.(This follows from a theorem of quantum physics stip-ulating that mixtures with identical density matricescannot be distinguished by any quantum measurementwhatsoever.) We also observe that in the protocolcommit0 the measurement that will optimize Bob's in-formation about c (and thus x) consists of measuringevery single photon �i in basis (B;B?) since in thatbasis he gets all the information available! (All thephotons sent are either polarized as jBi or jB?i.) Wethus conclude that the optimal measurement for Bobin protocol commit is the same. In particular, anymore general joint measurement on all the photonstogether will be of no advantage. (This was the mainopen question of [BC91].) 3.1

3.1.2 Further analysisDespite the fact that the honest Bob is not expectedto perform the above optimal measurement, we showthat even if he did he would get very little informationabout x.We start with a lemma stating that the vector c0received by Bob must be fairly far from the vector csent by Alice. Let  = H�1(1=2) � 0:1100279.Lemma 3.2 Even if (cheating) Bob performs the op-timal measurement, there exists a positive constant� < 1 such that he ends up with a vector c0 at dis-tance less than n from c with probability at most �n.Proof. Assume that the quantum channel is noise-less (in reality things are even worse for a cheatingBob). When Bob performs the optimal measurement,his distribution on c0 is ruled by the fact that for alli, 1 � i � n; we have [Prob(ci = c0i) = �2]. Thereforethe number of di�erences between c and c0 is expectedto be �2n � :1464466n. We can use \Bernshtein's lawof large numbers" [Kra86] to estimate the probabilitythat the number of errors will be less than n.Theorem 3.3 (Bernshtein) Let x1; x2; :::; xn be in-dependent Bernoulli variables. If Prob(xi = 1) = pfor 1 � i � n then for all 0 < � � p(1� p) we haveProb(j nXi=1 xin � pj � �) � 2e�n�2 :Let xi be the indicator variable of ci; c0i, i.e. xi = ci�c0i.The number of di�erences between c and c0 is givenby Pni=1 xi and Prob(xi = 1) = �2. Therefore theprobability that c0 is at distance less than n of c isgiven byProb( nXi=1 xin � ) � Prob(j nXi=1 xin � �2j � �2 � )� 2e�n(�2�)2 � 2e�0:00132632n: 3.2We conclude that most of the time c0 is at distance atleast n from c.Theorem 3.4 Even if Bob knew the exact Hammingdistance d dH(c; c0), he would have very little infor-mation about x, when d > n.



Proof. The number of words at Hamming distance dfrom c0 is �nd�. Using the fact that d > n and thestandard approximation [MS77]2H(�)np8n�(1� �) � � n�n� � 2H(�)np2�n�(1� �) ;we get the lower bound�nd� > � nn� � 2H()npn = 2n=2pnbecause 8�(1 � �) � 1 precisely when � � �2 or � �1� �2, and also because H() = 1=2. If we divide by2n�k (the number of symdroms of the code C) we get:E(number of codewords at distance d) > 2k�n=2pnwhich is exponentially large in n as long as kn > 12 .Indeed, we show thatLemma 3.5 The number of codewords at distance dfrom c0 is at least 2k�n=2��npn except with probability2��n for any � > 0.Proof. Let Sw be the syndrome of a word w. LetNd(x; y) be the number of words with syndrome yat distance d from a �xed word w with syndromex (this function is well de�ned because its value isindependent of the speci�c choice of w; moreover,Nd(x; y) = Nd(~0; x � y) = Nd(y; x)). We �rst showthat Nd(Sc0 ; Sc) � 2�r (nd)2n�k with probability at least1� 2�r for any security parameter r > 0.Starting from word c, each syndrome s occursNd(Sc; s) times among the words at distance d from c.Therefore syndrome s has probability Nd(Sc; s)=�nd� =Nd(s; Sc)=�nd� of being selected, i.e. of being that of theactual c0. Thus, any syndrome s for which Nd(s; Sc) <2�r (nd)2n�k (which would be bad because it would meanless uncertainty for Bob) has probability of occurrenceless than (2�r (nd)2n�k )=�nd� = 12n�k 2�r. Even if all butone syndrome were in that category, their collectiveprobability would still be less than 2�r. This estab-lishes the claim that Nd(Sc0 ; Sc) � 2�r (nd)2n�k , exceptwith probability less than 2�r. Given that �nd� � 2n=2pn ,setting r = �n leads to the result of the lemma. 3.5From Bob's point of view, the codeword c is oneof the, at least 2k�n=2��npn many, equally likely code-words at distance d from c0 forming a set E. Thefollowing lemma says how much information Bob willconsequently have about c� r for a random r.

Lemma 3.6 ([BBR88]) If Bob has narrowed downthe value of c to a set E of equally likely candidatesand if a random subset of the bits of c is chosen, theexpected amount of Shannon information available toBob about the parity of the bits in this subset is lessthan 2=jEj ln 2 bit.In our case, this means that the number of bitsof information Bob has after seeing c0 is less than2pn2k�n=2��n ln 2 . This number of bits is exponentiallysmall as soon as k > n=2 + �n. Thus, if we pick� = 0:1 we �nd that the number of bits of informa-tion is at most 2�0:1npn= ln 2 whenever k=n > 0:51n,even if he knew the exact number of errors d. 3.4In reality, Bob's situation is much more di�cult: hemay not perform the optimal measurement, his mea-suring apparatus may be imperfect, and he does noteven know the exact number of errors. Since his infor-mation about x would be very small even if he knewd and made no mistakes, his actual knowledge cannotbe any better.3.2 Analysis of Bob's probability ofchoosing an unsuitable GIt is a well known fact [MS77] that a random binarymatrixG of size k�n de�nes a binary linear code withminimal distance at least d except with probability2��n as long ask < n�H(d=n)n� �n:In particular if we set " � 1% we �nd that a ran-dom binary matrix de�nes a binary linear code withminimal distance at least 10"n except with probability2�0:01n as long ask=n = 0:52 < 1�H(0:1)� 0:01:Therefore, Bob may choose G at random of size0:52n � n and only with probability 2�0:01n will thecode thus de�ned have minimal distance less than10"n, again, as long as " � 1%.3.3 Analysis of Alice's probability ofchanging x without detectionAlthough an honest Bob would not have as much in-formation about x as the cheating Bob who reads eachphoton in basis (jBi; jB?i), he would have somethingmore: the honest Bob has the ability to check thatAlice is indeed committed to some bit.



Theorem 3.7 There exists a positive constant � < 1with the following property: the probability that Aliceis able to announce either pair (c0; b0) or pair (c1; b1)at her choosing in protocol unveil leading Bob to ac-cept a 0 and a 1, is less than �n.Proof. Let (c0; b0) and (c1; b1) be any pairs of n-bitstrings such that c0 � r = 0 and c1 � r = 1. Sincec0�r 6= c1�r, it must be that c0 6= c1. By constructionof the code C, any two codewords must be at distanceat least 10"n from each other. Let I be the set ofindices on which c0 and c1 disagree: I = fi j c0i 6=c1ig. We show that whatever Alice does, with highprobability, I0  fi 2 I j c0i 6= c0i^b0i = b0ig or I1  fi 2 I j c1i 6= c0i^b1i = b0ig has size more than 0:7"n.Since I0 \ I1 = ;, and thus jI0 [ I1j = jI0j + jI1j, itsu�ces to showLemma 3.8 Except with probability �n for some con-stant � < 1,I0 [ I1 = fi 2 I j c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0ighas size more than 1:4"n.Proof. For each i 2 I considerProb(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i):The size of I0 [ I1 can be estimated by a binomialdistribution with respect to a lower bound for thisprobability. We start by giving such a lower bound.Lemma 3.9 For each i 2 I,Prob(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i) � �2Proof. First notice that for i 2 I, if b0i = b1i thenProb(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i) = 1=2 (1)since Bob has probability 12 of choosing the same basisb0i = b0i = b1i .The more complicated question is to determine thisprobability for b0i 6= b1i . Without loss of generality wemay assume b1i = c0i 6= c1i = b0i , since the only otherpossibility b0i = c0i 6= c1i = b1i , is treated similarly.Then we getProb(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i)= Prob(c0i = b0i) (2)

becauseProb(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i)= Prob(b1i 6= c0i^b0i = b0i_b0i 6= c0i^b1i = b0i)= Prob(c0i = b0i = b0i _c0i = b0i = b1i )= Prob(c0i = b0i)(The other case leads to Prob(c0i 6= b0i))But how small can Alice make these probabilities?Assume �rst that Alice sends Bob a photon �i polar-ized as a pure state j	i at step i (please consult theAppendix for the notion of pure states).Prob(c0i = b0i) = 12 h$j	i2 + 12h&- j	i2= 12 �(1; 0)�cos �sin ���2 + 12 �(�1p2 ; 1p2 )�cos �sin ���2for the � such that j	i = (cos �)j$i + (sin �)jli.ThereforeProb(c0i = b0i) = 12 cos2 � + 12 � sin � � cos �p2 �2= 12 + cos2 � � sin � cos �2 :The minimumand maximum of this expression are �2and �2. So, for any pure state j	i,�2 � Prob(c0i = b0i) � �2 (3)(and similarly �2 � Prob(c0i 6= b0i) � �2).It is a fact of quantum physics that the polariza-tion of any photon can be described by a mixture ofpure states (see the Appendix). Therefore, if �i isnot in a pure state, it may be represented as a mix-ture of pure states j	1i; j	2i; :::; j	mi with probabili-ties p1; p2; :::; pm such thatP pj = 1. We get the sameresult in this case since it holds for each j	ji individu-ally. We therefore conclude from (1), (2) and (3) thatin all cases, for each i 2 I�2 � Prob(c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i) � �23.9Now, since jIj = 10"n, jI0 [ I1j will be given by abinomial distribution with mean at least 10�2"n over10"n trials. Let ui be the characteristic function ofI0 [ I1, i.e.ui  � 1 if c0i 6= c0i^b0i = b0i_c1i 6= c0i^b1i = b0i0 otherwise



The probability that jI0[I1j < 1:4"n is therefore goingto be very small:Prob(jI0 [ I1j < 1:4"n)= Prob(Xi2I ui < 1:4"n)= Prob(Xi2I ui10"n < 0:14)= Prob(Xi2I ui10"n � �2 < 0:14� �2)� Prob(jXi2I ui10"n � �2j � �2 � 0:14)� 2e�10"n(�2�0:14)2� 2e�0:000415587"n: 3.8We conclude from the lemma, that except with prob-ability 2e�0:000415587"n, at least one of I0 or I1 musthave size more than 0:7"n and thus Bob would nec-essarily reject either (c0; b0) or (c1; b1) at step 3 ofprotocol unveil. 3.73.4 Analysis of Bob's probability of re-jecting a valid cDespite the good will of Alice, there is a small prob-ability that Bob will reject the correct pair (c; b) be-cause of unlikely extreme noise in the quantum chan-nel. We �nally show that this event occurs with expo-nentially small probability.Theorem 3.10 If Alice is honest, then there exists aconstant � < 1 such that an honest Bob rejects (c; b; x)with probability less than �n.Proof. An error will be observed by Bob exactly ifbi = b0i, while ci 6= c0i. The probability of such anevent due to noise is less than "2 , by de�nition of "and because Prob(b0i = bi) = 12 . What is therefore theprobability of observing at least 0:7"n errors?Let vi = � 1 if bi = b0i^ci 6= c0i0 otherwisebe the characteristic function of the observation of er-rors. The probability of observing more than 0:7"n er-rors is given by Prob(Pni=1 vi > 0:7"n) and is bounded

as followsProb( nXi=1 vi > 0:7"n)= Prob( nXi=1 vin � 0:5" > 0:2")� Prob(j nXi=1 vin � 0:5"j > 0:2")� 2e�n(0:2")2 = 2e�0:04"2n: 3.104 Conclusion and Open Ques-tionsWe have described a complete protocol for Bit Com-mitment based on the transmission of polarized pho-tons. We have shown that under the laws of quan-tum physics, this protocol cannot be cheated by eitherparty except with exponentially small probability (ex-ponential in the running time needed to implementthe honest protocol).A more thorough analysis is required to adjust allthe constants used in this paper to get the best per-formance from our construction. Better performancesmay probably be achieved by using a third conjugatetransmission-reception basis of circular polarization.This analysis will appear in the �nal version of thispaper.AcknowledgementsWe wish to thank Charles H. Bennett, Joe Kilian,Asher Peres, Louis Salvail, and Mikl�os Santh�a, for sup-port, suggestions and comments on this work. We aregrateful to Joe Kilian for noticing that a single code-word is su�cient in protocol commit, and to LouisSalvail for asking \Who will choose the code C?".Finally, we thank God for playing dice.References[BBBSS92] C.H. Bennett, F. Bessette, G. Brassard,L. Salvail, and J. Smolin. Experimentalquantum cryptography. Journal of Cryp-tology, 5:3{28, 1992.
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Appendix: Outline of Some Rel-evant Quantum TheoryIn quantum physics, the state space of a single photonis the collection of all unit vectors in a two dimen-sional complex Hilbert space H. We use the Diracbracket notation ([Sud86] chapter 2), commonly usedin physics, to denote the states. In this notation thestate vectors are written using right-handed pointedbrackets. If �uv� is a state in H (given in terms of itscomponents with respect to some basis) we writej i = �uv�:The corresponding left-handed bracket, enclosing thesame symbol, denotes the complex conjugate trans-pose h j = (u�; v�)and juxtaposition represents matrix multiplication.Thus if j 1i = �u1v1� j 2i = �u2v2�then h 1j 2i = (u�1; v�1)�u2v2�= u�1u2 + v�1v2is a complex number giving the inner product of thestates and j 1ih 2j = �u1v1� (u�2; v�2)= � u1u�2 u1v�2v1u�2 v1v�2 �is an outer product giving a linear operation on H,which maps a vector j�i to the vector j 1ih 2j�i. Inparticular j ih j is the operation of orthogonal pro-jection into the one dimensional subspace of H in thedirection of the unit vector j i.The states of horizontal and vertical polarization,denoted jli and j$i, form an orthonormal basis of H(called the rectilinear basis) as do the states of diago-nal polarization (at 45� and 135�) de�ned byj%. i = �jli+ j$i� =p2j&- i = �jli � j$i� =p2:

Another important basis is jBi; jB?i de�ned in Sec-tion 3.1, which corresponds to linear polarization in di-rections midway between the above two bases. (In thispaper we do not use photons with circular polariza-tion, which correspond to linear combinations of jliand j$i with complex, rather than real, coe�cients.)According to the formalism of quantum physics,any physical measurement on a photon is describedin terms of a decomposition of the Hilbert space Hinto a family of orthogonal subspaces, one for eachmeasurement outcome1. When a measurement is per-formed on a photon in state j i each outcome mayoccur with probability given by the squared length ofthe projection of j i into the corresponding subspace.As a result of the measurement, the original state j iis obliterated and replaced by the projected vector (re-normalized to unit length) corresponding to the seenoutcome. Thus, we may associate a measurement toany orthogonal basis of H. The rectilinear and diag-onal bases have the following \conjugacy" property:if a measurement in one basis is carried out on ei-ther vector of the other basis, then the two outcomesalways occur with probability 12 and all informationabout the measured state is obliterated. Thus we getzero information about which of the two basis stateswas supplied. However if a basis vector is measured inthe same basis, then it is identi�ed with certainty andthe state is left unchanged.In certain situations, the state of a photon maynot be describable by a \pure" state in H (that is,a vector in the Hilbert space). This occurs in twopossible ways (see [Sud86] chapter 5) (a) the state isknown only to the extent of being one of a \mixture" ofstates j 1i; : : : ; j ni with probabilities p1; : : : ; pn; (b)the photon is \entangled" with some other system andonly the larger joint system has a description as a purestate (in a larger Hilbert space). The situation (a)occurs in step 4 of protocol commit | Alice's signalto Bob for the value ci = 0 is one of two possible (nonorthogonal) states randomly chosen with probability 12(and similarly for the value 1). To the general mixturein (a) above we associate the density matrix� =Xi pi j iih ij;which is the average projection operator for the statedistribution. For the special case of a pure state j i,1Actually there is a more general notion of measurement, theso called POM or \Positive-Operator-Valued" measurements(see [Hel76, pp. 74{83] for details) which we omit for the sakeof clarity. However it is straightforward to see that the argu-ment in the proof of Theorem 3.1 also covers these more generalmeasurements.



the density matrix is simply j ih j. A straightforwardextension of the measurement theory outlined aboveshows that the results of any physical measurementwhatever on the mixture depend on the states andprobabilities constituting the mixture only throughthe combination �. This is rather curious since thesame density matrixmay arise from very di�erent mix-tures of states. Thus any two such mixtures, havingthe same density matrix, cannot be distinguished byany physical measurement. We exploit this propertyof quantum measurement theory in Theorem 3.1, us-ing the fact that a (12 ; 12) mixture of the non orthogo-nal states jli and j&- i has the same density matrix asthe (1 � �2; �2) mixture of the orthogonal states jBiand jB?i.With regard to the situation (b), the most famousexample of an entangled state is the joint state of twoparticles occurring in the Einstein{Podolsky{Rosen ef-fect [EPR35]. If a photon is entangled with any othersystem then it can be shown ([Sud86] chapter 5) thatthe photon alone may always be described by a suit-able density matrix, i.e. as far as measurements on thephoton alone are concerned, it is physically indistin-guishable froma suitable mixture of states, and followsthe analysis of (a). This fact is relevant in the proofof Lemma 3.9 (where Alice may attempt to cheat byentangling her photons with each other or with someother system, which is precisely how the 1984 quan-tum bit commitment scheme of Bennett and Brassardcould be broken [BB84]). Thus the density matrix for-malism provides a uniform way of describing a singlephoton in the most general possible situation.


