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Abstract. Self-organized formation of topographic 
maps for abstract data, such as words, is demonstrated 
in this work. The semantic relationships in the data are 
reflected by their relative distances in the map. Two 
different simulations, both based on a neural network 
model that implements the algorithm of the self- 
organizing feature maps, are given. For both, an 
essential, new ingredient is the inclusion of the con- 
texts, in which each symbol appears, into the input 
data. This enables the network to detect the "logical 
similarity" between words from the statistics of their 
contexts. In the first demonstration, the context simply 
consists of a set of attribute values that occur in con- 
junction with the words. In the second demonstra- 
tion, the context is defined by the sequences in which 
the words occur, without consideration of any as- 
sociated attributes. Simple verbal statements consist- 
ing of nouns, verbs, and adverbs have been analyzed in 
this way. Such phrases or clauses involve some of the 
abstractions that appear in thinking, namely, the most 
common categories, into which the words are then 
automatically grouped in both of our simulations. We 
also argue that a similar process may be at work in the 
brain. 

1 Hypotheses About Internal Representation 
of Linguistic Elements and Structures 

1.1 The Objective of this Work 

One of the most intriguing problems in the theory of 
neural networks, artificial and biological, is to what 
extent a simple adaptive system is able to find abstrac- 
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tions, invariances, and generalizations from raw data. 
Many interesting results, e.g., in pattern recognition 
(artificial perception of images as well as acoustical and 
other patterns) have already been obtained. Extraction 
of features from geometrically or physically related 
data elements, however, is still a very concrete task, in 
principle at least. A much more abstract and enigmatic 
object of study is cognitive information processing that 
deals with elements of consciousness and their relation- 
ships; it is frequently identified with the ability to use 
languages. The purpose of the present paper is to study 
whether it is possible to create in artificial neural 
networks abstractions such that they, at least in a 
primitive form, would reflect some properties of the 
cognitive and linguistic representations and relations. 

In particular we are here reporting new results 
which demonstrate that a self-organizing process is 
indeed able to create over a neural network topo- 
graphically or geometrically organized maps that 
display semantic relations between symbolic data. It 
may be proper to call such representations self- 
organizing semantic maps. 

We are also relating our results to the fundamental 
basis of cognition, namely, categorization of observa- 
tions. As the connection of these ideas to fundamental 
theories of knowledge might otherwise remain ob- 
scure, it may be proper to commence with a short re- 
view of the philosophical background, namely, the 
theory of categories as the ultimate framework of ab- 
stractions. 

1.2 On Categories and their Relation to Linguistic 
and Neural Representations 

The most general concepts or abstractions that are 
needed to interprete the empirical world are called 
categories; such basic reduced elements and forms of 
thinking and communication can also be encountered 
in all languages, primitive as well as more developed. 
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The categories have been supposed to embrace the 
whole domain of knowledge, and to form the basis of 
consciousness. Aristotle (384-322 B.C.) in fact already 
distinguished ten categories. The most common of 
them are: 1. Items (objects). 2. Qualities (properties). 3. 
States (or state changes). 4. Relations (spatial, tem- 
poral, and other). 

In languages, Category 1 corresponds to nouns, 
Category 2 to adjectives, and Category 3 to verbs, 
respectively. For the representation of Category 4, 
different languages use, e.g., adverbs, prepositions, 
postpositions, endings, inflections, or syntax (order of 
words). Naturally many auxiliary word classes are 
needed to interrelate phrases and clauses, to indicate 
logic modalities, as well as to facilitate inductive and 
deductive inference. 

The very deep original metaphysical meaning of 
"category" has to a large extent been lost in the 
common usage of this word. ~Categories" are often 
simply identified with classes of items such as animals, 
plants, nationalities, professions, etc. More accurately, 
such classes then only constitute subcategories of 
Category 1. 

Since representations of categories occur in all 
languages, many researchers have stipulated that the 
deepest semantic elements of any language must have a 
physiological representation in the neural realms; and 
since they are independent of the different cultural 
histories, it has been concluded that such represen- 
tations must have been inherited genetically. 

At the time when the genetic predisposition of 
language elements was suggested, there was no mech- 
anism known that would have explained the origin of 
abstractions in neural information processing other 
than evolution. It was not until "neural network" 
modeling reached the present level when researchers 
began to discover internal representations of abstract 
properties of signals from the physical network 
models. There exist at least two classes of models with 
this potential: the backpropagation network (Rumel- 
hart and McClelland 1984; Rumelhart et al. 1986), and 
the self-organizing [topological feature] map (Koho- 
nen 1982a-c, 1984). Such findings indicate that the 
internal representations of categories may be derivable 
from the mutual relations and roles of ~the primary 
signal or data elements themselves, as demonstrated 
below. 

However, it is not the purpose of this paper to 
contend that all representations in the biological brain 
would solely be acquired by learning. The adaptive 
principles discussed below must be regarded as 
theoretical frameworks, and the one-phase learning its 
simplest form. It is quite possible that a similar process 
is at work in the genetic cycles, although its explicit 
mechanisms are difficult to devise. 

It will now be proper to approach the problem of 
self-organizing semantic maps using data that con- 
tain implicit information relating to the simplest 
categories; if the latter are then detectable automati- 
cally, we may think that a significant step towards self- 
organizing linguistic processing has been taken. 

One aspect may still be emphasized. It is perhaps 
not reasonable to look for elements of languages in the 
brain. A more fundamental view is that the physiolog- 
ical functions are expected to reflect the categorical 
organization and not so much the detailed linguistic 
forms. 

1.3 Examples of Neural Network Models 
for Internal Representations 

1.3.1 Semantic Networks. For a straightforward 
materialization of the internal representations, the 
semantic networks have been suggested. In their 
original form they comprise a graph structure with 
nodes and links. The nodes may stand for items or 
concepts (sets of attributes), whereas the links usually 
indicate relations: the simplest binary relations repre- 
sent co-occurrences of items in the observed events, 
whereas labeled links describe their qualified relations. 
The semantic networks have also been supposed to 
have a one-to-one counterpart in neural cells and their 
interconnects, whereby a searching process would be 
interpreted as spreading activation in such a neural 
network (Quillian 1968; Collins and Loftus 1975). In 
view of the contemporary neurophysiological data, 
such a degree of specificity and spatial resolution is 
highly improbable in biology. One also has to realize 
that in the semantic-network model of the brain, 
predisposition of semantic meaning to the nodes and 
links has to be postulated; such a "mapping" is not 
derived from any self-organizing process. 

1.3.2 Hidden Layers in Backpropagation Networks. 
Whether the nowadays familiar feedforward "neural" 
networks with error-backpropagation learning may be 
regarded as biological models or not, cells or nodes in 
their "hidden layers" often seem to learn responses that 
are specific to some abstract qualities of the input in- 
formation (Rumelhart and McCleUand 1984; Rumel- 
hart et al. 1986; Sejnowski and Rosenberg 1987). 
However, it has to be emphasized that backpropa- 
gation is crucially based on supervised learning. The 
outputs, in relation to input stimuli, are forced to given 
values by optimization of the internal weight param- 
eters of the nodes of the network. In a multilevel 
network, with structured data, it may then happen that 
in order to reach the global optimum, some nodes of 
the innermost layers (hidden layers) become tuned to 
represent some kind of "eigendata" of the occurring 
signals, that then represent the "generalizations" or 
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"abstractions". It has recently been demonstrated that 
the weight vectors of the hidden layers may converge to 
values that encode linguistic items according to their 
semantic roles. These roles were defined explicitly in 
the learning process (Miikkulainen and Dyer 1988a, b). 

1.3.3 Self-Organizing [Topological Feature] Maps. A 
more genuine type of self organization is competitive 
(unsupervised) learning that is able to find clusters 
from the primary data, eventually in a hierarchically 
organized way. In a system of feature-sensitive cells (cf. 
Nass and Cooper 1975; Perez et al. 1975; Grossberg 
1976) competitive learning means that a number of 
cells is comparing the same input signals with their 
internal parameters, and the cell with the best match 
("winner") is then tuning itself to that input. In this way 
different cells learn different (average) aspects from 
their input, that then may be regarded as the simplest 
forms of abstractions. 

The self-organizing [topological feature] maps 
(Kohonen 1982a-c, 1984) are a further development of 
competitive learning in which the best-matching cell 
also activates its topographical neighbors in the net- 
work to take part in tuning to the same input. A 
striking, and by no means obvious result (cf. Sect. 3) 
from such a collective, cooperative learning is that, 
assuming the "neural network" as a two-dimensional 
sheet, the different cells become tuned to different 
inputs in an orderly fashion, defining some feature 
coordinate system over the network. After learning, each 
input elicits a localized response, whose position in the 
sheet reflects the most important "feature coordinates" 
of the input. This corresponds to a non-linear projec- 
tion of the input space onto the network that makes the 
most essential neighborhood relationships [topology] 
between the data elements geometrically explicit. In 
particular, if the data are clustered hierarchically, a 
very explicit localized representation of the same 
structure is generated. 

While the self-organizing maps, as such, have been 
used in many applications to visualize clustered data 
(cf. Kohonen 1984; Miikkulainen and Dyer 1988b), a 
much more intriguing possibility is that they are also 
directly able to create in an unsupervised process 
topographical representations of semantic, nonmetric 
relationships implicit in linguistic data, as will be 
pointed out in Sect. 4. 

2 Are the Information-Processing Functions 
in the Brain Localized? Justification of the Model 

2.1 General Issues Against 
and in Favor of Localization 

Behavioral psychology generally emphasizes the 
global and holistic nature of higher human infor- 

mation processing. Some earlier neurophysiological 
findings indeed seemed to support this view. Dis- 
tributedness of learning results in the cell mass of the 
brain was discovered in Lashley's classical experiments 
in 1938 (Beach 1960), which for a long time were 
interpreted such that the brain is a "black box" with 
more or less equipotential components that can even 
replace each other. An extreme view holds all attempts 
to isolate and locate cognitive functions in the brain as 
a modern form of phrenology. 

It is true that in a process that leads to a perception 
or action, many parts of the brain are involved, 
eventually in an iterative or recursive fashion. This, 
however, could be said of any device or machinery that 
has been designed to perform a particular task, and 
needs the cooperation of all of its components. How- 
ever, it would be absurd to deny, in view of massive 
neurophysiological data, that the brain contains parts, 
areas, networks, and even single neural cells that 
perform specific partial functions. There exist record- 
ings of many types of feature-sensitive cells or sites that 
respond to specific qualities of sensory stimuli, and the 
motoneurons that control particular muscles are cer- 
tainly localized. The global functions obviously ensue 
from the cooperation of a great many components of 
this type. The amount of parallelism and redundancy 
in such processing may be enormous. The question 
that then remains only concerns the degree or spatial 
acuity of localization, as well as a possible hierar- 
chical organization of such localized functions. 

2.2 On the Techniques to Determine Localization, 
and their Criticism 

By the end of the nineteenth century, a rather detailed 
topographical organization of the brain, especially 
cortex, was already deducible from functional deficits 
and behavioral impairments that were induced by 
various kinds of defects caused either accidentally, due 
to tumors, malformations, hemorrhages, or artificially 
caused lesions. A modern technique to cause control- 
lable and reversible "lesions" is to stimulate a partic- 
ular site on the cortical surface by small electric 
currents, thereby eventually inducing both excitatory 
and inhibitory effects, but anyway disturbing an 
assumed local function. If such a spatially confined 
stimulus then systematically disrupts a specific cogni- 
tive ability such as naming of objects, there exists at 
least some indication that the corresponding site is 
essential to that task. This technique has frequently 
been criticized for the following reason, which holds for 
all lesion studies. Although a similar lesion at the same 
site would always cause the same deficit, and the same 
deficit were never produced by another type of lesion, it 
is logically not possible to use such data as a conclusive 
proof for localization; the main part of the function 
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may reside elsewhere, while the lesion may only 
destroy a vital control connection to it. Hughlings 
Jackson (1878) already stated: "To locate the damage 
which destroys speech and to localize speech are two 
different things". 

Another controllable way for the determination of 
localization is to chemically depress or enhance the 
process that causes the triggering of the neurons, e.g., 
using small patches soaked in strychnine. This techni- 
que has earlier been used with success to map, e.g., 
primary sensory functions. 

A straightforward method to locate a response is to 
record the electric potential or train of neural impulses 
associated with it. In spite of ingenious multielectrode 
techniques developed, this method does not detect all 
responses in an area, and since the neural tissue is very 
inhomogeneous, the coupling made to a particular 
neuron may be haphazard. However, plenty of detailed 
mappings, especially from the primary sensory and 
associative areas, have been made by various electro- 
physiological recording techniques. 

More conclusive evidence for localization can be 
obtained by modern imaging techniques that directly 
display the spatial distribution of brain activity as- 
sociated with a function, achieving a spatial resolution 
of a few millimeters. The two main methods that are 
based on radioactive tracers are: positron emission 
tomography (PET), and autoradiography of the brain 
through very narrow collimators (gamma camera). 
PET reveals changes in oxygen uptake and phosphate 
metabolism. The gamma camera method directly de- 
tects changes in cerebral blood flow. Both phenom- 
ena correlate with local neural activity, but they are 
not able to follow fast phenomena. In magnetoencepha- 
lography (MEG), the low magnetic field caused by 
neural responses is detected, and by computing its 
sources, the neural responses can directly be analyzed 
reasonably fast, with a spatial resolution of a couple of 
millimeters. The main drawback is that only such 
current dipoles are detectable that lie in parallel to the 
surface of the skull; i.e., it is mainly the sulci of the 
cortex that can be studied with this method. 

There seems to exist no ideal technique that alone 
could be used to map all the neural responses. It is 
necessary to combine anatomical, electrophysiolog- 
ical, imaging, and histochemical studies (for a general 
overview, see, e.g. Kertesz 1983). 

2.3 Topographic Maps in Sensory Areas 

Generally speaking, two types of physiological maps 
are distinguishable in the brain: those that are clearly 
ordered, and those looking almost randomly orga- 
nized, respectively. 

Maps that form a continuous, ordered image of 
some "receptive surface" can be found in the visual (cf., 

e.g., van Essen 1985) and somatosensory cortices, in 
the cerebellum, and in certain nuclei. The local scale, or 
magnification factor of these maps depends on the 
behavioral importance of particular signals; e.g., 
images of the foveal part of the retina, and of fingertips 
and lips are greatly magnified in proportion to those of 
other parts. There is thus a "quasiconformal" mapping 
of the "receptive surfaces" onto the brain. 

There also exist more abstract, ordered, continuous 
maps in many other primary sensory areas, such as the 
tonotopic or auditive-frequency maps (Tunturi 1950, 
1952; Reale and Imig 1980); echo delay and Doppler 
shift maps in bats (Suga and O'Neill 1979); and the 
color maps in the visual area V4 (Zeki 1980). It is a 
common feature of such maps that they are confined to 
a rather small area, seldom exceeding 5 mm in diame- 
ter, whereby it is justified to use a model for them in 
which the whole network is assumed structurally 
homogeneous. Over such an area, a spatially ordered 
mapping along one or two important feature dimen- 
sions of the sensory signals is usually discernible. 

Physiologists also use the word "map" for non- 
ordered responses to sensory stimuli as long as these 
are spatially localizable, even if they are scattered 
randomly over an area of several square centimeters, 
and many different kinds of responses are found in the 
same area. More complex visual responses found on 
higher levels are mapped in this way: for instance, cells 
have been detected that selectively respond to faces 
(Rolls 1984). 

2.4 Evidence for Localization of Linguistic Functions 

It has been known at least for a century that sensory 
aphasia is caused by lesions in the posterior superior 
part of the temporal lobe of the brain called Wernicke's 
area; but even with modern imaging techniques, only a 
very rough location of language functions has been 
possible. Practically all systematic high-resolution 
mappings have been made by the stimulation method. 

It is much more difficult to locate linguistic or 
semantic functions in the brain than to map the 
primary sensory areas. First, it is still unclear to what 
aspects of language the feature dimensions might 
correspond. Second, as noted earlier, such a map may 
be scattered. Third, responses to linguistic elements 
may only occur within short "time windows". Fourth, 
the experimental techniques used in animal studies, 
being usually invasive, cannot be applied to human 
beings, unless there exists indication for a surgical 
operation. 

Nevertheless, a significant amount of experimental 
evidence is already available supporting the view of a 
rather high degree of localization of language 
functions. 
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PET imaging has revealed that during a task of 
processing single words, several separate cortical sites 
are simultaneously active. These are not all located in 
Wernicke's area; some parts in the frontal lobe and the 
associative areas may simultaneously show responses, 
too, especially in sites obviously associated with visual 
and auditory perception, articulation, and planning of 
the task (Peterson et al. 1988). 

In order to study possible internal representations, 
location of sites relating to semantic processing needs a 
finer resolution, of the order of one millimeter, so far 
hard to achieve even by stimulation mapping. How- 
ever, this method cannot detect any temporal peaks of 
activity, it can only produce reversible temporary 
blocking of processing in a region confined to a few 
square millimeters. Repeated stimulation of the same 
site then usually causes a reproducible kind of tempo- 
rary deficit, e.g., errors in the naming of objects, or 
difficulty in recollection from short-term verbal mem- 
ory. However, stimulation of another site only 5 mm 
apart may already induce a completely different type of 
deficit, or no effect at all (Ojemann 1983). Further, 
there are cases of bilingual patients where naming of 
the same object is impaired only in either of the two 
languages, dependent on the site being stimulated 
(Ojemann ibid.). It seems as if the language functions 
were organized as a "mosaic" of localized modules 
(Ojemann ibid.). 

Other, more indirect evidence for fine-structured 
mapping is available from several cases of selective 
deficits as a result of strokes or brain injuries (Warring- 
ton and McCarthy 1987). Examples include deficits in 
the use of concrete (impaired) versus abstract (spared) 
words (Warrington 1975), inaminate versus animate 
words (Warrington and McCarthy 1983; McCarthy 
and Warrington 1988), or living objects and food 
(impaired) versus inaminate (spared) words (Warring- 
ton and Shallice 1984). There exist other well- 
documented reports on selective impairments relating 
to such subcategories as indoor objects (Yamadori and 
Albert 1973), body parts (McKenna and Warrington 
1978), and fruits and vegetables (Hart et al. 1985); see 
also review articles on categorical impairments (Good- 
glass et al. 1986; Caramazza 1988). 

Analysis of such data has led to the conclusion that 
there exist separate modules in the brain for a "visual 
word lexicon" and a "phonetic word lexicon" for word 
recognition, a "semantic lexicon" for the meaning of 
words, as well as an "output lexicon" for word 
articulation (Caramazza 1988), respectively. Each of 
these modules can be impaired independently. 

The categorical impairments reported above seem 
to relate to selective damages caused to the "semantic 
lexicon". These observations cannot provide conclu- 
sive evidence for localization of semantic classes within 

this lexicon, because in all these cases it was not 
possible to assess the precise spatial extent of critically 
affected brain tissue. Nonetheless it seems justified to 
state that selective impairment in such a large number 
of cases would be very difficult to explain if the 
semantic organization apparent from such observa- 
tions were not in some way reflected in the spatial 
layout of the system. 

3 Representation of Topologically Related Data 
in the Self-Organizing Map 

Any model suggested for the self-organized formation 
of internal representations (such as the 'feature- 
sensitive cells) should also be able to make essential 
relations among data items explicit. An intriguing way 
of achieving this is the formation of spatial maps, which 
are perhaps the most explicit local representations 
known. 

Several years ago, one of the authors (Kohonen 
1982a-c, 1984) developed a model of neural adaptation 
that is capable of unsupervised formation of spatial 
maps for many different kinds of data. This section first 
summarizes the (simplified) model equations and then 
explains how a structure-preserving map of hierarchi- 
cally related data is generated by them. More detailed 
description of the process and its background can be 
found in the following original publications and some 
recent developments (Kohonen 1982a-c, 1984; Cot- 
trell and Fort 1986; Ritter and Schulten 1986, 1988, 
1989). 

The model assumes a set of laterally interacting 
adaptive neurons, usually arranged as a two- 
dimensional sheet. The neurons are connected to a 
common bundle of input fibers. Any activity pattern on 
the input fibers gives rise to excitation of some local 
group of neurons. After learning, the spatial positions 
of the excited groups specify a mapping of the input 
patterns onto the two-dimensional sheet, the latter 
having the property of a topographic map, i.e. it 
represents distance relations of the high-dimensional 
space of the input signals approximately as distance 
relationships on the two-dimensional neural sheet. 
This remarkable property follows from the assumed 
lateral interactions and a very simple, biologically 
justifiable adaptation law. In fact, it seems that the 
main requirements for such self organization are that 
(i) the neurons are exposed to a sufficient number of 
different inputs, (ii) for each input, the synaptic input 
connections to the excited group are only affected, 
(iii) similar updating is imposed on many adjacent 
neurons, and (iv) the resulting adjustment is such that it 
enhances the same responses to a subsequent, suffi- 
ciently similar input. 
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Mathematically, the activity pattern at the input is 
described by an n-dimensional real input vector x, 
where n is the number of input lines. The responsive- 
ness of neuron r is specified by an n-dimensional vector 
w r, eventually corresponding to the vector of synaptic 
efficacies, and it is measured by the dot product x.  wr. 
For efficiency of the process and mathematical conve- 
nience, all the input vectors are always normalized to 
unit length, whereas the w, need not be normalized in 
the process explicitly; sooner or later, the process will 
normalize them automatically. The neurons are ar- 
ranged in a two-dimensional lattice, and each neuron is 
labeled by its two-dimensional lattice position r. The 
group of excited neurons is taken to be centered at the 
neuron s for which x-w s is maximal. Its extent and 
shape are described by a function hrs, whose value is the 
excitation of neuron r, if the group center is at s. This 
function may be constant for all r in a "neighborhood 
zone" around s and zero elsewhere, or bell-shaped, 
like in the present simulations that are supposed to 
describe a more natural mapping. In this case h~s will 
be largest at r = s and decline to zero with increasing 
distance [[ r -  s [[. A rather realistic modeling choice for 
h~ is 

h~s=exp( [Ir ~112-), (1) 

i.e. a Gaussian of the distance [J r - s  I[, whose variance 
o-2/2 will control the radius of the group. The adjust- 
ments corresponding to the input x shall then be given 
by 

w~ "ew~ = w~ ~ + e. hrs" (x-- w~~ (2) 

Equation (2) can be justified by assuming the tra- 
ditional Hebbian law for synaptic modification, and an 
additional nonlinear, "active" forgetting process for 
the synaptic strengths (Kohonen 1984). Equation (2) 
has the desired property of confining any adaptations 
to the neighborhood of neuron s and improving 
subsequent responses to x there. 

We shall not present here any formal proof for that 
these conditions indeed lead to an ordered organiza- 
tion of the map (an intuitive picture is that the weight 
vectors wr become aligned with the input signal 
distribution as if they would constitute elements of an 
"elastic surface"). The reader interested in these aspects 
may find them in the literature (Kohonen 1982b; 
Cottrell and Fort  1986; Ritter and Schulten 1988). For 
the present purpose it may suffice to assert that the 
resulting maps are nonlinear projections of the input 
space onto this surface with the following two main 
properties: (/) the distance relationships between the 
source data are preserved by their images in the map as 
faithfully as possible. However, a mapping from a high- 

dimensional space to a lower-dimensional one will 
usually distort most distances and only preserve the 
most important neighborhood relationships between 
the data items, i.e., the topology of their distribution. 
This is the driving factor for the formation of a reduced 
representation in which irrelevant details are ignored. 
(ii) If different input vectors appear with different 
frequencies, the more frequent ones will be mapped to 
larger domains at the expense of the less frequent ones. 
This results in a very economic allocation of memory 
resources to data items, and complies with physiolog- 
ical findings. 

If the data form clusters in the input space, i.e. if 
there are regions with very frequent and at the same 
time very similar data, (i) and (ii) will ensure that the 
data of a cluster are mapped to a common localized 
domain in the map. Moreover, the process will arrange 
the mutual placement of these domains in such a way 
as to capture as much of the overall topology of the 
cluster arrangement as possible. In this way, even 
hierarchical clustering can be achieved, a capability 
frequently thought to represent one form of abstrac- 
tion. Earlier demonstrations of this can be found in 
Kohonen (1982c, 1984) and Kohonen et al. (1984); in 
the present work, more refined results, relating to 
linguistic expressions, are given. 

4 Self-Organizing Semantic Maps 

4.1 Self-Organizing Symbol Map 

In the demonstrations described in (Kohonen 1982c) 
and (Kohonen 1984), the self-organizing maps mainly 
reflected metric distance relations between patterned 
representation vectors. Such data are characteristic of 
most lower levels of perception. However, much of 
higher-level processing, in particular language and 
reasoning, seems to rest on the processing of discrete 
symbols. Hence we must understand how the brain 
might form meaningful representations of symbolic 
entities. In view of the localization seemingly apparent 
even on this level, we must in particular explain how 
maps of symbols can be formed in which logically 
related symbols occupy neighboring places. 

One might think that applying the neural adap- 
tation laws (2) to a symbol set (regarded as a set of 
vectorial variables) might create a topographic map 
that displays the "logical distances" between the 
symbols. However, there occurs a problem which lies 
in the different nature of symbols as compared with 
continuous data. For the latter, similarity always 
shows up in a natural way, as the metric differences 
between their continuous encodings. This is no longer 
true for discrete, symbolic items, such as words, for 
which no metric has been defined. It is in the very 
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small 
is medium 

big 

2 legs 
4 legs 
hair has hooves 

mane 
feathers 

1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1  

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1  
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0  
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  

hunt i 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0  
lik~ run 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0  
to fly 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0  

swim 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  

Fig. 1. Animal names and their attributes 

nature of a symbol that its meaning is dissociated from 
its encoding 1. Hence logical relatedness between differ- 
ent symbols will in general not be directly detectable 
from their encodings and one may thus not presume 
any metric relations between the symbols, even when 
they represent similar items. How could it then be 
possible to map them topographically? The answer is 
that the symbol, at least in the learning process, must 
frequently be presented in due context, i.e. in conjunc- 
tion with all or part of the attribute values of the item it 
encodes, or with other, correlating symbols. 

The simplest system model for symbol maps as- 
sumes each data vector x as a concatenation of two (or 
more) fields, one specifying the symbol code, denoted 
by x~, and the other the attribute set, denoted x,, 
respectively. 

[x l I; [01 x = = + . ( 3 )  
X a X a 

Equation (3) illustrates in vector notation that the 
encodings of the symbol part and the attribute part can 
form a vector sum of two orthogonal components. The 
core idea underlying symbol maps is that the two 
parts are weighted properly such that the norm of the 
attribute part predominates over that of the symbol 
part during the self-organizing process; the topograph- 
ical mapping then mainly reflects metric relationships 
of the attribute sets. Since the inputs for symbolic 
signals, however, are also active all the time, memory 
traces from them are formed to the corresponding 
inputs of those cells of the map that have been 
selected (or actually forced) by the attribute part. I f  
then, during recognition of input information, the at- 
tribute signals are missing or are weaker, the (same) 
map units are selected on the basis of the symbol part 

1 Some symbols may contain a residue of analogical represen- 
tation, e.g., in some words describing sounds 

solely. In this way the symbols become encoded into a 
spatial order reflecting their logic (or semantic) 
similarities. 

Attributes may be variables with scalar-valued 
discrete or continuous values, or they may attain 
qualitative properties such as "good" or "bad". It is 
simplest to assume that the identity of each attribute is 
clear from its position in the "attribute field" xa, 
whereby the presence or absence of a particular 
qualitative property may be indicated by a binary 
value, say 0 or 1, respectively. Then the (unnormalized) 
similarity between two attribute sets may be defined in 
terms of the number of attributes common to both sets, 
or equivalently, as the dot product  of the respective 
attribute vectors 2. 

To illustrate this with a concrete model simulation, 
consider the data given in Fig. 1. Each column is a very 
schematic description of an animal, based on the 
presence (=1)  or absence (=0)  of some of the 13 
different attributes given on the left. Some attributes, 
such as "feathers" and "2 legs" are correlated, indicat- 
ing more significant differences than the other at- 
tributes. In the following, we will take each column for 
the attribute field xa of the animal indicated at the top. 
The animal name itself does not belong to x,  but  
instead specifies the symbol part x~ of the animal. 
Selection of the symbol code can be done in a variety of 
ways. However, we now want to be sure that the 
encoding of the symbols does not convey any infor- 
mation about similarities between the items. Hence we 
choose for the symbol part of the k-th animal a 
d-dimensional vector, whose k-th component  has a 
fixed value of a, and whose remaining components are 
zero. Here d is the number of items (d = 16 in our 
example). For  this choice, the metric distance between 
any two of the vectors x~ is the same, irrespective of the 
symbols they encode. 

The parameter a may be interpreted as scaling the 
"intensity" of input from the symbol field and it 
determines the relative influence of the symbol part as 
compared to the attribute part. As we wanted the latter 
to predominate, we chose a value of a = 0.2 for our 
simulation. Combining xa and x~ according to (3), each 
animal was encoded by a 29-dim data vector 
x = [x~, xa] r. Finally each data vector was normalized 
to unit length. Although this is only a technical means 
to guarantee good stability in the self-organizing 
process, its biological counterpart  would be intensity 
normalization of the incoming activity patterns. 

2 It might seem more logical to use the value + 1 to indicate the 
presence of an attribute, and - 1 for its absence, respectively; 
however, due to normalization of the input vectors, and their 
subsequent comparison by the dot product, the attribute values 0 
have a qualitatively similar effect as negative components in a 
comparison on the basis of vectorial differences 
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The members of the data set thus obtained were 
presented iteratively and in a random order to a planar 
network of 10 x 10 neurons subject to the adaptation 
process described above�9 The initial connection 
strengths between the neurons and their n = 29 input 
lines were chosen to be small random values, i.e. no 
prior order was imposed�9 However, after a total of 2000 
presentations, each "cell" became more or less respon- 
sive to one of the occuring attribute combinations and 
simultaneously to one of the 16 animal names, too. If 
we now test which cell gives the strongest response if 
only the animal name is presented as input (i.e. 
x =- [xs, 0] r), we get the map shown in Fig. 2 (the dots 
indicate neurons with weaker responses)�9 It is highly 

duck ~ .  h . . . . . . . . . .  . ~  

" X ~ z e b r a  ~ "  �9 I 

�9 . ~ . . tiger 

g o o s e  . ~ . wolf . 

�9 hawk . ~ . 

o w l .  . ~ . lion 

�9 eagle . / . . 

h e n  . . . /  fox cat 

Fig. 2. After the network has been trained with inputs encoding 
animal names together with some attributes (see Fig. 1), presen- 
tation of the animal names alone elicits maximal responses at 
the cell locations shown. A grouping according to similarity 
has emerged 

I J zebra zebra I duck duck horse horse cow cow cow cow 

duck duck[horseJzeb . . . .  h . . . .  bralcow cow tiger tiger 

goose goose g o o s e [ z e b  . . . .  b . . . .  bra|  wolf wolf tiger tiger 
/ -J  

goOSe goos~ "hawk hawk hawk 

hawk hawk hawk 

]dove ~owl o w ~ h a w k  hawk 

dove  dove owl owl owl 
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hen hen eagle eagle eagle 

hen hen eagle eagle eagle 

woR wolf wo~ 

wo~ wo~ wo~ 

dog dog dog 

dog dog dog 

dog dog dog 

fox fox fox 

fox fox fox 

tiger tiger 

llon Hon 

fion fion 

dog 

dog 

cat  cat  

cat i ~ t t l  

Fig. 3. "Simulated electrode penetration mapping" for the net- 
work in Fig. 2. Each cell is labeled by the animal name eliciting 
the strongest response. Cells responsive to the same animal name 
form domains, which are grouped according to similarity 
between the animals 

apparent that the spatial order of the responses has 
captured the essential "family-relationships" among 
the animals�9 Cells responding to, e.g., "birds" occupy 
the left part of the lattice, "hunters" such as "tiger", 
"lion", and "cat" gather towards the right, more 
"peaceful" species such as "zebra", "horse", and "cow" 
aggregate in the upper middle. Within each cluster, a 
further grouping according to similarity is discernible. 
Figure 3 shows the result of a "simulated electrode 
penetration mapping" for the same network�9 It differs 
from Fig. 2 in that now each cell has been marked by 
the symbol that is its best stimulus, i.e., elicits the 
strongest response for that cell. This makes the parcell- 
ation of the "neural territory" into domains specific to 
one of the input items visible�9 Hierarchy thereby is 
represented by nested domains�9 A general class (e.g. 
"bird") occupies a larger territory, which itself is 
differentiated into nested subdomains, corresponding 
to more specialized items ("owl", "duck", "hen" etc.). 
Although highly idealized, this result is very suggestive 
of how a self-organizing system can learn to spatially 
guide the formation of memory traces in such a way 
that its final physical layout forms a direct image of the 
hierarchy of the most important "concept 
relationships"�9 

4.2 Role-Based Semantic Maps 

In the example of the animal map, the role of context 
was still very simple: the encoded symbol was related 
to a set of explicit attributes statically. In natural 
languages, and obviously in any natural perception, 
too, the items and their attributes, and obviously some 
state information usually occur in a temporal se- 
quence. The concept of context then needs to be 
broader and span the time dimension, too. Perhaps the 
simplest way to do this is to define for the context of 
each item all those items (together with their serial 
order) that occur in a certain "time window" around 
the selected item. 

In this work we will not pay any attention to the 
concrete physical representation of signals, i.e., 
whether the patterns are temporal, like in speech, or 
spatial, like in text. For  the series-to-parallel conver- 
sion, neural networks may use paths with different 
delays, eigenstates that depend on sequences, or any 
other mechanisms implemented in the short-term 
memory�9 Here we shall only concentrate on the 
similarities between the expressions that arise from 
conditional occurrences of their parts, and simply 
imagine that triples or pairs of words can somehow be 
presented to the input ports of the system�9 

Languages contain very many levels of meaning. It 
is possible to construct cases, where the due "window" 
for the understanding of a word has to comprise a 
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whole novel. On the other hand, the possibility of 
forming grammars demonstrates that a significant part 
of the structure of a language already manifests itself 
on a very low level, down to patterns of words and 
endings. Detection of such "short range" structure will 
be the focus of our interest in this section and we shall 
demonstrate that the inclusion of a very limited word 
context enables the basic network model (1) to form 
semantic maps, in which the word items are grouped 
according to semantic categories (objects, activities, 
qualifications etc.) and simple similarity. 

For  our demonstration, we used a set of randomly 
generated three-word sentences constructed from the 
vocabulary in Fig. 4a. The vocabulary comprises 
nouns, verbs, and adverbs, and each class has further 
subdivisions, such as names of persons, animals, and 
inanimate objects in the category of nouns. These 
distinctions are in part of a grammatical, in part of a 
semantic nature. However, for the reasons discussed in 
Sect. 4.1, they shall not be discernible from the coding 
of the words themselves but only from the context in 
which the words are used. In natural languages, such a 
context would comprise a much richer variety of 
sensory experiences. In this very limited demonstra- 
tion, however, we will only take into account the 
context provided by the immediately adjacent textual 
environment of each word occurrence. It will turn out 
that even this extremely restricted context will suffice 
to convey some interesting semantic structures. Of 
course this requires that each sentence be not totally 
random, but obey at least some rudimentary rules of 
grammar and semantic correctness. This is ensured by 
restricting the random selection to a set of 39 "legal" 
sentence patterns only. Each pattern is a triple of 
numbers from Fig. 4b. A sentence is constructed by 
randomly choosing one of the triples and substituting 
each number by one of the words with the same 

Bob/Jim/Mary 1 
horse/dog/cat 2 

beer/water 3 
meat/bread 4 
runs/walks 5 

works/speaks 6 
vlslts/phones 7 

buys/sells 8 
likes/hates 9 
drinks/eats 10 
much/little 11 
fast/slowly 12 

often/seldom 13 
weU/poorly 14 

Sentence Pat terns :  

1-5-12 1 - 9 - 2  2-5-14 
1-5-13 1-9-3 2-9-1 
1-5-14 1-9-4 2-9-2 
1-6-12 1-10-3 2-9-3 
1-6-13 1-11-4 2-9-4 
1-6-14 1-]0-12 2-10-3 
1-6-15 1-10-13 2-10-12 
1-7-14 1-10-14 2-10-13 
1-8-12 1-11-12 2-10-14 
1-8-2 1-11-13 1-11-4 
1-8-3- 1-11-14 1-11-12 
1-8-4 2-5-12 2-11-13 
1-9-1 2-5-13 2-11-14 

Mary likes meat 
Jim speaks well 
Mary likes Jim 
Jim eats often 
Mary buys meat 
dog drinks fast 
horse hates meat 
Jim eats seldom 
Bob buys meat 
cat walks slowly 
Jim eats bread 
cat hates Jim 
Bob sells beer 

(etc.) 

(a) (b) (c) 

Fig. 4. a List of used words (nouns, verbs and adverbs), b sentence 
patterns, and e some examples of generated three-word-sentences 

number in Fig. 4a. This results in a total of 498 different 
three-word sentences, a few of which are given in 
Fig. 4c. (Whether those statements are true or not is 
not our concern; we are only interested in their 
semantic correctness). 

In this very simple demonstration, it was supposed 
that the context of a word was sufficiently defined by 
the pair formed by its immediate predecessor and 
successor. (To have such pairs also for the first and the 
last word of a sentence we assume the sentences to be 
concatenated in the random order of their production.) 
For  the 30-word vocabulary in Fig. 4a we could have 
proceeded as in Sect. 4.1 and represented each of such 
pairs by a 60-dim vector with two non-zero entries. For  
a more economical encoding, however, as explained 
more closely in Appendix I, we assigned to each word a 
7-dim random vector of unit length, chosen at the 
outset for each word independently from an isotro- 
pic probability distribution. Hence each predeces- 
sor/successor-pair was represented by a 14-dim 
code vector. 

It turned out in all of our computer  experiments 
that instead of paying attention to each clause sepa- 
rately, a much more efficient learning strategy was to 
consider each word in its average context over a set of 
possible clauses, before presenting it to the learning 
algorithm. The (mean) context of a word was thus first 
defined as the average over 10,000 sentences of all code 
vectors of predecessor/successor-pairs surrounding that 
word. The resulting thirty 14-dim "average word 
contexts", normalized to unit length, assumed a similar 
role as the attribute fields x, in the previous simulation. 
Each "attribute field" was combined with a 7-dim 
"symbol field" xs, consisting of the code vector for the 
word itself, but scaled to length a. This time, the use of 
the random code vectors approximately guaranteed 
that the symbol fields x s did not convey any infor- 
mation about similarity relationships between the 
words. As before, the parameter a determined the 
relative influence of the symbol part in comparison to 
the context part and was set to a=0.2 .  

For  this experiment, a planar lattice of 10 • 15 
formal neurons was used. As before, each neuron 
initially made only weak random connections to the 
n = 21 input lines of the system, so that again no initial 
order was present. 

After 2000 input presentations the responses of the 
neurons to presentation of the symbol parts alone were 
tested. In Fig. 5, the symbolic label was written to that 
site at which the symbol signal x=[xs ,0]  r gave the 
maximum response. We clearly see that the contexts 
have "channeled" the word items to memory positions 
whose arrangement reflects both grammatical and se- 
mantic relationships. Words of same type, i.e. nouns, 
verbs, and adverbs, have segregated into separate, 
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w a t e r  , m e a t  

b e e r  b r e a d  . 

l i t t l e  

f a s t  . . . .  s e l d o m  . 

�9 . . m u c h  �9 o o 

s l o w l y  o f t e n  �9 

�9 . f . . e a t s  
j -  

7 II 7rksl i 
poorly . ~  . s p e a k s  . . . 

�9 / . . . b u y s  �9 

. . . . .  s e l l s  

runs 

drinks . w a l k s  . h a t e s  

dog horse 

c a t  

B o b  

Jim 

phones 

v i s i t s  

l i k e s  

Fig. 5. "Semantic map" obtained on a network of 10 x 15 cells 
after 2000 presentations of word-context-pairs derived from 
10,000 random sentences of the kind shown in Fig. 4c. Nouns, 
verbs and adverbs are segregated into different domains. Within 
each domain a further grouping according to aspects of meaning 
is discernible 

,oy : w T ; 
b u y s  . . s p e a k s  . / . . 

�9 e a t s � 9  } / i  7 : 
runs . . . ? ~ dog 

�9 . d r i n k s  . ~ . h o r s e  . . 

w a l k s  �9 . ~ /  , . . . 

. l i k e s .  / , . . . 

�9 . �9 # w a t e r  �9 b �9 �9 

I . w e l l .  �9 . s e l d o m  . . s l o w l y  . 

M a r y  

Jim 

B o b  

bread 

m e a t  

f a s t  

Fig. 6. This map has been obtained by the same procedure as the 
map in Fig. 5, but with a more restricted context that included 
only the immediate predecessor of each word 

large domains. Each of these domains is further 
subdivided according to similarities on the semantic 
level. For  instance, names of persons and animals tend 
to be clustered in separate subdomains of a common 
"noun-domain",  reflecting different co-occurrence 
with, e.g., verbs such as "run" and "phone". Adverbs 
with opposite meaning tend to be particularly close 
together, as their opposite meaning ensures them 
max imum comm on  usage�9 The grouping of the verbs 
indicates differences in the ways they can co-occur with 
adverbs, persons, animals, and nonanimate  objects 
such as e.g. "food". 

Figure 6 shows the result of a further computer  
experiment, based on the same vocabulary and the 
same sentence patterns as before�9 However, in this 
simulation the context of a word was restricted to its 
immediate predecessor only (i.e. the context now 
consists of a 7-dim vector)�9 Even this very limited 
context proved sufficient to produce a map  with 
roughly similar properties as in Fig. 5. This shows that 
the displayed regularities are fairly robust  to changes 
in the details of the encoding as long as the context 
captures a sufficient amount  from the underlying 
logical structure. 

One might argue that the structure resulting in the 
map  has artificially been created by a preplanned 
choice of the sentence patterns allowed for the input�9 
However,  it is easy to check that the patterns in Fig. 4b 
almost completely exhaust the possibilities for combin- 
ing the words in Fig. 4a into semantically well-formed 
three-word sentences (an astute reader may notice a 
few "semantic borderline cases" not covered, such as 

"dog eats cat"). This may make it clear that all the 
selected sentence patterns were really determined by 
the constraints inherent in the semantically correct 
usage of the words, and not vice versa. Moreover,  a 
significant percentage of the word neighborhoods 
extended across borders of the randomly concatenated 
sentences�9 As this concatenation was unrestricted, such 
neighborhoods were largely unrelated 3 to the gram- 
matical and semantic structure of the sentences and 
constituted a kind of"noise" in the ordering process. It 
is important  to notice that this noise does not disguise 
the regularities otherwise present in the clauses�9 

However, one important  remark is due here. Any 
realistic semantic brain maps would need a much more 
complicated, probably hierarchical model�9 The pur- 
pose of the simple artificial model used in this work was 
only to demonstrate the potential of a self-organizing 
process to form abstract maps. In particular, the 
simulation results, as such, should not be used to serve 
as a reference for direct topographic comparison with 
brain areas�9 As a comparison between Fig. 5 and Fig. 6 
shows, there are many  almost equivalent ways, in 
which a set of similarity relationships can be displayed 
in a map. Therefore the maps generated by the model 
are not unique, unless further constraints, such as e.g. 
boundary  conditions or some coarse initial ordering 
are imposed. These may then initially "polarize" the 
system that then converges to a more unique map. 

3 They may still reflect differences in the most likely position of a 
word within a sentence 
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5 Discussion 

One of the biological mechanisms that up to time has 
been poorly understood is the ability of the brain to 
form abstractions from primary sensory experiences at 
increasingly higher levels of generalization. 

It is already well known that on the lower per- 
ceptual levels, sensory information first becomes orga- 
nized into topographically ordered sensory maps, and 
it has also already been demonstrated theoretically 
that such maps can be formed adaptively, reflecting 
mutual metric relationships and statistics of the incom- 
ing signals. This same principle has been applied with 
considerable success to exacting technical pattern 
recognition tasks such as speech recognition. 

In this work we have now shown that the principle 
of self-organizing maps can also be extended to higher 
levels of processing, where the relationships between 
items are more subtle and less apparent from their 
intrinsic features, a property that is characteristic of 
symbolic expressions. Symbols, in general, do not 
contain metrically relatable components. Consequent- 
ly, meaningful topographic maps of symbols must no 
longer display the intrinsic features, but instead the 
logical similarities of their inputs. It turns out, however, 
that organized mappings of symbolic data may still 
ensue from the same basic adaptation laws, provided 
that the symbolic input data are presented together with 
a sufficient amount of context, that then defines the 
similarity relationships between them. If the symbolic 
descriptions leave memory traces on the same neurons 
at which the contextual signals converge, too, the same 
neurons then also become sensitized to the symbolic 
signals in a spatial order that reflects their logical 
similarity. 

Symbols play a particularly important role in 
languages. In this work we have given two simulation 
examples that demonstrate the self-organized form- 
ation of semantic maps, in which semantic relationships 
between words have been encoded into relative spatial 
positions of localized responses. Our artificial maps are 
parcelled into hierarchically nested domains reflecting 
different categories of words. This parcellation totally 
emerges from the co-occurrence sensory context and 
words. In our simulations the sensory context was 
restricted to simple attribute sets or adjacent words in 
sentences. The simple kind of clauses used in this 
experiment occur in all languages, even primitive ones. 
It is therefore also of interest to note that experimental 
data (Sect. 2) indicate similar organizations in brain 
areas related to language processing. Especially the 
category-specific language impairments discussed in 
Sect. 2 (Warrington and McCarthy 1987) seem to 
reflect a very similar organization on a physiological 
level. 

In the first simulation we used rather explicit 
attributes, thereby assuming that some neural mecha- 
nism had already generated them. The philosophy 
underlying our work is that a similar self-organizing 
tendency must exist at all levels of processing; its 
illustration, however, is only possible if the signals have 
some meaning to us. 

The term "semantic map" used in this work does 
not yet refer to "higher word understanding"; words 
have only been grouped according to their local 
contexts. Due to the strong correlation between local 
context and word meaning, however, this approxi- 
mates the semantic ordering met in natural languages, 
which presumably cannot yet be generated in such a 
one-phase learning. It is an intriguing question 
whether any subsequent processing stages could create 
an ordering that reflects higher-level meanings - which 
then would facilitate full understanding of the meaning 
of words - by some kind of iteration of the basic self- 
organizing process. 

Our model emphasizes the role of the spatial 
arrangement of the neurons, an aspect only considered 
in very few modeling approaches. However, we would 
not like to give the impression that we are opposing the 
view of neural networks as distributed systems. The 
massive interconnects responsible for lateral interac- 
tions as well as the "engrams" relating to associative 
memory are certainly disseminated over large areas in 
the network. 

On the other hand, it seems inevitable that any 
complex processing task needs some kind of segre- 
gation of information into separate parts, and local- 
ization is one of the most robust and efficient ways to 
achieve this goal. The semantic maps offer an efficient 
mechanism to perform a meaningful segregation of 
symbolic information even on a fairly high level of 
semantics, and they have the further virtue of being 
solely based on unsupervised learning. Whether we 
still should consider relative timing of signals (cf. von 
der Malsburg and Bienenstock 1986) remains a further 
objective of study. 

There are further reasons not to disregard the 
spatial arrangement of the processing units. For 
instance, the anatomy of neural circuits sets con- 
straints to the realizable connectivity among units. 
Further, brain signals do not solely rest on axonal 
signal transmission over freely selectable distances, but 
often employ diffusion of neurotransmitters and 
neuromodulators. In all likelihood, these constraints 
would limit the implementation of many compu- 
tational mechanisms, unless this handicap were al- 
leviated by the efficient spatial organization provided 
by the maps. 

From a hardware point of view it should be 
expected that minimization of connectivity costs 
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would  strongly favor  this kind of  a neural ne twork  
design. This m a y  also give a clue why topographic  
organiza t ion  is so widespread in the brain. Other  
a rguments  for local izat ion are that  spatial segregation 
of  representat ions makes  them more  logical, by reduc- 
ing the degree of  their mutua l  interference, and that  
logically similar symbol ic  items, being spatially adja- 
cent, may  evoke each other  associatively, as expressed 
in the classical laws of  association. 

Ano the r  remark  m a y  be necessary. Our  simula- 
tions should not  be taken as a suggestion that  each 
word  is represented by a so-called "g randmothe r  cell" 
in the brain. Each  word  is a complex piece of  infor- 
mat ion  p robab ly  redundant ly  encoded by an entire 
neuronal  popu la t ion  (and several times in separate 
"lexica", cf. 2.4). Even in the highly idealized model  
used in our  simulations,  it is not  a single neuron  but  a 
whole subset of  cells, sur rounding  the mos t  responsive 
one, that  gets tuned to a word  (cf. Fig. 3). These subsets 
may  then be engaged in further processing, not  cap- 
tured by the basic model.  The number  of  cells assigned 
to such a subset also depends on the frequency of 
occurrence of  the word.  This is ana logous  to the case 
that  the frequency of  stimulus occurrence determines 
the local magnif icat ion factor  in a sensory map  (Ko- 
honen  op. cit., Ritter and Schulten 1986). Similarly, 
frequent words  would  recruit cells f rom a larger neural 
terr i tory and be more  redundant ly  represented. As a 
consequence,  the more  frequent words should be less 
susceptible to local damage.  This complies with empir- 
ical observat ions  in stroke patients, whereby the 
familiar words  are more  likely to "survive" than the 
rare ones. 

Finally we would  like to present an intriguing 
phi losophical  notion.  As earlier pointed out, there 
exists bo th  biological evidence and theoretical justifi- 
cation for the functioning of  the brain requiring repre- 
sentation of  its input information by meaningful parts 
processed at spatially separated locations. The idea 
about  f undamen ta l  categories  postulated f o r  the inter- 
pretat ion and understanding o f  the world must  obviously 
s tem f r o m  prior f o r ma t i o n  o f  such representations in the 
biological brain itself. 
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Appendix I: Dimensionality Reduction 
by a Random-Projection Method 

When the dimensionality of context grows, the attribute vectors 
soon become impracticably high-dimensional. For instance, in 
the example in Sect. 4.2 the context was formed of adjacent 
words. A straightforward encoding would require for each word 
as many components in the attribute field as there are words in 

the vocabulary. It is therefore advisable to try to map the space of 
all different contexts into a much-lower-dimensional vector 
space, thereby approximately preserving their metric relations. In 
this Appendix we give a random-projection solution for this. 

We assume the set of all conceivable contexts to be finite 
(albeit very large) and accordingly label the contexts by integers 
i = 1,2...D. Then the "straightforward encoding" would assign to 
each symbol A a vector x(A) from a D-dimensional space Vo by 

D 

x(A) = ~ p(i[A)~ i . (4) 
i = 1  

Here p(ilA) is the conditional probability for the occurrence of 
context i, given the presence of symbol A. The ~i, i= 1, 2...D form 
an orthonormal frame in lid (this is a refinement over a mere 
enumeration of all contexts compatible with A, taking also their 
different frequencies into account). Similarity between symbols is 
then measured by the Euclidean distances between their code 
vectors given by (4). 

However, (4) must be regarded as a very formal expression, 
since in most situations of practical interest the dimension D of 
the required space will be unmanageably high. As a remedy, we 
will replace the orthonormal frame {el...eD} by a set of D unit 
vectors ~i, i= 1,2...D, selected from a space of a much lower 
dimension d,~ D, and whose directions are independently chosen 
from an isotropic random distribution. This is formally equiv- 
alent to a random projection ~b from the original space onto 
the new one, q5 being defined by 

xA = E x,g~. (5) 
i i = 1  

In the following theorem we shall give a justification of this 
intuitive procedure. 

Theorem. Let [1" fin and ]I" IDa denote the Euclidean distance norms 
in V D and Va, respectively, and let (.)~ be the average over all 
possible isotropic random choices for the unit vectors ~i defining c~ 
in (5). Then, for any pair of vectors x, y e VD, there exists the 
relation 

2 
((11 q~(x)- q~(y)lJ~ - [Ix- yll2)Z), < ~. IIx- yll~. (6) 

In other words, although the original distances were distorted 
under the random mapping 4, the relative distortion in general will 
be small, if d is large enough. Hence we can expect that any 
essential structures are preserved even in the much lower- 
dimensional space V~. 

Proof Let 
D 

v : = x -- y = ~ viii (7) 
i = 1  

and 
2 2 2 2 a := ((ll q~(x)- ~b(y)lla - IIx-y[Io) ) , .  (8) 

Then (all summation ranges are {1...D}) 

a z = ((llvll~-I1 qS(v)ll~)2)~ 

= ( ~ v 2 )  2 -  2 ( ~ v g ) ~ v j v k ( g , ' g D ,  

+ E E V,V,VkVt((gi" gi)(gk' {,)>* (9) 
i j  kl 

As g~ and g1 are normalized isotropic and independent for i , j , ,  
(~i" ~j)~ = 6ij must hold. For the same reasons, 
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((~i" ~j) (~k" ~)) ,  # 0 requires one of the following cases to hold: 
(i) i = j ~ - k = l ,  (ii) i = k : ~ j = l ,  (iii) i=l=l: j=k or (iv) i = j = k = l .  
Cases (i) and (iv) yield expectation values of unity, the other two 
cases yield a value of l/d. Hence 

1 
<(~i" ~j)(~k" ~)> ,  = 6~j. 6k~ + ~ (~ttj~ + 6~6j,). (1 - 6~j). (10) 

Substituting (10) into (9) gives 

2 2 /  4 
a 2= ~ ~., v2v 2 = s{l[vl lo-  ~ v~ , (11) / tt  i ~ j  u \  i = 1  

proving the Theorem. 
A neural realisation of such encodings may be straightfor- 

ward. If the different contexts occur with roughly equal proba- 
bilities, then, association of a reproducible random excitation 
pattern ~ with each context is all that is needed. 

Appendix lh  Simulation Parameters 

The simulations in Sect. 4 were based on (1) and (2). During each 
simulation, the radius a(t) of the adjustment zone was gradually 
decreased from an initial value r to a final value a I according to 

~ ( t ) = ~ ( % / ~ r f  . . . .  . (12) 

Here t counts the number of adaptation steps and the parameter 
settings were ai=4, r tmax=2000 and ~=0.8 for both 
simulations. 
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