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LATENT CLASS ANALYSIS WITH SAMPLING WEIGHTS: A MAXIMUM

LIKELIHOOD APPROACH

ABSTRACT

We show how to perform maximum likelihood estimation in latent class (LC) analysis

when there are sampling weights. Our methods are natural extensions of the ap-

proaches proposed by Clogg and Eliason (1987) and Magidson (1987) for dealing with

sampling weights in the log-linear analysis of frequency tables. For the log-linear form

of the LC model, our approach corresponds to a special case of Haberman’s (1979)

log-linear latent class model with cell weights.

Our approach can also be applied to the probability formulation of the LC model

with cell weights, which can accommodate many indicators. We propose an efficient

EM algorithm for estimating the parameters for this formulation. A small simula-

tion study shows that the probability estimates obtained by our approach compares

favorably to other weighting approaches. We provide several empirical examples to

illustrate various possible weighting methods in LC analysis.

Keywords: latent class analysis, mixture model, sampling weights, log-linear analysis,

EM algorithm
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LATENT CLASS ANALYSIS WITH SAMPLING WEIGHTS: A MAXIMUM

LIKELIHOOD APPROACH

INTRODUCTION

Data sets from surveys often contain case or sampling weights. Such weights can be

used to adjust for cases that are under- or over-represented in the sample because of

the sampling scheme. The prevailing method for dealing with sampling weights in

the analysis of frequency tables is to construct a weighted observed frequency table,

and then analyze it as if it were an unweighted table. This approach is referred to as

the pseudo maximum-likelihood (ML) estimation method (Skinner, Holt, and Smith

1989; Rao and Thomas 1988). An alternative method is to ignore sampling weights in

parameter estimation, possibly combined with a second step in which certain model

parameters are corrected for weighting (see ”two-step” approach). In the context of

latent class (LC) analysis and mixture modeling, the pseudo-ML approach has been

advocated by Patterson, Dayton, and Graubard (2002) and Wedel, Ter Hofstede, and

Steenkamp (1998) and the two-step approach by Vermunt (2002) in a commentary

on the Patterson et al. (2002) article. Both approaches are implemented in the LC

software package Latent GOLD (Vermunt and Magidson 2005).

[Insert Table 1 about here]

To illustrate the various available options for dealing with sampling weights in LC

analysis, consider the three-way cross-tabulation displayed in Table 1, which contains

information on 3 dichotomous indicators taken from the 1987 General Social Survey.

Suppose we want to construct a 2-class latent class (LC) model based on these three
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indicators measuring tolerance against anti-religionists: Y1) allow anti-religionist to

speak (1 = allowed, 2 = not allowed); Y2) allow anti-religionist to teach (1 = allowed,

2 = not allowed); Y3) allow anti-religious book in library (1 = not remove, 2 = remove).

More precisely, we wish to estimate the proportion of tolerant persons (say class one) in

the population, and possibly compare this proportion across different years. A problem

is, however, that blacks are over-sampled in the GSS ’87, which can be corrected by

using sampling weights of 1.421 and 0.700 for non-blacks and blacks, respectively.

The two options are to either use the unweighted frequencies (nj) or the weighted

frequencies (n
(w)
j ). The latter approach yields pseudo-ML estimates for the LC model

parameters. When using the unweighted frequencies, we may correct the sizes of

latent classes after obtaining estimates of the model parameters; that is, correct the

unconditional class membership probabilities for the fact that blacks may be less (or

more) likely to be in latent class one than whites.

In this paper, we describe a third approach to weighting in LC analysis that extends

the approach proposed by Clogg and Eliason (1987) and Magidson (1987) for maximum

likelihood estimation with sampling weights in log-linear analysis (see also Agresti

2002, p. 391). Our generalization of this maximum likelihood approach to LC models

turns out to be a special case of Haberman’s (1979, 1988) log-linear model with cell

weights for frequency tables derived by indirect observations. A drawback of the

estimation procedure proposed by Haberman for log-linear LC models is that it can

only be used when the number of indicators is small. To be able to use the weighting

method also with large numbers of indicators, we adapt the weighting method to the

probability formulation of the LC model and develop an efficient EM algorithm for

parameter estimation. Whereas here we will concentrate on LC models, the resulting

weighting method is applicable to a much broader class of models for frequency tables.
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It should be noted that pseudo-maximum likelihood estimation and accompanying

methods for computation of design corrected standard errors (jackknife, linearization,

boostrap, etc.) can not only deal with sampling weights, but also with clustering and

stratification, which are other relevant aspects of complex sampling designs. A problem

associated with pseudo-ML estimation is, however, that standard goodness-of-fit tests

and related measures such as AIC and BIC can no longer be used. This problem does

not occur when using the ML approach described in this article. In other words, the

proposed ML approach, while more limited than pseudo-ML estimation because it can

only deal with one aspect, sampling weights, of the sampling design, has the advantage

that it does not complicate model testing.

A question of interest is whether the new ML estimation method for dealing with

sampling weights in LC analysis yields more reliable estimates of the population pa-

rameters of interest than the commonly used methods. To answer this question, we

compare the various approaches in a small simulation study. Since it can be expected

that the performance of the weighting methods depends on the homogeneity of the

measurement model (Vermunt 2002), special attention is paid to this issue in the design

of the simulation study.

This paper is organized as follows. The next section describes log-linear analysis

with sampling weights. Then, we show how to extend this method to the log-linear

and probability formulations of the LC model. Subsequently, we report the results

from a simulation study and illustrate the various weighting methods using several

empirical examples. We end with a short discussion.

SAMPLING WEIGHTS IN LOG-LINEAR ANALYSIS
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Let wi denote the sampling weight for case i and let δij be an indicator variable taking

on the value 1 if case i falls into cell j of the frequency table and 0 otherwise. The

unweighted observed frequency for cell j, nj, can be obtained as follows:

nj =
∑

i

δij.

In addition to this unweighted cell frequency, we can define the weighted observed

frequency, n
(w)
j , computed as

n
(w)
j =

∑
i

δijwi.

Typically, a weighted analysis is performed by using the weighted observed frequencies

n
(w)
j as data in an “unweighted” analysis, which amounts to using pseudo-ML estima-

tion (Skinner et al. 1989). Clogg and Eliason (1987) and Magidson (1987) showed

that by correcting for the fact that certain cases are over- or under-represented in the

sample this procedure gives the correct parameter estimates for saturated log-linear

models. However, such weighting distorts the data so that the assumption underlying

the goodness-of-fit tests for non-saturated models will no longer be valid. Specifically,

if the Pearson and likelihood-ratio goodness-of-fit tests are computed by comparing the

estimated frequencies with the “weighted” observed frequencies n
(w)
j . These statistics

will no longer be distributed as chi-square, however, because n
(w)
j does not represent the

number of independent observations with answer pattern j. Only nj, the unweighted

observed frequency, represents the number of independent observations.

Haberman (1978) proposed a log-linear model with cell weights that is defined as:

mj = exp(xjβ) zj = hj zj. (1)

Here, mj is an unweighted expected cell frequency, hj is a weighted expected cell entry,

zj is a cell weight, and xjβ represent the linear term of the log-linear model.
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Clogg and Eliason (1987) and Magidson (1987) showed that this log-linear model

can be used for ML estimation with sampling weights. This requires equating zj to

the inverse of the aggregated sampling weight for cell j. More precisely,

zj =
nj

n
(w)
j

.

By rewriting the model defined in equation (1) as

hj = mj

n
(w)
j

nj

=
mj

zj

,

it is easier to see that the weighted expected cell count (hj) equals the unweighted ex-

pected cell count (mj) times a cell-specific weight (z−1
j ). Goodness-of-fit tests will now

be valid because these are based on the standard comparison of mj and nj (Hendrikx

2002).

SAMPLING WEIGHTS IN LOG-LINEAR LATENT CLASS ANALYSIS

Similar to the treatment of sampling weights in standard log-linear models, we can

introduce sampling weights in log-linear LC models. The formula for the log-linear LC

model differs from the one of the standard log-linear model described in equation (1)

in that it requires an additional index for the unobserved latent variable(s). Denoting

a category of the (joint) latent variable by k, the log-linear LC model with sampling

weights can be defined as

mjk = exp(xjkβ) zj = hjk zj. (2)

Here, mjk is an expected cell frequency before weighting, hjk is an expected cell entry in

the population, and zj is again the inverse of the aggregated sampling weight for answer

pattern j. The design matrix with elements xjk defines the log-linear terms appearing
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in the LC model of interest. As shown below, in the standard LC model these are the

main effect, the one-variable terms for the latent and the manifest variables, and the

two-variable terms for the relationship between the latent and the manifest variables.

Note that mjk and hjk are cell entries in the table including the latent variables. The

corresponding entries in the observable table (mj and hj) can be obtained by collapsing

the table over the index k; that is, mj =
∑

k mjk and hj =
∑

k hjk. Thus, as in the

standard log-linear model, the following relationship holds: mj = hj zj.

Haberman (1979) proposed the following log-linear LC model

mjk = exp(xjkβ) zjk = hjk zjk,

which is slightly more general than the model we need for dealing with sampling

weights. It becomes equivalent to the above model if we set zjk = zj. Models of

this form can be estimated with the generally available software packages Newton

(Haberman 1988), LEM (Vermunt 1997a), and Latent GOLD (Vermunt and Magidson

2005). In the latter program, log(zjk) should be used as an offset in the module for

modeling choice data.

As is shown in the Appendix, ML estimation of β parameters of the weighted log-

linear LC model under Poisson or multinomial sampling involves solving the following

set of likelihood equations (see also Haberman 1979):

∑
jk

m̂jkxjku =
∑
jk

n̂jkxjku. (3)

Here n̂jk = njπ̂k|j, u refers to the log-linear parameter concerned, and π̂k|j = m̂jk /
∑

k m̂jk

is the estimated probability of being in latent class k given response pattern j. Haber-

man (1979, 1988) showed how to solve this problem using Fisher scoring and (mod-

ified) Newton-Raphson. The latter method is implemented in the NEWTON pro-

gram (Haberman 1988). The LEM (Vermunt 1997a) and Latent GOLD (Vermunt and
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Magidson 2005) programs estimate the weighted log-linear LC model by EM and/or

Newton-Raphson.

An inefficient EM algorithm

Suppose we have a LC model for 3 indicators Y1, Y2, and Y3 and with a single latent

variable X. A particular category is referred to by the lower-case equivalents of these

symbols: y1, y2, y3, and x. We can now write the log-linear LC model with cell weights

as follows:

my1y2y3x = hy1y2y3x zy1y2y3 ,

with

hy1y2y3x = exp
(
β + βX

x + βY1
y1

+ βY2
y2

+ βY3
y3

+ βY1X
y1x + βY2X

y2x + βY3X
y3x

)
.

For this unrestricted log-linear LC model, the likelihood equations to be solved at

iteration cycle t are simply

m̂(t)
y1x = n̂(t)

y1x; m̂(t)
y2x = n̂(t)

y3x; m̂(t)
y3x = n̂(t)

y3x. (4)

The terms at the right-hand side – n̂(t)
y1x, n̂(t)

y2x, and n̂(t)
y3x – are the expected sufficients

statistics that should be computed in the E step of the EM algorithm; that is, by

the appropriate collapsing of ny1y2y3 π̂
(t−1)
x|y1y2y3

, where ny1y2y3 is an observed cell count

and π̂
(t−1)
x|y1y2y3

= m̂(t−1)
y1y2y3x/

∑
x m̂(t−1)

y1y2y3x is the posterior probability of belonging to latent

class x for someone with the corresponding observed values on the three indicators.

This quantity is estimated with the parameter values – or with estimated expected

cell frequencies – from the previous iteration cycle. In the M step, we need to update

the estimates for m̂(t)
y1y2y3x, for example using a set of simple iterative proportional

fitting (IPF) cycles. The only modification of an EM algorithm for log-linear LC

models without cell weights is that in the current situation the starting values for the
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expected cell entries – based on the starting values for the parameters – should be

multiplied by the cell weights. In other words, the cell weights play a role only before

the EM iterations begin.

The main disadvantage of the estimation procedure for the log-linear LC model is

that it can not be used for problems with more than a few indicators since all cells in

estimated cross-tabulation of the observed and latent variables are processed at each

iteration step. Hence, a question of interest is whether there is a way to solve the

estimation problem by processing only the cells with non-zero observed counts. As in

an unweighted analysis, this might be straightforward using the Lazarsfeld and Henry

(1968) and Goodman (1974a, 1974b) probability formulation of the LC model instead

of the log-linear LC model.

THE PROBABILITY LATENT CLASS MODEL WITH WEIGHTS

An unrestricted LC model for three indicators can alternatively be defined using the

probability formulation; that is,

my1y2y3x = hy1y2y3x zy1y2y3 ,

with

hy1y2y3x = γ πX
x πY1|X

y1x πY2|X
y2x πY3|X

y3x , (5)

where πX
x denotes the unconditional probability of belonging to latent class x and

πY1|X
y1x the conditional probability of giving response y1 on Y1 given that one belong to

latent class x, and the terms corresponding to the other two indicators have a similar

interpretation. Note that the term γ is included to guarantee that the sample size is

reproduced. In an unweighted analysis, γ will be equal to the sample size N. Here, it
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equals

γ =
N∑

y1y2y3x πX
x π

Y1|X
y1x π

Y2|X
y2x π

Y3|X
y3x zy1y2y3

. (6)

In order to distinguish it from the log-linear LC model, we will refer to the model

described in equation (5) as the probability LC model.

The probabilities appearing in the probability LC model can be written as a func-

tion of the collapsed version of hy1y2y3x. For example,

πY1|X
y1x =

hy1x∑
y1

hy1x

, (7)

where hy1x =
∑

y2y3
hy1y2y3x, which is proportional to exp(βY1

y1
+ βY1X

y1x ). This shows

the connection between the log-linear and probability LC model. In an unweighted

analysis, these probabilities can be estimated using the information from only the non-

zero observed cells, which makes it possible to estimate a LC model with many items.1

A similar result would apply if the likelihood equations to be solved at iteration t could

be written as:

m̂(t)
y1x =

∑
y2y3

n̂(t)
y1y2y3x

zy1y2y3

; m̂(t)
y2x =

∑
y1y3

n̂(t)
y1y2y3x

zy1y2y3

; m̂(t)
y3x =

∑
y1y2

n̂(t)
y1y2y3x

zy1y2y3

. (8)

It can easily be verified that this formula is not equivalent to the conditions defining

the ML solution described in equation (4). Actually, working with conditions (8) is

equivalent to performing a weighted analysis by using n(w)
y1y2y3

=
ny1y2y3

zy1y2y3
as observed

frequencies in an “unweighted” analysis; that is, to using the pseudo-ML estimation

approach.

An efficient EM algorithm

Now we describe an efficient EM algorithm for the probability LC model with cell

weights. For simplicity of exposition, we focus on the estimation of a single set of
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the model probabilities; namely, πY1|X
y1x or, more precisely, hY1X

y1x . Note that because of

the relationship described in equation (7), we may redefine the problem of estimating

πY1|X
y1x as the estimation of hY1X

y1x .

As in the log-linear LC model, in the E-step for iteration t, we obtain estimates for

the “observed” marginal frequencies n̂(t)
y1x (the expected sufficients statistics) using the

data and the parameters of the previous iteration. These are then used to obtain new

m̂(t)
y1x in the M step; that is, m̂(t)

y1x = n̂y1x. This is all we need to do in an unweighted

analysis. In a weighted analysis, however, computation of new m̂(t)
y1x is not sufficient

since the model probabilities are defined in terms of hy1x rather than in terms of my1x.

Updated estimates for hy1x are obtained as follows:

ĥ(t)
y1x =

m̂(t)
y1x

ẑ
(t)
y1x

=
n̂(t)

y1x

ẑ
(t)
y1x

. (9)

As can be seen, computation of the new provisional estimates ĥ(t)
y1x requires provisional

estimates for the aggregated cell weights in marginal table Y1-X, which are denoted

by ẑ(t)
y1x. It turns out that these can be calculated in the E step together with the

n̂(t)
y1x. For that purpose, we first compute the estimated frequencies in the marginal

table concerned – m̂(t−1)∗
y1x – by collapsing the estimated unweighted frequencies from

the previous iteration – m̂(t−1)
y1y2y3x – over other variables:

m̂(t−1)∗
y1x =

∑
y2y3

m̂(t−1)
y1y2y3x =

∑
y2y3

ĥ(t−1)
y1y2y3x zy1y2y3 . (10)

At iteration t, the estimates for the cell weights in the marginal table Y1-X are

ẑ(t)
y1x =

m̂(t−1)∗
y1x

ĥ
(t−1)
y1x

. (11)

Thus, a provisional marginal cell weight is the ratio of the current estimates of the

unweighted and the weighted marginal cell frequencies. A similar EM algorithm was
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used by Vermunt (1997b) for log-linear event history models with (partially) unob-

served covariates.

Note that m̂(t−1)
y1x is the provisional value of a cell in the unweighted marginal

table concerned based on n̂(t−1)
y1x , whereas m̂(t−1)∗

y1x is the provisional value based on the

parameter estimates ĥ(t−1)
y1x and the cell weights. As long as convergence is not reached,

m̂(t−1)∗
y1x will not be equal to m̂(t−1)

y1x .

As can be seen from equation (10), for the computation of m̂(t−1)∗
y1x we have to

process all cells of the frequency table, which limits the applicability of this approach

to LC models with a relatively small number of indicators. An important question is

whether it is possible to compute m̂(t−1)∗
y1x , and as a consequence ẑ(t)

y1x, using only the

non-zero observed cells.

The assumption we make is that the weight for each cell with a zero observed

frequency has the same value α; that is, zy1y2y3 = α if ny1y2y3 = 0. Let indicator

variable εy1y2y3 be equal to 1 if ny1y2y3 6= 0, and 0 otherwise. Now we can reformulate

equation (10) as follows:

m̂(t−1)∗
y1x =

∑
y2y3

ĥ(t−1)
y1y2y3x zy1y2y3εy1y2y3 +

∑
y2y3

ĥ(t−1)
y1y2y3x α (1− εy1y2y3);

that is, we split the formula for m̂(t−1)∗
y1x into two parts, one part corresponding to the

nonzero observed cells and the other to the zero observed cells. Making use of the fact

that
∑

y2y3
ĥ(t−1)

y1y2y3x = ĥ(t−1)
y1x , we can rewrite this formula as follows:

m̂(t−1)∗
y1x =

∑
y2y3

ĥ(t−1)
y1y2y3x zy1y2y3εy1y2y3 +

(
ĥ(t−1)

y1x α −
∑
y2y3

ĥ(t−1)
y1y2y3x α εy1y2y3

)
=

∑
y2y3

ĥ(t−1)
y1y2y3x (zy1y2y3 − α)εy1y2y3 + ĥ(t−1)

y1x α.

Since the term
∑

y2y3
ĥ(t−1)

y1y2y3x (zy1y2y3 − α)εy1y2y3 is computed from the nonzero cells

and the term ĥ(t−1)
y1x is a model parameter that is available from the previous iteration
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cycle, this shows that updating m̂(t−1)∗
y1x and ẑ(t)

y1x requires processing only the nonzero

cells.

A question that remains is what value to use for α. Our solution is to use α = 1,

which amounts to assuming that the weighted and unweighted observed cell frequencies

are equal to one another. This is better than α = 0 since that gives a model in which

the observed zeroes are treated as structural zeroes.2 With α = 1, we get

m̂(t−1)∗
y1x =

∑
y2y3

ĥ(t−1)
y1y2y3x (zy1y2y3 − 1) + ĥ(t−1)

y1x .

Using (11), this implies that ẑ(t)
y1x can be calculated in the E step as follows:

ẑ(t)
y1x =

∑
y2y3

ĥ(t−1)
y1y2y3x (zy1y2y3 − 1)

ĥ
(t−1)
y1x

+ 1

This defines an efficient and quite simple EM algorithm. In the tth E step, we

compute new n̂(t)
y1x and ẑ(t)

y1x using the observed data (frequencies and weights) and the

parameters from the previous iteration. In the M step, we use these quantities to

obtain new parameter estimates; that is, new ĥ(t)
y1x (see equation 9).

The γ parameter

A similar procedure as above has to be used to obtain the γ term which guarantees

that
∑

y1y2y3x m̂y1y2y3x = N. Using the definition in equation (6), the estimate for γ at

iteration t is simply

γ̂(t) =
N∑

y1y2y3x π̂
X(t)
x π̂

Y1|X(t)
y1x π̂

Y2|X(t)
y2x π̂

Y3|X(t)
y3x zy1y2y3

.

Again, it is important to solve this without going through the complete table. It turns

out that we can use the following updating scheme for γ:

γ̂(t) = γ̂(t−1) N

m̂(t−1)∗ .
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Above we showed how to obtain m̂(t−1)∗
y1x using only the information from the nonzero

cells. In a similar way, we can obtain m̂(t−1)∗; that is, by

m̂(t−1)∗ =
∑

y1y2y3x

ĥ(t−1)
y1y2y3x (zy1y2y3 − 1) + ĥ(t−1).

This computation of γ is not only relevant in an efficient EM algorithm but also for a

Newton-Raphson algorithm since the γ term is required to get the correct log-likelihood

value.

A SMALL SIMULATION STUDY

How much difference does weighting make?

In this subsection, we show in which types of situations weighting makes sense in

a LC analysis, as well as which weighting methods yield asymptotic correct solu-

tions. For the moment, we will work with population distributions in order to prevent

sampling fluctuations from influencing the conclusions. More specifically, we assess

which weighting methods reproduce the known population values in the case of non-

proportional stratified sampling. Later we investigate how well the methods that work

asymptotically (with sample sizes of infinity) work with sample sizes typical for survey

research.

The stratification variable is a dichotomous variable denoted by A. The popula-

tion and sample proportions for A = 1 – denoted by πA
1 and pA

1 – equal .9 and .5,

respectively. This is a typical example of over-sampling of a minority group (large

firms, large cities, ethnic minorities, females in masculine jobs). We can correct for

the over-sampling by using sampling weights wA
1 = 1.8 and wA

2 = .2, respectively.
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The population model is a LC model for 5 dichotomous indicators:

πY1Y2Y3Y4Y5X|A
y1y2y3y4y5xa = πX|A

xa πY1|XA
y1xa πY2|XA

y2xa πY3|XA
y3xa πY4|XA

y4xa πY5|XA
y5xa ,

where

πYr|XA
yrxa =

exp
(
βYr|A

yra + βYrX|A
yrxa

)
∑2

s=1 exp
(
β

Yr|A
sa + β

YrX|A
sxa

) .

We assume that π
X|A
11 = .1 and π

X|A
12 = .5, which means that the minority group

(A = 2) has a much larger probability of belonging to the “low” class (X = 1) than

the majority group. The overall probability of being in latent class one is: πX
1 =

πA
1 π

X|A
11 + πA

2 π
X|A
12 = .14. Note that with pA

1 = .5, the unweighted estimate for πX
1 will

be .3.

The question is under which conditions are we able to obtain the correct population

value of πX
1 . The investigated conditions varied with respect to the specification of

the effects-coded log-linear parameters β
Yr|A
1a and β

YrX|A
1xa , which define the response

probabilities πYr|XA
yrxa . In the homogeneous measurement model specification, we set

β
Yr|A
1a = −.8+ .4 r and β

YrX|A
11a = .5 for each r (item) and a (group). The heterogeneous

specifications were obtained by allowing for between-group variation in item difficulty

(probability of giving the Yr=2 response) and/or item discrimination (strength of

relationship between X and Yr): We made one or two items more difficult for A = 2

by setting β
Yr|A
12 = β

Yr|A
11 + .4, and/or one or two items less discriminating for A = 2

by setting β
YrX|A
112 = .1. The eight specifications we used are:

I. homogeneous measurement model, πYr|XA
yrxa = πYr|X

yrx for all r,

II. Y3 is more difficult for A = 2,

III. Y3 discriminates less for A = 2,
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IV. Y3 is more difficult and discriminates less for A = 2,

V. Y3 is more difficult and Y4 discriminates less for A = 2,

VI. Y3 and Y4 are more difficult for A = 2,

VII. Y3 and Y4 discriminate less for A = 2,

VIII. Y3 and Y4 are more difficult and discriminate less for A = 2.

These are typical measurement models in a multiple-group LC analysis (Clogg

and Goodman, 1984, 1985). We use four types of methods to deal with the non-

proportional stratified sampling:

0. unweighted analysis

1. two-step approach consisting of an unweighted analysis with an adjustement of the

estimate for πX
1 using the weighted frequencies. This can be either a single-step

adjustment of πX
1 (1a) or an iterative re-estimation of πX

1 (1b),

2. analysis using weighted frequencies n
(w)
j ,

3. weighted analysis using cell weights zj,

4. unweighted analysis with A as grouping variable assuming either a homogeneous

(4a) or a heterogeneous measurement model (4b).

The single-step adjustment after an unweighted analysis (1a) involves reestimating

π̂X
x as follows

π̂X
x =

∑
j

π̂k|jn
(w)
j .
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A problem is that π̂k|j is computed with the wrong unweighted estimate of πX
x . A better

approach seems to be to reestimate πX
x iteratively, fixing the other model parameters

at their estimated values. Re-estimation involves using n
(w)
j as observed frequencies.

The model that is estimated with methods 0, 1a, 1b, 2, and 3 is a standard LC

model with 5 dichotomous indicators.3 This means that we do not take into account

possible differences in the measurement model across levels of the stratifier. That is

the reason that we use the same, possibly incorrect, measurement model in method

4a.

[Insert Table 2 about here]

Table 2 presents the results. With a homogeneous measurement model (case I),

each of the methods gives the correct value for πX
1 , except method 1a. Methods 2 and

3 also give the correct answer if the heterogeneity of the measurement model concerns

a single item (cases II-IV), but with heterogeneity in two items the estimate is no

longer correct. In the latter cases, the bias of method 3 is slightly smaller than that of

method 2. Method 1a works badly in all cases, whereas method 1b works quite well,

especially if the group differences concern only item discrimination (cases II and VII).

Surprisingly, the inclusion of the stratifier as a grouping variable in combination with

the wrong measurement model is among the worst choices, which shows that one has

to be cautious with this strategy. The bias of this method 4a is, however, small if the

heterogeneity concerns only difficulty parameters (cases II and VI). As seen from the

results for method 4b, specification of the correct measurement model yields, as might

be expected, the correct value for πX
1 in all situations.

From the above, we can conclude that when the measurement model is homo-

geneous, there is no need to use sampling weights when estimating the class-specific
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response probabilities. Unbiased estimates for the class sizes (here πX
1 ) can be obtained

in a second stage in which the weighted frequencies are used as data and the class-

specific response probabilities are fixed to the estimated values from the unweighted

analysis (method 1b). If the homogeneous measurement model assumption is incorrect

for no more than a single item, both methods that use sampling weights (methods 2

and 3) still give the correct estimates for the class sizes. However, in situations where

the parameters for more than a single item differ across stratifier levels, these weighting

methods will no longer provide unbiased estimates of the class sizes.

Behavior of the various weighting methods with sampling fluctuation

Above we studied the asymptotic performance (unbiasedness) of the various weighting

methods. In this subsection, we investigate how well the various methods behave

when applied to a sample; that is, not only whether estimates are unbiased but also

whether they are stable. For this purpose, we use a similar design as in the previous

section. Starting point are the same 8 populations that differ with respect to the type

of heterogeneity of the measurement model across levels of the stratification variable,

as well as the various weighting methods described above. The difference is that now

we generate samples from the population distributions rather than use population

data. The sample size we set to 1000, a moderate sample size in survey research. The

simulation study consists of 1000 replications.

To summarize, we generate 1000 samples of size 1000 from 8 populations. To each

of these samples we apply the various methods for dealing with sampling weights.

Tables 3 and 4 report the results from this small simulation study, where Table 3 gives

the average and the standard deviation of the estimated πX
1 value across replications,

and Table 4 the same information on the logit scale.
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[Insert Table 3 about here]

[Insert Table 4 about here]

The results are similar to the asymptotic results. Overall, the ML weighting method

proposed in this paper (method 3) performs best, but the difference compared to

method 2 (pseudo-ML) is not very large. It can also be observed that weighting

methods 2 and 3 yield larger standard deviations across replications than the other

methods, which indicates that there is a clear trade off between bias and stability of

estimates.4 The fact that weighting increases uncertainty about parameter estimates

is a phenomenon reported by various authors (Hendrikx 2002; Winship and Radbill

1994).

EMPIRICAL EXAMPLES

A standard latent class model for six dichotomous indicators

To illustrate the performance of various weighting methods with real life data, we took

6 dichotomous indicators measuring work values from Dutch samples of EVS ’90 and

EVS ’99 surveys (EVS stands for European Value Study). The task for respondents

was to pick a number of items that they find important in a job out of a list of 15.

For this example, we used 6 of the 15 items: Y1) “chances for promotions”, Y2) “use

initiative”, Y3) “achieve something”, Y4) “responsible job”, Y5) “job interesting”, and

Y6) “meeting abilities”. The Dutch EVS surveys contain case weights in order to

correct for the sampling design and for unit nonresponse. Weights differ across age

groups, gender, and regions.

The model we assume for the six work-value indicators is a LC model with homo-
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geneous response probabilities across the two time points.5 Table 5 reports the value

of the likelihood-ratio statistic (L2) and the Bayesian information criterion (BIC) for

1- to 5-class models estimated using unweighted frequencies, weighted frequencies, and

cell weights. As can be seen, for each of the three methods the four-class model is the

preferred model based on the BIC criterion.6

[Insert Table 5 about here]

The parameters for the 4-class model obtained using the ML approach with cell

weights (see Table 6) shows that there is one class that finds all items important (class

one) and one class that finds all non-important (class four). Classes two and three

take an intermediate position, where class two gives higher importance to items Y2,

Y4, and Y5 (the self-development items), and the very small class three to items Y1,

Y2, Y3, and Y4 (the achievement items).

[Insert Table 6 about here]

A similar four-class pattern as in Table 6 is found with both the unweighted analysis

and the analysis of weighted frequencies. However, the estimated latent distribution

and its change between 1990 and 1999 is somewhat different for the three weighting

methods (see Table 7). As can be seen, compared to the unweighted analysis, using

the sampling weights increases the size of class 2 and decreases the size of class 3. This

effect is stronger when using the ML or cells weights approach described in this article

than when using the pseudo-ML or weighted frequencies approach. It can also be seen

that the parameter changes resulting from using the sampling weights are somewhat

larger for the first than for the second time point.

[Insert Table 7 about here]

22



A non-standard latent class model

To illustrate the fact that the proposed ML weighting procedure can be also applied

with more advanced LC models, we present an example of a LC model for incomplete

ranking data. The data are again taken from the Dutch samples of EVS ’90 and

EVS ’99. The two indicators of interest form Ingelhart’s (post)materialism scale.

Respondents select their first and second choices out of the following four “aims of the

country”: 1) “maintain order in the nation”, 2) “more say in important government

decisions”, 2) “fighting rising prices”, and 4) “protect freedom of speech”.

We denote the first and second choice by Y1 and Y2, respectively. A special feature

of a ranking task is that it is impossible to select the same answer twice, which means

that the cell counts for Y1 = Y2 are structurally zero. The data is modelled by a mixture

variant of the strict-utility or Bradley-Terry-Luce ranking model (Croon 1989). Using

T (time) as a grouping variable, this LC model can be defined as follows:

π
Y1Y2X|T
y1y2xt = π

X|T
xt π

Y1|XT
y1xt π

Y2|Y1XT
y2y1xt

= π
X|T
xt

exp(βY XT
y1xt )∑

y1
exp(βY XT

y1xt )

exp(βY XT
y2xt )∑

y2 6=y1
exp(βY XT

y2xt )
,

for Y1 6= Y2, and π
Y1Y2X|T
y1y2xt = 0 otherwise. As can be seen, the first- and second-choice

probabilities are parameterized by a set of class- and time-specific utilities β which are

assumed to be equal across choices. For identification, the β parameters are assumed

to sum to 0 across alternatives (
∑

y βY XT
yxt = 0).7 The more complicated subscript

y2 6= y1 appearing in the sum of the denominator for the second choice is needed

because the alternative selected as first choice should be eliminated from the set of

alternatives for the second choice.

This mixture Bradley-Terry-Luce ranking model can not be defined as a log-linear

model for the joint distribution of the latent and manifest variables, which means
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that in this case we have to use the probability formulation of the LC model. An

additional feature of the data set we use for this example is that for some respondents

the information on the first or second choice is missing. We use the partially observed

data in the model estimation assuming that the missing data is missing at random

(MAR).

[Insert Table 8 about here]

Table 8 reports the test results for the estimated models using the weighting method

proposed in this paper. The model with the lowest BIC value is the two-class model

with a partially heterogeneous measurement structure. Inspection of the estimated

parameters of the heterogeneous two-class model shows that the first item “maintain

order in the nation” became more popular between 1990 and 1999, irrespective of the

latent class. We modeled this by augmenting the homogeneous two-class model by a

single parameter capturing the change in popularity of the first item.

[Insert Table 9 about here]

The parameter estimates are presented in Table 9. Latent class one is the ma-

terialistic class having higher probabilities for items 1 and 3, and class two is the

postmaterialistic class having higher probabilities for item 2 and 4. The latent change

shows an increase of materialistic class, even after filtering out the increased popularity

of materialistic item 1.

DISCUSSION

We showed how to obtain ML estimates for log-linear LC models when there are sam-

pling weights by generalizing results from standard log-linear analysis with sampling
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weights. The method can be implemented using the procedures for log-linear analysis

of incomplete tables of Haberman’s (1988) NEWTON program and Vermunt’s (1997a)

LEM program. It can also be implemented in Latent GOLD (Vermunt and Magidson

2005) by using the log of the cell weights as an offset in the module for choice data.

We also showed how to estimate a probability-based LC model with sampling weights

without processing the complete table. This makes it possible to apply the proposed

weighting method to large problems. The only assumption that needs to be made is

that the cell weights are equal for all zero cells, for example, equal to 1.

The probability LC model is a special case of a much broader class of models

for frequency tables. Therefore, the proposed weighting method can be generalized

quite easily to more complicated probability models with latent and partially observed

categorical variables, such as the modified Lisrel approach of Hagenaars (1990) and

Vermunt (1997b) and the missing data models of Winship and Mare (1989). The

proposed method can also be used to define LC models (with many indicators) in

which some of the cells are restricted to be structurally zero, such as LC models for

capture-recapture data (see, Agresti 2002, p. 544).

Because sampling weights increase standard errors, for linear regression analysis,

Winship and Radbill (1994) recommended using the unweighted solution when pa-

rameter estimates are substantively similar with and without weighting. A similar

advice could be given for LC analysis: if the variables used to construct the weights

do not affect the measurement part of the model, an unweighted analysis is the pre-

ferred approach. As was demonstrated, latent class sizes can easily be corrected using

the “two-step” approach. In other cases, it is recommended to use sampling weights,

where the pseudo-ML and ML weighting methods can be expected to give similar re-

sults in terms of parameter values. Whereas in pseudo-ML estimation one can obtain

25



correct standard errors, for instance, by means of a linearization variance estimator or

a jackknife procedure (Skinner et al. 1989), construction of valid goodness-of-fit tests

is not possible. The main advantage of the proposed ML approach is therefore that it

provides valid goodness-of-fit tests.
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Notes

1It should be noted that LC models for large numbers of indicators raise other problems associated

with sparseness, which complicates model evaluation.

2As indicated by one of the reviewers, in some situations one may wish to combine several values

of α. More specifically, one may use α = 0 for zero observed cells that are considered structural zeroes

and α = 1 for zero cells that are considered sampling zeroes. This can be easily achieved without any

modification of the algorithm described here. Structural zero cells should be given a cell weight of 0

and a εy1y2y3 value of 1 (instead of 0).

3The model is estimated treating the expected cell counts defining the population as data; that

is, as if they were observed frequencies.

4The mean squared error could be used to determine the combined effect of bias and variability. It

can easily be obtained from the numbers reported in these two tables; that is, as the sum of squared

bias and squared standard deviation.

5We assume time-homogeneous response probabilities for simplicity of exposition. In the next

more advanced example we consider models with different response probabilities across time points.

6It should be noted that the use of L2 and BIC is somewhat questionable for the pseudo-ML

estimation approach (the method based on weighted frequencies) because these measure contain the

log-likelihood function in their formulae instead of the pseudo log-likelihood function.

7Note that these log-linear parameters are not assumed to sum to zero across latent classes. An

equivalent model would be obtained by adding this constraint and including an item intercept βY T
yt

in the model.
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APPENDIX: LIKELIHOOD EQUATION FOR LOG-LINEAR LC MODEL

In this appendix, we derive the likelihood equation for the weighted log-linear LC

model under Poisson and multinomial sampling. The contribution of cell j to Poisson

log-likelihood is

log Lj = nj log

(∑
k

mjk

)
−
∑
k

mjk,

and the first-order derivatives are

∂ log Lj

∂βu

= nj

∑
k

mjk∑
k′ mjk′

xjku −
∑
k

mjkxjku

=
∑
k

n̂jkxjku −
∑
k

mjkxjku.

where

n̂jk = n̂jk
mjk∑
k′ mjk′

= n̂jkπj|k.

This means that the likelihood equations have the form

∑
jk

mjkxjku =
∑
jk

n̂jkxjku.

Under multinomial sampling, the contribution of cell j to the likelihood equals

log Lj = nj log

(∑
k

mjk

)
− nj log

∑
j′k

mj′k

 .

and the corresponding first-order derivatives have the form

∂ log Lj

∂βu

= nj

∑
k

mjk∑
k′ mjk′

xjku − nj

∑
j′′k

mj′′k∑
j′k′ mj′k′

xj′′ku

=
∑
k

n̂jkxjku − nj

∑
j′′k

mj′′k∑
j′k′ mj′k′

xj′′ku.

Assuming that
∑

jk mjk =
∑

j nj, the sum over all cells (index j) yields

∑
j

∂ log Lj

∂βu

=
∑
jk

n̂jkxjku −
∑
jk

mjkxjku.
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This shows that Poisson and multinomial sampling give the same likelihood equation.

Note that zj cancels in the computation of the posterior probabilities:

πk|j =
mjk∑
k′ mjk′

=
hjk∑
k′ hjk′

,

which shows that the posterior class membership probabilities do not depend on the

sampling weights.
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Table 1. Cross-tabulation of three indicators measuring tolerance against anti-religionists

taken from GSS ’87

j Y1 Y2 Y3 nj n
(w)
j n

(w)
j /nj zj

1 1 1 1 696 719.408 1.0336 0.9675

2 1 1 2 68 65.037 0.9564 1.0456

3 1 2 1 275 281.609 1.0240 0.9765

4 1 2 2 130 125.853 0.9681 1.0330

5 2 1 1 34 34.131 1.0039 0.9962

6 2 1 2 19 17.129 0.9015 1.1092

7 2 2 1 125 127.711 1.0217 0.9788

8 2 2 2 366 351.000 0.9590 1.0427

33



Table 2. Estimates for πX
1 under eight true models and seven weighting methods for

dealing with the stratified sampling design.

Method I II III IV V VI VII VIII

0. unweighted .300 .300 .300 .300 .311 .310 .307 .353

1a. two-step (non iterative) .218 .202 .226 .212 .222 .198 .236 .244

1b. two-step (iterative) .140 .119 .137 .119 .124 .112 .134 .121

2. pseudo-ML .140 .140 .140 .140 .144 .142 .141 .151

3. weighted ML .140 .140 .140 .140 .143 .141 .141 .148

4a. multiple group (homogeneous) .140 .138 .166 .202 .186 .146 .232 .233

4b. multiple group (heterogeneous) .140 .140 .140 .140 .140 .140 .140 .140
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Table 3. Means and standard deviations for πX
1 across 1000 samples of size 1000

simulated from eight true models and seven weighting methods for dealing with the

stratified sampling design.

Method I II III IV V VI VII VIII

0. unweighted 0.305 0.304 0.305 0.303 0.319 0.315 0.319 0.357

(0.046) (0.043) (0.061) (0.052) (0.060) (0.044) (0.079) (0.067)

1a. two-step 0.224 0.206 0.231 0.215 0.229 0.203 0.249 0.250

(non iterative) (0.044) (0.039) (0.057) (0.048) (0.055) (0.039) (0.076) (0.064)

1b. two-step 0.150 0.128 0.149 0.128 0.137 0.121 0.155 0.136

(iterative) (0.037) (0.032) (0.048) (0.038) (0.044) (0.031) (0.061) (0.049)

2. pseudo-ML 0.160 0.156 0.162 0.155 0.167 0.158 0.165 0.172

(0.061) (0.056) (0.069) (0.058) (0.068) (0.056) (0.075) (0.069)

3. weighted ML 0.152 0.149 0.153 0.148 0.157 0.148 0.155 0.156

(0.053) (0.049) (0.058) (0.049) (0.056) (0.045) (0.063) (0.057)

4a. multiple group 0.145 0.143 0.172 0.203 0.191 0.151 0.238 0.237

(homogeneous) (0.030) (0.028) (0.041) (0.043) (0.040) (0.028) (0.053) (0.037)

4b. multiple group 0.149 0.147 0.150 0.147 0.151 0.148 0.151 0.150

(heterogeneous) (0.035) (0.036) (0.040) (0.038) (0.040) (0.036) (0.041) (0.044)
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Table 4. Means and standard deviations for logit(πX
1 ) across 1000 samples of size 1000

simulated under eight true models and seven weighting methods for dealing with the

stratified sampling design.

Method I II III IV V VI VII VIII

0. unweighted -0.832 -0.838 -0.841 -0.845 -0.773 -0.783 -0.786 -0.602

(0.216) (0.204) (0.291) (0.248) (0.280) (0.204) (0.373) (0.296)

1a. two-step -1.261 -1.368 -1.228 -1.316 -1.239 -1.383 -1.148 -1.127

(non iterative) (0.250) (0.243) (0.323) (0.283) (0.315) (0.245) (0.414) (0.343)

1b. two-step -1.766 -1.954 -1.789 -1.961 -1.887 -2.012 -1.773 -1.912

(iterative) (0.294) (0.294) (0.376) (0.342) (0.373) (0.289) (0.471) (0.417)

2. pseudo-ML -1.727 -1.751 -1.718 -1.762 -1.681 -1.729 -1.714 -1.646

(0.442) (0.420) (0.486) (0.429) (0.475) (0.404) (0.529) (0.472)

3. weighted ML -1.775 -1.796 -1.780 -1.801 -1.743 -1.795 -1.770 -1.746

(0.403) (0.380) (0.439) (0.388) (0.427) (0.349) (0.475) (0.420)

4a. multiple group -1.792 -1.807 -1.597 -1.392 -1.466 -1.742 -1.188 -1.181

(homogeneous) (0.241) (0.231) (0.288) (0.273) (0.265) (0.218) (0.304) (0.207)

4b. multiple group -1.768 -1.788 -1.766 -1.786 -1.764 -1.783 -1.761 -1.775

(heterogeneous) (0.278) (0.287) (0.312) (0.300) (0.313) (0.287) (0.317) (0.337)
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Table 5: Test results for the models estimated with the EVS job attitude data

nj n
(w)
j nj and zj

Model df L2 BIC L2 BIC L2 BIC

1-class 120 2130.24 1216.94 2165.12 1251.82 2245.86 1332.56

2-class 112 399.50 -452.91 442.73 -409.68 447.09 -405.33

3-class 104 195.99 -595.54 226.69 -564.84 224.26 -567.27

4-class 96 121.70 -608.94 154.73 -575.91 157.46 -573.18

5-class 88 110.17 -559.58 133.62 -536.13 136.15 -533.60

37



Table 6: Parameters estimates of the 4-class model for the EVS job-attitude data using

cell weights

X = 1 X = 2 X = 3 X = 4

πX
x 0.25 0.42 0.03 0.31

π
X|T
x1 0.31 0.41 0.00 0.27

π
X|T
x2 0.19 0.42 0.05 0.34

π
Y1|X
1x 0.84 0.20 0.79 0.11

π
Y2|X
1x 0.96 0.77 0.76 0.19

π
Y3|X
1x 0.95 0.31 0.77 0.12

π
Y4|X
1x 0.84 0.41 0.64 0.14

π
Y5|X
1x 0.93 0.70 0.10 0.21

π
Y6|X
1x 0.99 0.88 0.30 0.30
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Table 7: Estimated latent class proportions for four-class model for the EVS job

attitude data

Using nj Using n
(w)
j Using nj and zj

πX
x π

X|T
x1 π

X|T
x2 πX

x π
X|T
x1 π

X|T
x2 πX

x π
X|T
x1 π

X|T
x2

X = 1 0.25 0.30 0.20 0.25 0.31 0.19 0.25 0.31 0.19

X = 2 0.37 0.35 0.39 0.40 0.40 0.40 0.42 0.41 0.42

X = 3 0.09 0.08 0.11 0.06 0.03 0.09 0.03 0.00 0.05

X = 4 0.29 0.27 0.30 0.29 0.26 0.32 0.31 0.27 0.34

39



Table 8: Test results for the models estimated with the EVS Inglehart items

Model L2 df BIC

1-class heterogeneous 173.18 16 51.40

2-class heterogeneous 24.57 8 -36.32

1-class homogeneous 250.49 19 105.88

2-class homogeneous 51.54 14 -55.01

2-class partially heterogeneous 37.46 13 -61.48
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Table 9: Parameter estimates for two-class partially heterogeneous LC model for the

EVS Inglehart items

X = 1 X = 2

π
X|T
x1 0.62 0.38

π
X|T
x2 0.66 0.34

βY X
1x 1.05 -0.41

βY X
2x -1.06 0.37

βY X
3x -0.33 -1.07

βY X
4x 0.33 1.11

βY T
12 0.89 0.89

π
Y1|XT
1x1 0.54 0.12

π
Y1|XT
2x1 0.07 0.26

π
Y1|XT
3x1 0.13 0.06

π
Y1|XT
4x1 0.26 0.55
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