
1

A Simplification of the Modified Bahl Decoding Algorithm
for Systematic Convolutional Codes

Steven S. Pietrobon and Adrian S. Barbulescu
Australian Space Centre for Signal Processing

University of South Australia
The Levels SA 5095

Revised 4 January 1996

SUMMARY A soft–in/soft–out algorithm which estimates the a posteriori probabilities (APP) for each transmitted bit is
investigated. The soft outputs can be used at the next decoding stage, which could be an outer code or another iteration in an iterative
decoding process. This algorithm is estimated to have approximately four times the complexity of the Viterbi algorithm and has
the advantage of providing the APP for each decoded bit.

1 INTRODUCTION

The Viterbi algorithm is a maximum likelihood decoding
method which minimises the probability of sequence error.
However, it does not necessarily minimise the probability of
bit error. An algorithm to estimate the a posteriori
probabilities (APP) of the states and transitions of a Markov
source observed through a discrete memoryless channel, was
first presented by Bahl et. al. in [1]. This yields the APP for
each decoded bit and it is an optimal decoding method for
linear codes which minimises the bit error probability. A
modified version was presented in [2] where it was used for
decoding a new class of convolutional codes, Turbo–Codes, in
an iterative process. The derivation presented in [2] led to a
very complicated relation to evaluate the APP for each
decoded bit.

In this paper we present a simplified APP algorithm which was
successfully tested using the rate half systematic convolutional
16 state Turbo code given in [2], with a 20�20 block
interleaver of 400 bits. For an Eb/N0 = 2.0 dB and eight
iterations, an output bit error ratio Pb � 1.5 � 10�4 was
found.

2 A MODIFIED BAHL ALGORITHM

For an encoder with � memory cells, we define the encoder
state at time k , Sk, as a �–tuple, depending only on the output
of each delay element. The state Sk defined in [2] included dk,
which resulted in an excessively complicated algorithm. The
information bit at time k, dk, is associated with the transition
from time k to time k+1 and will change the encoder state from
Sk to Sk+1. Also suppose that the information bit sequence {dk}
is made up of N�� independent bits dk, taking values 0 and
1 with equal probability. We let the encoder initial state S1 be
equal to zero. The last � information bits (dN���1 to dN) are set
to values that will force the state to 0 at time N+1 (i.e., SN+1
= 0). This will slightly reduce the rate of the encoder.

This work was supported in part by the Australian Research
Council and under GIRD grant number 17025.

We consider a rate 1/2 systematic feedback encoder whose
outputs at time k are the uncoded data bit, dk, and the coded bit,
Yk. These outputs are modulated with a BPSK or QPSK
modulator and sent through an additive white gaussian noise
(AWGN) channel. At the receiver end, we define the received
sequence:

RN
1 � (R1, ��� , Rk, ��� , RN), (1)

where Rk = (xk, yk) is the received symbol at time k; xk and yk
are defined as:

xk � (2dk � 1) � pk, (2)

yk � (2Yk � 1) � qk, (3)

with pk and qk being two independent normally distributed
random variables with variance �2. We define the Log
Likelihood Ratio, L�dk) associated with each decoded bit dk
as:

L(dk) � log
Pr(dk � 1|RN

1
)

Pr(dk � 0|RN
1)

, (4)

where Pr(dk � i|RN
1), i = 0,1 is the APP of the data bit dk. The

APP of a decoded data bit dk can be derived from the joint
probability defined by:

�i
k(m) � Pr(dk � i, Sk � m|RN

1), (5)

and thus the APP of a decoded data bit dk is equal to:

Pr(dk � i|RN
1) ��

m

�i
k(m), (6)

where i = 0,1 and the summation is over all 2� states. From (4)
and (6), the L�dk) associated with a decoded bit dk can be
written as:

L(dk) � log

�
m

�1
k
(m)

�
m

�0
k(m)

. (7)

2

The decoder can make a decision by comparing L(dk) to a
threshold equal to zero:

d
^

k � � 1 ; L(dk) � 0,

0 ; L(dk) � 0.
(8)

Using Bayes’ rule, the joint probability from (5) can be
rewritten as follows:

�i
k(m) �

Pr(dk � i, Sk � m, Rk
1
, RN

k�1
)

Pr(RN
1)

, (9)

which can be further expanded to:

�i
k(m) �

Pr(dk � i, Sk � m, Rk
1
)Pr(RN

k�1
|dk � i, Sk � m, Rk

1
)

Pr(RN
1)

. (10)

Taking into account that events after time k are not influenced
by that part of the observation up to the time k, (10) can be
modified to:

�i
k(m) �

Pr(dk � i, Sk � m, Rk
1
)Pr(RN

k�1
|dk � i, Sk � m)

Pr(RN
1)

. (11)

We define

�i
k(m) � Pr(dk � i, Sk � m, Rk

1), (12)

�i
k(m) � Pr(RN

k�1|dk � i, Sk � m). (13)

Substituting (12) and (13) in (11) we obtain:

�i
k(m) �

�i
k
(m)�i

k
(m)

Pr(RN
1)

. (14)

This result can be used to evaluate (7) as

L(dk) � log

m

�1
k
(m)�1

k
(m)

m

�0
k(m)�0

k(m)
, (15)

where the summations are over all 2� states.

2.1 Derivation of �

We want to show that (12) can be recursively calculated. We
can express (12) as:

�i
k(m) � Pr(dk � i, Sk � m, Rk�1

1 , Rk)

�

m	

1

j�0

Pr(dk � i, dk�1 � j, Sk � m, Sk�1 � m	, Rk�1
1 , Rk)

�

m	

1

j�0

Pr(dk–1 � j, Sk–1 � m	, Rk–1
1)

� Pr(dk � i, Sk � m, Rk|dk–1 � j, Sk–1 � m	, Rk–1
1)

�

m	

1

j�0

Pr(dk–1 � j, Sk–1 � m	, Rk–1
1)

� Pr(dk � i, Sk � m, Rk|dk–1 � j, Sk–1 � m), (16)

since dk–1 and Sk–1 completely define the path at time k–1, the
received information Rk�1

1 is irrelevant. We let

�i,j(Rk, m, m) � Pr(dk � i, Sk � m, Rk|dk–1 � j, Sk–1 � m). (17)

Substituting (12) and (17) into (16) we obtain the iterative
equation

�i
k(m) �

m	

1

j�0

�j
k�1

(m)�i,j(Rk, m, m). (18)

2.2 Derivation of �

In a similar way we can recursively calculate the probability
�k(m) from the probability �k+1(m). Note that this is possible
only after the whole block of data is received. Relation (13)
becomes:

�i
k(m) � Pr(Rk�1, RN

k�2|dk � i, Sk � m)

�

m	

1

j�0

Pr(dk�1 � j, Sk�1 � m	, Rk�1, RN
k�2|dk � i, Sk � m)

�

m	

1

j�0

Pr(RN
k�2|dk�1 � j, Sk�1 � m	, Rk�1, dk � i, Sk � m)

� Pr(dk�1 � j, Sk�1 � m	, Rk�1|dk � i, Sk � m)

�

m	

1

j�0

Pr(RN
k�2|dk�1 � j, Sk�1 � m)

� Pr(dk�1 � j, Sk�1 � m	, Rk�1|dk � i, Sk � m), (19)

since dk+1 = j and Sk+1 = m	 completely define the path at time
k+1, making Rk+1 irrelevant. Also (19) is valid only for those
dk+1 = j and Sk+1 = m	 that extend from the path dk = i and Sk
= m, allowing these conditions to be dropped.

Substituting (13) and (17) into (19) we obtain the iterative
equation

�i
k(m) �

m	

1

j�0

�j
k�1

(m)�j,i(Rk�1,m	, m). (20)

2.3 Derivation of � �i,j(Rk, m, m) and �j,i(Rk+1, m	, m)

The probabilities �i,j(Rk, m, m) and �j,i(Rk+1, m	, m) can be
determined from the transition probabilities of the discrete
Gaussian memoryless channel and transition probabilities of
the encoder trellis. From (17) and using Bayes’ rule we have

�i,j(Rk, m, m) � Pr(Rk|dk � i, Sk � m, dk�1 � j, Sk�1 � m)

� Pr(dk � i|Sk � m, dk�1 � j, Sk�1 � m)

� Pr(Sk � m|dk�1 � j, Sk�1 � m). (21)

Each of the terms in (21) can be expressed as follows. We have

Pr(Rk|dk � i, Sk � m, dk�1 � j, Sk�1 � m)

� Pr(Rk|dk � i, Sk � m), (22)

since Rk is dependent only on the path at time k, not on the path
at time k–1. This is the probability of the received data for a
particular path at time k. We also have

Pr(dk � i|Sk � m, dk�1 � j, Sk�1 � m)

� Pr(dk � i) � 1�2, (23)

since dk is independent of the current state Sk or path at time
k–1 and each possible dk are equally likely. Finally we have

3

Pr(Sk � m|dk�1 � j, Sk�1 � m�) � �1 ; m� � Sj
b
(m),

0 ; m� � Sj
b
(m),

(24)

where Sj
b
(m) is the previous state given the path defined by Sk

= m and dk–1 = j (this will be a unique path since the code is
systematic). Substituting (22) to (24) into (21) we obtain

�i,j(Rk, m, m�) � ��i(Rk, m)

0

; m� � Sj
b
(m),

; m� � Sj
b
(m),

(25)

where

�i(Rk, m) � Pr(Rk|dk � i, Sk � m)�2. (26)

Substituting (25) into (18) the summation over all m� will
disappear and the only surviving m� will be Sj

b
(m). Thus, (18)

becomes

�i
k(m) � �i(Rk, m)�

1

j�0

�j
k�1

(Sj
b
(m)). (27)

A more intuitive graphical representation of (27) is given in
Figure 1.

Figure 1: Graphical representation of (27).

time k–1 k k+1

�1
k�1(S

1
b(m)) �1(Rk, m)

j � 1

j � 0 i � 0

m

S1
b(m)

S0
b(m)

�0
k�1(S

0
b(m))

i � 1

�0(Rk, m)

Looking at �j,i(Rk+1, m�, m), we have

�j,i(Rk�1, m�, m) � Pr(Rk�1|dk�1 � j, Sk�1 � m�, dk � i, Sk � m)

� Pr(dk�1 � j|Sk�1 � m�, dk � i, Sk � m)

� Pr(Sk�1 � m�|dk � i, Sk � m)

� Pr(Rk�1|dk�1 � j, Sk�1 � m�)Pr(Sk�1 � m�|dk � i, Sk � m)�2

� ��j(Rk�1, m�)

0

; m� � Si
f(m),

; m� � Si
f(m),

(28)

where Si
f(m) is the next state given the path defined by Sk = m

and dk = i. Substituting (28) into (20) the summation over all
m� will disappear and the only surviving m� will be Si

f(m).
Thus, (20) becomes

�i
k(m) ��1

j�0

�j
k�1

(Si
f(m))�j(Rk�1, Si

f(m)). (29)

A graphical representation of (29) is given in Figure 2.

Figure 2: Graphical representation of (29).

time k k+1

�1
k�1(S

1
f (m))

j � 0

i � 1

i � 0

m

S1
f (m)

S0
f (m)

j � 1

j � 1

j � 0

�0
k�1(S

1
f (m))

�1
k�1(S

0
f (m))

�0
k�1(S

0
f (m))

k+2

�1(Rk�1, S1
f (m))

�0(Rk�1, S1
f (m))

�1(Rk�1, S0
f (m))

�0(Rk�1, S0
f (m))

2.4 Redefinition of �

Since pk and qk are independent, we rearrange (26) to

�i(Rk, m) � Pr(xk|dk � i, Sk � m)Pr(yk|dk � i, Sk � m)�2, (30)

which for an AWGN channel with mean zero and variance �2

becomes

�i(Rk, m) � 1
2 2�
 �

exp�� 1
2�2 (xk � (2dk � 1))2	 dxk

� 1
2�
 �

exp�� 1
2�2 (yk � (2Yk � 1))2	 dyk

� Kk exp� 2
�2 (xki � ykY

i
k(m))	, (31)

where Kk is a constant and dxk and dyk are the differentials of
xk and yk, respectively. Also, we rewrite dk as i and Yk as
Yi

k(m) to underline that Yk is a function of the input bit dk =
i and the encoder state Sk = m. Since the constant Kk in (31)
doesn’t affect L(dk) in (15), we redefine (31) as

�i(Rk, m) � exp� 2
�2 (xki � ykY

i
k(m))	. (32)

Note that (32) inherently changes the definition of (12) and
(13) by some constant value. However, this is not important
since L(dk) remains the same regardless.

2.5 The algorithm

With �, �, and � defined, the steps of the decoding algorithm
are

1) Starting at time k = 1, compute �i(Rk, m) for all received
symbols and store in an array of size 2nN (for the 2n

possible coded symbols, in this case n = 2).

2) Initialise �i
N(Si

b(0)) � 1 for i = 0, 1 and �i
N(m) � 0 for all

other m and i. Starting at time k = N–1, iteratively compute
�i

k(m) using (29) and store in an array of size 2�N (since
�1

k(m) � �0
k(m�) where S1

f (m) � S0
f (m�) we can reduce the

array size by half).

3) Initialise �i
1(0) � �i(R1, 0) for i = 0, 1 and �i

1(m) � 0 for
all m � 0 and i = 0, 1. Starting at time k = 2, iteratively

4

compute �i
k(m) using (27). For each k (including k = 1)

compute L(dk) using (15) and output d
^

k.

When computing �i
k(m) and �i

k(m) we can renormalise the
values to prevent them from becoming too large or too small.
For example, if �min and �max are the smallest and largest values
of �i

k(m), we can divide each �i
k(m) by

�mid � exp((log�min � log�max)�2), (33)

to ensure we don’t over or underflow �i
k(m). To reduce the

number of computations, this renormalisation should be
applied to �i(Rk�1, m). A similar renormalisation can also be
applied to �i

k(m).

This algorithm appears to have been independently discovered
in [3]. The equations are expressed in a different form, but we
believe that the algorithms are inherently the same. The
definitions of � and � in [3] have a complicated denominator
which can be eliminated since they are constant in value. With
this simplification, the algorithms become essentially the
same.

For continuously encoded data, it is impractical to store all the
� and � values. Like the Viterbi algorithm, a finite length need
only be stored. For example, the storage length could be 2N.
At time 2N–1 we let �i

2N�1(m) � 1 for all m and i. The �’s and
�’s then iteratively calculated as in the algorithm, except we

only output d
^

k from time k = 0 to N–1. The process then repeats
with all the time indices incremented by N. The total decoder
delay will be 4N. The number of computations also increases
since we have to compute each �i

k(m) twice.

With the simplified algorithm, it is now possible to implement
a hardware maximum a posteriori (MAP) decoder (which is
another name for this algorithm). To simplify the algorithm we
express L(dk) from (15) as

L(dk) �E
m

A1
k(m) � B1

k(m) �E
m

A0
k(m) � B0

k(m), (34)

where we define

x E y � log(ex � ey), (35)

E
2��1

m�0

f(m) � f(0) E f(1) E ��� E f(2� � 1)

� log�	2��1

m�0

exp(f(m))�, (36)

and taking the log of (27), (29), and (32) we have

Ai
k(m) � Di(Rk, m) �E

1

j�0

Aj
k�1

(Sj
b
(m)), (37)

Bi
k(m) �E

1

j�0

Bj
k�1

(Si
f(m)) � Dj(Rk�1, Si

f(m)), (38)

Di(Rk, m) � 2
�2 (xki � ykY

i
k(m)). (39)

The calculation of (38) is almost the same as the add, compare–
select (ACS) function of the Viterbi algorithm, except that the
E function replaces the compare–select function. It is also

possible to rearrange the order of computation of (37) so that
it is similar to (38), except that we are going in the forward
direction (as in the Viterbi algorithm). Ai

k(m) and Bi
k(m) can

be thought of as “state metrics” and Di(Rk, m) as the “branch
metrics” of the algorithm. Taking the log of (33) the
renormalisation metric becomes

Amid � (Amin � Amax)�2, (40)

where Amin and Amax are the smallest and largest values of
Ai

k(m). Renormalisation is performed by subtraction. Two’s
complement arithmetic can be used for the addition and
subtracting functions. The E function can be implemented
using look–up–tables, although the number of bits used to
represent each state metric will be limited.

The MAP decoder will now have 3 � 2��1 additions and
2��2 � 2 E computations per decoded bit (assuming the
decoder stores all the received samples and ignoring branch
metric calculations). The Viterbi algorithm has 2��1 additions
and 2� � 1 compare–select computations. If we consider that
the E function is equivalent to the compare–select function in
complexity (for a discrete implementation this is true since the
same number of chips are used) then the MAP algorithm is
about four times as complex as the Viterbi algorithm.

2.6 Results

The performance of the MAP algorithm compared with the
Viterbi and Li et. al. [4] algorithms is given in Table 1. The four
state systematic convolutional code with polynomials (5,7)8
was used. The simulations were performed with at least 1500
bit errors in each case.

Table 1: BER for a four state code.

Eb/N0 (dB) 0.0
10–2

1.0
10–2

2.0
10–2

3.0
10–3

4.0
10–4

Viterbi 8.29 4.19 1.57 4.33 9.50

Li et. al. 7.93 4.09 1.56 4.26 9.48

MAP 7.81 4.03 1.53 4.27 9.36

The worst performance is given by the Viterbi algorithm, with
a slightly improved performance by the Li et. al. algorithm. As
expected, the MAP algorithm gave the best results (although
only slightly). Although the improvements were very small,
this may be important for Turbo–codes. In the first stages of
decoding, obtaining even a slight improvement with very
noisy data could lead to much greater improvements in the
latter stages of decoding. Also, the MAP algorithm inherently
provides soft outputs which can be used in the next stage of
decoding.

3 APPLICATION IN ITERATIVE DECODING

The definition of turbo–codes was introduced in [2] and the
principles of iterative decoding are clearly described in [3]. We
will not repeat the derivations here, but only show how (32)
will change for iterative decoding. Figure 3 presents a generic
turbo–encoder.

ENC� is a rate half systematic encoder in the “horizontal”
dimension and ENC | is the second encoder in the “vertical”
dimension. The interleaver block (INT) changes the input
order of the information bits dk for the second encoder. The

5

dk dk

Figure 3: Turbo encoder.

INT

ENC�

ENC |

Y�
k

Y |
k

Yk

delay1

switch alternatively selects one of the coded bits produced by
the two systematic encoders. The pair (dk, Yk) is the output of
the Turbo encoder which is BPSK or QPSK modulated and
sent through an AWGN channel. The receiver structure is
presented in Figure 4. The DELAY1 block introduces a delay
equivalent to the delay due to the decoder DEC�. For the first
iteration, the extrinsic information, z |

k is zero. The whole delay
of the decoder is �.

As described in [3], L(dk) for DEC� can be expressed as
follows

L(dk) � xk � z|
k � z�k . (41)

Note that we have xk and yk prescaled by 2��2 before analogue
to digital conversion. Also, z |

k is the a priori extrinsic value for
dk and z�

k is the extrinsic information generated by DEC� for
dk. Thus, for DEC� we redefine �i(Rk, m) as

�i(Rk, m) � exp�(xk � z|
k)i � ykY

i
k(m)�. (42)

3.1 Results

Simulations were performed for the 16 state rate half
systematic convolutional code given in [2] (with polynomials
(21,37)8) and a 20�20 block interleaver of 400 bits at an
Eb/N0 of 2.0 dB (the lowered code rate of 0.49 due to forcing
the start and end states to 0 is taken into account). Table 2 gives
the performance of the Turbo decoder at each iteration stage
(up to eight) at an Eb/N0 of 2.0 dB. A total of 107 information

bits were simulated. The final result is very close to that found
in [3].

Table 2: Turbo decoder performance at Eb/N0 = 2.0 dB.

Iter. 1 2 3 4 5 6 7 8

BER
172 15.0 4.13 2.49 1.88 1.73 1.67 1.5510–4 172 15.0 4.13 2.49 1.88 1.73 1.67 1.55

4 CONCLUSIONS

This paper presented a simplification of the modified Bahl
algorithm which can be used in an iterative decoder. Its
complexity is approximately four times the complexity of the
Viterbi decoder allowing the algorithm to be efficiently
implemented in hardware. The algorithm can now be used to
perform more simulations of Turbo–codes and to verify the
high performance claimed in [2].

5 REFERENCES

1. Bahl, L., Cocke, J., Jelinek, F., and Raviv, J., “Optimal
decoding of linear codes for minimizing symbol error
rate,” IEEE Trans. Inform. Theory, vol. IT–20, pp.
284–287, Mar. 1974.

2. Berrou, C., Glavieux, A., and Thitimajshima, P., “Near
Shannon limit error–correcting coding and decoding:
Turbo–Codes,” ICC’93, Geneva, Switzerland, pp.
1064–1070, May 1993.

3. Hagenauer, J., Robertson, P., and Papke, L., “Iterative
(Turbo) decoding of systematic convolutional codes with
the MAP and SOVA algorithms,” ITG Conf., Frankfurt,
Germany, Oct. 1994.

4. Li, Y., Vucetic, B., Sato, Y., and Furuya, Y., “A soft–output
Viterbi algorithm,” 1st Int. Mobile and Personal Commun.
Systems Workshop, Adelaide, SA, pp. 223–231, Nov.
1992.

�
�

L(di)INT

xk
yk

Figure 4: Iterative Turbo Decoder.

L(dj)

delay �

z |
k

y�
k y |

k

z |
j

xi � z�
i

z |
i

z |
k��

xj � z�
j

DEC�

DEC |

d
^

i
d
^

k��

delay1

+

_ delay1

+

_

DEINT

DEINT

xk��

yk��

�
+

+ xk � z |
k

