
Visual Compliance: Task-Directed Visual Servo ControlAndr�es Casta~no Seth Hutchinsonandres@cs.uiuc.edu seth@cs.uiuc.eduThe Beckman InstituteDept. of Electrical and Computer EngineeringUniversity of IllinoisUrbana, IL 61801AbstractIn this paper we introduce visual compliance, a new vision-based control schemethat lends itself to task-level speci�cation of manipulation goals. Visual complianceis e�ected by a hybrid vision/position control structure. Speci�cally, the two degreesof freedom parallel to the image plane of a supervisory camera are controlled usingvisual feedback, and the remaining degree of freedom (perpendicular to the camera imageplane) is controlled using position feedback provided by the robot joint encoders. Withvisual compliance, the motion of the end e�ector is constrained so that the tool centerof the end e�ector maintains \contact" with a speci�ed projection ray of the imagingsystem. This type of constrained motion can be exploited for grasping, parts mating,and assembly.We begin by deriving the projection equations for the vision system. We then deriveequations used to position the manipulator prior to the execution of visual compliantmotion. Following this, we derive the hybrid Jacobian matrix that is used to e�ectvisual compliance. Experimental results are given for a number of scenarios, includinggrasping using visual compliance.



1 IntroductionSensor-based control is essential if robots are to perform adequately in real-world envi-ronments. This has long been recognized by the robotics community, and as a result muchresearch has been done, both in force-based and vision-based control. However, it is notenough to merely develop arbitrary sensor-based control schemes; in order for sensor-basedrobotic systems to function autonomously, they must also be able to automatically createtask plans that fully exploit the available sensor-based control mechanisms. This impliesthat task-level goals, which are speci�ed by a human or some high level process, must betranslated into goals that are speci�ed in terms of controllable parameters.For the speci�c case of force-based control, the problem of translating task-level spec-i�cations into low-level control goals has been addressed by the literature on �ne-motionplanning [7, 8, 23, 25]. Equipped with a set of physical laws that govern motion and fric-tion in the con�guration space, these �ne-motion planners are capable of developing plansthat are tolerant of uncertainties in the manipulator's position (represented by an error ballin the con�guration space), its trajectory (represented by an error cone), and even in partdimensions (represented by added dimensions in the con�guration space [6, 7]). The successof this approach is due in part to a control scheme that exploits physical compliance, whichlends itself well to the expression of task level goals [29].A fundamental limitation of physical compliance-based control schemes is that they canonly be used to control motion in directions that are tangent to constraint surfaces in thecon�guration space [29]. One possible solution to this limitation is to use vision-basedtechniques to control motion in the remaining directions. Thus, much research attentionhas recently been focused on vision-based control (see, for example, [2, 3, 9, 10, 15, 16, 22,27, 30, 31, 32, 33, 34, 35, 37]). Although vision-based control has been used successfullyfor a number of tasks (for example, in welding applications [1, 5, 21]), none of the systemsreferenced above lend themselves to task-level speci�cation of goals, and therefore, there arecurrently no automatic planning systems that can exploit these control systems.In this paper, we introduce visual compliance as a new vision-based control scheme thatlends itself to task-level speci�cation of goals. Visual compliance is analogous to physicalcompliance. With physical compliance, the robot end e�ector maintains contact with somephysical surface during its motion. With visual compliance, the end e�ector maintainscontact with a visual constraint surface [18]. A visual constraint surface is a virtual surface,de�ned by some object feature in the workspace and that feature's projection onto the imageplane of a supervisory camera. Thus, visual compliant motion moves the end e�ector alonga projection ray that passes through the focal center of a supervisory camera. In relatedwork, we have reported a motion planning system that is capable of synthesizing uncertainty-tolerant motion plans that exploit visual compliance [12, 13]. Here we develop the controlstructure necessary to e�ect visual compliant motion.Visual compliance is achieved by a hybrid vision/position control structure. The par-ticular scheme that we use derives from resolved-rate position control [26, 38]. In general,resolved-rate position control is accomplished by using a Jacobian matrix to relate di�er-2



ential changes in the task space to di�erential changes in the joint space of the robot. Forvisual compliance, we use a hybrid Jacobian, Jvc. The �rst two rows of Jvc relate di�erentialchanges in the robot's motion to di�erential changes in the image that is observed by a cam-era (as in [10, 37]). The third row of Jvc relates di�erential changes in the robot's motionto di�erential changes in the perpendicular distance between the robot end e�ector and thecamera image plane. Thus, using Jvc, it is possible to achieve motion that \complies" to aspeci�ed projection ray through the camera focal center, moving either toward or away fromthe camera while keeping the tool center aligned with the projection ray. As described in[11, 12, 13, 18], this type of motion can be exploited for grasping, parts mating, assembly,and other types of robotic manipulation.The remainder of the paper is organized as follows. In Section 2 we derive the projectionequations that de�ne the imaging geometry of the camera. In Section 3, we derive equationsthat can be used to position the robot manipulator at a speci�ed perpendicular distance fromthe camera focal center such that the tool center of the manipulator projects onto a speci�edpixel in the image plane. These equations are used in open-loop control mode to initiallyposition the manipulator on a visual constraint surface. In Section 4, we derive Jvc, theJacobian matrix that is used to e�ect hybrid vision/position control of manipulator motion.In Section 5, we present results obtained using an implemented robotic system. Section 6provides a discussion of several related issues, including how our visual servo control system�ts into the broader context of autonomous task planning. Finally, in Section 7 we summarizethe contributions of the work to date.2 Projection EquationsIn order to perform visual servo control, the relationships between the robot's workspaceand the camera image plane must be known. In general, these relationships are de�ned interms of a set of projection equations that de�ne how points in the workspace project ontothe camera image plane via the imaging geometry of the camera (see for example [20, 28, 36]).In this section, we derive the projection equations for the robotic system shown in �gure 1.Our derivations closely follow those given in [20].The projection of world points onto the camera image plane can be viewed as a transfor-mation between the world coordinate frame and the camera image plane coordinate frame.For the world coordinate frame we use the base frame for the PUMA 560 robot (see forexample [14]). The image plane coordinate frame is de�ned by the four vectors ~C; ĥ; v̂; andâ, where ~C is the position of the focal point of the camera lens (with respect to the worldframe), â is the unit vector perpendicular to the image plane, and ĥ and v̂ are the unitvectors parallel to the horizontal and vertical directions in the image plane, respectively.The camera image plane is actually a truncated plane in the robot's workspace, whichcan be speci�ed by the parametric equation 3
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After some manipulations, we obtain the following projection equationsI = ~P � ~H � CH~P � â�Ca ; J = ~P � ~V � CV~P � â� Ca ; (1)where Ca = ~C � â; CH = ~C � ~H; CV = ~C � ~Vand ~H = f�uĥ+ I0â; ~V = � f�v v̂ + J0â:Note that ~H and ~V are not unit vectors in the horizontal and vertical directions of theimage plane. Rather, they are vectors that represent composite information regarding thehorizontal and vertical directions of the image plane, the horizontal and vertical samplingintervals of the camera, the focal length of the camera, and the image plane coordinates ofthe origin of the image plane (i.e., the image plane point de�ned by the focal point of thecamera and the vector�â). A calibration procedure to derive the relevant system parametersis described in [4].3 Open-Loop PositioningBefore performing visual compliant motion, the end e�ector of the manipulator must bebrought into contact with the speci�ed visual constraint surface. This amounts to positioningthe end e�ector so that the tool center, represented by ~P , intersects a speci�ed projectionray. Stated another way, given input (I; J), compute the (x; y; z) workspace coordinates forthe point ~P . The immediate problem that we face is that the projection equations givenin (1) de�ne a many-to-one mapping from the robot workspace to the image plane. Theinverse mapping takes single image plane points and maps them to projection rays. Thus,in order to solve for (x; y; z), we must supply a third parameter, which is used to select asingle point on the given projection ray. We will use dI , the perpendicular distance from thefocal point of the lens to the desired workspace point. Thus, solving for (x; y; z) amountsto computing the intersection of a projection ray with a plane parallel to the image plane.This is accomplished by solving a system of three simultaneous equations.The �rst two equations that are required are simply the projection equations for thecamera. Rewriting (1), we obtain(Hx � Iax)x+ (Hy � Iay)y + (Hz � Iaz)z = CH � ICa; (2)(Vx � Jax)x+ (Vy � Jay)y + (Vz � Jaz)z = CV � JCa: (3)The third equation needed to solve the system is the equation of the plane parallel to theimage plane at a distance dI from the focal center. The equation for this plane is given by5



â � ~P = d; (4)where d = dI + â � ~C, and â, ~P , and ~C are as de�ned in Section 2 (see �gure 1 for a graphicalillustration).Using (2), (3) and (4), a system that determines the intersection between a projectionray from the camera and the desired plane in the workspace coordinate frame is established.In matrix form 264 Hx � Iax Hy � Iay Hz � IazVx � Jax Vy � Jay Vz � Jazax ay az 375264 xyz 375 = 264 CH � ICaCV � JCad 375 :Although this type of open-loop positioning is useful for initially positioning the manip-ulator near a target projection ray, open-loop control rarely succeeds in precisely placing themanipulator to achieve the desired (I; J) coordinates. There are three reasons for this failure:kinematic errors (i.e., uncertainty due to the resolution of the robot joint encoders, or torobot calibration); camera calibration errors (resulting from noise in the imaging process);and errors in the camera modeling (since we use a simple pin-hole approximation to thecamera in the derivation of the projection equations). This does not adversely a�ect systemperformance, since closed-loop control (which is described in the next section) is used toe�ect the visual compliant motion, once the end e�ector is near the speci�ed projection ray.4 Visual ComplianceAs described above, when performing visual compliant motion, vision feedback is used onlyto control motion in directions that lie in a plane parallel to the camera image plane. Tocontrol motion in the direction normal to the image plane, position control is used (where thefeedback information is obtained by solving the robot's forward kinematic equations usinginput from the robot joint encoders). Therefore, to execute visual compliant motion, weuse a hybrid control approach. Speci�cally, we use a resolved-rate motion control approach[26, 38] in which the �rst two rows of the Jacobian matrix correspond to vision based control,and the third row corresponds to the position based control. In the remainder of this section,we derive this Jacobian matrix, Jvc.We have formulated the control problem as one of controlling the variables I; J; d. Thus,the input to the control system is a vector [Id; Jd; dd]T , which would be determined bya trajectory planner (see [10] for a discussion of feature-based trajectory planning). Theoutput of the system is the vector of observed values [I; J; d]T . A block diagram of thissystem is shown in �gure 2.The Jacobian matrix used in our resolved-rate control scheme, Jvc, relates di�erentialchanges in the parameter vector [I; J; d]T to di�erential changes in the (x; y; z) coordinatesof the manipulator (which are expressed with respect to the world coordinate frame). Note6
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Figure 2: Hybrid-vision/position-control block diagramthat we use the tool center (the point midway between the manipulator �nger tips) to de�nethe position of the end e�ector. This relationship is given by264 _I_J_d 375 = Jvc 264 _x_y_z 375 :We now turn our attention to the �rst row of Jvc. We can expand (1) for I to obtainI = xHx + yHy + zHz � CHxax + yay + zaz � Ca :The partial derivative of I with respect to x is given by@I@x = Hx(xax + yay + zaz � Ca) � ax(xHx + yHy + zHz � CH)(xax + yay + zaz � Ca)2 :This expression can be rewritten as@I@x = 1~P � â� Ca 24Hx � ax0@ ~P � ~H � CH~P � â� Ca 1A35 :In this form, the quotient term at the right is simply the projection equation for I in (1)that was derived in Section 2. We can substitute using this equation to obtain7



@I@x = 1~P � â� Ca (Hx � axI) :Similar manipulations can be performed for y and z, and for the second row of theJacobian, which corresponds to the J coordinate.The third row of the Jacobian is obtained by considering the motion of the manipulatorin the direction perpendicular to the image plane. By taking partial derivatives of (4) withrespect to x; y; z we obtain @d@x = ax; @d@y = ay; @d@z = az:We may now write the Jacobian asJvc = 266666664 Hx � axI~P � â� Ca Hy � ayI~P � â� Ca Hz � azI~P � â� CaVx � axJ~P � â� Ca Vy � ayJ~P � â� Ca Vz � azJ~P � â� Caax ay az 377777775The discrete-time state space formulation of this system is given by264 I(k + 1)J(k + 1)d(k + 1) 375 = 264 I(k)J(k)d(k) 375+ Jvc�tu(k):Assuming that the sampling time �t is small, an appropriate discrete-time control law isgiven by u(k) = (Jvc�t)�1e(k)where the error is de�ned as e(k) = 264 Id(k)Jd(k)dd(k) 375� 264 I(k)J(k)d(k) 375 :This result is similar to that given in [16]. 8



5 Experimental ResultsIn this section we present several experimental results. Our experimental system consistsof a Puma 560 robot, controlled by a Sun 4/260 using RCCL [17, 24]. The vision systemconsists of Datacube hardware and a Sun 3. The vision system determines the (I; J) imagecoordinates of the tool center, and sends these coordinates to the Sun 4/260 via an ethernetconnection. This introduces a delay between the vision and control system of �t (approxi-mately 0.6 seconds). In spite of this delay and the relatively slow sampling rate of the visionsystem, we have been able to achieve good system performance, as can be seen from theresults presented in this section. In order to simplify the determination of the tool centerimage coordinates, a small LED is attached to the robot end e�ector.A di�erential change in the image of the end-e�ector does not necessarily imply a di�er-ential change in the motion of the end-e�ector. Therefore, it is possible that for small valuesof e(k), large values for the control, u(k), may result. For this reason, when the control inputu(k) is large, we scale its magnitude. This eliminates adverse transient e�ects associatedwith large step inputs.5.1 Positioning the Tool Center On a Speci�ed Projection RayOur �rst set of experiments involves positioning the tool center of the end e�ector alonga speci�ed projection ray, at a speci�ed distance from the camera image plane. Thus, thegoal position in 3-space is de�ned by the intersection of the desired projection ray and aplane parallel to the image plane at the speci�ed distance from the image plane. Visualfeedback is used to control the position of the tool in the directions parallel to the imageplane and position feedback is used to control the tool in the direction perpendicular to theimage plane.Figures 3 and 4 illustrate the z; y; d errors with respect to the robot coordinate frame.In this example, the robot is positioned in contact with a certain projection ray, and iscommanded to move to a second projection ray in such a way that its end e�ector will move100 mm in the x direction of the image plane while maintaining a constant distance to thecamera. The error in the x direction is reduced to less that 1 cm in 11 seconds. During thistime, the error on the y direction is kept smaller than 1 cm, and the error on the d directionis kept very near zero. The main reason for the disparity in the magnitude of the errors isthe di�erence in time delay for the visual and position loops. An error in the d direction canbe corrected by the trajectory planner using the joint encoders (every 0.875 ms), while anderror in the x; y directions can only be corrected when a full image is taken and processed(every 0.6 seconds).Figure 5 shows the errors in positioning in I and J as a function of time. In this example,the manipulator is moved from a position very near the target projection ray until contactwith the projection ray is made. It should be noted that the relationship between errors inpixels (measured in the image plane) and errors in mm (measured in the robot coordinate9
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Figure 4: Error behavior for the motion illustrated in �gure 3.10
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Figure 5: Error in the I and J direction for initial positioningframe) are related by the projection equations. Of particular importance in this relationshipis the distance from the robot to the camera, which was approximately 3 meters in ourexperiments.5.2 Visual ComplianceOur second set of experiments involves performing visual compliance along a speci�edprojection ray. We show the errors when the robot is moving toward the camera. Figure6 illustrates a commanded motion along a projection ray, and �gure 7 shows the errors inboth the normal and tangent directions with respect to the world coordinate frame. In thisexample, the manipulator is commanded to move forward 100mm toward the camera usingvisual compliance. The �nal desired position is achieved in 9 seconds. The �nal error in alldirections is smaller than 1 cm. Figure 8 shows the errors in I and J as a function of time,for visual compliance toward the camera. 11
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Figure 8: Error in I; J for visual compliant motion
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Figure 11: Puma 560 performing a grasp using visual compliance16



extends the backprojection planning formalism [7, 8, 23, 25] by allowing visual constraintsurfaces to be included in the boundary of the backprojection [12, 13]. Our planning systemrequires as input a geometric description of the environment and of the task (in terms ofa goal region in the robot con�guration space). Thus, given a description of the task, ourplanning system will derive a motion plan that exploits the visual compliance capabilitiesdescribed in the present paper.Visual servo control, as described in this paper, requires that a set of features on themanipulator be constantly visible to the supervisory camera. This is a planning issue thatwe have addressed elsewhere [19]. However, we note that by construction visual constraintsurfaces do not intersect obstacles (since in such a case the feature that generates the surfacewould be occluded from the camera's view). Therefore, occlusion is generally not a problemthat a�ects visual compliance.Finally, the resolved-rate scheme described in this paper could be improved by incorpo-rating a predictive component in the visual tracking system. This could be done in a fairlystraightforward manner, since the robot dynamics and imaging system parameters are fullyknown. Such improvements to the tracking system are the subject of ongoing research.7 ConclusionsWe have introduced visual compliance as an alternative to physical compliance using forcecontrol. Our method relies on a set of virtual constraints that can be enforced by the useof vision sensing. The main advantages of our approach are that (1) visual compliancelends itself well to task-level speci�cation of manipulation goals, and (2) motion can becontrolled in directions that are not necessarily normal to physical constraint surfaces (unlikeforce control). In related work, we have developed a task planner that directly exploits theexistence of this control system for the synthesis of uncertainty-tolerant motion plans [12, 13].
17
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