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Abstract

Recent research results show that conventional hardware-only cache solutions result
in unsatisfactory cache utilization for both regular and irregular applications. To over-
come this problem, a number of architectures introduce instruction hints to assist cache
replacement. For example, Intel Itanium architecture augments memory accessing in-
structions with cache hints to distinguish data that will bereferenced in the near future
from the rest. With the availability of such methods, the performance of the underly-
ing cache architecture critically depends on the ability ofthe compiler to generate code
with appropriate cache hints. In this paper we formulate this problem – giving cache
hints to memory instructions such that cache miss rate is minimized – as a 0/1 knapsack
problem, which can be efficiently solved using a dynamic programming algorithm. The
proposed approach has been implemented in our compiler testbed and evaluated on a set
of scientific computing benchmarks. Initial results show that our approach is effective
on reducing the cache miss rate and improving program performance.

1 Introduction

Over the last few decades, as the processor performance keptundergoing substantial
progress, the gap between processor and memory speeds has been widening steadily.
This problem, known as the “memory wall” problem, exists in both general-purpose
high-performance computers [13] and embedded systems [17]. To bridge this perfor-
mance gap, cache is introduced which has ameliorated the “memory wall” problem to
some extent. However, a conventional cache is typically designed in a hardware-only
fashion, where data management including cache line replacement is decided purely by
hardware. A consequence of this design approach is that cache can make poor decisions
in choosing data to be replaced, which may lead to poor cache performance. The widely
used LRU (least recently used) cache replacement algorithmmakes replacement deci-
sions based on past reference behavior. This can cause data with good reuse yield cache
space to data that comes in later but has poor reuse. Researchresults reveal that consid-
erable fraction of cache lines are held by data that will not be reused again before it is
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displaced from the cache. This is true for both irregular [4]and regular applications [15].
This phenomenon, calledcache pollution, severely degrades cache performance.

There are a number of efforts in architecture design to address this problem and the
cache hintmechanism implemented in the Intel Itanium processor [9] isone of them.
The memory accessing instructions of Itanium can be accompanied by ant (stands
for non-temporal) cache hint. In response, Itanium-2 implemented a modified LRU
replacement algorithm honoring thent cache hint [9]. In the Itanium-2 processor, the
execution of memory accessing instructions withnt cache hint differs from that of a
normal memory instruction in the following way. For a set-associative cache, when a
normal memory instruction is executed, a cache line is allocated for the accessed data,
and the just allocated cache line is given the highest rank inthe set (to indicate that
it is the most recently used). Thus it becomes the last to be replaced among all cache
lines in the particular set. In contrast, the execution of a memory instruction withnt
cache hint does not change the rank of the touched cache line.In this modified LRU
replacement mechanism, data accessed by instructions withnt hint is more likely to
be evicted on a subsequent cache miss. By relying on the compiler to givent hint
to the instructions accessing data without temporal reuse,this architecture effectively
prevents cache pollution thus has the potential to achieve better cache locality. On this
architecture, a good compiler algorithm to generate cache hint is essential, which is the
focus of this paper.

Intuitively, two kinds of memory instructions should be givennt hint: (i) whose
referenced data doesn’t exhibit temporal-reuse. (ii) whose referenced data does exhibit
temporal-reuse, but it cannot berealizedunder the particular cache configuration. It
sounds as though the problem is pretty simple for regular applications, and existing
techniques for analyzing data reuse [20] and estimating cache misses [11, 21, 12] suf-
fice to solve this problem. This plausible statement, however, is not true because a
fundamental technique used in cache miss estimation — footprint analysis — is based
on the assumption that all accessed data compete for cache space equally. However, in
our target architecture, memory instructions are not homogeneous — those with cache
hints have much less demand for cache space. This makes the approach derived from
traditional footprint analysis very conservative. In summary, the followingcyclic de-
pendenceexists: Cache hint assignment must be known to achieve accurate cache miss
estimation, while accurate cache miss estimation is only possible when cache hint as-
signment is finalized.

In this paper, we develop a simple yet effective formulationto address the above
problem. Our formulation is based on the observed relationship between cache miss rate
and cache-residency ofreference window[10]. This is used to formulate the problem
as a 0/1 knapsack problem [8]. For the case that all considered memory referencing
instructions are enclosed by aperfect loop nest, the formulated problem falls in a special
category of knapsack problem that can be solved in polynomial time. For case that loops
are imperfectly nested, this is a general 0/1 knapsack problem, which is known to be
NP-complete [8]. In this case, good heuristic algorithms exist to achieve near-optimal
result [5]. However, since the number of references in a loopnest is typically small,
even obtaining optimal result using a dynamic programming algorithm [8, 14] is quite
inexpensive.



We have evaluated the benefit of our approach on reducing cache misses on a set of
loop kernels and a full SPEC benchmark program by simulatingtheir execution using
the SimpleScalar simulator [3]. Initial experimental results show that our approach re-
duces the number of data cache misses by up to 57.1%, and reduces execution time by
up to 27%.

The rest of the paper is organized as follows. Section 2 briefly reviews the basic con-
cepts of data reuse and reference window. Section 3 illustrates, through an example, the
relationship between reference window and cache miss rate which sets up the rationale
for our problem formulation. The heart of this paper — an elegant knapsack problem
formulation — is derived in Section 4. Our implementation and experimental results
are then presented in Section 5. Section 6 discusses relatedwork. Section 7 concludes
the paper and envisions possible future research directions.

2 Preliminaries

We review some basic concepts on data reuse and reference window that will be used
in the rest of this paper.

For an affine array reference in a loop nest of depthn, the subscripts can be repre-
sented asH · i + c (whereH is theaccess matrix, i is theiteration vectorandc is the
offset vector). If two different executions of an array reference at iteration pointsi1 and
i2 access the same array element, it must be true thatH · (i2− i1) = 0. Therefore, if the
equationH · i = 0 has a solution, the array reference with subscriptsH · i + c exhibits
self-temporal reuseand the solution toH · i = 0 constitutes theself-temporal reuse vec-
tor. Two references to the same array, with the same access matrix but different offset
vectors, say referenceH · i+ c1 and referenceH · i+ c2, may access the same data only
if equationH · (i1 − i2) = c2 − c1 can be satisfied. Thusgroup-temporal reuseexists
whenH · i = c2 − c1 has a solution, and the solution constitutes thegroup-temporal
reuse vector.

A uniformly generated reference set(UGS) is a set of references of the same array,
with the same access matrix and has group data reuse within the set [10]. By defining
uniformly generated reference set and partitioning all array references into UGSs, we
can study data reuse on a per-UGS basis.

Gannon et al’s work introduced the termreference window, which is defined as the
set of array elements that are accessed by the source reference of a reuse-pair in the
past and will be accessed in the future by the sink reference [10]. Consider the Fortran
program shown in Figure 1 as an example. This is a small kernelfrom theSPEC92
benchmark093.nasa7. Reference windows associated with all loop-carried reuse-pairs
are listed in Figure 2.

Let us explain why the reference windows are as given in Figure 2. For reference
C(I,K) at iteration(j, k, i), wherej > 1 andj < M , the entire array has been traversed
by previous iterations, and all the array elements will be accessed again, before the
loop execution advances to(j + 1, k, i). Therefore the reference window is the entire
array. For the self-reuse of array referenceA(I,J) at iteration(j, k, i) wherek > 1
andk < N , all elements in the first dimension will be referenced in thefuture. Other
reference windows given above can be derived similarly.



DO 110 J = 1, M, 4
DO 110 K = 1, N

DO 110 I = 1, L
C(I,K) = C(I,K) + A(I,J) * B(J,K)

$ + A(I,J+1) * B(J+1,K) + A(I,J+2) * B(J+2,K)
$ + A(I,J+3) * B(J+3,K)

110 CONTINUE

Fig. 1. The MXM loop kernel from SPEC92. Values ofM, N andL are 128, 64 and
256 respectively, A, B and C are two dimensional arrays with 8-byte double precision
floating-point array elements

Ref Win(C(I,K) → C(I,K)) = {C(1,1), C(1,2)· · · C(1,N),
· · ·
C(L,1),C(L,2)· · · C(L,N) }

Ref Win(A(I,J) → A(I,J)) = {A(1,J), A(2,J),· · · A(L,J)}
Ref Win(A(I,J+1)→ A(I,J+1)) = {A(1,J+1), A(2,J+1),· · · A(L,J+1)}
Ref Win(A(I,J+2)→ A(I,J+2)) = {A(1,J+2), A(2,J+2),· · · A(L,J+2)}
Ref Win(A(I,J+3)→ A(I,J+3)) = {A(1,J+3), A(2,J+3),· · · A(L,J+3)}
Ref Win(B(J,K)→ B(J,K)) = {B(J,K)}
Ref Win(B(J+1,K)→ B(J+1,K)) ={B(J+1,K)}
Ref Win(B(J+2,K)→ B(J+2,K)) ={B(J+2,K)}
Ref Win(B(J+3,K)→ B(J+3,K)) ={B(J+3,K)}

Fig. 2. Reference windows for reuse pairs

A careful study reveals that the size of a reference window isdetermined by its reuse
vector. By solving reuse equationsH · i = 0 for each reference, we get the reuse vectors
for referencesC(I,K), A(I,J), B(J,K) as (1, 0, 0), (0, 1, 0), and(0, 0, 1) respectively.
By the definition of reuse vector, we know thatC(I,K) accesses the same element at
iterations(j, k, i) and(j + 1, k, i); however, these two iterations are far apart, thus the
number of different array elements accessed in between (i.e., the reference window) is
large. While the reuse ofB(J,K) happens at the innermost loop, its reference window is
much smaller. Gannon et al., gave a formula to compute the size of reference window
based on reuse vector; we refer interested readers to [10] for more details.

3 A Case Study

In this section, using the matrix multiply program shown in Figure 1, we illustrate the
relationship between reference window and cache miss rate.

First let us analyze the data reuse3 for this program. We start with the array reference
A(I,J) , data accessed by this reference at iteration(j, k, i) is A(i, j) and it will be

3 Data reuse is a term different from cache locality; data reuse leads to cache locality only when
the reuse can berealizedby the particular cache configuration.



accessed again by the same array reference at iteration(j, k + 1, i). Intervening data
accesses by all array references during this interval (from(j, k, i) to (j, k+1, i)) do not
interfere withA(i,j). This kind of reuse is namedself-reuse[20]. Following the reuse
analysis method given by Wolf and Lam [20] we can easily derive that types of data
reuse of all other array references ofA are self-reuse (there doesn’t exist reuse between
referencesA(I,J+1) andA(I,J) since the stride of loop J is 4).

Since there does not exist data reuse relation between any two references ofA, we
can study each reference ofA(I,J), A(I,J+1), A(I,J+2) andA(I,J+3) in isolation. With-
out loss of generality, we choose the referenceA(I,J) and profiled its cache behavior.
Before giving the profiling result, we define the termcache occupancyto refer to the
number of cache lines occupied by a particular array reference. We traced the cache
occupancy and the cache miss rate for the referenceA(I,J) on a 256-set, 4-way asso-
ciative cache with a cache line size of 8 bytes. Both cache occupancy and cache miss
rate are shown in Figure 3. In this figure, both cache occupancy and cache miss rate are
obtained by averaging the respective values for the last 20 clock cycles. In the figure
cache occupancy of the reference varies slightly from 255.5to 256, while the cache
miss rate varies widely, from 0% to 100%.

0 5 10 15 20 25 30
254

254.5

255

255.5

256

time

ca
ch

e 
oc

cu
pa

nc
y

cache−occupancy

0 5 10 15 20 25 30
0

20

40

60

80

100

ca
ch

e 
m

is
s 

ra
te

(in
 %

)

cache miss rate

Fig. 3. Cache occupancy and miss rate of array referenceA(I,J) in the program shown
in Figure 1

We observe that the cache miss rate is tightly coupled with the cache occupancy,
and is inversely proportional to cache occupancy. When the average cache occupancy
of the reference is 256 for the last 20 cycles, the cache miss rate is zero during this
period. While the cache occupancy reduces to 255.5 - 255.6 (due to competition with
other array references), the cache miss rate rises to 100%. This is somewhat surprising,
at least initially, as the decrease in the cache occupancy isonly marginal (from 256 to
255.5).

Let us go back to the source program and analyze why this happens. As we have
discussed before, the array element accessed by referenceA(I,J) at iteration(j, k, i)



will be accessed again by the same array reference at iteration(j, k +1, i). The number
of distinct array elements accessed byA(I,J) in between (including the two bounding
iterations) is 256. These 256 array elements are the reference window for the self-reuse
vector of A(I,J) that we derived in Section 2. Hence we conclude that if the cache
holds all elements of the reference window for a particular reuse pair, the data-reuse is
translated into cache-locality at run-time; otherwise, that reuse cannot be exploited by
the cache. Based on this observation, we formulated the problem of givingnt cache
hint in Section 4.

4 Problem Formulation

In this section we give a problem formulation for generatingnt hint for memory in-
structions. We start with the case that all memory references have self-reuse only and
give the problem formulation in Section 4.1. The general case that includes group-reuse
is discussed in Section 4.2.

4.1 Problem Formulation for Self-Reuse: Case I

The particular problem that we address in this section is as follows:
Problem 1. Given a cache size and a perfect loop nest whose loop body hasm array
references with no two references having data reuse betweenthem, determine the subset
of references that should be givennt hint such that cache miss rate of executing this
loop nest on the given cache is minimized.

As demonstrated by the profiling result of matrix multiply program (shown in Fig-
ure 3), to realize a data reuse, the reference window of that data reuse must be accom-
modated by the cache. In reality, cache size is limited and reference windows that it can
hold is subject to the cache capacity. We associate each array reference with a binary
variablebi to denote whether it is givennt hint(bi = 0) or not(bi = 1), the variables
b1 · · · bm constitute all decision variables of the problem. The constraint imposed by
cache capacity can be formulated as:

m∑

i=1

|Ref Win(i)| ∗ bi < C (1)

where |Ref Win(i)| refers to the size of the reference window of array referencei,
andC is theeffective cache size[11, 18]. We use theeffective cache sizeinstead offull
cache sizein the capacity constraint since stride access with a stridelarger than 1 cannot
exploit the full cache capacity, as shown in Gao et al’s work [11].

The capacity constraint ensures that for array referencei whose corresponding de-
cision variablebi has a value 1, its reference window will be fully accommodated by
the cache. Hence its temporal reuse can be realized. Since our objective is to minimize
the cache miss rate, it is desirable to have as many array references as possible achieve
temporal locality. And since all array references are enclosed by a perfect loop nest,
their execution frequencies are the same. Thus our objective function is formulated as:



max
m∑

i=1

bi (2)

This problem composed of the constraint specified by Inequality 1 and the objective
function (specified by Equation 2). This is, in essence, a 0/1knapsack problem[8]. For
the problem formulation that we have given, the knapsack problem falls into a special
category where the candidate items have differentweights(size of the reference window)
but the samevalue(1). For this special case, the knapsack problem can be solved using
a greedy algorithm in polynomial time. We give the details ofsuch an algorithm in [22].
For more complicated cases where the loops are imperfectly-nested, the coefficients of
bi in the objective function will not be uniform, resulting in amore general 0/1 knapsack
problem. For the general 0/1 knapsack problem, optimal result can be obtained by using
a dynamic programming algorithm inO(mC) time [8, 14], wherem is the number of
array references andC is the effective cache size. If the time-complexity of the dynamic
programming approach is unaffordable, heuristic algorithm also exists to obtain near-
optimal result [5].

4.2 Problem Formulation for Group Reuse: Case II

Now we extend our approach to the general case that group-reuse exists. The problem
that we address in this section is:
Problem 2. Given a cache size and a perfect loop nest whose loop body hasm array
references that have group data reuse, determine the subsetof references that should be
givennt hint such that cache miss rate of executing the loop nest is minimized.

To address this problem, group reuse of thesem array references should be figured
out first. Then we can formulate this problem in a similar way as in Case I. Our approach
to address this problem is therefore divided into the following three steps:

1. Partition the array references into UGSs.
2. Represent the reuse within each UGS using areuse graphand prune the edges of

the reuse graph to simplify the problem.
3. Form a 0/1 knapsack problem from the pruned reuse graph.

We illustrate these steps by using an example program:

DO 10 T = 1, IT
DO 10 I = 1,M

DO 10 J = 1,N
L(I,J) = (A(I,J-1) + A(I,J+1) + A(I-1,J) + A(I+1,J)) / 4

10 CONTINUE

Step 1. Partitioning:In the first step, we partition array references into UGSs such
that group reuse exists only within each set. This step is thesame as that documented
in Wolf et al’s paper [21] and Mowry’s dissertation [16]. Forthe example program, the
five array references are partitioned into two UGSs:



Set1 = { L(I,J) }
Set2 = { A(I,J-1), A(I,J+1), A(I-1,J), A(I+1,J) }

Step 2. Pruning:The nice feature of the target loops of Problem 1 that we dealtwith
in Section 4.1 is that data reuse is within each single reference, thus the cost and benefit
of realizing the reuse is clearly defined. The presence of group-reuse makes this feature
disappear and we have to deal with the case that data accessedby one array reference
is reused by several other array references. We represent group data reuse using areuse
graph (as shown in Figure 4), where each edge (solid or dashed) represents a possible
reuse. The reuse graph can be simplified such that each reference has only one successor
and one predecessor. In the following paragraph we discuss how to prune the reuse
graph. In Figure 4, edges remaining after pruning are shown as solid edges and edges
that can be pruned are shown as dashed edges. For legibility reasons, we did not show
all pruned edges. However all solid edges that remain after pruning are shown.
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Fig. 4. Data reuse graph forSet2 of the
example program. The vector adjacent to
each reuse edge is the reuse vector

Consider the reuse betweenA(I+1,J)
andA(I,J-1) as an example. Although reuse
testing by solving the reuse equation ren-
ders us a reuse edge fromA(I+1,J) to
A(I,J-1), a careful analysis reveals this
reuse actually does not happen. This is be-
cause of the intervening access generated
by A(I,J+1). Consider the locationA(i+1,j)
accessed by referencesA(I+1,J) andA(I,J-
1). The above accesses happen respectively
at iteration(i, j) and (i + 1, j + 1). Be-
fore this reuse can be realized between
these two references, a reuse by reference
A(I,J+1) happens at iteration(i + 1, j − 1).
Hence the reuse edges (A(I+1,J), A(I,J+1))
and (A(I,J+1), A(I,J-1)) together, transi-
tively, represent the reuse information be-
tweenA(I+1,J) andA(I,J-1). Therefore the
edge (A(I+1,J),A(I+1,J-1)) can be pruned.
In a similar way, all transitive edges can be
pruned from the reuse graph. By pruning the transitive edges, we get a reuse graph in
which each node has at most one successor and one predecessor. This nice feature of
the pruned reuse graph facilitates our knapsack problem formulation since the cost and
benefit of realizing each reuse can be easily identified.

As seen, for multiple array references that possibly reuse data of a common parent,
the pruning step chooses the one that reuses the data at the earliest time. Thus the rule for
pruning is: For an array reference which emanates multiple reuse edges, keep the edge
that has minimum reuse vector and prune all other edges. Reuse vectors are ordered in
lexicographic order[1].

Step 3. Formulation:After pruning we proceed to the last step, viz., formulating
the problem. The cost of realizing a temporal reuse is size ofthe reference window
associated with the reuse. By realizing the reuse, the reference reusing the data will get



its data from cache instead of memory, thus saving a memory reference for an iteration.
In the pruned reuse graph, the reference window size of the four reuse edges emanating
from A(I+1,J), A(I,J+1), A(I,J-1) and A(I-1,J) areN − 1, 2, N − 1 and(M − 2) · N
respectively.L(I,J) has self-reuse with reference window size ofM · N . The problem
for the example program can be formulated as:

Maximize:

bA(I+1,J) + bA(I,J+1) + bA(I,J−1) + bA(I−1,J) + bL(I,J)

within the constraint:

(N − 1) · bA(I+1,J) + 2 · bA(I,J+1) + (N − 1) · bA(I,J−1) +

(M − 2) · N · bA(I−1,J) + M · N · bL(I,J) < C

5 Experimental Results

5.1 Experimental Platform

We have implemented our approach in the MIPSpro compiler andevaluated its per-
formance by running SPEC benchmarks on SimpleScalar simulator [3]. The MIPSpro
compiler is the production-quality compiler developed by SGI for MIPS processors.
We have re-engineered the code generator of the MIPSpro compiler to generate code
for SimpleScalar. The MIPSpro compiler has a rich set of optimizations to maximize
program performance. We have enabled most of them in our experiment. As a first step
of our work, we did not enable loop nest transformation in ourexperiment. Studying
the interaction between our technique and other locality-enhancing techniques likeloop
fusion, loop fission, loop permutationandloop tiling is our future work. However, opti-
mizations applied on loop bodies, like strength reduction,induction variable elimination
and cross-iteration common subexpression elimination that do not change the loop nest
structure, are still invoked.

We implemented the algorithm for computing the reference window size given in
Gannon et al’s paper [10] which is used in the 0/1 knapsack problem. We have also
implemented the knapsack problem formulation (i.e., generating the constraints) and a
greedy algorithm to get the optimal solution for it in the MIPSpro compiler. A dynamic-
programming algorithm for general 0/1 knapsack problem is interesting but was not
required since in the benchmarks we evaluated perfect loop nests dominate. We did not
consider scalar references fornt hint, as scalar variables only consume a small portion
of cache space.

SimpleScalar uses MIPS instruction set with a few minor differences. Each instruc-
tion word in SimpleScalar is of length 64 bits, of which the most significant 16 bits are
not used at present. This 16-bit field is calledannotationfield in SimpleScalar, which
is used by us to carry cache hint in our experiment. During code generation, memory
instructions are givennt hint according to the solution of the 0/1 knapsack problem. In
response to this modification on ISA, we modified the simulation mechanism as well.
We implemented the modified LRU algorithm which does not change the rank a the
cache line for accesses withnt hint.



We chose two representative loop kernels,mxm, in which most data accesses are
column-major, andvpenta, in which most data accesses are row-major. Both of them
are from SPEC92093.nasa7 benchmark written in Fortran. Besides, to evaluate the
effectiveness of our approach on large benchmarks, we also included one complete
benchmark,tomcatv from SPEC95 withtrain data set, in our workload. We exper-
imented our approach on caches of varying sizes (ranging from 4K bytes to 32K bytes)
and varying associativity (2-way and 4-way). Note that for direct-mapped cache, the
replacement algorithm and cache hint do not play any role. Inour experimental work,
we used a fixed cache line size of 16 bytes.

5.2 Performance Results

The cache miss rates of the conventional cache and that ofnt hint assisted cache are
compared in Table 1. The cache miss results of these two typesof cache are obtained
by running exactly the same program generated by our compiler on the SimpleScalar
simulator (simulating, respectively, the LRU replacementalgorithm and the modified
LRU replacement algorithm).

Table 1. Effectiveness of our approach in reducing cache misses. Column “LRU”
reports cache miss rates of conventional caches with LRU replacement. Column
“LRU+hint” report cache miss ratesnt hint assisted caches which uses a modifies LRU
replacement. Column “Red” gives the percentage reduction in cache miss rates due to
our approach

Benchmark

Cache Size
4K 8K 16K 32K

LRU LRU LRU LRU
LRU + Red. LRU + Red. LRU + Red. LRU + Red.

hint hint hint hint
Result On 4-way Associative Caches

mxm 35% 29.4% 16% 35% 15% 57.1% 8% 8% 0% 8% 8% 0%
vpenta 21.7% 21.3% 1.8% 21.6%19.7% 8.8% 17.2%13.5%21.5%13.2%10.9%17.4%
tomcatv 21% 21.5% -2.4%20.9%18.5%11.5%20.1%17.1%14.9% 16% 14% 12.5%

average 5.1% 25.8% 12.1% 10%
Result On 2-way Associative Caches

mxm 35% 28.7% 18% 21.9%15.2%30.6% 8.1% 8% 1.2% 4% 4% 0%
vpenta 21.9%22.18%-1.3%21.7%18.9%12.9%19.5%16.3%16.4%18.6%16.2%12.9%
tomcatv 22.9% 23% -0.4%22.5%22.6%-0.4% 20% 18.1% 9.5% 16.9%14.8%12.4%

average 5.4% 14.3% 9% 8.4%

Our approach shows most performance benefits onmxm for 8K byte 4-way cache.
It reduces the cache miss rate from 35% to 15% (a 57.1% reduction on the number of
cache misses). As elaborated in Section 3, the key to achievesatisfactory overall cache



locality is to ensure that reuse of array references ofA is materialized, since in this
example, reference ofC has distant reuse and references ofB are loop-invariant. But, in
a conventional cache, cache pollution caused by arrayC prevents arrayA from enjoying
its temporal locality, leading to poor locality on a cache ofsize 4K and 8K bytes. For
8K byte cache, 41.3% of the executed memory instructions aregiven thent cache
hint by our approach. This ensures that data accessed by normal memory instructions
(references ofA in this case) stay in the cache for a relatively longer time which in turn
results in better temporal locality.

For 2-way 8K byte cache, our approach is also quite effective, reducing the number
of cache misses inmxm by 30.6%. The percentage reduction achieved on a 2-way
cache is lower than that achieved by a 4-way cache. Although this is counter-intuitive,
we observe that, even for the conventional cache with the original LRU replacement,
mxm achieves lower cache miss rates on a 2-way 8K byte cache than on a 4-way cache
of the same size. This could be due to higher conflict misses as4-way associativity
results in fewer sets (128 sets) than 2-way associativity (256 sets) on a 8K byte cache.

Our approach performs consistently better over conventional cache for larger cache
sizes (16K and 32K bytes). For caches of relatively smaller sizes (especially 4K bytes),
our approach performs marginally better than the conventional cache, but not consis-
tently. The reason for this is that when data accessed by an instruction withnt hint is
brought in, its life time in the cache is typically much shorter than that in a conventional
cache. Although this is beneficial for other data with temporal locality, the short cache
life-time of the accessed data jeopardizes spatial locality since it may be replaced be-
fore the adjacent data items are accessed. On a cache of smallsize, this happens more
frequently.

To verify the above conjecture, we designed an experiment inwhich each cache ob-
ject is classified as aregular object or annt-hint object depending on whether the data
object accessed is brought into the cache using a regular memory instruction or with
annt hint memory instruction. We measured the number of references for each cache
block during its life-time (from the time the cache block is brought in to the time it is
replaced). Using this we compute the average number of references for regular objects
andnt-hint objects. We compute these values for both classes of objects with the origi-
nal as well as the modified LRU replacement algorithm. Note, in all our experiments the
code run in the simulator is the same (one which includesnt-hint memory instruction).
Only the replacement policy used (original LRU or modified LRU) is different for the
different caches.

Figure 5(a) shows the average number of references fornt-hint objects fortomcatv
benchmark. It can be seen that the average number of references remain the same be-
tween the original and the modified LRU replacement for 32K byte cache. However, for
small cache sizes, there is a decrease in the average number of references. This shows
that spatial locality exploited innt-hint objects is lower innt-hint assisted caches,
especially when the cache size is smaller. In other words, the locality of thent-hint
objects is really sacrificed. For reference purposes, we also show the average number
of references for regular objects in Figure 5(b). It can be seen that the modified LRU
algorithm (withnt hint) improves the locality of regular objects in all cache sizes.
These two graphs (refer to Figure 5) tell us the key to reduce the cache miss ratio on the



studied architectures is to avoid/minimize the degradation of the locality exploited in
nt-hint objects while enhancing the locality of exploited in regular objects. Fortunately,
for most cases the benefits achieved in temporal locality exploited in regular objects by
our approach dominate the possible loss on spatial localityexploited innt-hint objects.
This is evidenced by the positive average reduction on cachemisses we achieved for all
cache sizes we considered.
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Fig. 5. Impact of our approach on locality of regular andnt-hint objects.

We observe that our approach is more effective on caches of higher associativity.
As shown, our approach reduces the cache miss rate by a largerextent for 4-way as-
sociative caches than for 2-way associative caches. One possible reason for this is that
our problem formulation does not take cache conflicts into account. In our problem
formulation given in Section 4, we optimistically assumed that the residency of refer-
ence windows is only constrained by the effective cache size. This assumption gives
us a simple problem formulation; but it suffers from not considering conflict misses
which is non-negligible on caches of low associativity. Ourfuture work will consider
using conflict-avoiding techniques like data padding to improve the effectiveness of our
approach.

Next we report the impact of reduced cache misses (due tont hint) on program
performance. For this, we obtain program execution time, expressed in execution cy-
cles, from SimpleScalar simulator. We simulate a superscalar processor which issues
2 instructions in a clock cycle and employs out-of-order instruction issue and out-of-
order execution. We consider one level of cache: I-cache of 16K bytes, and the size of
D-cache varies between 4K and 32K bytes. The cache hit latency is 1 cycle, and the
cache miss penalty is 40 cycles. Performance results for a conventional cache and a
cache withnt hints are reported in Table 2.

We observe that the reduction in cache misses (due tont hints) does result in a cor-
responding reduction in the execution time, although not exactly by the same/similar
amount. This is because cache miss rate is not the only factoraffecting program per-
formance, especially in out-of-order issue processors. Ingeneral, we observe that the



Table 2. Effectiveness of our approach in improving program performance. This table
shows the normalized execution time of benchmark programs running on a conventional
cache with LRU replacement (shown in column “LRU”) and on a cache with modified
LRU replacement (shown in column “LRU+hint”). For each program, execution time
shown is normalized using the execution time of the program on a conventional 4K
byte, 4-way associative D-cache

Benchmark

4K 8K 16K 32K
LRU LRU LRU LRU

LRU + Red. LRU + Red. LRU + Red. LRU + Red.
hint hint hint hint

Result On 4-way Associative Caches
mxm 1 0.76 24% 1 0.73 27% 0.58 0.58 0% 0.58 0.57 1.7%

vpenta 1 1.04 -4% 1 1 0% 0.92 0.85 7.6% 0.90 0.78 13.3%
tomcatv 1 1.03 -3% 1 0.94 6% 0.98 0.91 7.1% 0.89 0.82 7.9%

average 5.7% 11% 4.9% 7.6%
Result On 2-way Associative Caches

mxm 1 0.74 26% 0.73 0.72 0.3% 0.58 0.58 0% 0.44 0.44 0%
vpenta 1 1.04 -4% 1 0.98 2% 0.98 0.93 5.1% 0.96 0.93 3.1%
tomcatv 1.02 1.07 -4.9% 1.01 1.07 -5.9% 0.98 0.92 6.1% 0.93 0.85 8.6%

average 5.7% -1.2% 3.7% 3.9%

cache miss rate reduction achieved by our approach is accompanied by a correspond-
ing performance improvement. With the widening speed gap between processor and
memory, our approach can have more performance impact on future microprocessors.

6 Related Work

Improving cache performance has attracted a lot of attention from both the architecture
and compiler perspective. Specifically, enhancing instruction set with cache hints is
pioneered by Chi and Dietz. They studied an architecture innovation by introducing
cache-bypassing memory instructions [6, 7]. In their architecture model, data accessed
by cache-bypassing memory instructions is not allocated a cache line. Their approach
is helpful to avoid cache pollution, but severely compromises spatial locality. By using
cache hints, we can get better temporal locality without sacrificing the spatial locality
significantly.

Wang et al studied a hypothetical architecture similar to the one considered in this
paper [19], and proposed a heuristic compiler algorithm forthis architecture. However
our work differs from their work in two major aspects: (i) we performed an in-depth
study on the compiler algorithm while they focused on the architectural implementa-
tion; (ii) we presented a systematic formulation while theyused an ad-hoc algorithm.
Lastly, their algorithm does have the cyclic dependency problem mentioned in Sec-
tion 1. In a future work, we plan to compare our approach with their heuristic method.

Anantharaman and Pande studied the problem of optimizing loop execution on em-
bedded systems with scratch-pad memory and without cache [2]. Interestingly, they



formulated the problem as a 0/1 knapsack problem as well. However, the problem they
studied is different from ours since scratch-pad memory differs from the cache in that
it is free of hardware interference.

7 Conclusions

Improving cache performance is of significant importance inmodern processors. In this
paper we exploited compiler-assisted cache management which utilizes the cache more
efficiently to achieve better performance. In particular, we studied the problem of de-
termining the subset of references that should be givennt (stands for “non-temporal”)
cache hints to minimize the cache miss rate. We observe the relationship between cache
miss rate and cache-residency of reference windows in Section 3. This observation
forms the basis for our formulation that in order for an arrayreference to realize its
temporal reuse, its reference window must be fully accommodated in the cache. We
then formulated the problem as a 0/1 knapsack problem for thefollowing two cases: (i)
only self-reuse exists, and (ii) group-reuse exists. To thebest of our knowledge this is
the first systematic formulation of this problem. We evaluated our approach by imple-
menting it in a re-engineered MIPSpro compiler generating SimpleScalar instructions
and running it through SimpleScalar simulator. Our simulation results show that our
approach exploited the architecture potential well. It reduced the number of data cache
misses by up to 57%, and program execution time by up to 25.7%.Our plan for fu-
ture work includes performing a comprehensive evaluation on the sensitivity of our
approach to cache associativity and cache line size, integrating our approach with other
locality-enhancing techniques, and comparing it with related work.
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