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Abstract

Recent research results show that conventional hardwayesache solutions result
in unsatisfactory cache utilization for both regular an@dgular applications. To over-
come this problem, a number of architectures introduceubn hints to assist cache
replacement. For example, Intel Itanium architecture aeiggimemory accessing in-
structions with cache hints to distinguish data that wilkré&erenced in the near future
from the rest. With the availability of such methods, thefpenance of the underly-
ing cache architecture critically depends on the abilityhef compiler to generate code
with appropriate cache hints. In this paper we formulats grbblem — giving cache
hints to memory instructions such that cache miss rate ignmiwed — as a 0/1 knapsack
problem, which can be efficiently solved using a dynamic paagming algorithm. The
proposed approach has been implemented in our compilbettand evaluated on a set
of scientific computing benchmarks. Initial results shoattbur approach is effective
on reducing the cache miss rate and improving program padoce.

1 Introduction

Over the last few decades, as the processor performancaikdptgoing substantial
progress, the gap between processor and memory speedsdmawidening steadily.
This problem, known as the “memory wall” problem, exists wthbgeneral-purpose
high-performance computers [13] and embedded systems T Aridge this perfor-
mance gap, cache is introduced which has ameliorated thentmewall” problem to
some extent. However, a conventional cache is typicallygdes! in a hardware-only
fashion, where data managementincluding cache line replant is decided purely by
hardware. A consequence of this design approach is thaé@arhmake poor decisions
in choosing data to be replaced, which may lead to poor caetiermance. The widely
used LRU (least recently used) cache replacement algoritakes replacement deci-
sions based on past reference behavior. This can causeittagoed reuse yield cache
space to data that comes in later but has poor reuse. Reseautts reveal that consid-
erable fraction of cache lines are held by data that will rotdused again before it is
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displaced from the cache. This is true for both irregulagdd regular applications [15].
This phenomenon, callethche pollutionseverely degrades cache performance.

There are a number of efforts in architecture design to axidites problem and the
cache hintmechanism implemented in the Intel Itanium processor [@lns of them.
The memory accessing instructions of Itanium can be accomgay ant (stands
for non-tempordl cache hint. In response, Itanium-2 implemented a modifiet L
replacement algorithm honoring tié cache hint [9]. In the Itanium-2 processor, the
execution of memory accessing instructions with cache hint differs from that of a
normal memory instruction in the following way. For a ses@sative cache, when a
normal memory instruction is executed, a cache line is atledt for the accessed data,
and the just allocated cache line is given the highest rartkénset (to indicate that
it is the most recently used). Thus it becomes the last to placed among all cache
lines in the particular set. In contrast, the execution ofeamary instruction withnt
cache hint does not change the rank of the touched cachdninieis modified LRU
replacement mechanism, data accessed by instructionswitiint is more likely to
be evicted on a subsequent cache miss. By relying on the tamtpigive nt hint
to the instructions accessing data without temporal rethhée architecture effectively
prevents cache pollution thus has the potential to achiettecache locality. On this
architecture, a good compiler algorithm to generate caaitadessential, which is the
focus of this paper.

Intuitively, two kinds of memory instructions should be givnt hint: (i) whose
referenced data doesn't exhibit temporal-reuse. (ii) vehreferenced data does exhibit
temporal-reuse, but it cannot bealizedunder the particular cache configuration. It
sounds as though the problem is pretty simple for regulalieatons, and existing
techniques for analyzing data reuse [20] and estimatingeatisses [11, 21, 12] suf-
fice to solve this problem. This plausible statement, howeasgenot true because a
fundamental technique used in cache miss estimation — fimbgmalysis — is based
on the assumption that all accessed data compete for caabe sgually. However, in
our target architecture, memory instructions are not hoenegus — those with cache
hints have much less demand for cache space. This makesphmaap derived from
traditional footprint analysis very conservative. In suary the followingcyclic de-
pendencexists: Cache hint assignment must be known to achieve @ectache miss
estimation, while accurate cache miss estimation is onsgite when cache hint as-
signment is finalized.

In this paper, we develop a simple yet effective formulatioraddress the above
problem. Our formulation is based on the observed relatigrsetween cache miss rate
and cache-residency ofference windovj10]. This is used to formulate the problem
as a 0/1 knapsack problem [8]. For the case that all consideemory referencing
instructions are enclosed byarfect loop nesthe formulated problem falls in a special
category of knapsack problem that can be solved in polynidimia. For case that loops
are imperfectly nested, this is a general 0/1 knapsack proplvhich is known to be
NP-complete [8]. In this case, good heuristic algorithmistebo achieve near-optimal
result [5]. However, since the number of references in a Ipegt is typically small,
even obtaining optimal result using a dynamic programmiggrthm [8, 14] is quite
inexpensive.



We have evaluated the benefit of our approach on reducingecaidses on a set of
loop kernels and a full SPEC benchmark program by simulatiedr execution using
the SimpleScalar simulator [3]. Initial experimental riksishow that our approach re-
duces the number of data cache misses by up to 57.1%, ancegeexecution time by
up to 27%.

The rest of the paper is organized as follows. Section 2 griefliews the basic con-
cepts of data reuse and reference window. Section 3 illiestréhrough an example, the
relationship between reference window and cache miss taighvgets up the rationale
for our problem formulation. The heart of this paper — an al@igknapsack problem
formulation — is derived in Section 4. Our implementatiordaxperimental results
are then presented in Section 5. Section 6 discusses relarld Section 7 concludes
the paper and envisions possible future research direction

2 Prdiminaries

We review some basic concepts on data reuse and referendewvithat will be used
in the rest of this paper.

For an affine array reference in a loop nest of deptthe subscripts can be repre-
sented ag7 - i + ¢ (whereH is theaccess matrixi is theiteration vectorandg is the
offset vectoy. If two different executions of an array reference at itira pointsi; and
ip access the same array element, it must be truefithét, —i;) = 0. Therefore, if the
equationH -4 = 0 has a solution, the array reference with subscriptsi + ¢ exhibits
self-temporal reusand the solution td7 -7 = 0 constitutes theelf-temporal reuse vec-
tor. Two references to the same array, with the same accesxratrilifferent offset
vectors, say referendd - i + ¢ and referencéd - i + 3, may access the same data only
if equationH - (i; — i2) = & — 1 can be satisfied. Thugoup-temporal reusexists
whenH - i = & — ¢ has a solution, and the solution constitutesdrmip-temporal
reuse vectar

A uniformly generated reference q&1GS) is a set of references of the same array,
with the same access matrix and has group data reuse withiseti10]. By defining
uniformly generated reference set and partitioning athamneferences into UGSs, we
can study data reuse on a per-UGS basis.

Gannon et al's work introduced the temeference windowwvhich is defined as the
set of array elements that are accessed by the source redeoém reuse-pair in the
past and will be accessed in the future by the sink referet@f Consider the Fortran
program shown in Figure 1 as an example. This is a small kdrael the SPEC92
benchmarl093.nasa7Reference windows associated with all loop-carried reaeses
are listed in Figure 2.

Let us explain why the reference windows are as given in Eiguror reference
C(I,K) atiteration(j, k, ), wherej > 1 andj < M, the entire array has been traversed
by previous iterations, and all the array elements will beeased again, before the
loop execution advances {9 + 1, k, i). Therefore the reference window is the entire
array. For the self-reuse of array referenc@,J) at iteration(j, k, ) wherek > 1
andk < N, all elements in the first dimension will be referenced in filmeire. Other
reference windows given above can be derived similarly.



DO110J=1,M,4
DO 110K=1,N
DO1101=1,L
C(1,K) = C(I,K) + A(1,d) * B(J,K)
$  +A(,I+1) * BI+1,K) + A(1,J+2) * B(J+2,K)
$  +A(1,J+3) * B(J+3,K)
110 CONTINUE

Fig. 1. The MXM loop kernel from SPEC92. Values af, N and L are 128, 64 and
256 respectively, A, B and C are two dimensional arrays withy& double precision
floating-point array elements

Ref.Win(C(1,K) — C(1,K)) = {C(1,1), C(1,2) - - C(L,N),

C(L,1),C(L,2)--- C(L,N) }
Ref Win(A(1,J) — A(1,d)) ={A@1J), A2,J),; - AL}
RefWin(A(1,J+1) — A(1,J+1)) ={A(1,J+1), A(2,J+1); - - A(L,J+1)}
Ref Win(A(,J+2) — A(1,+2)) = {A(1,J+2), A(2,3+2); - - A(L,J+2)}
RefWin(A(1,J+3) — A(1,J+3)) ={A(1,J+3), A(2,J+3); - - A(L,J+3)}
Ref Win(B(J,K) — B(J,K)) ={B@J.K)}
Ref Win(B(J+1,K)— B(J+1,K)) ={B(J+1,K)}
Ref.Win(B(J+2,K)— B(J+2,K)) ={B(J+2,K)}
Ref.Win(B(J+3,K)— B(J+3,K)) ={B(J+3,K)}

Fig. 2. Reference windows for reuse pairs

A careful study reveals that the size of a reference windaetermined by its reuse
vector. By solving reuse equatiofis i = 0 for each reference, we get the reuse vectors
for reference<C(l,K), A(1,J), B(J,K) as(1,0,0), (0,1,0), and(0,0, 1) respectively.

By the definition of reuse vector, we know th@afl ,K) accesses the same element at
iterations(j, k,¢) and(j + 1, k, i); however, these two iterations are far apart, thus the
number of different array elements accessed in betweentfiereference window) is
large. While the reuse @&(J,K) happens at the innermost loop, its reference window is
much smaller. Gannon et al., gave a formula to compute tleedfireference window
based on reuse vector; we refer interested readers to [L&jdoe details.

3 A Case Study

In this section, using the matrix multiply program shown iglte 1, we illustrate the
relationship between reference window and cache miss rate.

First let us analyze the data reder this program. We start with the array reference
A(1,J) , data accessed by this reference at iteratipr, ¢) is A(i, j) and it will be

% Data reuse is a term different from cache locality; dataedeads to cache locality only when
the reuse can bealizedby the particular cache configuration.



accessed again by the same array reference at itergtiént- 1,4). Intervening data
accesses by all array references during this interval (frrh, @) to (4, £+ 1,¢)) do not
interfere with A(i,j). This kind of reuse is namesklf-reusg20]. Following the reuse
analysis method given by Wolf and Lam [20] we can easily dethat types of data
reuse of all other array referencesffire self-reuse (there doesn'’t exist reuse between
reference#\(I,J+1) andA(l,J) since the stride of loop J is 4).

Since there does not exist data reuse relation between angeferences oA, we
can study each referencefl ,J), A(1,J+1), A(1,J+2) andA(l,J+3) in isolation. With-
out loss of generality, we choose the refereA¢eJ) and profiled its cache behavior.
Before giving the profiling result, we define the temache occupancio refer to the
number of cache lines occupied by a particular array refaeWe traced the cache
occupancy and the cache miss rate for the referé&{td) on a 256-set, 4-way asso-
ciative cache with a cache line size of 8 bytes. Both cachepaitcy and cache miss
rate are shown in Figure 3. In this figure, both cache occupand cache miss rate are
obtained by averaging the respective values for the lasi@kaycles. In the figure
cache occupancy of the reference varies slightly from 2%%.256, while the cache
miss rate varies widely, from 0% to 100%.

T T T T
—— cache—occupanc* ‘ - a- cache miss rate‘

256%

2555
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N
o
o

cache miss rate(in %)

2545

Fig. 3. Cache occupancy and miss rate of array referéx(tgl) in the program shown
in Figure 1

We observe that the cache miss rate is tightly coupled wighctiche occupancy,
and is inversely proportional to cache occupancy. When Weeage cache occupancy
of the reference is 256 for the last 20 cycles, the cache matgsis zero during this
period. While the cache occupancy reduces to 255.5 - 2556 t@ competition with
other array references), the cache miss rate rises to 108BbisTsomewhat surprising,
at least initially, as the decrease in the cache occuparmylysmarginal (from 256 to
255.5).

Let us go back to the source program and analyze why this nsppe we have
discussed before, the array element accessed by refeAdh®@ at iteration(j, k, %)



will be accessed again by the same array reference at @gefgtik + 1, 7). The number
of distinct array elements accessedAff,J) in between (including the two bounding
iterations) is 256. These 256 array elements are the refeneimdow for the self-reuse
vector of A(l,J) that we derived in Section 2. Hence we conclude that if théneac
holds all elements of the reference window for a particudarse pair, the data-reuse is
translated into cache-locality at run-time; otherwisattteuse cannot be exploited by
the cache. Based on this observation, we formulated thegmobf givingnt cache
hint in Section 4.

4 Problem Formulation

In this section we give a problem formulation for generatirighint for memory in-
structions. We start with the case that all memory refersinave self-reuse only and
give the problem formulation in Section 4.1. The genera¢dhat includes group-reuse
is discussed in Section 4.2.

4.1 Problem Formulation for Self-Reuse: Case|

The particular problem that we address in this section i9bevfs:

Problem 1. Given a cache size and a perfect loop nest whose loop bodw.tesay
references with no two references having data reuse betilveem determine the subset
of references that should be givah hint such that cache miss rate of executing this
loop nest on the given cache is minimized.

As demonstrated by the profiling result of matrix multiplyogram (shown in Fig-
ure 3), to realize a data reuse, the reference window of thiat ituse must be accom-
modated by the cache. In reality, cache size is limited afeteace windows that it can
hold is subject to the cache capacity. We associate each rafierence with a binary
variableb, to denote whether it is givent hint(b; = 0) or not(; = 1), the variables
by - - - by, constitute all decision variables of the problem. The c@ist imposed by
cache capacity can be formulated as:

> [RefWin(i)| xb; < C (1)
i=1

where |Ref.Win(:)| refers to the size of the reference window of array reference
andC' is theeffective cache siZ& 1, 18]. We use theffective cache sidastead offull
cache sizén the capacity constraint since stride access with a skider than 1 cannot
exploit the full cache capacity, as shown in Gao et al's war [

The capacity constraint ensures that for array referéwdeose corresponding de-
cision variableb, has a value 1, its reference window will be fully accommoddig
the cache. Hence its temporal reuse can be realized. Simgbjactive is to minimize
the cache miss rate, it is desirable to have as many arranerefes as possible achieve
temporal locality. And since all array references are esmtbby a perfect loop nest,
their execution frequencies are the same. Thus our obgefttivction is formulated as:



max i b; )
i=1

This problem composed of the constraint specified by Inégyuahnd the objective
function (specified by Equation 2). This is, in essence, &f@épsack problem[8]. For
the problem formulation that we have given, the knapsacklpro falls into a special
category where the candidate items have diffeneightgsize of the reference window)
but the samealug). For this special case, the knapsack problem can bedabiag
a greedy algorithm in polynomial time. We give the detailsw¢h an algorithmin [22].
For more complicated cases where the loops are imperfaetiyed, the coefficients of
b; in the objective function will not be uniform, resulting imzore general 0/1 knapsack
problem. For the general 0/1 knapsack problem, optimaltrean be obtained by using
a dynamic programming algorithm i@ (mC) time [8, 14], wheren is the number of
array references ard is the effective cache size. If the time-complexity of thedmic
programming approach is unaffordable, heuristic algamitiso exists to obtain near-
optimal result [5].

4.2 Problem Formulation for Group Reuse: Casell

Now we extend our approach to the general case that grolgeests. The problem
that we address in this section is:
Problem 2. Given a cache size and a perfect loop nest whose loop bodw.tesay
references that have group data reuse, determine the saftveftrences that should be
givennt hint such that cache miss rate of executing the loop nestrigmized.

To address this problem, group reuse of thesarray references should be figured
outfirst. Then we can formulate this problem in a similar wayreCase I. Our approach
to address this problem is therefore divided into the folfaythree steps:

1. Partition the array references into UGSs.

2. Represent the reuse within each UGS usimguse graphand prune the edges of
the reuse graph to simplify the problem.

3. Form a 0/1 knapsack problem from the pruned reuse graph.

We illustrate these steps by using an example program:

DO10T=1,IT
DO101=1M
DO10J=1,N
L(1,J) = (A(1,J-1) + A(L,I+1) + A(-1,3) + A(1+1,J)) / 4
10 CONTINUE

Step 1. Partitioningin the first step, we partition array references into UGS$suc
that group reuse exists only within each set. This step is#imee as that documented
in Wolf et al's paper [21] and Mowry’s dissertation [16]. Rtwe example program, the
five array references are partitioned into two UGSs:



Set ={L(1J)}
Seb = { A(1,J-1), A(1,J+1), A(I-1,3), A(I+1,J) }

Step 2. PruningThe nice feature of the target loops of Problem 1 that we détit
in Section 4.1 is that data reuse is within each single refaxethus the cost and benefit
of realizing the reuse is clearly defined. The presence afgieuse makes this feature
disappear and we have to deal with the case that data acdassee array reference
is reused by several other array references. We represamp glata reuse usingrause
graph(as shown in Figure 4), where each edge (solid or dashedsepts a possible
reuse. The reuse graph can be simplified such that eachmeéenas only one successor
and one predecessor. In the following paragraph we discoastd prune the reuse
graph. In Figure 4, edges remaining after pruning are shawsolid edges and edges
that can be pruned are shown as dashed edges. For legibditpns, we did not show
all pruned edges. However all solid edges that remain afteripg are shown.

Consider the reuse betweek(l+1,J)
andA(l,J-1) as an example. Although reuse
testing by solving the reuse equation ren-
ders us a reuse edge from(l+1,J) to
A(1,J-1), a careful analysis reveals this )
reuse actually does not happen. This is be<0.20)
cause of the intervening access generated
by A(1,J+1). Consider the locatioA(i+1,j) D oy
accessed by referencA¢l +1,J) andA(l,J- ‘ '
1). The above accesses happen respectively ‘x\
at iteration(,j) and (i + 1,5 + 1). Be- ‘
fore this reuse can be realized between
these two references, a reuse by reference
A(l1,J+1) happens at iteratiofi + 1,5 — 1).

Hence the reuse edges((+1,J), A(l,J+1))

and A(1,J+1), A(1,J-1)) together, transi- Fig 4. Data reuse graph fafet, of the
tively, represent the reuse information besxample program. The vector adjacent to
tweenA(l+1,J) andA(l,J-1). Therefore the o5ch reuse edge is the reuse vector
edge A(1+1,J),A(1+1,J-1)) can be pruned.

In a similar way, all transitive edges can be

pruned from the reuse graph. By pruning the transitive edgesget a reuse graph in
which each node has at most one successor and one prededéssmice feature of
the pruned reuse graph facilitates our knapsack problemdtation since the cost and
benefit of realizing each reuse can be easily identified.

As seen, for multiple array references that possibly reada df a common parent,
the pruning step chooses the one that reuses the data atltbsteiane. Thus the rule for
pruning is: For an array reference which emanates multglse edges, keep the edge
that has minimum reuse vector and prune all other edges.eReasors are ordered in
lexicographic ordef1].

Step 3. FormulationAfter pruning we proceed to the last step, viz., formulating
the problem. The cost of realizing a temporal reuse is sizthefreference window
associated with the reuse. By realizing the reuse, theameéerreusing the data will get

(1,-2,0)




its data from cache instead of memory, thus saving a meméeyerece for an iteration.
In the pruned reuse graph, the reference window size of tinerénise edges emanating
from A(1+1,J), A(1,J+1), A(1,J-1) and A(I-1,J) areN — 1,2, N — 1and(M — 2) - N
respectivelyL (1,J) has self-reuse with reference window sizeidf- N. The problem
for the example program can be formulated as:

Maximize:

bas1,5) T bau,s41) T bau,s—1) Tbag-1,0 +bra,
within the constraint:

(N —=1)-bag+1,0) +2-ba,g4ny + (N =1) -baq,s-1) +
(M—2)~N~1)A(1,1J) +M'N'bL(I,J) <C

5 Experimental Results

5.1 Experimental Platform

We have implemented our approach in the MIPSpro compileremadliated its per-
formance by running SPEC benchmarks on SimpleScalar siorJ]. The MIPSpro
compiler is the production-quality compiler developed B$1Sor MIPS processors.
We have re-engineered the code generator of the MIPSpro itmmp generate code
for SimpleScalar. The MIPSpro compiler has a rich set ofrojations to maximize
program performance. We have enabled most of them in ouriemeet. As a first step
of our work, we did not enable loop nest transformation in experiment. Studying
the interaction between our technique and other localityamcing techniques likeop
fusion loop fissionloop permutatiorandloop tiling is our future work. However, opti-
mizations applied on loop bodies, like strength reductindiiction variable elimination
and cross-iteration common subexpression eliminationdbaot change the loop nest
structure, are still invoked.

We implemented the algorithm for computing the referencedoeiv size given in
Gannon et al's paper [10] which is used in the 0/1 knapsacklpm. We have also
implemented the knapsack problem formulation (i.e., gatireg the constraints) and a
greedy algorithm to get the optimal solution for it in the MAjpro compiler. A dynamic-
programming algorithm for general 0/1 knapsack problenntsresting but was not
required since in the benchmarks we evaluated perfect lesfsmilominate. We did not
consider scalar references for hint, as scalar variables only consume a small portion
of cache space.

SimpleScalar uses MIPS instruction set with a few minoredéhces. Each instruc-
tion word in SimpleScalar is of length 64 bits, of which thesnsignificant 16 bits are
not used at present. This 16-bit field is callthotationfield in SimpleScalar, which
is used by us to carry cache hint in our experiment. Duringecgeineration, memory
instructions are givent hint according to the solution of the 0/1 knapsack problem. |
response to this modification on ISA, we modified the simalathechanism as well.
We implemented the modified LRU algorithm which does not geatihe rank a the
cache line for accesses witlt hint.



We chose two representative loop kernatsm, in which most data accesses are
column-major, andrpenta, in which most data accesses are row-major. Both of them
are from SPEC9P93. nasa7 benchmark written in Fortran. Besides, to evaluate the
effectiveness of our approach on large benchmarks, we aldoded one complete
benchmarkt ontat v from SPEC95 with r ai n data set, in our workload. We exper-
imented our approach on caches of varying sizes (rangimg &id bytes to 32K bytes)
and varying associativity (2-way and 4-way). Note that foedt-mapped cache, the
replacement algorithm and cache hint do not play any roleuinexperimental work,
we used a fixed cache line size of 16 bytes.

5.2 Performance Results

The cache miss rates of the conventional cache and that ¢fint assisted cache are
compared in Table 1. The cache miss results of these two tyfpesche are obtained
by running exactly the same program generated by our comgmilehe SimpleScalar

simulator (simulating, respectively, the LRU replacemalgbrithm and the modified

LRU replacement algorithm).

Table 1. Effectiveness of our approach in reducing cache missesur@ol“LRU”
reports cache miss rates of conventional caches with LRUacement. Column
“LRU+hint” report cache miss ratag hint assisted caches which uses a modifies LRU
replacement. Column “Red” gives the percentage reducti@ache miss rates due to
our approach

Cache Size
4K 8K 16K 32K
Benchmarl [RU [RU [RU [RU
LRU + Red.|LRU| + |Red.|LRU| + |Red.|LRU| + |Red.
hint hint hint hint

Result On 4-way Associative Caches
nmxm 35% | 29.4%| 16%| 35% | 15% |57.1% 8% | 8% | 0% | 8% | 8% | 0%
vpenta ||21.7% 21.3%]| 1.8%|21.69419.7% 8.8%]17.2%13.5%21.5%13.2%10.9%17.4%
toncatv || 21% | 21.5%|-2.49420.9%18.5%11.5%20.1%17.1%14.9% 16% | 14% |12.5%
average 5.1% 25.8% 12.1% 10%
Result On 2-way Associative Caches
nmxm 35% | 28.7%]| 18%(21.9%415.2%30.6% 8.1%| 8% |1.2%| 4% | 4% | 0%
vpent a ||21.9%22.18%-1.3%421.7%418.9%12.9%19.5%16.3%16.4%18.6%16.2%12.9%
toncatv [|22.9% 23% |(-0.49422.5%22.6%-0.4% 20% [18.1% 9.5%16.9%14.8%12.4%
average 5.4% 14.3% 9% 8.4%

Our approach shows most performance benefitsiam for 8K byte 4-way cache.
It reduces the cache miss rate from 35% to 15% (a 57.1% rextucti the number of
cache misses). As elaborated in Section 3, the key to achaisfactory overall cache



locality is to ensure that reuse of array reference#\dé materialized, since in this
example, reference @ has distant reuse and referenceBaire loop-invariant. But, in
a conventional cache, cache pollution caused by @&@rpsevents arrayA from enjoying
its temporal locality, leading to poor locality on a cachesizle 4K and 8K bytes. For
8K byte cache, 41.3% of the executed memory instructiongyaen thent cache
hint by our approach. This ensures that data accessed byahoremory instructions
(references oA in this case) stay in the cache for a relatively longer timécivin turn
results in better temporal locality.

For 2-way 8K byte cache, our approach is also quite effecteducing the number
of cache misses imxm by 30.6%. The percentage reduction achieved on a 2-way
cache is lower than that achieved by a 4-way cache. Altholigtig counter-intuitive,
we observe that, even for the conventional cache with thgirai LRU replacement,
mxm achieves lower cache miss rates on a 2-way 8K byte cache thad-avay cache
of the same size. This could be due to higher conflict misseb\aay associativity
results in fewer sets (128 sets) than 2-way associativig &&ts) on a 8K byte cache.

Our approach performs consistently better over conveatioache for larger cache
sizes (16K and 32K bytes). For caches of relatively smailterss(especially 4K bytes),
our approach performs marginally better than the conveaticache, but not consis-
tently. The reason for this is that when data accessed bysamuation withnt hint is
broughtin, its life time in the cache is typically much stezithan that in a conventional
cache. Although this is beneficial for other data with tenghtircality, the short cache
life-time of the accessed data jeopardizes spatial Igcsiitce it may be replaced be-
fore the adjacent data items are accessed. On a cache ofsirealhis happens more
frequently.

To verify the above conjecture, we designed an experimemhich each cache ob-
ject is classified as gegular object or amt-hint object depending on whether the data
object accessed is brought into the cache using a regulaonyenstruction or with
annt hint memory instruction. We measured the number of refezefior each cache
block during its life-time (from the time the cache block i®bght in to the time it is
replaced). Using this we compute the average number ofereéess for regular objects
andnt -hint objects. We compute these values for both classesjeftshwith the origi-
nal as well as the modified LRU replacement algorithm. Natalliour experiments the
code run in the simulator is the same (one which includedint memory instruction).
Only the replacement policy used (original LRU or modifiedW)Rs different for the
different caches.

Figure 5(a) shows the average number of referencesfdrint objects fot ontat v
benchmark. It can be seen that the average number of reEgeamain the same be-
tween the original and the modified LRU replacement for 32kelmache. However, for
small cache sizes, there is a decrease in the average nufrmeéerences. This shows
that spatial locality exploited imt -hint objects is lower imt -hint assisted caches,
especially when the cache size is smaller. In other words)dbality of thent -hint
objects is really sacrificed. For reference purposes, we sti®w the average number
of references for regular objects in Figure 5(b). It can bensthat the modified LRU
algorithm (withnt hint) improves the locality of regular objects in all cachees.
These two graphs (refer to Figure 5) tell us the key to redneeache miss ratio on the



studied architectures is to avoid/minimize the degradatibthe locality exploited in
nt -hint objects while enhancing the locality of exploited@gular objects. Fortunately,
for most cases the benefits achieved in temporal localitioéep in regular objects by
our approach dominate the possible loss on spatial locatipyoited innt -hint objects.
This is evidenced by the positive average reduction on cabses we achieved for all
cache sizes we considered.
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Fig. 5. Impact of our approach on locality of regular amgd-hint objects.

We observe that our approach is more effective on cachesggbkhiassociativity.
As shown, our approach reduces the cache miss rate by a kxtgart for 4-way as-
sociative caches than for 2-way associative caches. Ors#lgpmseason for this is that
our problem formulation does not take cache conflicts intooaat. In our problem
formulation given in Section 4, we optimistically assumkdttthe residency of refer-
ence windows is only constrained by the effective cache Jihes assumption gives
us a simple problem formulation; but it suffers from not ddesing conflict misses
which is non-negligible on caches of low associativity. Quture work will consider
using conflict-avoiding techniques like data padding toriove the effectiveness of our
approach.

Next we report the impact of reduced cache misses (dus thint) on program
performance. For this, we obtain program execution tim@ressed in execution cy-
cles, from SimpleScalar simulator. We simulate a supessqabcessor which issues
2 instructions in a clock cycle and employs out-of-ordetrim&ion issue and out-of-
order execution. We consider one level of cache: I-cachékfldytes, and the size of
D-cache varies between 4K and 32K bytes. The cache hit katerit cycle, and the
cache miss penalty is 40 cycles. Performance results fomaerional cache and a
cache withnt hints are reported in Table 2.

We observe that the reduction in cache misses (dua¢ teints) does resultin a cor-
responding reduction in the execution time, although natcéy by the same/similar
amount. This is because cache miss rate is not the only faffexting program per-
formance, especially in out-of-order issue processorgelmeral, we observe that the



Table 2. Effectiveness of our approach in improving program perfance. This table
shows the normalized execution time of benchmark programsing on a conventional
cache with LRU replacement (shown in column “LRU”) and on aeleawith modified

LRU replacement (shown in column “LRU+hint"). For each praxg, execution time
shown is normalized using the execution time of the prograna @onventional 4K
byte, 4-way associative D-cache

2K 8K 16K 32K
[RU [RU [RU [RU

Benchmarkl oyl + | Red.|LRU| + | Red.[LRU| + |Red|LRU| + | Red.
hint hint hint hint

Result On 4-way Associative Caches
nmxm 1 |0.76| 24%| 1 |0.73| 27%|0.58/0.58/ 0% |0.58|0.57| 1.7%
vpent a 1.04/ -4% | 1 | 1 | 0% |0.92/0.85|7.6940.90|0.78(13.3%
toncatv| 1 |[1.03]-3%| 1 [0.94] 6% |0.98/0.91|7.1940.89|0.82| 7.9%
average 5.7% 11% 4.9% 7.6%
Result On 2-way Associative Caches
nmxm 1 |0.74| 26%|0.73|0.72]0.3%]0.58|0.58| 0% |0.44(0.44| 0%
vpenta || 1 [1.04] -4% | 1 [0.98 2% |0.98/0.93|5.1940.96/0.93| 3.1%
toncatv ||1.02/1.07}-4.9% 1.01{1.07|-5.994 0.98/ 0.92(6.1%4 0.93| 0.85| 8.6%
average 5.7% -1.2% 3.7% 3.9%

[ERY

cache miss rate reduction achieved by our approach is acmiegby a correspond-
ing performance improvement. With the widening speed gawpéen processor and
memory, our approach can have more performance impact arefaticroprocessors.

6 Reated Work

Improving cache performance has attracted a lot of atterit@m both the architecture
and compiler perspective. Specifically, enhancing insibacset with cache hints is
pioneered by Chi and Dietz. They studied an architecturevation by introducing
cache-bypassing memory instructions [6, 7]. In their a@eztiure model, data accessed
by cache-bypassing memory instructions is not allocateache line. Their approach
is helpful to avoid cache pollution, but severely compramispatial locality. By using
cache hints, we can get better temporal locality withoutiieitig the spatial locality
significantly.

Wang et al studied a hypothetical architecture similar todhe considered in this
paper [19], and proposed a heuristic compiler algorithntfigs architecture. However
our work differs from their work in two major aspects: (i) wenformed an in-depth
study on the compiler algorithm while they focused on théndectural implementa-
tion; (ii) we presented a systematic formulation while thesgd an ad-hoc algorithm.
Lastly, their algorithm does have the cyclic dependencyblemm mentioned in Sec-
tion 1. In a future work, we plan to compare our approach witkirtheuristic method.

Anantharaman and Pande studied the problem of optimizimg éxecution on em-
bedded systems with scratch-pad memory and without caghénfrestingly, they



formulated the problem as a 0/1 knapsack problem as well.¢dewthe problem they
studied is different from ours since scratch-pad memorfediffrom the cache in that
it is free of hardware interference.

7 Conclusions

Improving cache performance is of significant importancaodern processors. In this
paper we exploited compiler-assisted cache managemeahwtiiizes the cache more
efficiently to achieve better performance. In particulag, studied the problem of de-
termining the subset of references that should be gite(stands for “non-temporal”)
cache hints to minimize the cache miss rate. We observe ldt@oreship between cache
miss rate and cache-residency of reference windows in @e&i This observation
forms the basis for our formulation that in order for an arraference to realize its
temporal reuse, its reference window must be fully accomatexlin the cache. We
then formulated the problem as a 0/1 knapsack problem fdiofleving two cases: (i)
only self-reuse exists, and (ii) group-reuse exists. Totkst of our knowledge this is
the first systematic formulation of this problem. We evadabdur approach by imple-
menting it in a re-engineered MIPSpro compiler generatimgpBeScalar instructions
and running it through SimpleScalar simulator. Our simolatesults show that our
approach exploited the architecture potential well. lueet the number of data cache
misses by up to 57%, and program execution time by up to 2509s.plan for fu-
ture work includes performing a comprehensive evaluatiorth® sensitivity of our
approach to cache associativity and cache line size, mtiegrour approach with other
locality-enhancing techniques, and comparing it withtedavork.
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