
International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

38 

On the Estimationof the Software Effort and Schedule 

using Constructive Cost Model – II and Functional Point 

Analysis 

R. Chandrasekaran 
Associate Professor 

Department of Statistics 
 Madras Christian College 

Tambaram, INDIA – 600 059 
 

 

R.Venkatesh Kumar 
Research Scholar 

Department of Statistics 
 Madras Christian College 

Tambaram, INDIA – 600 059 
 

 
 

ABSTRACT 

Cost estimation is an important aspect for making high-quality 

management decisions in the software industry. It is also 

related to determining how much effort and schedule are 

needed to complete the task on time. The challenge is to 

predict the accuracy of software development effort and 

schedule. Several models and approaches are available in the 

literature for such problems. This paper provides a list of 

software cost estimation techniquesusing Constructive Cost 

Model – II (COCOMO-II), function points analysis,and 

comparison studyto validate these models using MRE 

(Magnitude of Relative Error). We collected and used data 

from real time projects and also completed projects from one 

of the major information technology company for the present 

study. 

Keywords 

Software Cost Estimation methods, Functional Point Analysis, 

COCOMO - II, Effort Multipliers, Scale factors, and Relative 

Error. 

1. INTRODUCTION 
The software development industry is more complex 

andseasoned today. Asoftware industry, in general, islooking 

for new tools and approaches of software development 

methods for implementation in order to increase their profits 

and reduce the cost to company. It requires appropriate 

planning and execution to meet the goals. The challengehere 

is to predicate the accuracy of software development effort 

and schedule. The Software product is usually developed 

based on the market demands. Marketing and Salespeople 

approach their client and know theirrequirements. Senior 

Business Analyst creates architecture for the products along 

with functional and technical design specification document 

based on the Client’s requirement.  The responsibility of 

project managers is to createsthe software development plan 

and effort/schedule estimation. Project Planning is an 

important phase in software development cycle; poor project 

forecastleads to project failures and detrimental outcomes for 

the project.After the initial development phase, software 

testing begins, and many times it is done in parallel with the 

development process. Documentation is also part of the 

development process because a product cannot be brought to 

the market without manuals. Once development and testing 

are done, the software is released and the project support 

cycle begins. This phase may include bug fixes and new 

releases. The Software Development Life Cycle shown in 

Figure 1. 

Software cost estimation techniques can be classified into two 

types namely, algorithmic and non-algorithmic models.  

Algorithmic models are based on the statistical analysis of 

historical data (Hodgkinson and Garratt, 1999, Strike et al., 

2001).Some of the famous algorithmicmodels are Albrecht’s 

Function Point (Boehm, et al., 2000;Boehm, 1995) and 

Putnam’s (1978), Software Life Cycle Management (SLIM) 

(Schofield, 1998) and Constructive Cost Model (COCOMO) 

(Boehm, 1981). 

Non-algorithmic techniques are based on new approaches 

like, Parkinson (Boehm, 1981), ExpertJudgment, Price-to-

Win and machine learning methodologiessuch as regression 

trees, rule induction, fuzzy systems, genetic algorithms, 

Bayesian networks, artificial neural networks, and 

evolutionary computation(Schofield, 1998). 

This paper is structured as follows: Section II explains the 

literature review about the software cost estimation methods. 

Section III includes a detailed explanation about Cost 

Estimation Methods. Section IV real time software 

development data is used in the COCOMO – II and 

Functional Point Analysis models, andfinally, Section V 

presents conclusion of the present research. 

 

Figure 1: Software Development Life Cycle 

Business 
Requirements

Solution 
Requirements

Solution 
Features

Software 
Requirments

Analysis & 
Design

Code 
Development

Testing

Product support



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

39 

2.    LITERATURE REVIEW  
Software development has become an important part for many 

organizations; software estimation is gaining an ever-

increasing importance in effective software project 

management. In practice, software estimation includes 

effort/schedule estimation, quality estimation, risk analysis, 

etc. Accurate software estimation can provide powerful 

assistance for software management decisions (Boehm, 2000). 

There are many methods for software cost estimation, which 

are divided into two groups: Algorithmic and Non-

algorithmic.  Usage of the both types of algorithms results 

inmore or less accurate cost estimation. If the requirements 

are known better, their performance will be better. Some 

popular estimation methods are discussed in detail by Khatibi 

and Jawawi (2011). 

Boehm was the first researcherwho considered the software 

estimation from an economic point of view, and came up with 

a cost estimation model, COCOMO – 81 in 1981, after 

investigating a large set of data in the 1970’s (Boehm,Abts,, 

and Chulani,2000). Putnam also developed an early model 

known as SLIM, the Software Lifecycle Management, 

(Putnam,1978). COCOMO, SLIM and Albrect’s function 

point methods that measures the amount of functionality in a 

system, were all based on linear regression techniques by 

collecting data from historical project as the major input to 

their models.  Several algorithmic methods are deliberated as 

the most popular methods and many researchers used the 

selected algorithmic methods (Musilek, et al. 2002; Yahya, et 

al. 2008; Lavazza and Garavaglia 2009; Yinhuan et al. 2009; 

Sikka et al. 2010). 

Software estimation techniques can support the planning and 

tracking of software development projects. Efficiently 

controlling the expensive investment of software development 

is of prime importance (Gray, MacDonell and Gray, 1997; 

Jingzhou and Guenther, 2008; Kastro and Bener, 2008; Strike 

et al., 2001).  Newer computational techniques are used for 

cost estimation that are non-algorithmic in the 1990’s. 

Researchers have turned their attention to a set of approaches 

that are based on soft computing methods. These methods 

include artificial neural networks, fuzzy logic models and 

genetic algorithms. Artificial neural network is able to 

generalize from trained data set. Over a known set of training 

data, a neural-network learning algorithm constructs rules that 

fit the data and predicts previously unseen data in a reasonable 

manner (Schofield, 1998). 

ImanAttarzadeh and Siew Hock Ow (2010) proposed models 

based on COCOMO II and fuzzy logic to the NASA dataset 

and found that the proposed model performed better than 

ordinary COCOMO II model and also achieved results that 

were closer to the actual effort. The relative error for proposed 

model using two-side Gaussian membership functions is 

found to be lower than that of the error obtained using 

ordinary COCOMO II.  A novel neuro-fuzzy Constructive 

Cost Model is used for software cost estimation and this 

model carried some of the desirable features of a neuro-fuzzy 

approach, such as learning ability and good interpretability, 

while maintaining the merits of the COCOMO model (Xishi 

Huang et al., 2005). 

3.   COST ESTIMATION METHODS    
There are several methods for estimating the effort and 

schedule of software development project. The methods are 

categorised into two types which are Algorithmic and Non-

algorithmic. (Khatibi andJawawi, 2011). Some of the popular 

estimation methods are shown in Figure 2. In the present 

paper, we discuss the most famous and commonly used 

models which are COCOMO II and Function Point Analysis 

(FPA).  

 

 

Figure 2: Estimation Techniques 

3.1 COCOMO II Model 
COCOMO II is one of the recentversion of COCOMO-81 

model developed by Boehm in 1981. It is a non-linear 

regression estimation model. This model allows estimating the 

software cost, effort and schedule when planning a new 

task,and the basic elements of the model are depicted in 

Figure 3. It is consists of two models which are Early Design 

Model (EDM) and Post-Architecture Model (PAM). These 

models use some equations and parameters, which have been 

derived from previous research and practicesin software 

projects for estimation.  

Early Design Model – EDM is used in the initial phases of 

software development project, while only the software 

architecture is being designed;the detailed information about 

the actual software and its overall development process are 

not yet to be known. 

Post-Architecture Model – It is used in the phase when the 

requirement architecture is doneby the Business Analyst and 

the software product is ready for its development phase. 

(Boehm, 2000). 

 

 

 

 

Figure 3: COCOMO-II Model 

COCOMO-II model has many special features.  The usage of 

this method is extremely wide and mostly results in accurate 

estimates.  The cost drivers for COCOMO-II are rated on a 17 

Effort Multipliers as shown in Table 1, and 5 scale factors as 

given in Table 2. Some other rating levels are also defined for 

scale factors including very low, low, nominal, high, very high 

and extra high. Usually, a quantitative value is assigned to 

each rating level as its weight and then the data is analysed. 

ESTIMATION TECHNIQUES

Algorithmic Models 

Source Line of 
Code 

Function Point 
Analysis

Linear Models 

Multiplicative 
models 

COCOMO

Putman’s model 

Non Algorithmic Methods

Analogy

Expert judgment 

Machine learning 
Models 

Effort  

Schedule 

Code Size 
COCOMO II 

(Parameters) 



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

40 

3.1.1 Effort Multipliers  
Cost drivers influence effort in carrying out a certain Software 

development project.They are some kind of characteristics 

associated with software development.  Cost drivers are 

selected based on the basis that they have a linear affect on 

effort. There are 17 effort multipliers shown in Table 1 that 

are utilized by many authors who used the COCOMO II 

model to regulate the development effort. 

Table 1. Effort Multipliers 

Attribute  Type  Description  

RELY  Product  Required system reliability  

CPLX  Product  Complexity of system modules  

DOCU  Product  Extent of documentation required  

DATA  Product  Size of database used  

RUSE  Product  
Required percentage of reusable 

components  

TIME  Computer  Execution time constraint  

PVOL  Computer  
Volatility of development 

platform  

STOR  Computer  Memory constraints  

ACAP  Personnel  Capability of project analysts  

PCON  Personnel  Personnel continuity  

PCAP  Personnel  Programmer capability  

PEXP  Personnel  
Programmer experience in project 

domain  

AEXP Personnel  
Analyst experience in project 

domain  

LTEX  Personnel  Language and tool experience  

TOOL  Project  Use of software tools  

SCED  Project  
Development schedule 

compression  

SITE  Project  
Extent of multisite working and 

quality of inter- 

3.1.2 Scale Factors  
The application size is in the form of exponent which is an 

aggregate of five scale factors shown in Table 2 that describe 

relative economies or diseconomies of scale and arise during 

software projects of dissimilar magnitude. 

Table 2. Scale factors 

Scale Factor Reflects : 

Precedentedness 

(PREC)  

The previous experience of the  

organization  

Development 

Flexibility 

(FLEX)  

The degree of flexibility in the 

development process.  

Risk Resolution 

(RESL)  
The extent of risk analysis carried out.  

Team Cohesion 

(TEAM)  

How well the development team 

knows each other and work together.  

Process maturity 

(PMAT)  

The process maturity of the 

organization.  

3.1.3 COCOMO II - Effort and Schedule 

Estimation Equations 

 

Effort Estimation: 

 
Person Month (PM) = A × (Size)E  ×  EMi

17
i=1 EQ. 1 

where E = B + 0.01 ×  SFj
5
j=1  

EMi is the Effort Multiplier(i) and  

SFj is the Scale Factor (j). 

Baseline Effort Constantsare: A = 2.94; B = 0.91 

 

Schedule Estimation: 

 

Time to Develop (TDEV)= C × (PM)F EQ. 2 

 

wherePM is the Person Month 

F = D + 0.2 × 0.01 ×  SFj
5
j=1  

Baseline Schedule Constantsare : C = 3.67; D = 0.28 

3.2 Function Point Analysis 
Function Point Analysis (FPA) was developed by Allan 

Albrecht in 1983.  The International Function Point User 

Group(IFPUG)is engaged in additional evolvement of FPA 

since 1986. The method leaves out the problems related to 

determination of predictable code amount.  It is to be noted 

that function points are normalized metrics of software 

development project, which compute an application field and 

does not reflect on a technical field. At the same time, it 

measures application functions and data, and it won’t evaluate 

the source lines of code (Vickers, 2003).  

3.2.1 Functions Count and Unadjusted Function 

Points 
Once the software requirements are formally specified then it 

will be challenge to count the functions. Albrecht has 

provided fives categories of functions to count this process: 

Internal Logical Files, External Interface Files, External 

Inputs, External Outputs and External Queries that are defined 

by many authors as follows: 

Internal Logical Files (IFL): Any potentially unrestricted 

data sequence generated, used or maintained by an application 

can be considered as a logical file. 

External Interface Files (EIF): Similar to IFL, but the given 

logical file is shared by some programs which includes large 

group of user data or leading information used in an 

application. This information has maintained by a different 

application. 

External Inputs (EI): These input statements concern only 

user input orders, which are related to changes in the internal 

data structure. They do not concern user input orders, which 

are aimed only at control of program implementation. 

External Outputs (EO): The calculation scheme is similar to 

that ones related to the input orders. All unique user data or 

control data leaving the external frontier of the measured 

system count as output orders. 

External Queries (EQ): Orders in the form of enquiries are 

related to outputs carrying out the program implementation 

and do not change the internal data structure. EQ is similar to 

EI and EO under the condition that these are enquiries in the 

form of question.  



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

41 

Functions are identified for given categories, and then 

functions complexity are also rated as low, average, or high as 

shown in Table 3. 

Table 3. Function Count Weighting Factors 

Factors Low Average High 

Internal Logical Files _ x 7 _ x 10 _ x 15 

External Interface Files _ x 5 _ x 7 _ x 10 

External Inputs _ x 3 _ x 4 _ x 6 

External Outputs  _ x 4 _ x 5 _ x 7 

External Queries _ x 3 _ x 4 _ x 6 

Each function count is multiplied by the weight depending on 

its complexity and all of the function counts are added to get 

the count for the entire system called unadjusted function 

points (UFP). This calculation is summarized by the following 

equation: 

UFP =  Wij Xij
5
j=1

3
i=1 EQ. 3 

whereWij is the weight for row i, column j, and Xij is the 

function count in cell (i, j) of the Table 3 (Kemerer, 1993). 

3.2.2 Adjusted Function Points 
UFP explains a good notion of the number functions in a 

system, but it does not take into account the environment 

variables for determining effort required to program the 

system. For example, a software system with very high 

performance is required, then additional effort is needed to 

make sure that the software is written as competently as 

possible. Albrecht recognized this when developing the FP 

model and created a list of fourteen “general system 

characteristics that are rated on a scale from 0 to 5 in terms of 

their likely effect for the system being counted.” (Kemerer, 

1993). The characteristics considered by Kemerer are given in 

Table 4. 

Table 4. Factor of Technical Complexity 

F1 
Data 

communications 
F8 On-line update 

F2 
Distributed data 

processing 
F9 Reusability 

F3 Performance F10 
Complex 

processing 

F4 
Heavily used 

configuration 
F11 Installation ease 

F5 Transaction rate F12 Operational ease 

F6 On-line data entry F13 Multiple sites 

F7 End-user efficiency F14 Facilitate change 

The ratings given to each of the characteristics mentioned 

above Fi’s are then entered into the formula in Equation 4 to 

get the Value Adjustment Factor (VAF): 

VAF = (TDI × 0.01) + 0.65 EQ. 4 

TDI=  DIi
14
i=1 EQ. 5 

where TDI is a factor of technical complexity, and DIi,its 

resulting degree of influence. It concerns a calibrating 

parameter of effort and indicates an influence of all the 14 

factors. Each of them is rated by a six-point scale (0 - 5) 

according to a relevant degree of influence (TDI) on 

application. 

Finally, the Adjusted Function Point (AFP) is obtained as the 

product of UFP and VAF (AFP) count: 

AFP = UFP ×VAF EQ. 6 

Effort estimation of the coding size and total cost of the 

project can be obtained from adjusted function points.  To 

begin with, it is necessary to specify the effort and a price of 

one function point. Based on this, the total costs necessary for 

the project development can be calculated. Depending on the 

programming language in which the software project is 

developed, the size of the source code, which corresponds to 

one function point, is assessed. The estimation of code size for 

given programming language (Kemerer,1993 and 

IFPUG,2010). 

The effort of new project is estimated as a share of number of 

points for new project divided by number of points per 

months: 

E =   
FP

FP′
M 

  EQ. 7 

where FP′/M is an average amount of function points 

declining on one person-month and it is determined from the 

finished projects. An estimation of project development 

duration in months can be calculated by relation  

3.3 Validation of COCOMO II and FPA  
In this section, we try to show the minimum distance between 

estimated effort and actual effort of the development project. 

The estimation effort performance is accomplished by 

computing several metrics including Magnitude of Relative 

Error (MRE). This is a popular parameter which is used for 

performance evaluation of methods 

MRE =  
  (Actual  Effort  – Predicted  Effort ) 

Actual  Effort
EQ.8 

4.   METHODOLOGY   
Our main objective of this section is to estimate the 

effort/schedule of existing project and compare it with actual 

effort/schedule using COCOMO II Post-Architecture Model 

and Function Point Analysis. For the present experiment, we 

have used a real time development project, which was 

developed in SAS (Statistical Analysis System) from one of 

the major Information Technology.  

The software was developed in SAS language with 

experienced team of analysts and developers.  This data is 

collected from one of the major Information 

TechnologyCompany.Actual code extent is 23.80 Kilo 

(thousand) Line of Code (KLOC), Actual effort for this 

project is 30.12 person-month and actual time is 9.4 months.  

4.1 COCOMO II – Effort/Schedule 

Estimation 
COCOMO II Post-Architecture Modelis the most popular 

method used for software cost estimation.  In this 

section, we used a real-time project to estimate the 

project effort based on COCOMO II metrics. Table 5 

shows the cost drivers and their adjusted amounts and 

Table 6 shows the scale factors.Now, by using cost 

drivers, scale factors and relations in EQ1, EQ.2 and EQ.8 

parameters, namely, PersonMonth (PM), Time to 



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

42 

Develop(TDEV) and Magnitude of Relative Error (MRE)are 

estimated. 
 

Table 5.  Effort Multiplier 

Cost Driver Symbol  Very Low Low Nominal High  Very High Extra High SAS Project 

RELY EM1 0.82 0.92 1.00 1.10 1.26   1.26 

DATA EM2   0.90 1.00 1.14 1.28   1.14 

CPLX EM3 0.73 0.87 1.00 1.17 1.34 1.74 1.00 

RUSE EM4   0.95 1.00 1.07 1.15 1.24 0.95 

DOCU EM5 0.81 0.91 1.00 1.11 1.23   0.91 

TIME EM6     1.00 1.11 1.29 1.63 1.00 

STOR EM7     1.00 1.05 1.17 1.46 1.00 

PVOL EM8   0.87 1.00 1.15 1.30   1.00 

ACAP EM9 1.42 1.19 1.00 0.85 0.71   0.85 

PCAP EM10 1.34 1.15 1.00 0.88 0.76   0.88 

PCON EM11 1.29 1.12 1.00 0.90 0.81   0.81 

APEX EM12 1.22 1.10 1.00 0.88 0.81   0.88 

PLEX EM13 1.19 1.09 1.00 0.91 0.85   0.85 

LTEX EM14 1.20 1.09 1.00 0.91 0.84   0.84 

TOOL EM15 1.17 1.09 1.00 0.90 0.78   0.90 

SITE EM16 1.22 1.09 1.00 0.93 0.86 0.80 0.80 

SCED EM17 1.43 1.14 1.00 1.00 1.00   1.00 

 𝐄𝐟𝐟𝐨𝐫𝐭 𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐞𝐫𝐬𝐢
𝟏𝟕
𝐢=𝟏   0.3403 

Table 6. Scale Factor 

Factors Very Low Low Nominal High  Very High 
Extra 

High 

SAS 

project 

PREC 

Thoroughly 

unprecedented 

Largely 

unprecedented 

Somewhat 

unprecedented 

Generally 

familiar 

Largely 

familiar 

Thoroughly 

familiar 3.72 

6.2 4.96 3.72 2.48 1.24 0 

FLEX 
Rigorous 

Occasional 

relaxation 

Some 

relaxation 

General 

conformity 

Some 

conformity 

General 

goals 3.04 

5.07 4.05 3.04 2.03 1.01 0 

RESL 
Little (20%) Some (40%) Often (60%) 

Generally 

(75%) 

Mostly 

(90%) 

Full 

(100%) 4.24 

7.07 5.65 4.24 2.83 1.41 0 

TEAM 

Very difficult 

interactions 

Some difficult 

interactions 

Basically 

cooperative 

interactions 

Largely 

cooperative 

Highly 

cooperative 

Seamless 

interactions 3.29 

5.48 4.38 3.29 2.19 1.1 0 

PMAT 

SW-CMM 

Level 1 

Lower 

SW-CMM 

Level 1 Upper 

SW-CMM 

Level 2 

SW-CMM 

Level 3 

SW-CMM 

Level 4 

SW-CMM 

Level 5 4.68 

7.8 6.24 4.68 3.12 1.56 0 

 

Effort Estimation = 2.94 *23.801.0997  * 0.3403 = 32.66 [PM] 

Schedule Estimation = 3.67 * 32.660.31794  = 11.11815 [M] 

 MRE = 
  (30.12 – 32.66) 

30.12
 = 0.084 

It is to be noted from the above estimates, that the difference 

between the actual and estimated project efforts, Schedule 

time and the MRE are very small. Thisis only a sample project 

considered to show the applicable ability of COCOMO II 

method. 



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

43 

4.2 FPA – Effort/Schedule Estimation  
Albrecht(1983) has presented the Function Point Analysis to 

measure the functionality of the software project. Following 

this method, estimates of indicators are obtained and shown in 

Table 7. 

Table 7. Estimation of Unadjusted Function Points 

Weigh Simple Average Complex Total 

Internal 

Logical 

Files,  

2 x 7  3 x 10  8 x 15  164 

External 

Interface 

Files,  

1 x 5 2 x 7 7 x 10 89 

External 

Inputs, 
3 x 3 4 x 4 12 x 6 97 

External 

Outputs  
1 x 4 1 x 5 5 x 7 44 

External 

Queries 
2 x 3 2 x 4 5 x 6 44 

UFP 438 

 

Table 8.  Estimation of Effort Month 

Characteristic Evaluation 

Data communications  4 

Distributed data processing  3 

Performance  3 

Heavily used configuration  3 

Transaction rate  3 

On-line data entry  3 

End-user efficiency  4 

On-line update  4 

Complex processing  3 

Reusability  3 

Installation ease  3 

Operational ease  4 

Multiple sites  3 

Facilitate change  4 

 TDI =  𝐃𝐈𝐢
𝟏𝟒
𝒊=𝟏  47 

 

Effort Estimation = 
490.56

14.30
  = 34.30 [PM] 

Schedule Estimation = 490.560.4 = 11.92 [M] 

MRE =  
  (30.12 – 34.30) 

30.12
  = 0.138 

The difference between the actual project effort and estimated 

project effort is small and MRE is 0.138 whenusing 

Functional Point Analysis. 

5.   CONCLUSION  
Software estimation is an important process for making high-

quality management decisions in the software industry.  It is 

to be noted that the most important reason for the software 

project failure is inaccurate estimation of parameters in early 

stages of the project planning.So, the methods of estimation 

play an essential part in achievingthe accurate and reliable 

estimates. In the present study, many of the available 

estimation techniques have been illustrated systematically to 

arrive at the estimation of parameters of interest.Software 

estimation includes cost estimation, effort/schedule 

estimation, quality estimation, risk analysis, etc. Accurate 

estimates can provide powerful support when software 

management decisions are made, for instance, accurate cost 

estimation can help an organization to better investigate the 

feasibility of a project and to effectively manage the software 

project in the development life cycle. Performance of each 

estimation method depends on several parameters such as 

difficulty of the project,schedule of the project, expertise of 

the staff, development method, etc. From the data obtained 

from a real-time software project associated with an IT 

industry, certain metrics and their estimateshave been 

obtained using COCOMO – II and Function Point Analysis. 

We are working towards the improvement of the accuracy and 

precision of the estimates of various indices associated with 

software projects to help the decision makers to give more 

reliable software cost and schedule estimates. 

6.  REFERENCES 

[1] Albrecht, A.J. and Gaffney, J.E., 1983, Software 

function, source lines code, and development effort 

prediction: a software science validation, IEEE 

Transaction of Software Engineering, Vol.9, No.6, 

pp.639-648. 

[2] Boehm B. W., 1981, Software Engineering Economics, 

Englewood Cliffs, Prentice-Hall, New Jersey. 

[3] Boehm, B.W., 1995, Cost models for future software 

lifecycle processes: COCOMO 2.0, Ann. SoftwareEng. 

Vol.1, pp.45-60. 

[4] Boehm, B. W., 2000,Software Cost Estimation with 

COCOMO II, Prentice Hall, New Jersey. 

[5] Boehm B. W., Abts, C., and Chulani, S., 2000, Software 

development cost estimation approaches-A survey, Ann. 

Software Eng., Vol.10, pp.177-205. 

[6] Futrell, R.T., Shafer D.F., and Shafer, L.I., 2002, Quality 

Software Project Management, Pearson Education Pvt. 

Ltd., Delhi. 

[7] Hodgkinson, A.C. and P.W. Garratt, 1999,  Aneurofuzzy 

cost estimator, Proc. of the 3rdInternational Conference 

on Software Engineering and Applications, (SEA’99), 

pp: 401-406. 

[8] IFPUG, 1994,The International Function Point Users 

Group, Function Point Counting Practices Manual, 

Release 4.0, Westerville, Ohio.  

[9] Iman A., and Siew Hock Ow, 2010, A Novel Algorithmic 

Cost Estimation Model Based on Soft Computing 

Technique, Journal of Computer Science, Vol.6, No. 2, 

pp. 117-125. 

[10] Jones. C., 2007,Estimating software costs: Bringing 

realism to estimating, 2nd ed. New York: McGraw-Hill. 

[11] Kemerer, C.F., 1993, Reliability of Function Points 

Measurement: A Field Experiment, Communications of 

the ACM, Vol.36, No.2, pp. 85-97. 



International Journal of Computer Applications (0975 – 8887) 

Volume 44– No.9, April 2012 

44 

[12] Kemerer, C.F., 1987, An Empirical Validation of 

Software Cost Estimation Models, Communications of 

the ACM, Vol. 30, No.5, pp. 416-429. 

[13] Khatibi, V. and Jawawi, D.N.A., 2011, Software Cost 

Estimation Methods: A Review, Journal of Emerging 

Trends in Computing and Information Science, Vol.2, 

No.1, pp.21-29. 

[14] Lavazza, L. and Garavaglia. C., 2009, Using function 

points to measure and estimate real-time and embedded 

software: Experiences and guidelines,Proc. of the 3rd 

International Symposium on Empirical Software 

Engineering and Measurement,pp.100-110. 

[15] Musilek, P., Pedrycz, W., Nan Sun and  Succi, G.,2002, 

On the sensitivity of COCOMO II software cost 

estimation model,  Proc. of the  Eighth IEEE Symposium 

on Software Metrics,  pp.13-20. 

[16] Putnam, L.H., 1978. A general empirical solution to 

themacro software sizing and estimating problem.IEEE 

Trans. Software Eng., No.4, pp. 345-361. 

[17] Schofield C., 1998, Non-Algorithmic effort estimation 

techniques. Technical Reports,TR98-01, Department of 

Computing, Bournemouth University, England. 

[18]Strike, K., K. El-Emam and N. Madhavji, 2001,Software 

cost estimation with incomplete Data,IEEE Trans. 

Software Eng., Vol.27, pp.890-908.  

[19] Sikka, G., Kaur, A., and Uddin, M. 2010, Estimating 

function points:  Using machine learning and regression 

models,Proc. of the 2nd International 

ConferenceEducation Technology and Computer 

(ICETC), Vol.3, pp.52-56. 

[20] Vickers, P., 2010, An Introduction to Function Point 

Analysis, Manual of the Function Point User Group, 

New Jersey, ISBN 978-0-9753783-4-2. 

[21] Xishi Huang, Danny Ho, Jing Ren, Luiz F. Capretz, 

2005, Improving the COCOMO model using a neuro-

fuzzy approach,  Journal Applied Soft Computing, Vol. 

7, pp. 29-40. 

[22] Yahya, M.A., Ahmad, R., and Sai Peck Lee, 2008, 

Effects of Software Process Maturity on COCOMO II’s 

Effort Estimation from CMMI Perspective, Proc. of the 

IEEE International Conferenceon Research, Innovation 

and Vision for the Future, RIVF. pp.255-262. 

[23] Yinhuan, Z., Beizhan, W., Yilong Z., andLiang, S., 2009, 

Estimation of software projects effort based on function 

point, Proc. of the 4th International Conference 

onComputer Science & Education, ICCSE,pp. 941-943. 

[24] Function :http://en.wikipedia.org/wiki/Function_point 

[25] Software_testing: 

        http://en.wikipedia.org/wiki/Software_testing 

[26] qatfaq1.html 

      http://www.softwareqatest.com/qatfaq1.html 

[27] atfaq2.html http://www.softwareqatest.com/qatfaq2.html 

[28] http://decgradschool.bournemouth.ac.uk/ESERG/ 

Technical_Reports/TR98-01/TR98-01.ps 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nan%20Sun.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Succi,%20G..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Uddin,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yilong%20Zheng.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yilong%20Zheng.QT.&newsearch=partialPref

