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Abstract— In this paper, we address the rate control problem for ~desirable that the rate control algorithm would steer the net-
layered multicast traffic, with the objective of solving a generalized \york towards a point where some measure of global fairness
throughput/fairness objective. Our approach is based on a combination . L . Ny
of lagrangian relaxation and dynamic programming. Unlike previously IS maXIrnllzed'.ThrOUthUt and.fa.'messl _d_eflmt_lons are_ gen-
proposed dual-based approaches, the algorithm presented in this paper €ralized in a nice way by associating utilities with receivers.

scales well as|'|t<he Tlumbe_r of multicasrt] groups in the network increases. Utility of a receiver is a function connecting the bandwidth
Gount the discreteness of the 1ecenve rates that s inherent to layered 9IVen (O the receiver with the “value” associated with the
multicasting. We show analytically that our algorithm converges and P@ndwidth. In this paper, we design rate control algorithms
yields rates that are approximately optimal. Simulations carried out such that they maximize the sum of the utilities over all re-
in an asynchronous network environment demonstrate that our algo-  cejyers, subject to the link capacity constraints. This objec-
rithm exhibits good convergence speed and minimal rate fluctuations. .. . .
tive was proposed recently by Kelly [8], [9]. Various fairness
objectives can be realized within this utility maximization
framework for different choices of the utility functions.
Recently, there has been a considerable interest in the
In layered multicasting, data is transmitted in multipl@roblem of fair allocation of resources for multirate multi-
layers. The source encodes the signal (usually an audiocast sessions. Most of the work in this area is concerned
video signal) in layers, and a subset of these layers are senly with the notion of max-min fairness (see [13], [14],
to the receivers, depending on the receiver requirements, &b, [16], [5]). The utility maximization based congestion
the congestion of the path from the source to the receiveantrol problem is addressed in [6], [7], [4]. Whereas [7],
Layered multicasting is a form ahultirate multicasting [4] take a primal approach, the algorithms in [6] is based
since different receivers in the same multicast group can @ a dual approach. Like [6], the approach that we adopt
ceive traffic at different rates. in this paper is based on the lagrangian dual. However, the
Multirate or multilayer transmission is the more preferredlgorithm proposed in this paper has several very important
form of data delivery when receivers of the same multicagélvantages compared to the algorithms proposed in [6], as
group have different characteristics. Typically, multilayewell as the those in [7], [4], as outlined below.
transmission is achieved through hierarchical encoding of An important aspect in which our approach differs from
real-time signals. In this approach, a signal is encoded imeeviously proposed approaches is that it takes into consid-
a number of layers that can be incrementally combined éwation the discreteness of the layer bandwidths. In layered
provide progressive refinement. In layered multicasting, timeulticast, the receiver rates are constrained to take only a set
receivers adapt to congestion by adding or dropping layeds.discrete values, which are determined by the layer band-
With multilayer transmission, the network can be utilizewidths. The approaches in [7], [6], [4] approximate the dis-
more efficiently, and receivers can receive data that is manete set of rates by a continuous set, and then apply convex
commensurate with their capabilities. For discussions @nogramming techniques to develop an iterative rate update
multirate/multilayer transmission, refer to [11], [12]. procedure. The convergence results obtained in these cases
Note that in layered multicasting, the granularity at whicare under the assumption of continuous rates. However, note
congestion control can be done is determined by the numileat in practice, the rate that is computed by the rate up-
of layers. Thus, more fine-grained congestion control is pagate algorithm at each step must be “rounded” to a discrete
sible with larger number of layers. However, the amount ¢#ite value that corresponds to some layer bandwidth. Such
state maintained as well as the processing complexity at fiseinding introduces errors at every step of the algorithm,
routers will also typically increase as the number of layesnd it is not clear if the rates can be shown to converge to
increases. optimality (in an exact or approximate sense) when round-
For efficient use of the network, an effective rate contrdlg at every iteration is taken into account. In fact, it is easy
strategy is necessary. The rate control algorithm should d@-show that if the step-sizes are small enough, then the re-
sure that the traffic offered to a network by different traffigeiver rates achieved by the algorithms in [6], [4] could be
sources remain within the limits that the network can carryery different from the optimal rates. Note that approximat-
Moreover, it should also ensure that the network resourd8g the discrete rate set by a continuous set of rates may not
are shared by the competing flows in some fair manner, ab@a bad approximation if there are many closely spaced dis-

that the throughput achieved is high. It may therefore tsete rates. However, as mentioned, typically the number of
layers is small, and the discrete rate values are widely sep-

K. Kar is with the Department of Electrical, Computer and Systems E@rated. Therefore, the continuous bandwidth approximation
gg”u‘iiriil?%eiigsf?'ggﬂ)'jo'y‘ed‘”ic Institute, Troy, NY 12180, USA (emafqy not be a good approximation in the case of layered mul-
L. Tassiulas iSRNith the Computer Engineering and TeIecommunicatioHE’aSt'ng' In our approach, however, the rates are always as-
Department, University of Thessaly, Greece. (email: leandros@inf.uth.ggumed to be discrete, and so there is no question of rounding

I. INTRODUCTION



of the rates. The convergence results that we provide, thecesteness constraints on the rates. In the subsequent sections,
fore, directly applies to the algorithm that is implementabbee will show how we can achieve close-to-optimal rates for
in practice. this problem.

From a practical perspective too, our algorithm outper-
forms existing approaches on several aspects. Unlike the Network Model and Terminology
algorithms in [6], our algorithm does not require per-group Consider a network consisting of a gebf unidirectional
information to be maintained at the network links, and ther@inks, where a linkl € L has capacity;. The network is
fore scales well as the number of multicast groups shariggared by a set af multicast groups (sessions). Each mul-
a link increases. Moreover, our algorithm does not suff@ieast group is associated with a unique source, a set of re-
from some other drawbacks of the algorithms in [6], likeeivers, and a set of links that the multicast group uses (the
rapid rate fluctuations, two-level convergence etc. The algset of links forms a treé) Thus any multicast group € G
rithms in [7], [4] can result in constant bandwidth fluctuais specified by(s¢, R9, L9} wheres? is the sourcel.¢ is the
tions, which can lead to rapid adding and dropping of layerset of links in the multicast tree, ad®¥ is the set of receivers
Our algorithm, on the other hand, achieves much smoothgigroupg.
convergence. Lastly, it can be intuitively argued that the rate

of convergence for our algorithm would typically be much i

faster than those of the previously proposed algorithms [6], /

[7], [4], a fact that we have observed in our simulation ex-

periments as well. o .\O\° 2
In this paper, we take into account the fact that the re-

ceivers rates are constrained to take discrete values, and pose ./O/o/° :

the optimal rate control problem as a discrete/integer pro- i

gram. (It is worth noting here that even very simple special \O\.

cases of the integer program can be shown to be NP-hard.) L

Dealing with this integer programming directly, and using a Fig. 1. A multirate multicast tree

combination ofagrangian relaxatiorj18] anddynamic pro-

gramming1], [3], we show that itis possible to achieve rates Next we introduce some additional terminology that will
that are provably very close to the optimal, without makingelp us in formulating the rate control problem and describ-
the approximation that receiver rates take a continuous §&j the algorithms. Consider Figure 1, which shows an ex-
of values. Our approach is completely decentralized, agghple of a multicast tree whereis the source nodeand
scales well with the size of each multicast group, as well 38, 19,153,144} is the set ofreceiver nodes Other than the

the number of multicast groups sharing the network. No&urce and receiver nodes, the nodes that are of particular in-
that the lagrangian relaxation technique may not yield clos@rest in our case are the forking nodes of the tree, i.e., nodes
to-optimal solutions for general integer programs. Howeveghere the multicast tree “branches off”. We refer to these
we exploit certain special properties of our problem to derodes as th@inction nodes Thus, in Figure 1{is, ig, 7}

rive the approximation result in our case. We also identifg the set of junction nodes. Source/receiver/junction nodes
a nice underlying structure of our problem, which allowsf different multicast groups are considered to be logically
us to solve the problem distributedly, using dynamic pratifferent, even if they are physically located at the same
gramming. As we observe later, the efficient use of dynami@de. In the rest of the paper, we assume that the receivers
programming in this case would not have been possibledgfe only at the leaf nodes of the multicast tree. There is
the rates were not constrained to take a few discrete vab loss of generality in assuming this, since a receiver at a
ues. Thus, even though dealing with the discrete prograon-leaf node can be replaced by creating a new leaf node
directly (as opposed to dealing with the convexified versiaind placing the receiver in it, and connecting the new leaf
of the program) might seem counterintuitive, we actually exrode to the non-leaf node (where the receiver is actually lo-
ploit the discreteness of the problem to our advantage. Fgited) by a link with infinite capacity. Moreover, note that
the case of unicast sessions, rate control based on thealdy leaf node must be a receiver node. Paeentof a re-
grangian dual was proposed and thoroughly investigated &iver/junction node refers to the closest junction/source
Low et al [10]. In the unicast case, however, the rates caidbde in the upstream path froirtowards the source. The
assumed to be continuous, and convex programming teghildren of a junction/source node are also defined accord-
niques can be directly applied. Our algorithm nicely geneifgly. Thebranchof a receiver/junction nodéerefers to the
alizes the dual-based rate control approach proposed in [$8} of links in the tree between the parent of nodad node

to the case of layered multicasting. It is also worth noting(i.e., the path over which nodeeceives data from its par-
here that although dual methods have been previously uged)). Note that each junction node receives layered data from
for addressing the rate control problem, the idea of using parent node, and forwards them to its children nodes, after

dynamic programming for rate control is novel. possibly dropping some layers. Therefore, the rate at which
a junction/receiver node receives data can be no greater than
Il. PROBLEM STATEMENT the rate at which its parent receives data. Note that layers

First we describe the networ_k r_noc_jel’ and formu'_ate t_helWe assume fixed path routing. So the tree associated with each multicast
rate control problem as an optimization problem with diggoup is fixed.



must be sentumulatively i.e., no layer between the basenaximization based rate control problem is formulated as
layer and the uppermost transmitted layer can be dropped.

Thus if a source/junction node intends to sérldyerstoits P: maximize Z Ui(x;), (1)
child, it must send only the layeis 2, ..., k. The number of i€R

layers sent determines the “level” of data transmission, and

in the case of audio/video, the perceived transmission qual- .

ity depends on it. Note that if a node is receiving data at ~ Stbiect to: ZTL < a viel, (2)
level k& from its parent, then it must be receiving data at a el

rate equal to the sum of the bandwidths of layers ..., k. z? e X9 Vged, ®3)

) whereX? =Y9N Z9, andY? andZ9 are defined as
B. Problem Formulation

y .
The utility maximization based rate control problem for {z:z 22y Vi e Oy Vie JSU{s}, (4)

multirate multicast traffic can be formulated in two differ-2? = {z:zi € {b7,03, ... b, } Vi€ 19 U{s7}}. (5)

ent ways. In the first approach, we associate a rate variable ] ) )

with each receiver, and formulate the optimization problefR€lations (2) represent the link capacity constraints. Rela-

in terms of the these receiver rate variables. The second 4B0S (4) represent the fact that the rate at which a junc-

proach is to associate a rate variable with each receiverti@g/receiver node receives data can be no greater than the

well as each junction node, and define the problem in terdf€ at which its parent node receives data. Relations (5) rep-

of all these rate variables. These two formulations are equi#Sent the discreteness constraints on the rates. Note that the

alent in the sense that the optimal objective function vafonstraints involving the source rates are redundant. These

ues of both are the same. Moreover, the optimal receiegnstraints are introduced here because they yield more con-
rates are also the same for both these formulations. The i8¢ exPressions in the analysis outlined later in this paper.
“equivalent” representations of the problem, and the rela-Our rate control algorithm should therefore achieve the

tionship between the two representations, are discussed®R{imal rates forP. In order to be practically viable, the
great detail in [6]. rate control algorithm must bdecentralizedMoreover, the

In this paper, we use the second formulation, i.e., the c?} Igorlthltm ShtOUId besc'alable b%th mf term; of t_he S|ze|t9f ¢
in which rate variables are associated with both the receivar M d!ticast groups (ie., num E€r OTTECEIVETS In a multicas
5c_>up), and the number of multicast groups sharing the net-

and the junction nodes. The approach presented in this %/ork. We would also prefer to have a solution which has

per can also be applied to the first formulation. Howev : : )
QX\/ computational complexity, and converges fast, even in

the analysis in that case is more complex, and the algorit asvnchronous network seenario. The rate control alao
derived is very similar to the one derived on the basis of tf?{-? SYNCAronous NEwork s 0. Ther go-
second formulation. rithm that we propose in this paper satisfies all of the above

_ criteria.
Let R = Ugeq Y denote the set of all receiver nodes

(over all groups). Let/¥ denote the junction nodes of any ||| B asic SoLUTION APPROACH ANDCONVERGENCE

groupg € G, andJ = UgeiJ? denote the set of all junction RESULTS

nodes (over all groups). Ld¥ = RY U JY9, and let] = . _ . .

Ugeal?. Therefore,] = R U .J, and denotes the set of [N thls_, section, we outlme our solu'_uon ap_pro_ach. Our ap-

all receiver and junction nodes (over all groups). Also, l@oach is based olagrangian relaxation which is a well-

S = {s%,g € G} denote the set of all source nodes (over ainown technique for solving integer programs [18]. Our

groups). contribution is that we show how in our case, this technique
Let I, C I be the set of receiver/junction nodes whosg2" help us develop an iterative algorithm that achieves rates

branches include link € L. Now associate a rate variablet at are provably (_:Iose_:[tcl)-ogtlTal. Molreov_ﬁ: alt(?]ngi \.N'th dy-
x; with each receiver/junction nodec I, denoting the rate namic programming, 1t leads to an aigorithm that IS com-

at which node receives data from its parent. For the sak%lzt,elty.S'?tr('jbmeldt.m ntahtutre. r']r_he fact that we (;aln de\;_elor:
of simplicity of exposition, we also introduce a rate variap|@ d1stributed solution that achieves approximately optima

associated with each source node. Lgbe the rate variable rates, relies heavily on some underlying nice properties of
forany node € S. Leta — (z:,i € IUS) denote the vector the structure of the problef. Note that for general integer
. L (3

of all rates. Also, for each group € G, letz? = (z:,i ¢ programs, lagrangian relaxation may not lead to close-to-
19U {9)) denoté the vector of rates f;lsso?:iated Wfth grod‘lﬁﬁtimal solutions, and the algorithm may not be distributed.
g. For each nodé € J U S, let C; denote the set of children e approach and results presented in this section general-
of nodei. For any groupg; € @ let K9 be the number of izes those proposed in [10] for the unicast version of our

layers, and leb{ < bJ < ... < b%, represent the cumulative Problem.
layer bandwidths (thus the rates of the receivers belonging to
groupg are constrained to take only these discrete values).
Note that for anyk € {1,2,..., K9}, bj is the sum of the ~ Now let us take a look at the lagrangian dual of the prob-
bandwidths of the layer$, 2, ..., k. For each receiveir € lemP. Let )\; be the dual variable associated with the link
R, letU; : & — R denote the utility function (assumedcapacity constraint (2) for link € L. LetA = (\;,l € L)

increasing and concave) associated witiThen the utility denote the vector of the dual variables. For any I, let

Lagrangian Relaxation



L; C L denote the set of links in the branch of nad@hen SIS S S
the lagrangian duab()\) can be written as follows [2]: y
_ () — , U. (X
D)) = Zg{}g{{g{_z Ui(z;) Z(Z ) @i} 1 )\ .
gea i€R9 i€l9 leL; ~ U (x)
—+ Z )\lCl. (6) |
leL /
Yy :
The dual minimization problem isniny>o D()), where X Re

D()\) is defined as in (6). Since we are dealing with a dis-
crete program, a duality gap exists, and dualization implic-
itly involves relaxation of the problem. Note that the dual
is convex but non-differentiable (the non-differentiability is Assumption 1: (Strict Concavity The utility functions
due to the presence of the discreteness (integrality) cdi- are increasing, twice continuously differentiable and
straints on the rates). We apply a subgradient method [stlictly concave. Thus-U; (z;) > ~; > 0 for all z; > 0,
(with a constant step-size) to solve this problem. In this foralli € R.

case, each iteration of the subgradient method reduces to @v we show that if the rates and the prices are updated
sets of updates: (1) dual variable updates, and (2) rate ifgratively according to (7) and (8), the rate vector “con-
dates. The dual variable update procedure for anylliok, verges” to values that are close-to-optimal. The optimality

Fig. 2. Relationship betwed; andU;

at stepn is in this case is not with respect to the optimal rates of the
original integer programming probleiR, but with respect
MNn+1) = N(n)+ O‘(Z zi(n) — ¢), (7) to alinearly relaxedversion of it (denoted byP), as we
iel, explain below. The problen is defined from the prob-

lem P in the following way. Replace the discreteness con-
wherez;(n) is the value ofr; at thenth iterative step. At straintz; € {b{,...b%, } in (5) by the continuous constraint
the nth step, for any groug € G, the rates of the re- b < x; < b%.. Thus we “relax” the integrality constraints

ceiver/junction nodes are updated as follows: and assume that; can take any value in the continuous set
[b7, bl
z9(n+1) = arg Iglea)?g{ Z Ui(x:) Also, in P, the utility functions are re-defined in the follow-
& i€RY ing way. Consider any; € [b7,b%]. There are two possible
_ "y g) cases:
Z.EXI:Q(ZGXL% Mln)) i} ©) Case l:z; = bj for somek € {1,2,..., K9} : In this case,

The update procedures in (7) and (8) have simple intuiti®ase 2:b¢ < z; < by, for somek € {1,2,..., K9 — 1} :
interpretations. Let us interpret the dual variableas the |, this case, deﬁnéfi(xi) as
price per unit bandwidttassociated with linK. Note that
the quantity(3 ;. i(n) — ;) represents the excess load - (bf 1 — 2a)Us (b)) + (zi — b)) Ui (b}, )
of the link. Therefore, (7) has a simple economic interpre—Ui ;) = ] N C)

. . . . . . . k+1 k
tation: price per unit bandwidth increases if the load (in-
terpreted as demand) is in excess of the available capagifite that the functiot/ is formed by linearly interpolating
and decreases otherwise. Now, let us take a detailed looki@ functionl between the feasible discrete bandwidth val-
the expression on the right hand side of (8). Note that th@s. The relationship between the functions are shown in
term >, ro Ui(z;) represents the overall utility of grouprigure 2. The probler®, with these modifications, is a lin-
g. Now, assume that each lilicharges a price,; per unit early relaxed version of the original discrete programming
bandwidth to every group that uses the link. With our inproblem. This problem is denoted B
terpretation, the terny_, ;. Ai(n)) represents the aggre- Note thatP is a convex programming problem. Also note
gate price per unit bandwidth charged to groor us- that if U* and U* be the optimal objective function values
ing the links in the branch of node Therefore, the term of P and P respectively,U* > U*. Any solution that is
> ie1s(Xier, Ai(n)) z; can be interpreted as the total pricgeasible taP and close-to-optimal t& must also be a close-
charged by the network (to groyp for network bandwidth to-optimal solution ofP. We use this fact to show that our
used by the group. Therefore, the right hand side of (8) cayorithm solvesP approximately, and derive the approxi-
be interpreted as tharofit (i.e., utility - price paid) derived mation ratio.
by groupg. Thus, (8) states that given the link prices, each et p9 — maxye(i, . xo—13 (b, — b]). Also Letz*
group chooses the junction/receiver rates so as to maxim '
its profit function.

figanyoptimal solution ofP, andz; be theith component
of the vectorz*. Note thatP can have multiple optimal
solutions. However, due to the strict concavity of the utility
functionsU;, it can be shown that if} ; andz3 ; be theith

In the convergence analysis, we make the following agsomponent{ € R9) of two optimal solutiongz* andz of
sumption on the utility functions. P, then|z* , — x5 ;| < b9,

B. Convergence Results



We obtain the following result on the convergence of theolved in a decentralized manner, within roughly a single
receiver rates: round-trip time.

Theorem 1:Assume that the rate and the prices are up- ] L
dated according to (7) and (8). Then there existgian 0 A Group Profit Maximization
and an integeN > 0, such that any satisfyingd < o < &, Consider any particular multicast groygEe G. Now con-
the following result holds for ath > N sider any junction/receiver/source node 19 U {s9}. Let
. To g T; denote the set of source/junction/receiver nodes that fall

|zi(n) —ai| < b7 Vie RY VgeG. within the tree rooted at (includingi). Letz; = (z4,4 €

The proof of the above result is provided in the Appendi>@) denote the vector of the rate variables associated with
To re-emphasize, the above result holds for any optimal b€ source/junction/receiver nodeslin Let ;(z;), the tree
lution z* of P. Roughly speaking, the result states that profit function associated with nodebe defined as follows:
the step-size is “sufficiently small”, then receiver rates “con- _ N _
verge” to a neighborhood around. The notion of “conver- Pilz;) = Z Ui () Z ( Z Az (10)
gence” in this case is approximate: the above result implies
that the receiver rate vector is guaranteed to be in a neighbelearly, P; denotes the aggregate utility of all receiverdijn
hood around the optimal solution &. It does not ensure, Minus the price charged to groggor using the links in tree
however, that the rate vector will convergeattd. Note that 7i. Note that for any receiver P;(z;) = U;(z;). Also note
in the relaxed problem, the rates need not correspond to that the group profit function that we are stated in (8ys.
actual discrete bandwidth values. Theiscan even be an Next we show that the problem of maximizing the tree profit
infeasible toP. However, note that the rates(n) always function associated with any nodean be written in terms
take values in the discrete bandwidth set (see (8)). of the corresponding problems for its children nodes.

The above result can be strengthened to show that the ratE0r any node € 19 U {s}, defineX; = Y; N Z;, where
of a receiver- can only achieve values that correspond to thé andZ; are defined as follows:
bandwidth levels 'immediately below or immediately abov% = {2,z >ap Vi'€Cy Vil € Tin (JOU {s9))),
x;. Thus the achieved rates can be at most “one-layer off’ g 19 g y
from optimality. In general, finding a closed-form expres? ~— {zi 2 € {b], b3, bieo } Vi € T3}
sion of & seems difficult. Now, for anyi € 19 U {s9} andk € {1,2,..., K9}, define

Let |U; (b, ,) — Ui(b])| < uVk € {1,..,K9 -1} Vie X;(k) as follows:
RY9 Vg € G. Thusu represents the maximum difference
between the receiver utilities at two adjacent discrete band- Xi(k) = Az € Xo, @i = b} (1)
width levels. LetU* be the optimal value of the objectiveThus X; (k) denotes the set of values in which the rates of
function of the original problen®. Also, letU(xz(n)) be source/junction/receiver nodes in tréeare constrained to
the aggregate receiver utility when the rate vectat(is). lie if node i receives traffic upto layek from its parent.
ThusU(z(n)) = > ,cg Ui(xi(n)). Then from Theorem 1, Then, for anyi € 19 U {s} andk € {1,2,..., K9}, de-
and from the continuity of the functions;, we obtain the fine p;(k), theconditional maximum profit (CMR)f node:

i/ €T;NRY i €Ti\{i} I€L,

following result. at levelk, as follows:
Corollary 1: Assume that the assumptions of Theorem 1 - _
hold. Then for alln > N, the following holds: pi(k) = o) Pi(z,). (12)
U* —U(xi(n)) < alR)|. Note thatp;(k) denotes the maximum profit derived from

~ the tre€T; if the nodei receives traffic upto layet from its
The above corollary states that the rates that we achieve BHfent. Note that for any receiver nogep; (k) = Ui(b9).

approximately optimal with respect to the original problem|sq note that maximum group profit that we are interested
P. Note that the error in the achieved utility (with respech optaining (see (8)) is equal to,, (K9). Next we show
to the optimal utility) calculated on a per-receiver basis is §hw the CMPs of nodé can be derived from the CMPs of
mostu. Therefore, the error would be smaller if the discretgs children nodes. Thus result will help us in computing
bandwidth levels are closely spaced, as we would intuitivelie maximum group profit recursively by breaking it up into
expect. smaller subproblems.

Consider the constraint, € X;(k), foranyi € J9U{s%}
andk € {1,2,..., K9}. We first show that this constraint is

equivalent to a set of similar constraints involving the sub-
Now we show how the group profit maximization probtrees of7;.

lem (as stated in (8)) can be solved in an efficient manner.

IV. GROUPPROFIT MAXIMIZATION AND DISTRIBUTED
IMPLEMENTATION

Note that the group profit maximization problem needs to be {z; s z; € Xi(k)}

solved for each group in every iteration of the rate controlal- = {z; : z; € X;,x; = b} } (13)
gorithm. T_herefo_re3 to _achieve good convergence spe_ed, the — {z; 2, € X, < b Vil € C;, x; = by} (14)
group profit maximization problem must be solved quickly.  _ {2;: 2y € Xor, 2 € {b1,...,bI} Vi’ € O,

Moreover, practical considerations dictate that the problem g
must be solved in a distributed manner. In the following, 7 = by} (19)
we show that the group profit maximization problem can be = {z; : 2, € U},_, Xy (K') Vi’ € Ci, x; = bi}. (16)



Relation (13) follows from the definition ok (k) (see the receiver nodes, then at junction nodes that are one level
(11)), while (14) follows easily by expanding the constraintabove that, and so on, until we reach the source node. Note

in the setz; € X;(k) and using the fact; = b;. that the dynamic programming computations at the nodes
From (10), it is easy to observe that for ang J9U{s?}, in any particular level of the tree can be executed simul-
the following equality holds taneously. This parallelism inherent in the structure of the
dynamic program can be utilized to solve the group profit

Pi(z;) = Z {Py(z;) — ( Z Az} (17)  maximization problem in a single round trip time. The prac-

i'eC; leL, tical implementation of this dynamic program is discussed

~inmore detail in the next subsection.
Foranyi € J9U {s9} andk € {1,2, ..., K9}, we obtain
B. Implementation

i(k) = Pi(z, 18 . . .
pi(k) gilen)?i)%k) (z:) (18) Firstly, note that the dual variable (price) update proce-

4 B 4 dure (7) can be implemented in a very simple way. To
T Xk > (Polzy) = (3 Mar} (19) achieve this, each link can keep track of the prick, and

e 1€l periodically update it according to (7).
= | max Z {Pir(z;) Now we describe how the rates are updated so that they
S R 7=re) satisfy (8). Assume that each source/junction/receiver node
o maintains a CMP table of its own that contains the CMP
(> M)z} (20)  values for all levels: for that node. Thus the CMP table of
leL, node: in groupg containsK?9 entries, where théth entry
_ max Z (P (z;) is p¥. In order to update the CMP table entries according to

z,€UR, X, (k') Vi'eC (25), a node junction/sourdeneeds to know the following:

’ rec i) the aggregate price of all links in the branch associated
() M} (21)  with each child node, and ii) the CMP table of each child
leLy node.
- max {Pi(z;) Consider a source/junction nodeand a junction/receiver
oo, i€ Xu (k) nodei’ € C;. Then node can find the “branch price” asso-
ciated with:’ in the following way. Node can send a “price
= Z M)z} (22) packet” downstream td while setting the value of a “price
teLi field” (included in the price packet) to zero. The subsequent
= Z max max {Py(z;) links on the path of the packet add their prices to the price
iec, Mk zieXu(k) field of the packet. Therefore, when the price packet reaches
—( Z Az} (23) 1/, the price field cpntain§ the aggregate pricg of all links on
= A the branch associated with Nodei’ can then just send the
‘ price packet upstream to its parént
= max {w max Py () For any receiver nodg the CMPs are easily calculated
iec; — — TV asp; (k) = U;(b{). Once a receiver has computed its CMP
—( Z \) max  zy} (24) table, it sends the CMP table upstream to its parent. Once
ety z €X, (k) a junction node has received the CMP tables from all of its

, g children nodes, it updates its CMP table entries according to
= Z max {pir (k') — ( Z A)by y- - (29) (25), and sends its CMP table upstream to its parent node. In
ived; T leLy this manner, the CMP tables are updated an propagated up-
Relation (18) follows from (12), and (19) follows from?trfamhbﬁe%c;] re;(‘a |ver/Jurnct|r<1)CrJ1ﬂr;ﬁde, t'”dtrle ds?[urcéeMrILode
(17). Relation (20) follows from (16). Relation (21) fol-> "€ached. ©nce the source as updated its

lows from the fact that neither the terl,, .. { Py (z) — table, it determines the downstream traffic rates in the fol-

(>"ie., M)z}, nor the other constraints in (20), depend%).wl'ggevrvsa{c'yf (\)/\Zheeicez‘mi)sdibfa%éc’i tg: source node sends
on the variabler;. Relation (22) follows from the fact that " &Y : v

i k L (E) 4! . _
_the _constramtse{tgi, € Ui, _ Xy (k") V' € C;}and the ob ke = arg max {pu(K) — ( Z ALY, (26)
jective function . { Py (z;) — (3 ;. Ai)zir } are both k' <K9 =,

separable with respect to the variable vectoysi’ € C;.

Note that in (23) (and subsequently), we represent the CQéhiunction nodei determines the downstream rates ih a sim-
straintk’ € {1,...,k} simply ask < &', for the sake of ilar manner. Letk; be the number of layers that nodee-

conciseness. Relation (25) follows from the definitions &€ves from its parent. Then, each natle C; receivesk:

pi(k') and.X; (k') (see (12) and (11)). layers fromi, wherek;: is determined as
Relation (25) shows that the CMPs for a source/junction A (Y — A9 27
nodei can be expressed in terms of the CMPs of its children ! are Ifnﬁalz( {pur (K1) = ( Z Wt (27)

. . . . leL;
nodes. This fact allows us to find. (K9) using a dynamic et

programming approach. Thus, we can calculate the CMPBus nodei’ receives data at a rat§  from its parent.
with a bottom-up approach: first we compute the CMPs Btom the discussion in Section IV-A, it follows that when



the rates chosen as described above, they satisfy (8), iemtire d-CMP table if© (k) time. Therefore, computing the
maximize the group profit. d-CMP tables for all children of nodetakesO(CK) time.

The rate update procedure works in a manner oppositeQoce these table have been computed (which is done once
that of the CMP table update procedure. Thus, the soumede: has received the CMP tables of its children), the CMP
first determines the rates of its children, and informs eatible for nodei can be computed in addition@l( K) time,
child (by sending a “rate packet” to the child) about the coaccording to the following relation (obtained from (25) and
responding rate. Each child node then determines the rat28)) :
of their children nodes, and and this goes on, until the rates
of the receivers have been determined. pi(k) = Z pir (k) .

Therefore, the overall procedure of solving the group ieC;
profit maximization problem and determining the rates con- .
sists of two phases: i) a bottom-up phase to determine %I%ereforg, the CMP tables at each node can be computed in
CMP tables, followed by ii) a top-down phase to determin CK) time.
the rates. Note that in each of these phases, the computations

at the set of nodes at any particular level of the tree (in this . , , )
case, a ‘level refers to a set of nodes that are at the sameimulation experiments carried out on various network

hop-distance from the root) can occur in parallel. Thus, tippplogies/scgnarios confirm that our algor!thm achi_eves the
the processing delays are neglected, the total time requiféjima! rates in an asynchronous slowly time-varying net-
o execute the entire procedure is upper bounded by the m¥erk environment. Next we present a few representative ex-

V. SIMULATION RESULTS

imum round-trip delay. amples to demonstrate this fact.
Figure 3 shows the example network that we consider,
C. Complexity Reduction which consists of two multicast groups sharing a 11-node

10-link network. We have taken the network topology to be

that the time for computing the CMP for levelat nodei Lhe Sa”.‘le as that m(ge],u[z]:[rs;o thatfot%r S|mpI?t|on results ﬁan

is O(CK), whereC' is the maximum number of chiIdrenV\? castly corlnpared w " o?_e 0 3 eX|sh|ng 'T;pprotac es-

of any node, and¥ is the maximum number of layers in%a?] assesr??t?a;i)::eirr? Zg]ll"a;;ari ":a%cﬁnofi?g I;?/Zrécﬁzv%rgu;)
Iti . Theref he time f [ : ' .

any multicast group erefore, the time for computing tr1)andW|dth of 0.25 MBps. Therefore, the maximum allowed

CMPs for all levels at any nodeis O(CK?). From (26) S . .
o : . bandwidth is 5 MBps, and bandwidth can be allocated in
and (27), it is easy to observe that the computation tm?%.ts of 0.25 MBps. Therefore, to achieve a rate:t0.25

for the rate update procedure at each source/junction nod !
P P J ps, the lowesk layers need to be sent. Note that in lay-

O(CK). Note that since each receiver/junction node nee d multicast h dat ket bel t fieul
to send a CMP table to its parent, the communication coff.cd muticasting, each data packet belongs 1o one particular
plexity is O(K). layer. Therefore, a source/junction node can send traffic to

In the following, we show how the worst-case computa{t-s child at a particular discrete bandwidth level simply by

tional complexity for the CMP table update can be improve?nding/forwarding only those data packets which belong to

so that it is only a linear function oK. Assume that in ad- a cl:orrespondlr_1g sett oir(:urlnullatl\_/e Iay(tjars.l iabl
dition to its CMP table, a source/junction node maintainsdal n our experiments, the link prices (dual variables) are up-

discounted CMP (d-CMPable for each of its children. Let ated at regular intervals of 20 msec, and the receivers send
i be a child node of a sourcefjunction nodeThen thé d- their CMP tables upstream at regular intervals of 50 msec.

CMP table fori’ maintained at containskK9 entries, and Ihus, thl; ratgs arelz ugdated (ie., th(;égroup pr?lf;;t matmml;a-
5i(k), thekth entry in that table, is defined as ion problem is solved) once every msec. e step-size

of link price updatesy, is kept fixed at 0.005, and the links
5 (k) = (k) — ATAY og) update the prices based on the estimated (measured) aggre-
P (k) E}g)k{ {pu(K) = ( Z Db} (28) gate traffic rate on the link (the estimation time window is

Consider a junction/source node From (25), we note

e 20 msec). All data packets (sent downstream) are 400 bytes
Letk > 2. Then, from the definition o, (k), we obtain long. All control packets (the price packets sent upstream,
and the rate packets sent downstream) are 200 bytes long.
(k) = max {ps (k') - ( > b} In all of the simulations described in this paper, maximum
B leLy utilization of a link is set to 95%. Therefore, a link increases
= max {pi(k) — ( Z A, or decreas_es its pricg depending on Whther the Qverall esti-
=, mated traffic on the link exceeds 95% of its capacity or not.
‘ In the network shown, the utility functions of receivéis
max {p (k) — ( > b andig are0.5In(1+ z), while those of the rest ate(1 + z)
B leL, (wherez is expressed in MBps). The minimum rate for each

— (k) — 9 5k — 1)) receiver is zero, and the maximum rate is the capacity of
ma {pir (k) = (3 Abf b (k = 1)} (29) the link leading to the receiver. Note that singeis con-
nected directly to the source, it behaves essentially like an
Note thatp; (1) = pir(1) — (Xser, A)bY. Using this fact unicast session. In our simulation scenario, the sequence of
and (29), we see that if we compute the d-CMP table entriagivals/departures of receivers are as follows. The receivers

in the orderp;: (1), pi/(2), ..., pi (K9), we can compute the iy, 4,43, i andi7 arrive at timet = 0. Receiveri; joins at

leL;
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Fig. 4. Convergence of achieved raté®he straight lines are the optimal (theoretical) rates.)

by solving a very complex integer program). Therefore, the
slight difference between the optimal and the achieved rates,
as seen in the figure, is expected. A comparison of Figure 4
with the simulation results in [6], [7] shows that the conver-
gence of our algorithm is much faster, and rate fluctuations
significantly lower, as compared to existing approaches.

REFERENCES

[1] D. P. BertsekadDynamic Programming and Optimal Contrd\thena
Scientific, USA, 1995.

[2] D. P. Bertsekaf\Nonlinear ProgrammingAthena Scientific, 1995.

[3] T.H. Cormen, C. E. Leiserson, and R. L.Rivdstroduction to Algo-

Lo rithms, MIT Press, 1990.

— Multicast group 1 (source: §, receivers:ly, I, 13,14) [4] S. Deb, R. Srikant,“Congestion Control for Fair Resource Allocation
,,,,,,,, Multicast group 2 (source: S,, receivers:is, i, i) in Networks with Multicast Flows”Proceedings of Conference on De-

cision and Control (CDC) 20Q10rlando, USA, December 2001.

Fig. 3. An example networkrhe numbers associated with the links are the Iind5] E. Graves, R. Srikant, D. Towsley, “Decentralized Computation of

capacities (in Mbps). The propagation delay for each link is 1 ms.) Weighted Max-Min Fair Bandwidth Allocation in Networks with Mul-

ticast Flows”, Proceedings of Tyrrhenian International Workshop on

Digital Communications (IWDC) 20Q1Taormina, Italy, September

2001.
t = 30 secs, receiveiy joins att = 60 secs,i, leaves at [6] K. Kar, S. Sarkar, L. Tassiulas, “Optimization Based Rate Control for
t = 90 secs, andg leaves at = 120 secs Multirate Multicast SessionsRroceedings of Infocom 200Anchor-

) ) . . . age, USA, April 2001.
Figure 4, which shows some rate plots in the time wir7] K. Kar, S. Sarkar, L. Tassiulas, “A Scalable, Low-Overhead Rate Con-

dow 0-180 Secs, demonstrates the performance of our a|go_tl’0| Algorithm for Multirate Multicast Sessions1EEE Jounal on Se-

ithm in th ticul | id d. Fi 4 sh lected Areas in Communicationgol. 20, No. 8, October 2002.
rithm in theé partcular éxample considered. Figure 4 s vaé? F. P. Kelly,“Charging and Rate Control for Elastic Traffi€uropean

the rates at which the receiveks i4, i5 andi, receive data Transactions on Telecommunicatiomsl. 8, no. 1, 1997, pp. 33-37.
(obtained by measurement at the individual receivers), alolfgy F- Kelly, A. Maulloo, D. Tan,"Rate Control for Communication Net-

ith th fimal rat Th 4 . h bi works: Shadow Prices, Proportional Fairness and Stabilifptrnal
wi € opumal rates. ( €se 4 receivers were chosen arbi- of Operations Research Socigtpl. 49, no. 3, 1998, pp. 237-252.

trarily, and rate plots of the other receivers also exhibit[@)] s. Low, D. E. Lapsley, “Optimization Flow Control, I: Basic Algo-
similar trend.) The plotted rates are Computed by averag- rithm and ConvergencelEEE/ACM Transactions on Networkingpl.

. th d rat h th . is d 7, no. 6, December 1999.
Ing the measured rates, where the averaging IS done eVﬁEY X. Li, S. Paul, M. Ammar, “Layered Video Multicast with Retrans-

sec. Note that the sudden changes in the optimal rates atmission (LVMR): Evaluation of Hierarchical rate controProceed-
t = 30,60, 90,120 secs are due to the arrival/departure of _ings of IEEE Infocom 19984arch 1998.

. . .GZ S. McCanne, V. Jacobson, M. Vetterli, “Receiver-Driven Layered
receivers. The plots demonstrate that the achieved receiVefy icas”, Proceedings of ACM Sigcomm '98tanford, CA, Septem-

rates track the optimal rates closely even as the optimal ratesber 1996.

change. Note that the optimal rates plotted in the figure dfg] D- Rubenstein, J. Kurose, D. Towsley. “The Impact of Multicast Lay-
db d h | d b ~ d h ering on Network FairnessRroceedings of ACM Sigcomm '99, Cam-

computed based on the relaxed prob[Emand not the ac- bridge, MA, September, 1999

tual discretized problen® (which can only be computed[14] S. Sarkar, L. Tassiulas, “Fair Allocation of Utilities in Multirate Mul-



ticast Networks”Proceedings of the 37th Annual Allerton Conferencgpolyhedron, and5(g, A) is a linear function of: in X (this
on Communication, Control and Computjrig99. _ follows from the fact that the functioris; are linear in be-

[15] S. Sarkar, L. Tassiulas, “Distributed Algorithms for Computation o h . idth | | h i fth
Fair Rates in Multirate Multicast TreedProceedings of IEEE Infocom Wee_n the dlsﬂcrete band\_’\”dt eve S) T ereiore, 0”% of the
200Q Tel Aviv, Israel, March 2000. “vertices” of X must attain the maximum dP(z, \) in X.

[16] S. Sarkar, L. Tassiulas, “Fair Allocation of Discrete Bandwidth Layerg. ; *
in Multicast Networks” Proceedings of IEEE Infocom 2000el Aviv, ftis also easy to see that all the Vertlcgs Cif the pOthedfon
Israel, March 2000. are elements ok . Therefore, there existszac X such that

[17] N. Z. Shor,Minimization Methods for Non-differentiable Functions f)(@ A) = max, g f)@’ \) = max_ g ]3@’ )). There-
Springer-Verlag, 1985. fore. we obtain L z
[18] L. A. Wolsey,Integer ProgrammingJohn Wiley & Sons, 1998. !

APPENDIX. PROOF OFTHEOREM 1 m?%p(&, A) = Hlea;gﬁ(LA) VA>0. (30)
z€ z

We first state and prove a few lemmas that will be used in
the proof of Theorem 1. Choosing\ = \* in (30), we obtain the desired result.
Let A\(n) = (\i(n),l € L) denote the vector of dual vari- - B
ables at thenth iterative step, wher@;(n) is updated ac- (i) P(z*,A\") = max, ¢ P(z,A"): Since)\" mini-
cording to (7). LetA* denote the set of all optimal solutionsmizes D(\) = max,cx P(z,A) over A > 0, it follows

of the dual problemminy>o D(A) (note the the dual opti- ¢, (30) that\* must also minimizenax, _ ¢ P(x, ) over
mal solution can be non-unique). It is easy to show that N 2€ L

: . X > 0. Therefore,\* must be an optimal solution of the
is compact, i.e., closed and bounded. In the following, | Lal of oroblemP. SinceP is a maximization problem
p(A, A*) = miny-ca- [|]A — A*|| denote the Euclidean dis- P : P

. . . with concave objective function and linear constraints, there
tance of a point\ from the setA*. The following lemma . : "
X “ " . is ,no duality gap (from Proposition 5.2.1 of [2]). Then
states that the dual variables “converge” to a neighborhopd - = Vs
. rom Propositions 5.1.4 and 5.1.1, we obtdiz*, \*) =
around the optimum. = X
max_ . ¢ P(z,\").

Lemma 1:Choose any > 0. Then there exists an, > Combining (i), (ii) and (iii), we obtain the desired result.

0 and an integeN, > 0, such that for alkv satisfying0 <

@ < a, the following result holds for ak > N.: Lemma 3: There exists a constant < oo, such that for

p(A(n),A*) <e. every\,, A, > 0, the following holds:

The lemma can be proved by standard techniques in sub- 1D(A1) —DA)Il < ClIA1 = Mgl
gradient optimization theory, and is therefore omitted for _
brevity. (For instance, the lemma can be proved by procedgf@0f: For anyA > 0, let z(}) = (zi(d),i € TU
ing along the same lines as that of Theorem 2.3 of Shofd represent the point which achieves the maximum in
classic text on this subject [17].) maX&,GX{ ZieR Ui(@i) = > 25er(Xier, M) @i }. Define a
Foreachy € G, define the sef? asZ9 = {z : b < z; < |L|-dimensional vectog()) as follows:y(A) = (yi(A),1 €
b9, Vi € 19U {s%} Vg € G}. For eachy € G, defineX9 = L())\\gvhe;eyl (bA) a:d'gl t_o%(iiflamti/(\é().eg gaer;tpoensgcl)\/\(l)? Eg]?t
Y~ g i i > ¢ y()) is a subgradien A) at) (s i : :
nglj),(vihaerle %\/ei&et)lg(f).)\)ft; ,_ %?e(g))(_ Note that sinceX is a bounded set;()) is bounded. There-
)\9)§¢ ' == PER AT fore, there exists & < oo such that|y(A)|| < C for all
Z?‘,EI(ZIEL,; V)Ti- A > 0. From these facts, and the definition of a subgradi-

Lemma 2:Let z* be any optimal solution dP. Then for gn¢ (see Section 6.1 of [2]), we obtain the following for any
any\* € A*, the following holds: AL, > 0;

Pa*,2") = maxP(z,)") = maxP(z,A") = D)

zeX zeX = D()A) —D(Qy) < @1 - Azﬂ(&»
Proof: We prove the lemma in three steps: < 1A= 2yl
< ClA = Al (31)

(i) max,ex P(z,A*) = D()\*): This follows straightfor-
wardly from the fact that the functioris; andU; are equal
at the discrete bandwidth levels.

where (-, -) denotes the inner product. Similarly, we also
obtain

- N D()\) — D(\ > A — Ao, y(A
(i) max, ¢ P(z,A\") = maxzex P(z,A"): Consider () (2) ; <||1)\ 2/\y|(||2)?)\ )i
= . .. = . Z —llAa1 — A YlAg
any)\ > 0. Leti = (#;,i € I US) € X attain the max- 1220 s
P > =C[|A = Aol (32)

imum max__ ¢ P(z,)). Foreveryi € U S, letz! < i;

represent the largest discrete bandwidth level no larger t
Z;. Also, for everyi € I US, letz} > z, represent
the smallest discrete bandwidth level no smaller than
DefineZ = {z : & < a; < @ Vi € TUS}. Let Proofof Theorem 1: Leth = minge minge(y,... xo—13 (b, —
X = NgegY¥ N Z. SinceX C X, it follows thatZ at- ) > (. Therefore, is the minimum difference in band-

tains the maximunmax ¢ P(z, ). Now note thatX isa width between two adjacent discrete bandwidth levels, in

hC:llgmbining (31) & (32), we obtain the desired result. O
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any multicast group. Also leB = maxgecq b, > 0de- |zy] < BV € 1.
note the maximum bandwidth level in any multicast group. _

Let z(n) = (2;(n),i € I US) denote the rate vector at the P(z(n), A(n)) — P(z",A") = D(A(n)) — D(X") (39)

nth iterative step, as defined by (8). l.et= min;cpy; > 0. < CJA(n) = X*| (40)
Cho.osee = Wﬂ’;m. in Lemma 1.. Assumg that the 0752 1)

step-sizen used for updating the link prices (as in (7)) sat- — A(|I||ILIB+C)’

isfies0 < a < @ = a.. Then from Lemma 1, there exists a

A\* € A*, such thatforalh > N = N, Note that (39) is obtained using Lemma 2, the definition of

A(n) (see (8)), and the fact that the functidiisandU; are

71;2 equal at the discrete bandwidth levels. Relation (40) follows

[A(n) = X[] € ——rr——r .
A(NEB +©) and (41), we obtain
Consider anyn > N. Let us assume, for the sake of . . ~b?
contradiction, thafz? — z;(n)| > b? for somei € RY, Plz(n),A") = P, X") < . (42)
g € G. Since the difference between adjacent discrete band-
width levels of groupg is at mosth?, it follows that there Combining (37) and (42), we obtain
exists az; € {b{,...,b%, } such that < |z} — ;| < |a} —

z;(n)|. Thusi; represents some discrete bandwidth level Pla\) — Pla®,\) > V0102 076,
in-between (and excluding)! andx;(n), and must satisfy -7 st = 2 4(01 + 03)

one of the two following conditions: (i};(n) < #; < z7, N '

or (i) zf < &; < xz4(n). Defined, = i; — x;(n), and 2 5 m (43)

02 = z} — &;. From the above discussion, it follows that

61| > b, 62 > 0, and|6; + 6] > b9 > B(by assumption). =

Definez = (4,7 € ITUS) asz = 7 +9 ¥+ 57 z(n).

Geometrically,z represents the pomt at which the straight

lsl?necsg*t‘wf(ergtea})r(]di(fol)lcfv?/;st:]haeiflgr?7 = & Note that Relation (43) follows from the fag®, + 62) > 61 > b, and
= (44) follows from the facty,b,6, > 0. From (44), it fol-

b 392
4
> 0. (44)

~ o, 0y - lows thatz* cannot attain the maximum éf(g, A")overX,
(&, A7) — 10 P(z*, \") — ry P(z(n),A")  which contradicts Lemma 2. Therefore, our assumption that
L2 0 L2 there exists somec RY, g € G suchthatz} —x;(n)| > b9,
= U (&) — ! Z U (z3) — was incorrect, thus proving Theorem 1. O
: 0, + 0 ¢
i'ER 'eéR
0 ~
Uy (xi(n 34
R % (ir(n)) (34)
5 th . 2
> (3:) — ) —
- Z(xl) 01 + 92 (2 :C’L ) 01 + 02 Ul( (n)) (35)
R 01 « )
> Ml (37)

Relation (34) follows from the fact that the term
> ier(Xier, Mi(n)) i in Pz, ) is linear inz. Relation
(35) follows from the fact that the terd_, . p\ 1, Ui (x)

is a concave function of. Relation (36) is obtained us-
ing the factsU(&;) = Ui(d;), Us(z¥) < Us(x*) and
Ui(zi(n)) = U;(z;(n)), which directly follow from (9), the
definition of U;. Relation (37) follows from the strict con-

cavity of U; (Assumption 1) and the faet > ~.

P(z(n),A") = Plz(n), A(n) = > aa(n) Y (A7 = Ni(n))

irel Ly
|1]|L| By

= wmosroy %

Relation (38) follows from (33), and from the fact that

(33) Lemma 3, and relation (41) follows from (33). From (38)



