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Abstract—Large-scale deployment of electric vehicles (EVs) is
anticipated in the foreseeable future. Heavy intermittent charging
load of EVs will create bottlenecks in supplying capacity and
expose power system to severe security risks. In this paper, we
propose an intelligent method to control EV charging loads
in response to time-of-use (TOU) price in a regulated market.
First, an optimized charging model is formulated to minimize
the charging cost. Then, a heuristic method is implemented to
minimize the charging cost considering the relation between the
acceptable charging power of EV battery and the state of charge
(SOC). Finally, the charging cost and energy demand in different
time intervals are compared for both typical charging pattern
and optimized charging pattern. Results show that the optimized
charging pattern has great benefit in reducing cost and flatting
the load curve if the peak and valley time periods are partitioned
appropriately.

Index Terms—Charging facility, charging load, electric vehicle,
state of charge, time-of-use price.

I. INTRODUCTION

T HE development of EV is a major direction of modern
automobile vehicles. EVs have zero emissions and low

noise level; therefore, they have become an essential approach
to solve environmental problems and offer energy shortages [1].
One of the bottlenecks that restrict the rapid growth of EV is

the lack of the EV charging facilities [2]–[6]. Reference [2] an-
alyzes the rapid charging station and its impact on the distribu-
tion systems. Reference [3] describes energy storage character-
istics and economic value of the battery switching stations that
combine the solar energy. Reference [4] establishes the model
of the fuel cell charger and proposes the corresponding con-
trol strategy. A new concept of mobile charger and its optimal
scheduling methods are presented in [5]. With incremental de-
velopment in EV charging facilities, EV loads are expected to
increase phenomenally in the near future. This will bring neg-
ative impacts on the stability of power grids [7]. EV loads are
seldom considered in current practice of power system planning,
which results in risks in system operations and management [8].
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There are three main ways to enable EV-friendly access
to power grid: 1) vehicle to grid (V2G); 2) use of energy
management equipments (such as energy management con-
centrator and distributed energy management boxes); 3) the
mechanism of electricity pricing. V2G means that the EV
discharges the remaining energy stored in the battery into
the grid when needed. References [9]–[11] discuss the power
electronic converter technology that enables V2G. Energy
management equipment can be used to maintain the balance
between demand and supply, thus boosting the utilization of
EV. Reference [12] describes local and global smart charging
control strategies based on family energy control box. It shows
that smart charging control strategy can reduce peak load and
level the load curve. Reference [13] adopts PHEV management
equipments to manage PHEVs in cities. The PHEV manage-
ment equipments are able to determine the number of PHEVs
connected to grid according to power flow calculation. Based
on micro-simulation, it optimizes the capacity of PHEVs con-
nected to power grid by introducing intelligent charging policy
implemented in central and distributed locations. Reference
[14] uses autostromboxes and the demand side management
system to manage the charging load. A global optimization
technique is presented to reduce the error between reference
curve and the summarized load curve of all charging events.
The electricity pricing mechanism serves stimulation and
guide for power demand and consumption mode of customers.
Customers will respond to variable electricity prices, decide
whether they prefer charging or discharging, and actively
adjust charging rate and time. For countries with mature elec-
tricity market environment, research has been focused in this
area. For instances, [15] introduces an EV charging model
based on real-time price information, while [16] optimizes the
charging process by using the method of quadratic program-
ming, considering the relationship between electricity price
and load demand. The objective is to minimize charging cost
and maximize discharging profit. Reference [17] uses linear
programming model to respond to the real-price.
Scenarios are totally different for countries where electricity

market is fully regulated. Electricity market in China may be
a typical example of regulated market, where electricity prices
are decided by the government and, once enacted, remain un-
changed for a relatively long time. At present, the electricity
pricing mechanism in China mainly includes the catalog price,
the stepwise power tariff and the time-of-use (TOU) price. Un-
like catalog price and the stepwise power tariff, TOU price is
not the same in the different periods of one day, which makes
it an important method for demand side management [18]. It is
estimated that by 2050 the number of EVs in China will reach
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200 million, and the total charging load will be up to 330 mil-
lion kilowatts [19]. With such a considerable capability, the EVs
in China will play a significant role in balancing power supply
and demand. Thereby, research on intelligent response to TOU
price is of significance in market-regulated countries. Based on
the existing research and the SOC curve, this paper proposes an
optimized charging model for regulated market. By using the
proposed method, EVs are able to adjust charging power and
time, reduce the cost of costumers, thus “reduce peak and fill
valley” in load demand.
The remainder of this paper is organized as follows. The op-

timized EV charging model considering TOU price and SOC
curve is proposed in Section II. Section III provides a heuristic
method to solve the optimized model. In Section IV, we present
numerical simulations of optimized charging model and com-
pare it with typical charging pattern. Finally, conclusions are
made in Section V.

II. OPTIMIZED MODEL FOR CHARGING IN RESPONSE TO TOU
PRICE

A. Problem Description

In regulated electricity market, TOU price is laid down by
the government in advance, and the prices remain unchanged
for a long time. The user can set the expected ending time of
charging when EV is connected to the grid through the charger.
To protect the battery from being damaged in charging process,
the maximum charging power can be also set artificially. The
charger with embedded TOU price module can intelligently for-
mulate optimized charging scheme in consideration of the SOC
curve and the maximum charging power set by user, the aim
of which is to minimize the cost and realize peak clipping and
valley filling.

B. Objective Function

Take the cost that EV users need to pay to charge once as
objection function

(1)

In (1), is the starting time of charging, is duration of
charging, is the ending time of charging. and
represent the unit price and charging power in time respec-
tively.

C. Constraints

The initial SOC of various EV batteries are different as the
driving mode and charging habits of different EV users are not
the same. The energy demand of EV user with initial SOC con-
sidered is stated as below

(2)

In (2), represents the initial SOC of EV battery and
is the rated capacity of EV battery.
According to mass theory [20], in order to reduce the life

loss of EV battery, the charging current should not surpass the
acceptable charging current of EV battery ( is

Fig. 1. The SOC curve.

the maximum charging current at the starting time, is ratio
of acceptance). Theoretically is determined by initial SOC
and internal resistance of EV battery [21]. The highest accepted
voltage of EV battery should not exceed a certain limited value
as well.
From the power expression , the charging power

of EV battery should not exceed a certain limited value. The
charging power is constrained by (3)

(3)

In (3), represents the maximum acceptable
charging power of EV battery in time , which is the function
of SOC and temperature of battery. Temperature effect on

can be ignored when some measures are taken to
keep the temperature of battery constant. Then the maximum
acceptable charging power can be expressed as below

(4)

In (4), is the current SOC of EV battery. The quantitative
relationship between and can be described by SOC
curve which is shown in Fig. 1 [22].
Except for the restriction which is the maximum ac-

ceptable charging power of EV battery, the maximum charging
power is also restricted by: 1) the maximum power set
by EV user: 2) the maximum power EV charger can
output. Therefore, the actual maximum power in charging
process is

(5)

Usually, both the maximum power set by EV user and
the maximum power EV charger can output are greater
than the maximum acceptable charging power of EV
battery. So the actual maximum charging power is limited
by in most cases. All constraints of optimized model
presented above are consisted of expressions (2)–(5).

III. ALGORITHM

As a continuous mathematical model, in order to be conve-
nient for calculation, the above optimized model is discretized.
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The total charging time T is divided into N periods, and the
length of each period is . The discretized optimized model
can be expressed as

(6)

The constraint of maximum charging power limited by SOC
is nonlinear, so we design a heuristic algorithm.
1) Charge the EV battery using the maximum power
from the starting time until the battery
or (user-specified end time). If the battery is not
filled until , stop optimization. Otherwise, go to
step 2).

2) An initial feasible solution ( repre-
sented the charging power) is obtained after step 1). Sorting
the periods based on TOU price is required. Symbols
and are ascending
sorted sequences, which means , and

.
3) Set charge energy as optimal step. The charge energy
transferred from high-price period to low-price period is
defined as optimal step. The charge power transferred
from high-price period to low-price period can be ex-
pressed as . In order to improve the precision of
the simulation, should take a small value such as .

4) Assign .
5) Assign .
6) Judge whether the energy left in period is available for
transferring. When , go to step 7); otherwise, go
to step 11).

7) Judge the sequence of period and period . If ,
go to step 8), which means it will not break the SOC con-
straint when transfer energy from period to period
directly. The reason is as follows: Assume and

indicate the energy stored in battery before and after
the transference respectively. When , there exist

or ;
when , there exists . It can be seen
clearly that the SOC of EV battery in each period does not
increase. As the charging power does not exceed limit be-
fore the transference, the charging power cannot exceed
limit after the transference either. If , go to step 9).

8) Transfer the energy from the high-price period to the low-
price period. It can be expressed using mathematical equa-
tions as: ; . After that,
the procedure goes to step 6).

9) Judge whether is sufficient to achieve the maximum
charging power . If , go to step 8);
Otherwise, go to step 10).

10) Set and judge whether the price of period is
equal to the price of period . If , go to
step 11); Otherwise, go to step 7).

11) Set and judge whether is equal to 1. It means
there is no more energy can be transferred from the high-
price period to the low-price period when , so stop
optimization. Otherwise, go to step 5).

Fig. 2. The flowchart of optimization charge.

The flowchart of above optimization program is shown in
Fig. 2.

IV. CASE STUDY

In order to verify the effectiveness of optimized charging
model presented in this paper, we adopt a typical charging pat-
tern for comparison. The typical charging pattern is a common
charging pattern of “plug and charge,” the charging profile of
which is consistent with the charging characteristics of battery.
Nevertheless, the charging profile may not follow the charging
characteristics of battery in optimized charging pattern, as it is
determined by optimized charging algorithm which has been
stated in previous section of this paper. The charging cost and
energy demand in different times are compared separately in
two cases: single EV and multi-EV. In the multi-EV case, the
diversity of initial SOC and starting charging time among dif-
ferent EV should be considered. A probability model is intro-
duced to describe this diversity, which will be discussed later.
For single EV case, we neglect the randomness of initial SOC
and starting charging time and assign them with specified value
so as to get determined results, which is beneficial for us to un-
derstand the optimized charging model. In the following sec-
tion, we will present settings and results of simulation.
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Fig. 3. The charging curve of the lithium-ion battery equipped in Nissan Altra
EV.

Fig. 4. The distribution curve of the starting time of charging.

A. Settings of Simulation

1) Typical Charging Characteristics of Lithium-Ion Battery:
The charging curve of the lithium-ion battery equipped in an
Nissan Altra EV is shown in Fig. 3 [23]. In completely dis-
charging situations, the demand for energy is 29.07 kWh. In this
study, we will employ the charging curve in Fig. 3 for typical
charging pattern.
2) The Starting Time of Charging: It has much randomness

at the starting time of charging. To describe the randomness, it
established distribution model of the starting time. Assuming
that the distribution of the starting time obeys a Gaussian distri-
bution, that is,

(7)

Most EV users start charging when return home from work at
18:00 andmore than 90% of EV users’ starting time for charging
is between 13:00 and 23:00. Therefore, in this case, it takes
for 18 and takes for 5 [17]. The probability distribution of the
starting time is shown in Fig. 4.

Fig. 5. The histogram of TOU price.

3) The Initial SOC: The initial SOC of EV battery also has
some certain randomness. Using probability distribution model,
it is described as

(8)

represents the initial SOC of EV battery and it is commonly
between 0.2 and 0.8. It takes for 0.5 and takes for 0.3 and
is the average value of SOC and is standard deviation.
4) TOU Price: According to actual TOU price implemented

in Beijing, the period of valley load is defined as 23:00–07:00,
totally 8 h; the period of peak load is defined as 10:00–15:00
and 18:00–21:00, totally 8 h. The remaining time is the period of
flat load. Adopting the actual price of electricity in the city, the
prices of peak, flat and valley load period are 1.253 Yuan/kWh,
0.781 Yuan/kWh and 0.335 Yuan/kWh. The histogram of TOU
price is shown in Fig. 5.

B. The Results and Analysis of Simulation

1) The Case of Charging for Single EV: In order to verify the
effectiveness of optimized charging model and be convenient
for observing the optimization process, the case of charging for
single EV is implemented. Taking 20:00 as the starting time of
charging, twelve hours as the total charging time, the energy
demand of typical charging pattern and optimized charging pat-
tern in different time are shown in Fig. 6. As it can be seen,
optimized charging pattern can avoid peak demands and choose
intelligently to charge in the time of valley demands which can
reduce charging costs.
2) The Case of Charging for Multi-EV: The starting time

of charging and initial SOC should be considered in the case
of charging for multi-EV. Therefore, the Gaussian distribution
function is implemented to describe the differences. According
to data of 2010, the number of automobiles in Beijing was
reached to 4.69 million [24]. Assuming the penetration of EVs
(defined as the ratio of the number of EVs and the total number
of automobiles [12]) is 5%, the number for EVs is about
234 500. In the process of computation, the average charging
time of EV is about 6 h. Fig. 7 shows the energy demand of
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Fig. 6. The comparison of different charging patterns for single EV.

Fig. 7. The comparison of different charging patterns for multi-EV.

different charging patterns in multi-EV charging case. As it can
be seen, the optimized charging pattern in multi-EV charging
case can shift a mass of peak load to valley load, which is
similar with that of single charging case.
Table I lists the charging cost of different charging patterns

in different cases. It is clearly seen that the optimized charging
pattern can bring a significant reduction in the cost of EV users’
charge. And it is evident that the performance of single EV case
shown in the table is better than that of multi-EV case. The
reasonmay be attributed to the available optimal space. In single
EV case, the time span for charging covers more low-price pe-
riods, which means the optimal space is relatively large. So,
through the optimization, almost all of the charge will be con-
centrated in low-price periods, which results in a better perfor-
mance. From another perspective, it is implied that the charging

TABLE I
THE CHARGING COST OF DIFFERENT CHARGING PATTERNS IN DIFFERENT

CASES

cost will be less if EV users can consciously arrange appropriate
plug-in time.

V. CONCLUSION

This paper proposes an intelligent charging method for EV
charging facilities in response to TOU price. The purpose is to
alleviate the stress in power grid under peak demand and to meet
the demand response requirements in regulated market.
A comparative analysis of typical charging pattern and op-

timized charging pattern for charging performance in different
case is also presented. Simulation results of both single EV and
multiple EVs have validated the effectiveness of the proposed
approach. This work serves as a useful reference for research on
charging strategies in open electricity market.
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