
Reasoning About Commitments in the Event Calculus:
An Approach for Specifying and Executing Protocols

Pınar Yolum (pyolum@eos.ncsu.edu) and Munindar P. Singh
(singh@ncsu.edu)
Department of Computer Science, North Carolina State University, Raleigh, NC 27695-7535,
USA

Abstract. Commitments among agents are widely recognized as an important basis for orga-
nizing interactions in multiagent systems. We develop an approach for formally representing
and reasoning about commitments in the event calculus. We apply and evaluate this approach
in the context of protocols, which represent the interactions allowed among communicating
agents. Protocols are essential in applications such as electronic commerce where it is neces-
sary to constrain the behaviors of autonomous agents. Traditional approaches, which model
protocols merely in terms of action sequences, limit the flexibility of the agents in executing
the protocols. By contrast, by formally representing commitments, we can specify the content
of the protocols through the agents’ commitments to one another. In representing commit-
ments in the event calculus, we formalize commitment operations and domain-independent
reasoning rules as axioms to capture the evolution of commitments. We also provide a means
to specify protocol-specific axioms through the agents’ actions. These axioms enable agents to
reason about their actions explicitly to flexibly accommodate the exceptions and opportunities
that may arise at run time. This reasoning is implemented using an event calculus planner that
helps determine flexible execution paths that respect the given protocol specifications.

Keywords: Commitments; agent communication languages and protocols; methodologies

1. Introduction and Motivation

The design and analysis of multiagent systems comes down, to a large extent,
to the design and analysis of interactions among agents. Interactions among
agents must be modeled and reasoned about in such a manner as to respect
the open, dynamic nature of interactions by accommodating the key aspects
of autonomy, heterogeneity, opportunities, and exceptions.

� Autonomy: Promoting the participants’ autonomy is crucial for creating
effective systems in open environments. The participants should be able
to exercise their autonomy in deciding what actions they want to per-
form, who they want to interact with, or how they want to carry out their
tasks. Thus, participants must be constrained in their interactions only to
the extent necessary to carry out the given protocol, and no more.

� Heterogeneity: Participants can be of diverse designs and may adopt
different strategies to carry out their interactions. To interact in open sys-
tems, participants need to accommodate heterogeneity in others (Singh,

c
�

2003 Kluwer Academic Publishers. Printed in the Netherlands.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.1

2 Yolum and Singh

2003). Current protocol specifications do not allow this. For example,
many e-commerce protocols assume that all participants are untrustwor-
thy, and each step ensures that appropriately safe actions are taken by
the various participants. This unnecessarily degrades performance where
trust has been, or can be, established.

� Opportunities: Participants should be able to take advantage of opportu-
nities to improve their choices or to simplify their interactions. Depend-
ing on the situation, certain steps in a protocol can perhaps be skipped.
A participant may take advantage of domain knowledge and jump to a
state in a protocol without explicitly visiting one or more intervening
states, since visiting each state may require additional messages and
cause delays.

� Exceptions: Participants must be able to modify their interactions to
handle unexpected conditions. Unlike programming or networking ex-
ceptions such as loss of messages or network delays, the exceptions of
interest here are higher-level exceptions that result from unexpected be-
haviors of the participants. For example, a deadline may be renegotiated
at a discount. This would obviously involve domain knowledge, but the
protocol representation should allow it.

Multiagent protocols regulate the interactions between agents. Current for-
malisms used in modeling network protocols, such as finite state machines
(FSMs) and Petri Nets, specify protocols merely in terms of legal sequences
or concurrent combinations of actions without regard to the meanings of those
actions. When directly applied to multiagent settings, the above approaches
leads to protocols that are over-constrained (Hutchison and Winikoff, 2002;
Fisher and Wooldridge, 1997). However, protocol representations should not
only constrain the actions of the participants, but also accommodate the es-
sential properties of multiagent interactions listed above.

We develop an approach for specifying and executing protocols that ac-
counts for these properties of open systems. Figure 1 gives an overview of our
approach. We begin with a finite state machine representation of a protocol.
From this representation, we develop a declarative protocol specification by
capturing the intrinsic meaning of actions. We model these intrinsic meanings
through social commitments or simply, commitments. Conceptually, com-
mitments capture the obligations from one party to another (Castelfranchi,
1995; Walton and Krabbe, 1995). We define operations to create and ma-
nipulate commitments. We view each action in the protocol as an operation
on commitments. In other words, by following the protocol, each agent cre-
ates and manipulates commitments, e.g., by fulfilling or canceling them. In
addition to providing a protocol specification that defines the actions as op-

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.2

Reasoning About Commitments in the Event Calculus 3

erations on commitments, we provide reasoning rules to operationalize the
commitments.

Finite
State
Machine

Declarative
Specification

EC Planner

Commitment
Axioms

Protocol Runs

Figure 1. A schematic view of our approach

We formalize these reasoning rules and the operations on commitments
in a variant of the event calculus that allows capturing of meanings of ac-
tions easily. Denecker et al. previously showed that the event calculus could
be used to represent traditional network protocols accurately and succinctly
(1996). We extend this result to multiagent protocols by incorporating com-
mitments into the formalism. Capturing the intrinsic meaning of the actions
through commitments and explicitly representing them as part of the protocol
improves flexibility, permitting the agents to reason about their and others’
behavior during the execution of the protocol, and enabling them to modify
their actions as best suits them.

The protocol specifications developed by our approach can be used in two
ways:

� Execution: The protocol specification can be used at run time if the
agents have the necessary resources to process logical formulae. Essen-
tially, each agent can logically compute its transitions using the opera-
tions and the reasoning rules. After each action, the agent is aware of its
pending commitments and knows what additional commitments it has to
make to get to a final state. Hence, the agent can follow the protocol by
generating paths that will take it from its current state to a desired final
state. Section 6 gives a detailed description of path generation.

� Compilation: If the agents cannot reason logically, then they have to
follow a formalism that does not require them to compute the transi-
tions. One such formalism is of traditional finite state machines. Even
though FSMs are easy to execute, they are not easy to design in the first
place. Without capturing the meaning of transitions, redundant transi-
tions may be added or necessary transitions may be omitted. On the
other hand, specifying a protocol using our approach is easy. Compiling
this specification into an FSM ensures that all necessary transitions are
captured.

This paper studies the framework for protocol specification and execution in
detail. Compilation of a commitment-based protocol into an FSM is discussed
elsewhere (Yolum and Singh, 2001). The rest of this paper is organized as

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.3

4 Yolum and Singh

follows: Section 2 introduces our running example with pointers to different
scenarios that may arise. Section 3 describes the necessary background about
event calculus. Section 4 describes the operations and reasoning rules on
commitments. Section 5 explains the specification of protocols. Section 6
depicts how planning can be used to generate scenarios of a protocol, and
Section 7 discusses our work with respect to the literature.

2. Running Example

As a running example, we study the NetBill protocol developed for buying
and selling of encrypted software goods on the Internet (Sirbu, 1998).

(1)

(3)

(5)

(2)

(4)

(8)

1. Request quote
2. Present quote
3. Accept quote
4. Deliver goods
5. Send electronic payment

order (EPO)
6. Send EPO and key
7. Send receipt
8. Send receipt

Intermediation
server

Consumer Merchant

NetBill’s bank
Account
funding

(7)

(6)

Consumer’s
bank Batch

payment

Merchant’s
bank

Figure 2. The NetBill payment protocol

EXAMPLE 1. As shown in Figure 2, the protocol begins with a customer
requesting a quote for some desired goods, followed by the merchant sending
the quote. If the customer accepts the quote, then the merchant delivers the
goods and waits for an electronic payment order (EPO). The goods delivered
at this point are encrypted, that is, not usable. After receiving the EPO, the
merchant forwards the EPO and the key to the intermediation server, which
handles the funds transfer. When the funds transfer completes, the interme-
diation server sends a receipt back to the merchant. The receipt contains the
decryption key for the sold goods. As the last step, the merchant forwards the
receipt to the customer. After the customer gets the receipt, he can decrypt

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.4

Reasoning About Commitments in the Event Calculus 5

and use the goods. The intermediation server acts as a trusted party between
the consumer and the merchant. It ensures that the funds are transferred
between the consumer’s and the merchant’s banks and holds a copy of the
receipt. Hence, if the EPO of the consumer does not clear or if the consumer
does not receive a receipt, the intermediation server can be contacted. For
our present purposes, we omit the banking procedures, thus simplifying the
protocol with the assumption that if a merchant gets an EPO, he can take care
of it successfully.

Traditional representations of protocols are inadequate in settings where
autonomous agents must flexibly interact, e.g., to handle exceptions and ex-
ploit opportunities.

EXAMPLE 2. Consider the following scenarios that may arise in the NetBill
protocol:

� Before the customer asks for a quote, the merchant wants to advertise
his goods by sending a quote to the customer.

� The customer may send an “accept” message without first exchanging
explicit messages about a price. This situation would reflect the level
of trust the customer places in the merchant. If the customer trusts the
merchant to give him the best quote, he may accept the price without
a prior announcement or quote. Alternatively, this action could result
from the customer’s lack of interest in the price, the emergency of the
transaction, the insignificance of money to the customer, and so on.

� As shown in Figure 3, a merchant may send the goods without an
explicit price quote. Sending unsolicited goods would correspond to “try
before you buy” deals, common in the software industry. After a certain
period, the customer is expected to pay to continue using the software.

� After receiving the goods, the customer may send the EPO to the bank
instead of the merchant. By delegating the payment to the bank, the
customer makes the bank responsible for ensuring that the money gets
to the merchant.

The scenarios depicted in Example 2 cannot be handled by a protocol
representation that specifies the legal sequences of actions but does not define
the content of the actions or of the intervening states.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.5

6 Yolum and Singh

Customer Merchant

(1)
Send goods

(3)
Send receipt

(2)
Send EPO

Figure 3. An alternative scenario

3. Event Calculus

The event calculus (EC), introduced by Kowalski and Sergot (1986), is a
formalism to reason about events. EC involves events and fluents. Fluents
are properties that may have different values at different time points. Events
manipulate fluents. A fluent starts to hold after an event occurs that can initiate
the fluent. Similarly, it ceases to hold when an event occurs that can terminate
the fluent.

The event calculus used in this paper is a subset of Shanahan’s circum-
scriptive event calculus (1997). It is based on many-sorted first-order predi-
cate calculus, with the addition of eight predicates to reason about events. We
now introduce these predicates and the axioms with which to reason about
them.

In the following, ��� � ������� refer to events; ���	��������� refer to fluents; and
 �
�� �
	
 ������� refer to time points. The variables that are not explicitly quan-
tified are assumed to be universally quantified. � denotes implication and �
denotes conjunction. The time points are ordered by the � relation, which is
defined to be transitive and asymmetric.

1. Initiates ���������
�� means that � holds after event � at time

.

2. Terminates ���������
�� means that � does not hold after event � at time

.

3. Initially ����� � means that � holds from time 0.

4. Initially ����� � means that � does not hold from time 0.

5. Happens �����
�� �
	
�� means that event � starts at time

��

and ends at

�

.

6. HoldsAt �����
�� means that � holds at time

.

7. Clipped �
 � �����

 � means that � is terminated between

 �

and

.

8. Declipped �
 � �����

 � means that � is initiated between

 �

and

.

Based on the language of EC, the following axioms are defined (Shanahan,
1997):

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.6

Reasoning About Commitments in the Event Calculus 7

EC AXIOM 1.

HoldsAt �����
�� � Initially � ��� � ��� Clipped � � �����
��

All fluents that hold initially and are not terminated by any event from
time

�
to time

continue to hold at time

.

EC AXIOM 2.

HoldsAt �����
�� � � Happens �����
 � �

 � � Initiates ���������
 � � � �

 �
���� ���
Clipped �
 � �����
�� �

Domain Description:
Initiates(a, f, t)1

t
2

Happens(a, t , t)1 2

HoldsAt(f,)t3

t
3

t
1

¬Clipped(,)t , f t1 3

Figure 4. Axiom 2

As shown in Figure 4, after an event initiates a fluent, the fluent continues
to hold if no other event that can terminate it occurs at a later time.

EC AXIOM 3.

Clipped �
 � �����
�� �	��
 ���

 �
��
�Happens �����

 �
�� � � �
 � �

 � � �
�� �
�� � �
Terminates ���������

 ���

As shown in Figure 5, Axiom 3 states that a fluent is said to be clipped if
and only if an event occurs to terminate it.

Axioms 4 and 5 represent the duals of Axioms 1 and 2, respectively.

EC AXIOM 4.

� HoldsAt �����
 � � Initially ����� � ��� Declipped � � �����
 �

Axiom 4 states that a fluent does not continue to hold, if initially it did not
hold, and there does not occur any event that initiates it.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.7

8 Yolum and Singh

Domain Description:
Terminates(a, f, t)2

t
2

Happens(a, t , t)2 3

t
3

Clipped(,)t , f t1 4

t
1 t

4

Figure 5. Axiom 3

t
2

Happens(a, t , t)1 2

¬HoldsAt(f,)t3

t
3

t
1

¬Declipped(,)t , f t1 3

Domain Description:
Terminates(a, f, t)1

Figure 6. Axiom 5

EC AXIOM 5.

� HoldsAt �����
�� � � Happens �����
 � �

 � � Terminates ���������
 � � � �

 �
���� �
� Declipped �
 � �����
�� �

Following the same intuition, Axiom 5 states that if an event occurs and
terminates a fluent, and no other event occurs to initiate it, then the fluent
continues not to hold. This axiom is illustrated in Figure 6.

EC AXIOM 6.

Declipped �
 � �����
�� �	��
 ���

 �
�� �Happens �����

 �
�� � � �
 � �

 � � �
�� �
�� �
� Initiates ���������
�
 ���

A fluent is said to be declipped in a time period if and only if there exists an
event that occurs and either initiates or releases the fluent in that time period.
This axiom is illustrated in Figure 7.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.8

Reasoning About Commitments in the Event Calculus 9

t
2

Happens(a, t , t)2 3

t
3

Declipped(,)t , f t1 4

Domain Description:
Initiates(a, f, t)2

t
1 t

4

Figure 7. Axiom 6

EC AXIOM 7.

Happens �����
 � �

 � �
 ���

Axiom 7 ensures that no event takes a negative amount of time.

DEFINITION 1. We introduce a two-argument Happens predicate to reason
about events that start and end at the same time point. For simplicity, we will
use this version of the Happens predicate hereafter.

Happens �����
 �������
	 Happens �����
 �
 �

4. Commitments

As defined here, commitments are made from one agent to another agent
to bring about a certain property. Commitments result from communicative
actions. That is, agents create commitments and manipulate them through the
protocol they follow. We represent commitments as properties in the event
calculus, and develop a scheme where we model the creation and manipula-
tion of commitments as a result of performing actions. Further, by allowing
preconditions to be associated with the initiation and termination of prop-
erties, different commitments can be associated with communicative acts to
model the communications among agents more concretely.

DEFINITION 2. A base-level commitment C(x, y, p) is a commitment from
a debtor x to a creditor y to bring about a condition p (Singh, 1999).

When a commitment of this form is created, x becomes responsible to y for
satisfying p, i.e., p holds sometime in the future. The condition p does not
involve other fluents or commitments.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.9

10 Yolum and Singh

DEFINITION 3. A conditional commitment CC(x, y, p, q) denotes that if
the condition p is satisfied, x will be committed to bring about condition q.

Conditional commitments are useful when a party wants to commit only
if a certain condition holds or only if the other party is also willing to make a
commitment.

EXAMPLE 3. Given that goods means that goods are delivered, a base-level
commitment C(merchant, customer, goods) shows that the merchant is com-
mitting to the customer that goods will be delivered. Given that pay means
that payment is done, the conditional commitment, CC(merchant, customer,
pay, goods) specifies that the merchant will commit to send the goods only if
the customer pays the money.

Persistent Commitments The commitments discussed so far are for bring-
ing about a proposition. These commitments are discharged by bringing about
the committed proposition. However, some commitments are persistent; they
hold even though the committed proposition is brought about. For example,
in the NetBill protocol, the merchant may commit to the customer that it
will always honor returns. Honoring one return will not discharge this com-
mitment. The commitment will persist and be valid whenever the customer
wants to return an item. In order to denote persistent commitments, we define
an operator on propositions, ����� � , which is based on the always operator in
temporal logic (Emerson, 1990). Informally, this operator means that � will
hold on all future time points. Axiom 1 shows that � ��� � holds only if � holds
now and remains to hold for all future points,

. That is, � is not terminated

between the current time point

 �

and a later time point

.

COMMITMENT AXIOM 1.

HoldsAt ������� � �
��) � HoldsAt ��� �
 ��� � �
�� �

 � ��� Clipped �
 � ��� �

 �

DEFINITION 4. A persistent commitment � ��� �	���
����� ��� is defined as a com-
mitment from a debtor � to a creditor � to ensure that � holds on all future
time points.

Operations Below, we present a formal account of the operations that can be
performed to create and manipulate commitments (Venkatraman and Singh,
1999; Singh, 1999) and show how these operations can be formalized in the
event calculus. These operations apply to base-level commitments as well
as to the persistent commitments, with only one exception. Persistent com-
mitments can never be discharged. Thus, the discharge operation described
below does not apply to persistent commitments. In the following discussion,
� �	����� denote agents,
 ��
�� denote commitments, and � denotes an event.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.10

Reasoning About Commitments in the Event Calculus 11

1. Create(e, x, c) establishes the commitment
 . The create operation can
only be performed by the debtor of the commitment � . When the event �
is performed, the commitment
 is initiated.

COMMITMENT AXIOM 2.

Initiates(e, C(x, y, p), t) � Happens(e, t) � Create(e, x, C(x, y, p))

2. Discharge(e, x, c) resolves the commitment
 . Again, the discharge op-
eration can only be performed by the debtor of the commitment to mean
that the commitment has successfully been carried out. Discharging a
commitment terminates that commitment.

COMMITMENT AXIOM 3.

Terminates(e, C(x, y, p), t) � Happens(e, t) � Discharge(e, x, C(x, y, p))

3. Cancel(e, x, c) cancels the commitment
 . The cancel operation is per-
formed by the debtor of the commitment. Usually, the cancellation of a
commitment is followed by the creation of another commitment to com-
pensate for the former one. This ensures that the debtor does not back out
of a commitment without a punishment. When � performs the event � ,
the commitment
 is terminated.

COMMITMENT AXIOM 4.

Terminates(e, C(x, y, p), t) � Happens(e, t) � Cancel(e, x, C(x, y, p))

4. Release(e, y, c) releases the debtor from the commitment
 . It can be
performed by the creditor to mean that the debtor is no longer obliged to
carry out his commitment.

COMMITMENT AXIOM 5.

Terminates(e, C(x, y, p), t) � Happens(e, t) � Release(e, y, C(x, y, p))

5. Assign(e, y, z, c) assigns a new agent as the creditor of the commitment.
More specifically, the commitment
 is eliminated, and a new commit-
ment
 � is created for which � is appointed as the new creditor.

COMMITMENT AXIOM 6.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.11

12 Yolum and Singh

Create(e, x, C(x, z, p)) � Happens(e, t) � Assign(e, y, z, C(x, y, p))
Release(e, y, C(x, y, p)) � Happens(e, t) � Assign(e, y, z, C(x, y, p))

6. Delegate(e, x, z, c) replaces the debtor of the commitment with another
agent � so that � becomes responsible to carry out the commitment. Sim-
ilar to the previous operation, the commitment
 is eliminated, and a new
commitment
 � is created in which � is the debtor.

COMMITMENT AXIOM 7.

Create(e, z, C(z, y, p)) � Happens(e, t) � Delegate(e, x, z, C(x, y, p))
Cancel(e, x, C(x, y, p)) � Happens(e, t) � Delegate(e, x, z, C(x, y, p))

The creation and manipulation of commitments is handled with the above
operations. In addition to these operations, we formalize reasoning rules on
commitments that capture the operational semantics of our approach. Some
of these operations require additional domain knowledge to reason about. For
example, canceling a commitment might be constrained differently based on
the domain. The reasoning rules we provide here only pertain to the create
and discharge operations and the conditional commitments.

Axiom 8 states that a commitment is no longer in force if the condition
committed to holds. For the condition � to hold, an event must occur to initiate
it. In Axiom 8, when the event � occurs at time

, it initiates the property � ,

thereby discharging the commitment � ��� �	����� � .
COMMITMENT AXIOM 8.

Discharge(e, x, C(x, y, p)) � HoldsAt(C(x, y, p), t) � Happens(e, t) �
Initiates(e, p, t)

The following two axioms capture how a conditional commitment is re-
solved based on the temporal ordering of the commitments it refers to.

COMMITMENT AXIOM 9.

Initiates(e, C(x, y, q), t) � HoldsAt(CC(x, y, p, q), t) � Happens(e, t) �
Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) � HoldsAt(CC(x, y, p, q), t) � Happens(e, t)
� Initiates(e, p, t)

When the conditional commitment � � ��� �	����� � � � holds, if � becomes true,
then the original commitment ceases to exist but a new base-level commit-
ment is created, since the debtor � is now committed to bring about � . More
specifically, in Axiom 9, when the event � occurs, it initiates � , which re-
sults in the termination of the original commitment, and the initiation of
� ��� �	��� � � . This is similar to Colombetti’s treatment of conditional commit-
ments (2000), but here we capture how conditional commitments are resolved
into base-level commitments rather than how they can be violated.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.12

Reasoning About Commitments in the Event Calculus 13

COMMITMENT AXIOM 10.

Terminates(e, CC(x, y, p, q), t) � HoldsAt(CC(x, y, p, q), t) � Happens(e, t)
� Initiates(e, q, t)

Again, when the conditional commitment � � ��� �	����� � � � holds, if an event �
that can initiate � occurs, � begins to hold and the original commitment is
terminated. Since the creditor � has not committed to anything, no additional
commitments are created.

Communicative Acts Many communicative acts (Austin, 1962) can be
defined in terms of operations on commitments. Here, we study two such
acts: prohibit and permit. Intuitively, prohibitions forbid a party from bring-
ing out a proposition. For example, if a client prohibits a merchant to send
advertisements, the merchant becomes committed to not sending the adver-
tisements from then on. In many settings, we would expect prohibitions to be
constrained, so that only authoritative roles can issue prohibitions. Here, we
do not explicitly model the relationships between roles. Even though model-
ing the relations between different roles is crucial (Damianou et al., 2001),
a detailed analysis is beyond the scope of this paper. We define prohibitions
through persistent commitments.

DEFINITION 5. If a party is prohibited to bring about a proposition � , then
it has a commitment to ensure that � never holds.
Create(prohibit(x, y, p), y, C(y, x, G(� p)))

Permissions, on the other hand, allow a party to bring about a proposition, i.e.,
to make a commitment. We define permissions as negations of prohibitions.

DEFINITION 6. A party is permitted to bring about a proposition if it has
not been prohibited from it.
Release(permit(x, y, p), x, C(y, x, G(� p)))

5. Specifying Protocols

To represent a protocol, we need to represent the flow of execution within
the protocol. In EC, two predicates are used to specify how the execution can
evolve: Initiates and Terminates. In addition to defining which fluents they
initiate or terminate, the required preconditions for activating these predi-
cates can be specified. Therefore, the possible transitions in a protocol can be
specified in terms of a set of Initiates and Terminates axioms (to manipulate
propositions) and the commitment axioms (to manipulate commitments).

DEFINITION 7. A protocol specification is a set of protocol axioms that
define which properties pertaining to the protocol are initiated and terminated
by each action.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.13

14 Yolum and Singh

Next we define how a protocol run is structured, which we represent by a
set of actions that take place at specific time points. We assume that only
one action can happen at one time point. Hence, we are not concerned with
concurrent actions.

DEFINITION 8. A protocol run is a set of Happens clauses along with an
ordering of the time points referred to in the Happens clauses.

We assume uniqueness-of-names axioms such that each distinct token
refers to a unique fluent or a unique event. Given a conjunction of Initiates
and Terminates clauses for domain description, a conjunction of Initially �
and Initially � clauses, a conjunction of unique-name-axioms, and the EC
axioms, we desire a protocol run that will derive a given goal state. The frame
problem (McCarthy and Hayes, 1969) is handled through circumscription as
shown by Shanahan (1997). Through circumscription, the set of Initiates and
Terminates clauses is minimized. That is, all possible effects of the actions
are assumed to be known. Similarly, by minimizing the protocol run, we
assume that no other action happens. Since no action other than the ones
in the generated protocol run takes place, and since all the changes of these
actions are known, what cannot be derived from the the logical framework is
assumed not to hold.

Notice that a protocol specified as in Definition 7 does not indicate any
starting states, final states, or transitions among executions states. An agent
can start a protocol by performing any of the actions whose preconditions
match the current state of the execution. By appropriately increasing or de-
creasing the preconditions of the actions, a protocol can be abbreviated or
enhanced to allow a broader range of interactions. Although we do not repre-
sent the final states of a protocol explicitly, we can examine a protocol run to
determine if any agent has backed out of its commitment.

A violation of the commitments results in the violation of the protocol.
The existence of open base-level commitments at the end of the protocol
execution shows that a participant has not fulfilled some commitment. Unlike
for base-level commitments, some violation of a persistent commitment can
be detected before the end of the protocol. At any state in the protocol, if the
negated proposition of the persistent commitment holds, then the persistent
commitment is violated. Conditional commitments can never be violated di-
rectly. Detecting these violations is crucial for proper execution of protocols.
Although we do not investigate the issue of protocol compliance by agents in
this work, violated commitments provide evidence to identify non-compliant
agents (Venkatraman and Singh, 1999).

To continue our treatment of the NetBill protocol, we first define the flu-
ents used in that protocol and then provide the protocol specification.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.14

Reasoning About Commitments in the Event Calculus 15

EXAMPLE 4. The messages of Figure 2 can be assigned content based on
the following definitions. Since each action can be performed by only one
party, we do not represent the performers explicitly.

� Roles:

� MR represents the merchant.
� CT represents the customer.

� Domain-specific fluents:

� request(i): a fluent meaning that the customer has requested a quote
for item

�
.

� goods(i): a fluent meaning that the merchant has delivered the goods
�
.

� pay(m): a fluent meaning that the customer has paid the agreed
upon amount � .

� receipt(i): a fluent meaning that the merchant has delivered the
receipt for item

�
.

� Commitments:

� accept(i, m): an abbreviation for CC(CT, MR, goods(i), pay(m))
meaning that the customer is willing to pay if he receives the goods.

� promiseGoods(i, m): an abbreviation for CC(MR, CT, accept(i,
m), goods(i)) meaning that the merchant is willing to send the
goods if the customer promises to pay the agreed amount.

� promiseReceipt(i, m): an abbreviation for CC(MR, CT, pay(m),
receipt(i)) meaning that the merchant is willing to send the receipt
if the customer pays the agreed-upon amount.

� offer(i, m): an abbreviation for
promiseGoods(i,m) � promiseReceipt(i, m)

� Initiates Axioms in the NetBill Protocol:

PA1. Initiates(sendRequest(i), request(i), t)

PA2. Initiates(sendGoods(i, m), goods(i), t)

PA3. Initiates(sendEPO(i, m), pay(m), t)

PA4. Initiates(sendReceipt(i, m), receipt(i), t)

� Create Axioms in the NetBill Protocol:

PA5. Create(sendQuote(i, m), MR, promiseGoods(i, m))

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.15

16 Yolum and Singh

PA6. Create(sendQuote(i, m), MR, promiseReceipt(i, m))

PA7. Create(sendAccept(i, m), MR, accept(i, m))

PA8. Create(sendGoods(i, m), MR, promiseReceipt(i, m))

The following example describes an example protocol run, and illustrates
how commitments are created and then resolved.

EXAMPLE 5. The protocol run shown in Figure 3 can be formalized by the
following facts:

F1. Happens(sendGoods(i, m),

 �

)

F2. Happens(sendEPO(m),

)

F3. Happens(sendReceipt(i),

 �

)

F4.

 � �

F5.

 �
��

F6.

 � �
 �

Now we look at how the commitments among the participants evolve in
the given protocol run. We also assume that initially no commitments or
predicates hold.

� When the goods are sent at time

��

, the fluent goods(i) is initiated. Fur-
ther, by Axiom PA8, the commitment CC(MR, CT, pay(m), receipt(i))
is created. So now the goods have been delivered, and the merchant is
willing to send the receipt if the customer pays.

D1. HoldsAt(goods(i),

) (By Axiom PA2)

D2. HoldsAt(CC(MR, CT, pay(m), receipt(i)),

) (By Axiom PA8)

� By sending the EPO at time

, the customer initiates the fluent pay(m)
at time

��
. By Axiom 9, this ends the commitment CC(MR, CT, pay(m),

receipt(i)) and creates the commitment C(MR, CT, receipt(i)). Since no
event occurred to terminate goods(i), it continues to hold.

D3. HoldsAt(pay(m),

 �

) (By Axiom PA3)

D4. HoldsAt(C(MR, CT, receipt(i)),

 �

) (By D2, Axiom 9, and D3)

D5. � HoldsAt(CC(MR, CT, pay(m), receipt(i)),

) (By D2, Axiom 9,
and D3)

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.16

Reasoning About Commitments in the Event Calculus 17

� At time

��

the third happens clause (F3) is applicable, which initiates
the fluent receipt(i). Following Axiom 8, this discharges the commit-
ment C(MR, CT, receipt(i)). By Axiom 3, a discharged commitment is
terminated. Thus, we reach the state where the merchant has delivered
the goods and the receipt, and the customer has paid.

D6. HoldsAt(receipt(i),

 �

) (By Axiom PA4)

D7. � HoldsAt(C(MR, CT, receipt(i)),

 �

) (By D5, Axiom 8, and Ax-
iom 3)

� Thus, at time

��

, the following holds:
HoldsAt(goods(i),

��
) � HoldsAt(pay(m),

 �
) � HoldsAt(receipt(i),

 �
)

6. Executing Protocols

Planning is the construction of plans for automatic or semiautomatic exe-
cution by an agent. Planning has been used in multiagent systems to aid
different tasks, including resource allocation and mixed symbolic and numer-
ical reasoning (Atkins et al., 2001; Dix et al., 2000), but has not been used for
protocol execution.

Here we consider plans that would lead from an initial protocol state to
a final state by applying the commitment axioms to transition among states.
The form of logical reasoning that is commonly used in building event cal-
culus planners is abduction (Eshghi, 1988; Denecker et al., 1992). One such
abductive event calculus planner is due to Shanahan (2000); we use this event
calculus planner here to demonstrate how possible paths can be generated
between an initial state and a goal state given a protocol specification defined
based on the preconditions and the effects of actions as in Definition 7.

We now walk through the steps to put together the protocol specification
of the NetBill protocol and an initial state in the protocol to produce protocol
runs that lead from the initial state to a sample final state. The existing EC
planner is coupled with the commitment axioms and the protocol axioms.
The commitment axioms are represented as state constraints in the planner.
The fluents used in the protocol axioms are the same as the ones used in
Example 4, except that here we add a transaction identifier to each fluent
(as the last argument). This identifier is used to ensure that the participants,
by bringing about properties, resolve commitments with the corresponding
transaction ids. Since the debtor and the creditor of the commitments are clear
from the context, the arguments corresponding to the debtor and the creditor
are dropped.

In the event calculus, the initial states are represented by conjunctive ex-
pressions consisting of Initially � and Initially � clauses to represent which

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.17

18 Yolum and Singh

fluents hold or do not hold at the beginning. However the planner implements
only one predicate, Initially. In order to indicate negative fluents, it intro-
duces a new predicate, neg. Figure 8 gives some example clauses to set up
the initial state of the NetBill protocol. For the initial state of the NetBill
protocol, none of the possible fluents and commitments hold. Hence, the first
clause states that initially no goods (�) for none of the transactions (�) have
been delivered. Similarly, the second clause states that there do not exist any
commitments for payments (�) for any transactions (�).

axiom(initially(neg(goods(I, D))),[]).
axiom(initially(neg(c(pay(M, D)))),[]).

Figure 8. Example clauses of an initial state

Operators are the actions in the domain. These actions are defined in the
program through the executable clause. Figure 9 gives such an example. This
clause means that the sendRequest action can be used in constructing a plan.

executable(sendrequest(I, D)).

Figure 9. Example clause of executable events

Figure 10 gives an example Initiates axiom. The first argument to the
axioms is the Initiates clause, and the second argument is the set of precondi-
tions needed for the Initiates clause to be applicable.

The example axiom in Figure 10 says that the action sendEPO initiates
the fluent pay with the requirement that goods must have been delivered. The
precondition section is optional. Here, it is added to ensure that the payment
is always made after the goods are delivered. We will discuss the effects of
preconditions shortly.

axiom(initiates(sendepo(M, D), pay(M, D),T),
[holds_at(goods(I, D),T)]).

Figure 10. Example of an Initiates clause

Figure 11 shows that the sendAccept action creates the conditional com-
mitment cc(goods(I, D), pay(M, D)). Again, the precondition is optional.
Here, it is used to enforce the requirement that the sendAccept action will
only be invoked if the goods have not been sent.

Given the initial states, the goal states, and the domain description, an
event calculus planner can generate protocol runs that contain Happens clauses
and an ordering of time points of the actions that take place (Shanahan, 2000).

In order to walk through the code, we provide the description of an ex-
ample final state. Figure 12 gives such an example. The final state depicted

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.18

Reasoning About Commitments in the Event Calculus 19

axiom(create(sendaccept(I, M, D),
cc(goods(I, D), pay(M, D))),

[holds_at(neg(goods(I, D)), T)]).

Figure 11. Example of a Create clause

in Figure 12 means that goods (software) and the receipt have been sent with
transaction identifier ��� and the customer sent the money for this transaction.
This yields the result shown in Figure 13, where each R is a possible protocol
run starting from the initial state where no commitments or fluents hold, and
ending in the final state depicted in Figure 12.

abdemo([holds_at(goods(software, 51),t),
holds_at(pay(price, 51),t),
holds_at(receipt(software, 51),t)],R).

Figure 12. Example description of a final state

Additional Paths As described in Section 5, each protocol run consists
of Happens clauses and an ordering of time points. The last argument in each
Happens clause denotes a time point at which the event happens. The ordering
of these time points is then shown with the before clauses. The time points
generated by the planner have been replaced with simpler time points to ease
the following of the time line.

The three protocol runs in Figure 13 correspond to the first three scenarios
described in Example 2. Figure 14 shows these extra paths derived by the
planner.

� The first protocol run starts with the merchant sending a quote for the
software. Hence, the conditional commitments promiseGoods(i, m) and
promiseReceipt(i, m) are initiated. Next, the customer sends an accept
message. By Axiom 9, the merchant becomes committed to sending the
goods. Once the merchant sends the goods, the customer becomes com-
mitted to sending a payment due to its conditional commitment, accept.
Next, the customer sends the payment, which triggers the merchant’s
commitment to send the receipt. Finally, merchant sends the receipt.
There are no pending commitments in the system and the final state
is reached. This protocol run corresponds to the path that contains the
states 1, 3, 4, 5, 6, and 7 in Figure 14.

D1. HoldsAt(CC(MR, CT, accept(i, m), goods(i)), t2) (By Axiom PA5)

D2. HoldsAt(CC(MR, CT, pay(m), receipt(i)), t2) (By Axiom PA8)

D3. HoldsAt(CC(CT, MR, goods(software), pay(price)), t3) (By Ax-
iom PA7)

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.19

20 Yolum and Singh

R =
[[happens(sendquote(software, price, 51), t1),
happens(sendaccept(software, price, 51), t2),
happens(sendgoods(software, price, 51), t3),
happens(sendepo(price, 51), t7),
happens(sendreceipt(software, 51), t8)],

[before(t1, t), before(t1, t8),
before(t1, t7), before(t1, t3),
before(t1, t2), before(t2, t),
before(..., ...)|...]] ;

R =
[[happens(sendaccept(software, price, 51), t5),
happens(sendgoods(software, price, 51), t6),
happens(sendepo(price, 51), t7),
happens(sendreceipt(software, 51),t8)],

[before(t5, t), before(t5, t8),
before(t5, t7), before(t5, t6),
before(t6, t), before(t6, t8),
before(..., ...)|...]] ;

R =
[[happens(sendgoods(software, price, 51), t4),
happens(sendepo(price, 51), t7),
happens(sendreceipt(software, 51), t8)],

[before(t4, t), before(t4, t8),
before(t4, t7), before(t7, t),
before(t7, t8), before(t8, t)]] ;

Figure 13. Protocol runs computed by the planner

D4. HoldsAt(C(MR, CT, goods(software)), t3) (By D3 and D1)

D5. � HoldsAt(CC(MR, CT, accept(software, price), goods(software)),
t7) (By D1, Axiom 10)

D6. HoldsAt(goods(software), t7) (By Axiom PA2)

D7. HoldsAt(C(CT, MR, pay(price)), t7) (By Axiom 9, D3, and D6)

D8. HoldsAt(pay(price), t8) (By Axiom PA3)

D9. � HoldsAt(C(CT, MR, pay(price)), t8) (By Axiom 8, D7, and D8)

D10. HoldsAt(C(MR, CT, receipt(software)), t8) (By D2, D8, and Ax-
iom 9)

D11. � HoldsAt(CC(MR, CT, pay(m), receipt(i)), t8) (By D2, D8, and
Axiom 9)

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.20

Reasoning About Commitments in the Event Calculus 21

1

23

45

67

C: Send
request

M: Send quote

C: Send
accept

M: Send goods

C: Send
EPO

M: Send receipt

9

8

C: Send
accept

C: Send
EPO

M: Send
goods

M: Send
goods

M: Send
quote

10

C: Return
goods

Figure 14. Additional paths generated by the planner

D12. HoldsAt(receipt(i), t) (By Axiom PA4)

D13. � HoldsAt(C(MR, CT, receipt(software)), t) (By D12 and Ax-
iom 8)

� The second protocol run starts off with the customer sending an accept
message, creating a conditional commitment that when the merchant
sends the goods, then it (the customer) will pay. Next, the merchant
sends the goods, making the customer committed to pay and creating a
conditional commitment to send the receipt after the payment. After the
customer sends the payment, its commitment to send the payment is dis-
charged. But, now the merchant becomes committed to send the receipt.
After the merchant sends the receipt, there are no pending commitments
in the system and the final state is reached. This protocol run captures the
second scenario described in Example 2. This protocol run corresponds
to the path that contains the states 1, 9, 5, 6, and 7 in Figure 14.

D1. HoldsAt(CC(CT, MR, goods(software), pay(price)), t6) (By Ax-
iom PA7)

D2. HoldsAt(goods(software), t7) (By Axiom PA2)

D3. HoldsAt(C(CT, MR, pay(price)), t7) (By D1, D2, and Axiom 9)

D4. � HoldsAt(CC(CT, MR, goods(software), pay(price)), t6) (By D1
and Axiom 9)

D5. HoldsAt(CC(MR, CT, pay(price), receipt(software)), t7) (By Ax-
iom PA8)

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.21

22 Yolum and Singh

D6. HoldsAt(pay(price), t8) (By Axiom PA3)

D7. HoldsAt(C(MR, CT, receipt(software)), t8) (By D5, D6, and Ax-
iom 9)

D8. � HoldsAt(CC(MR, CT, pay(price), receipt(software)), t8) (By D5,
D6, and Axiom 9)

D9. HoldsAt(receipt(i), t) (By Axiom PA4)

D10. � HoldsAt(C(MR, CT, receipt(software)), t) (By D9 and Axiom 8)

� The third protocol run is identical to Example 5. This protocol run cor-
responds to the path 1, 8, 6, and 7 in Figure 14.

These protocol runs can be used by an agent at run time to decide if an
action is appropriate at a particular state of the execution. This enables the
agents to cope with the exceptions by reconstructing plans as necessary. Thus,
agents can execute protocols flexibly by taking advantage of opportunities
and handling exceptions.

Safe Paths All generated protocol runs ensure that if followed correctly,
the protocol ends in a desired final state. But, the actions in the protocol
runs are usually taken by different parties. The generation of a path by an
agent does not guarantee that another agent will follow it. The agents are
only responsible for honoring their commitments. For example, an execution
of the three actions (sendGoods, sendEPO, and sendReceipt) in any order
takes the protocol to the desired final state (Figure 12), since these actions
initiate goods, pay, and receipt; respectively. Although all orderings of these
actions achieve the final state, some orderings of these actions can be more
preferable than others because they may enforce creation of commitments.

M: Send
goods

C: Send
EPO

M: Send
receipt

1 2 3 4

pay(m)
goods(i)
CC(pay(m), receipt(i))

pay(m)
goods(i)
receipt(i)

pay(m)

Figure 15. Possibly an unsafe path from the customer’s side

EXAMPLE 6. We compare two orderings of these actions.

1. The first case is shown in Figure 15. The customer starts the protocol
by paying (sendEPO), then the merchant sends the goods (sendGoods)
and the receipt (sendReceipt). By definition of sendGoods, the merchant
makes a conditional commitment that it will send the receipt if the cus-
tomer pays, but since the customer has already paid at that moment, the

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.22

Reasoning About Commitments in the Event Calculus 23

conditional commitment stays until the merchant sends the receipt. Even
though this is a valid protocol run, after the customer pays, the merchant
has no obligation to send the goods or the receipt, since it has not created
any commitments. An example protocol run of this scenario would be as
follows.
happens(sendEPO(price, 51),

 �
), happens(sendGoods(software, price, 51),
	

), happens(sendReceipt(software, 51),

 �

), before(

 �

,

	

), before(

�

,

 �

),
before(

 �
,

)

2. Figure 16 shows a different ordering where the merchant starts the proto-
col by sending the goods. Again, this initiates a conditional commitment
such that the merchant will deliver the receipt if it gets a payment. This
time, when the customer sends a payment, the merchant becomes com-
mitted to send the receipt. Thus, from the customer’s point of view, this
protocol run is safer in that the customer does not need to pay until it gets
the goods and when it pays, there is a guarantee (through a commitment)
that the merchant will deliver the receipt. An example protocol run of this
scenario would be as follows.
happens(sendGoods(software, price, 51),

 �
), happens(sendEPO(price, 51),

), happens(sendReceipt(software, 51),

 �

), before(

 �

,

), before(

,

��

),
before(

 �
,

)

M: Send
goods

C: Send
EPO

M: Send
receipt

1 2 3 4

goods(i)
CC(pay(m), receipt(i))

pay(m)
goods(i)
receipt(i)

pay(m)
goods(i)
C(receipt(i))

Figure 16. A more secure path

Even though the second protocol run provides additional security, the
choice between the two protocol runs is left to the individual agents. A cus-
tomer who trusts the merchant to deliver the goods without a commitment
can still choose to follow the first run.

The security of the paths can be adjusted by modifying the preconditions
of the actions. For example, to generate the second protocol run, it is enough
to constrain the sendEPO action by enforcing the precondition goods as was
the case in Figure 10. This way, the customer will only be able to initiate a
sendEPO action after it receives the goods.

Flexibility During Execution As the previous examples illustrate, our ap-
proach can handle different types of exception, including different orderings
of actions, or skipping actions as necessary. These exceptions can be handled
both at compile time and at run time. In other words, additional protocol

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.23

24 Yolum and Singh

paths can be generated to account for these types of exceptions. Our approach
offers another kind of flexibility, which is caused by an unexpected action
from a participant. We illustrate this point with an example. Consider an
additional action returnGoods(i, m) meaning that the customer is returning
goods

�
for which it has promised to pay an amount � . We can show this

with the following protocol axioms,

� Terminates(returnGoods(i, m), goods(i), t)

� Release(returnGoods(i, m), MR, C(pay(m)))

These two axioms say that after the returnGoods action takes place, the propo-
sition goods will not hold and this action will release the customer from
paying for the goods.

In Figure 14, in state � the following holds:

� HoldsAt(goods(software), t)

� HoldsAt(C(CT, MR, pay(price)), t)

� HoldsAt(CC(MR, CT, pay(m), receipt(i)), t)

If at state � , the customer invokes the returnGoods action, the commitment
C(CT, MR, pay(price)) as well as the proposition goods(i) is terminated.
Thus, the protocol moves to a new state (shown as � �). Even though this is
not the desired final state, the protocol can end here since no base-level com-
mitments hold. Since our operations on commitments are rich, the protocol
execution can accommodate this type of exceptions at run time.

7. Discussion

Traditionally, protocols have been specified using formalisms such as finite
state machines, or Petri Nets, that only capture the legal orderings of actions.
The main advantage of these formalisms is that they are easy to implement
and can be trivially followed by reactive agents. However, since the semantic
content of the actions is not captured, the agents cannot reason about their ac-
tions, which means that they cannot take advantage of opportunities that arise
or handle unexpected situations at run time. To remedy this situation, we de-
velop an approach for protocol specification that embodies the commitments
of agents to one another. Commitments have been studied before (Castel-
franchi, 1995; Gasser, 1998) but have not been used for protocol specification
as we have done here. The specification of protocols in terms of commitments
allows agents to reason about their actions, enabling them to take care of the
unexpected situations that may arise at run time. As we demonstrated, agents

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.24

Reasoning About Commitments in the Event Calculus 25

that follow these protocols can decide on the actions they want to take by
generating protocol runs with a planner.

In designing protocols, we can exploit the strengths of the event calculus
to reason about actions and commitments. The event calculus provides an
elegant way to represent the changes of the world through the actions in
a protocol, and enables us to uniformly represent commitments, operations
on them, and reasoning rules about them. Based on this formal grounding,
multiagent protocols can be specified rigorously yet flexibly.

The event calculus has been theoretically studied, but has not been used
for modeling commitments or commitment-based protocols. Denecker et al.
(1996) use event calculus for specifying process protocols. Their specification
also captures the preconditions of actions as well as the execution of the pro-
tocol through actions. Since Denecker et al. specify process protocols only,
they use domain propositions to denote the meanings of actions. In multiagent
systems, in addition, protocols should respect agents autonomy and enable
them to interact flexibly to exploit opportunities and to handle exceptions.
In order to achieve this, we use commitments to denote the meanings of the
actions.

Representations of multiagent interactions should satisfy three desirable
criteria (Singh, 2000). First we describe these criteria and show how our
approach satisfies them. Next we review the recent literature, considering how
these systems satisfy the same criteria.

� Meaningful. The messages should be represented with their content in-
stead of being treated as mere tokens. Our approach is meaningful since
we capture the meanings of the actions via commitments.

� Verifiable. The protocol representation should allow detection of agents
that are not compliant with a given protocol without requiring that we
examine the internal reasoning (or the source code) of the agents, which
would violate our requirement of heterogeneity. Commitments inher-
ently support verifiability. By keeping track of the commitments that
are created and resolved in the system, we can infer whether an agent
has acted according to its commitments.

� Declarative. A declarative, as opposed to a procedural, representation
should specify what conditions should be brought out in the protocol,
rather than how they are brought out. Our approach is declarative in
that it specifies the contents of actions and states rather than specifying
procedurally how agents can get from a start state to a final state.

It is worth noting that designing protocols that ensure meaningful conver-
sations among agents is necessary but not sufficient to support the dynamic
interactions among agents. For example, even though a protocol may enable

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.25

26 Yolum and Singh

an exception to be handled, if doing so is not favorable to an agent, the
protocol may not proceed along that run. Hence, a full-blown treatment of
interactions would also involve considerations of the strategic reasoning of
agents, which is beyond the scope of this paper. Below we discuss some
leading approaches that are most related to our work.

The protocols defined using FSMs are verifiable, since all transitions are
public, i.e., externally visible. However, FSMs procedurally specify the se-
quences of actions that reach a goal state when executed in the described
sequence. That is, if the transitions from a start state to a final state are
followed, then the protocol is executed correctly. However, if an exception
occurs that is not handled by the FSM, then the agents cannot reason about the
individual transitions of the FSM. In other words, FSMs specify how a certain
goal state can be reached rather than specifying what each action brings out.
In addition to not being declarative, FSM representation is not meaningful,
since each message is treated as an arbitrary token without considering the
meaning attached to it. As we showed above, representations that are not
meaningful are not adequate to accommodate flexible interactions among
autonomous agents, since agents cannot exercise their autonomy by choosing
among actions without knowing what each action means.

d’Inverno et al. (1998) develop interaction protocols for the multiagent
framework, Agentis. They model protocols as a composition of various ser-
vices and tasks requested and offered among agents. d’Inverno et al.’s proto-
col model consist of four levels: registration, service, task, and notification.
At each level of Agentis, the protocols are specified with FSMs. The FSM
representations allow Agentis to specify the protocols formally. However, the
protocols suffer from the shortcomings of the FSMs.

Lespérance et al. (2000) develop a tool, ConGolog, for developing reactive
control mechanisms that are capable of handling exceptions. Their system’s
execution is based on a declarative domain description, which is similar to
our definition of a protocol specification in that it specifies the preconditions
and effects of the actions in the domain. We share their intuition in recon-
structing plans at run time to handle exceptions. The main difference between
Lespérance et al.’s approach and ours is that they define the meanings of
actions in terms of only domain propositions, whereas we define them in
terms of domain properties and commitments. In this respect, Lespérance
et al.’s representation is not verifiable. Considering our example protocol,
assume a protocol run where a customer agent performs a sendAccept action
after receiving a sendQuote action—and no other actions take place. In our
approach, we can easily determine that the merchant must send the goods to
the customer, and the customer must send the EPO. By contrast, Lespérance
et al.’s approach simply determines that the merchant sent a quote to the cus-
tomer and the customer accepted the quoted price. To decide if the protocol

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.26

Reasoning About Commitments in the Event Calculus 27

is in a good state requires examining the individual agent programs, i.e., the
internals of the agents.

Smith et al. (1998) develop protocols in which actions are given a content
based on joint intentions. We concur on the necessity of declarative content.
However, Smith et al. model the content of actions via mental attributes. Since
the mental attributes (such as beliefs, intentions, or individual commitments)
are conceptually within an agent, there is no fundamental verification possible
of them. That is, an agent may be insincere or mistaken about its beliefs. We
cannot determine whether or not it is so without somehow examining the
internals of the agent. By contrast, social commitments are made from one
agent to another. Since social commitments are conceptually public, we can
potentially judge if an agent has violated its commitments.

Pitt and Mamdani (1999) develop an agent communication language (ACL)
framework in terms of protocols. Each protocol is associated with a set of
performatives and a reply function that constrains possible performatives for
replies. Pitt and Mamdani give content to messages based on social con-
structs, similar to the present approach. Whereas our focus in this work is
to generate flexible protocols, their focus is to show how an agent designer
can build agents that can follow such an ACL specification.

Fornara and Colombetti (2002) develop a method for agent communica-
tion, where the meanings of messages denote commitments. In addition to
base-level and conditional commitments, Fornara and Colombetti use pre-
commitments to represent a request for a commitment from a second party.
They model the life cycle of commitments in the system through update rules.
Based on these update rules, a commitment can either be fulfilled, violated,
or canceled. Our approach can handle other operations on commitments, such
as delegate and assign.

Flores and Kremer (2002) develop a model to specify conversation pro-
tocols using conversation policies. They define conversation policies, e.g.,
always answering a proposal, as norms in the society. As in our approach, Flo-
res and Kremer model actions as creating and discharging commitments. In
addition to following the operations on commitments, agents also follow the
conversation policies to ensure desired sequences of actions. Flores and Kre-
mer only model base-level commitments, whereas our approach accommo-
dates conditional commitments and reasoning rules for these commitments.
As a result, their approach does not allow any additional flexibility to the
protocol.

In our future work, we plan to study various properties of protocols pro-
duced with this approach in more detail. In this paper, we have conceptually
studied safe protocol runs. It would be interesting to study generation of
paths that satisfy certain constrains, such as the mentioned safe protocol runs.
Protocols in the networking community have been studied in detail, and vali-
dation models and correctness requirements have been identified (Holzmann,

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.27

28 Yolum and Singh

1991). Similar analysis need to be applied to multiagent protocols, and design
tools need to be developed to ensure correct protocols.

Acknowledgements

A previous version of this paper appears in the First International Conference
on Autonomous Agents and Multiagent Systems (Yolum and Singh, 2002).
We thank Jürgen Dix, Peter Wurman, Matt Stallman, Michael Winikoff, Mehdi
Dastani, and the anonymous reviewers for useful comments.

This work was supported by the National Science Foundation under grants
IIS-9624425 (Career Award) and DST-0139037.

References

Atkins, E. M., T. F. Abdelzaher, K. G. Shin, and E. H. Durfee: 2001, ‘Planning and Resource
Allocation for Hard Real-Time, Fault-Tolerant Plan Execution’. Autonomous Agents and
Multi-Agent Systems 4(1-2), 57–78.

Austin, J. L.: 1962, How to Do Things with Words. Oxford: Clarendon Press.
Castelfranchi, C.: 1995, ‘Commitments: From Individual Intentions to Groups and Organi-

zations’. In: Proceedings of the International Conference on Multiagent Systems. pp.
41–48.

Colombetti, M.: 2000, ‘A Commitment-Based Approach to Agent Speech Acts and Con-
versations’. In: Proceedings of the Workshop on Agent Languages and Conversation
Policies.

Damianou, N., N. Dulay, E. Lupu, and M. Sloman: 2001, ‘The Ponder Policy Specification
Language’. In: Proceedings of the Workshop on Policies for Distributed Systems and
Networks, Vol. 1995 of LNCS. Bristol, UK, pp. 17–28, Springer-Verlag.

Denecker, M., K. V. Belleghem, G. Duchatelet, F. Piessens, and D. D. Schreye: 1996, ‘A
Realistic Experiment in Knowledge Representation in Open Event Calculus : Protocol
Specification’. In: Proceedings of the Joint International Conference and Symposium on
Logic Programming. pp. 170–184.

Denecker, M., L. Missiaen, and M. Bruynooghe: 1992, ‘Temporal reasoning with abductive
event calculus’. In: Proceedings of the 10th European Conference on Artificial Intelligence
(ECAI). pp. 384–388, John Wiley & Sons.

d’Inverno, M., D. Kinny, and M. Luck: 1998, ‘Interaction Protocols in Agentis’. In: Proceed-
ings of the 3rd International Conference on Multiagent Systems (ICMAS). pp. 112–119,
IEEE Computer Society Press.

Dix, J., H. Muñoz-Avila, and D. Nau: 2000, ‘IMPACTing SHOP: Planning in a Multi-Agent
Environment’. In: F. Sadri and K. Satoh (eds.): Proceedings of Computational Logic in
Multi-Agent Systems (CLIMA). pp. 30–42, Imperial College.

Emerson, E. A.: 1990, ‘Temporal and Modal Logic’. In: J. van Leeuwen (ed.): Handbook of
Theoretical Computer Science, Vol. B. Amsterdam: North-Holland, pp. 995–1072.

Eshghi, K.: 1988, ‘Abductive planning with event calculus’. In: R. A. Kowalski and K. A.
Bowen (eds.): Proceedings of the Fifth International Conference on Logic Programming
(ICLP). pp. 562–579, MIT Press.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.28

Reasoning About Commitments in the Event Calculus 29

Fisher, M. and M. Wooldridge: 1997, ‘On the Formal Specification and Verification of Multi-
Agent Systems’. International Journal of Intelligent and Cooperative Information Systems
6(1), 37–65.

Flores, R. A. and R. C. Kremer: 2002, ‘To Commit or Not to Commit: Modelling Agent
Conversations for Action’. Computational Intelligence 18(2), 120–173.

Fornara, N. and M. Colombetti: 2002, ‘Operational Specification of a Commitment-Based
Agent Communication Language’. In: Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 535–542, ACM
Press.

Gasser, L.: 1998, ‘Social Conceptions of Knowledge and Action: DAI Foundations and Open
Systems Semantics’. In: (Huhns and Singh, 1998). pp. 389–404. (Reprinted from Artificial
Intelligence, 1991).

Holzmann, G. J.: 1991, Design and Validation of Computer Protocols. New Jersey: Prentice-
Hall.

Huhns, M. N. and M. P. Singh (eds.): 1998, Readings in Agents. San Francisco: Morgan
Kaufmann.

Hutchison, J. and M. Winikoff: 2002, ‘Flexibility and Robustness in Agent Interaction
Protocols’. In: Proceedings of the Workshop on Challenges in Open Agent Systems.

Kowalski, R. and M. J. Sergot: 1986, ‘A Logic-Based Calculus of Events’. New Generation
Computing 4(1), 67–95.

Lespérance, Y., K. Tam, and M. Jenkin: 2000, ‘Reactivity in a Logic-Based Robot Pro-
gramming Framework’. In: Intelligent Agents VI: Agent Theories, Architectures, and
Languages. pp. 173–187.

McCarthy, J. and P. J. Hayes: 1969, ‘Some Philosophical Problems from the Standpoint of
Artificial Intelligence’. In: Machine Intelligence 4. American Elsevier.

Pitt, J. and A. Mamdani: 1999, ‘A Protocol-Based Semantics for an Agent Communica-
tion Language’. In: Proceedings of the International Joint Conference on Artificial
Intelligence. pp. 486–491.

Shanahan, M.: 1997, Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. Cambridge: MIT Press.

Shanahan, M.: 2000, ‘An Abductive Event Calculus Planner’. Journal of Logic Programming
44, 207–239.

Singh, M. P.: 1999, ‘An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts’. Artificial Intelligence and Law 7, 97–113.

Singh, M. P.: 2000, ‘A Social Semantics for Agent Communication Languages’. In: F. Dignum
and M. Greaves (eds.): Issues in Agent Communication, LNAI 1916. Springer, pp. 31–45.

Singh, M. P.: 2003, ‘The future of agent communication’. In: M.-P. Huget (ed.): Communica-
tion in Multiagent Systems: Background, Current Trends and Future. Springer Verlag. To
appear.

Sirbu, M. A.: 1998, ‘Credits and Debits on the Internet’. In: (Huhns and Singh, 1998). pp.
299–305. (Reprinted from IEEE Spectrum, 1997).

Smith, I. A., P. R. Cohen, J. M. Bradshaw, M. Greaves, and H. Holmback: 1998, ‘Designing
Conversation Policies using Joint Intention Theory’. In: Proceedings of the 3rd Interna-
tional Conference on Multiagent Systems (ICMAS). pp. 269–276, IEEE Computer Society
Press.

Venkatraman, M. and M. P. Singh: 1999, ‘Verifying Compliance with Commitment Protocols:
Enabling Open Web-Based Multiagent Systems’. Autonomous Agents and Multi-Agent
Systems 2(3), 217–236.

Walton, D. N. and E. C. W. Krabbe: 1995, Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. Albany: State University of New York Press.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.29

30 Yolum and Singh

Yolum, P. and M. P. Singh: 2001, ‘Commitment Machines’. In: Intelligent Agents VIII:
Proceedings of the 8th International Workshop on Agent Theories, Architectures, and
Languages. pp. 235–247, Springer-Verlag.

Yolum, P. and M. P. Singh: 2002, ‘Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments’. In: Proceedings of the 1st International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 527–534,
ACM Press.

amai-ec-py-v7.tex; 3/06/2003; 12:40; p.30

