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Abstract: We start introducing some aspects of 
the theoretical framework: the Anthropological 
Theory of Didactics (ATD). Then, we consider 
on the research domain commonly known as 
“modelling and applications” and briefly 
describe its evolution using the ATD as an 
analytical tool. We propose a reformulation of 
the modelling processes from the point of view 
of the ATD, which is useful to identify new 
educational phenomena and to propose and 
tackle new research problems. Finally, we focus 
on the problem of the connection of school 
mathematics. The reformulation of the 
modelling processes emerges as a didactic tool 
to tackle this research problem. We work on the 
problem of the articulation of the study of 
functional relationships in Secondary Education 
and present a teaching proposal designed to 
reduce the disconnection in the study of 
functional relationships in Spanish Secondary 
Education. 

ZDM-Classification: D20, D30, F80, I24, M14  

1. Introducing the Anthropological 
Theory of the Didactic 

The works of Chevallard (1999, 2006), 
Chevallard, Bosch, Gascón (1997), Gascón 
(2003), Barbé, Bosch, Espinoza and Bosch, 
Chevallard and Gascón (2006) show how the 
Anthropological Theory of the Didactic (from 
now on ATD) has emerged and developed 
within the research in Didactics of Mathematics.  
It proposes, as we will see, a new way of 
modelling the mathematical activity and its 
teaching and learning through the notions of 
mathematical and didactic praxeologies. It also 
introduces a scale of levels of mathematical and 
didactic determination to study the generic 
restrictions coming from society, school or the 
different disciplines taught at school, as well as 

the more specific ones coming from the way 
school mathematics is organised and divided 
into “blocks of contents”, domains, themes and 
topics. After giving a short account of the ATD 
approach, we will see how to consider 
mathematical modelling and how to formulate 
and approach what we call the problem of 
“connecting the mathematical curriculum”. 

1.1. The modelling of mathematical activity: 
mathematical praxeologies 

The ATD proposes a general epistemological 
model of mathematical knowledge, conceived as 
a human activity. The main theoretical tool is 
the notion of praxeology (or mathematical 
organization) that is structured in two levels: 

• The praxis or “know how”, which includes 
different kinds of problems to be studied as 
well as techniques available to solve them. 

• The logos or “knowledge”, which includes 
the “discourses” that describe, explain and 
justify the techniques used and even produce 
new techniques. This is called technology in 
its etymological sense of “discourse (logos) 
on the technique (technè)”. The formal 
argument which justifies such technology is 
called theory. It is conceived as a second 
level of description-explanation-
justification. 

The ATD assumes an institutional conception of 
the mathematical activity. Mathematics, like any 
other human activity, is something that is 
produced, taught, learned, practised and diffused 
in social institutions. It can be modelled in terms 
of praxeologies called mathematical 
praxeologies or mathematical organizations 
(MO from now on). For instance, in Spanish 
Secondary Education, it is possible to identify a 
mathematical praxeology around proportional 
relationships including a set of problematic tasks 
(the classic proportional problems where three 
measures are given and a fourth one is to be 
found), techniques to deal with these problems 
(commonly known as rule of three) and a 
technological-theoretical discourse that explains 
and justifies the mathematical activity 
performed (defining what are proportional 
magnitudes and how to determine if two 
magnitudes are directly or inversely 
proportional). But this MO is mixed up with 
praxeological components from other 
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praxeologies: on the one hand, the praxeology 
that considers proportionality as a relationship 
between numerical variables modelled by an 
equation xky ⋅= ; on the other hand, the 
praxeology that considers proportional relation-
ships as linear functions (see García, 2005, for 
more details). 

In order to have the most precise tools to analyse 
the institutional didactic processes, Chevallard 
(1999, p. 226) classifies mathematical 
praxeologies as specific, local, regional and 
global. The nature of a praxeology depends on 
the institution where it is considered: 

• A specific praxeology is generated by a 
unique type of task. Generally, in a specific 
praxeology there is only one technique to 
deal with the task and represents the 
“official” way to solve the problem in that 
institution. The technology is usually absent 
or implicitly assumed. 

• A local praxeology is generated by the 
integration and connection of several 
specific praxeologies. A local praxeology is 
characterized by a technology that justifies, 
explains, connects and produces the 
different techniques of each specific 
praxeology.  

• A regional praxeology is obtained as the 
result of the coordination, integration and 
articulation of several local praxeologies in 
a common mathematical theory.  

• A global praxeology emerges when several 
regional praxeologies are added together 
(integration or juxtaposition of different 
mathematical theories). 

Thus, the classic praxeology around proportional 
relationships integrates different specific 
praxeologies (direct rule of three, inverse rule of 
three and multiple rule of three) with a common 
technology: the theory of ratios and proportions. 
This local praxeology is in turn an element of a 
regional one which includes fractions, measures 
and several applications of ratios and 
proportions to commercial arithmetic. 

In short, what is learned and taught in an 
educational institution are mathematical 
praxeologies. In general, praxeologies are shared 
by groups of human beings organized in 
institutions. Cognition is thus institutionally 
conceived. 

1.2. The study process: didactic praxeologies 

Mathematical praxeologies do not emerge 
suddenly in an institution. They do not have a 
definite shape. On the contrary, they are the 
result of a complex and ongoing activity, where 
some invariable relationships, which can be 
modelled, exist. There appear two indivisible 
aspects of the mathematical activity: on the one 
hand, the process of mathematical construction 
(the study process or didactic process) and, on 
the other hand, the result of this construction 
(the mathematical praxeology). In fact, there is 
no mathematical praxeology without a study 
process that engenders it but, at the same time, 
there is no study process without a mathematical 
praxeology in construction. Process and product 
are the two sides of the same coin.  

“Generally speaking, mathematical activity 
can be considered as the use of a mathematical 
organization or a mathematical work. 
However it is also, at the same time, a 
production (or re-production) of mathematical 
realities that will lead to new mathematical 
organizations. The English term “work” 
(translated from the French oeuvre) allows us 
to talk about mathematics as a human activity 
–given that mathematics are something we do- 
and as an artefact produced and reproduced by 
this activity –the work of mathematicians-. A 
mathematical work is something to be used 
and something to be produced or reproduced.” 
(Bolea, Bosch & Gascón 1999, p. 136). 

The consideration of different processes of 
mathematical construction shows some 
invariable dimensions or moments that structure 
them, independently of cultural, social or 
individual factors. The didactic moments are 
defined, not in a chronological or linear sense, 
but as different dimensions of the mathematical 
activity. 

Thus, the study process can be situated in a 
space characterized by six didactic  moments: 
(1) the moment of the first encounter with a 
specific type of tasks, (2) the moment of the 
exploration of the type of tasks, (3) the moment 
of the construction of the technological-
theoretical environment (that explains and 
justifies the techniques used and will also allow 
the production of new techniques), (4) the 
moment of working on the technique (which 
provokes the evolution of the existing 
techniques and the creation of new ones), (5) the 
moment of institutionalization (where the 
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components of the praxeology constructed are 
delimited) and (6) the moment of evaluation of 
the praxeology constructed. 

The study process does not have a linear 
structure. Each moment can be lived with 
varying intensity at different moments during 
the study process as many times as necessary. It 
is common that some of them occur 
simultaneously.  Each moment has a specific 
function in the development of the study process 
and there exists a global internal dynamic 
manifested in the invariable character of certain 
relations among these moments. 

A study process (like every human activity) can 
be modelled in terms of praxeologies which are 
now called didactic praxeologies (Chevallard 
1999, p. 244). Like every praxeology, didactic 
praxeologies include a set of problematic 
educational tasks, educational techniques (to 
tackle these tasks) and educational technologies 
and theories (to describe and explain these 
techniques).  

For instance, the introduction of a new concept, 
like the concept of proportional relationships in 
Secondary Education, is a problematic 
educational task. There is not a unique way to 
perform this task. In many cases, this task is 
explicitly assumed by the teacher through the 
production of a discourse followed by some 
examples. This educational technique is justified 
by a specific representation of the didactic 
system and the way that students construct their 
mathematical knowledge (that can be 
summarized in the following slogan: students 
learn what the teacher explains clearly). 
However in other cases this problematic 
educational task is “shared” by the teacher and 
the students. A way to do that could be the 
investigation of the variation in a specific real 
situation (for instance, the dimensions of a 
shadow projected on a screen when the distance 
between the torch and the object varies1). This 
educational technique is now justified by 
another representation of the didactic system and 
the way that students construct their 
mathematical knowledge (that can be 
summarized in the slogan taken from “Hot 
Math!” website: I hear, I forget. I see, I learn. I 
do and I understand!). 

                                                 
1 Taken from Hot Math! Website 
(http://projects.edte.utwente.nl/hotmath/index.html)  

A new conception of didactics of mathematics 
arises. Didactic is identified with anything that 
can be related to study and helping to study:  

“Didactics of mathematics is the science of 
study and helping to study mathematics. Its 
aim is to describe and characterize the study 
processes (or didactic processes) in order to 
provide explanations and solid answers to the 
difficulties which people (students, teachers, 
parents, professionals, etc.) face when they are 
studying or helping others to study 
mathematics” (Chevallard, Bosch y Gascón 
1997, p. 60). 

1.3. The levels of determination 

The mathematical knowledge is produced, 
taught, learned, practised and diffused in social 
institutions. It is thus not possible to separate it 
from its process of construction in a specific 
institution. Chevallard (2001, 2002a, 2002b) 
proposes a hierarchy of determination levels 
among mathematical praxeologies that live (or 
could live) in an institution and the possible 
ways of constructing those praxeologies in this 
institution (the didactic praxeologies): 

Civilization  Society  School  Pedagogy 
 Discipline  Domain  Sector  Theme  

Subject 

The structure of the praxeologies on each level 
of the hierarchy conditions the possible ways of 
organizing its study, that is, the didactic 
praxeologies.  Reciprocally, the nature and the 
function of the didactic tools existing in each 
level determine, to a large extent, the type of 
praxeologies that could be reconstructed. 

Every question Q that generates a didactic 
process in an educational institution is 
embedded in a theme belonging to a sector 
included in a domain of a discipline. If the 
discipline is mathematics, we will refer to these 
levels as mathematical levels. In contrast, the 
levels beyond the “discipline” are considered as 
pedagogical levels. 

“For instance, the question “Which are the 
symmetries of a rectangle (not squared)?” is 
considered, in most educational systems, as 
belonging to the theme “symmetries of 
polygons”, which is included in the sector 
“transformations”, included in the domain 
“Geometry”, belonging to the discipline 
“Mathematics”” (Chevallard, 2001, p. 3).  
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However, the construction of that hierarchy does 
not guarantee the quality of the study of Q. For a 
question Q to be studied meaningfully at school, 
it is also necessary that (1) the question Q comes 
from those questions that society proposes to be 
studied at school (cultural or social legitimacy), 
(2) Q appears in certain “umbilical” 
mathematical situations, that is, it is placed at 
the core of mathematics (mathematical 
legitimacy) and (3) Q leads us somewhere, that 
is, it is connected to other questions studied at 
school, either mathematical questions or 
questions from other disciplines (functional 
legitimacy). 

If a hierarchy taking into consideration (1), (2), 
(3) is not constructed for a specific question Q, 
there is no point in studying it because the 
question has lost its rationale or raison d’être. In 
that case it is said that Q is a dead question 
(Chevallard, Bosch and Gascón, 1997). 

In García (2005), for example, we showed that 
in Spanish Secondary Education there exist two 
different hierarchies related to the study of the 
proportional relationship between magnitudes. 
The first one places the proportional relationship 
in the sector of “Proportionality” and in the 
domain of “Numbers and measures”. This 
implies that proportionality is conceived as a 
static relationship modelled in terms of 
proportions. The second hierarchy places the 
proportional relationship in the sector of 
“Characterizing relationships between 
magnitudes”, which is a part of the domain 
called “Functions and their graphical 
representation”.  This implies that 
proportionality is conceived as a dynamic 
relationship modelled in terms of linear 
functions. The existence of the two hierarchies 
gives rise to the reconstruction of two different 
praxeologies in present Secondary Education, 
studied at different moments of the school year 
and almost completely disconnected.  

Traditionally, the work of the teacher has been 
limited to the “Theme  Subject” levels, 
leaving the higher levels to be determined by the 
official curriculum and educational authorities. 
This phenomenon, identified by Chevallard 
(2001) as the “phenomenon of the teacher’s 
confinement” in the theme-subject levels, does 
not help mathematical themes and questions 
studied at school to explicitly show the reasons 
that motivated their presence in the curriculum, 

because these reasons are usually located at 
higher levels of determination, in the connection 
between different contents or praxeologies. The 
“thematic confinement” arrives when teachers 
do not question the way mathematical contents 
are organized into blocks, around important 
“generative questions” (like the use of plane 
geometry –triangles– to approach the problem of 
measurement, the link between proportionality 
and functional modelling, or the relation 
between derivatives and physical mechanics). In 
this case, the contents may turn into dead 
questions, when the institution seems to ignore 
where they come from and where they lead to. 
We can then talk about the monumentalization 
of mathematical organizations phenomenon: the 
students are invited to visit but not to construct 
them. 

In some cases, research in mathematic education 
also seems to be restricted to the “thematic” 
level, focused in studying the “appropriate” way 
of introducing a mathematical content – a 
specific praxeology – in a given educational 
institution, without any deeper reflection upon 
the way this content is structured and without 
taking into account the conditions and 
restrictions imposed by the different co-
determination levels during the didactic 
transposition process: why this praxeology 
belongs to this block and no to this other one, 
why does it appear in the curriculum, which is 
its rationale, its motivation, where does it come 
from, etc.  

2. Research in Mathematical modelling  
Since the mid-eighties, researchers in 
Mathematics Education have a growing interest 
in the role that modelling processes can play in 
the teaching and learning of mathematics in all 
levels of the educational system. For a long 
time, “modelling” has been restricted to the 
application of a mathematical knowledge, 
already constructed, to a specific “real” 
situation. Even if this use of the term persists, 
“modelling” is considered in a richer and more 
fertile way in Mathematics Education, where it 
forms a large research domain that is constantly 
growing.  

At present, it is common to hear, both from the 
mathematical education community and from 
different social agents, about the necessity of 
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linking the mathematical contents to certain 
aspects of real life and about the necessity of 
developing the “modelling competence” as a 
basic mathematical competence in students, as it 
is shown, for instance, in the recent PISA study 
(OECD, 2003). 

Two different interpretations of “modelling” can 
be considered: 

• On the one hand, the idea of taking, from 
mathematics, the processes of mathematical 
modelling as a “powerful didactic tool”. In 
other words, the problem approached can be 
formulated as follows: how could modelling 
processes improve the teaching of 
mathematics and the understanding of 
mathematical concepts? 

• On the other hand, modelling also refers to 
the necessity of an explicit teaching of 
modelling processes as a specific 
mathematical content, linked to the students’ 
formative needs (for instance, biology, 
chemistry or engineering students). We can 
resume this trend in the following starting 
question: how could students achieve a 
modelling competence in relation to their 
specific scientific or professional field? 

The work done in these initial questions causes a 
first development of the research domain called 
“modelling and applications”, producing 
different trends not disconnected between them, 
although we will present them here separately. 

A first trend concentrates on the search of 
“good” systems to be modelled and “good” 
applications of mathematics. Searching in the 
wide universe of systems and models, this trend 
tries to identify those systems “appropriate” to 
engage students in a modelling process that 
allows them to achieve the desired mathematical 
content or the “competence” to develop 
modelling processes on their own. There is no 
deep theoretical base explicitly constructed. The 
theoretical foundation is left in the hands of 
other disciplines, like pedagogy or psychology. 

A second trend focuses on how to manage these 
“good” systems and models within the teaching 
and learning processes. From the beginning, the 
notion of “modelling” was taken from “pure 
mathematics” and summarized in the well-
known “modelling cycle” (see, for instance, 
Blum & Niss 1991). Nowadays, this kind of 
research continues and produces, through 

reflection and experimentation, good examples 
of modelling and mathematical applications 
ready to be performed in the classroom. 

However, the evolution of the research in 
“modelling and applications” led to a growing 
interest in the modelling process in itself. As 
Niss (1999) established, there is no automatic 
transfer from a solid knowledge of mathematical 
theory to the ability to solve non-routine 
mathematical problems. He proposes that 
“problem solving” and “modelling” have to be 
the object of teaching and learning. 
Consequently, “modelling” becomes an object 
of research. 

The study of the modelling process has been 
carried out initially from two different 
perspectives, not necessarily independent: 

• An epistemological approach focused on the 
characteristics of the “real situations” 
involved in the modelling processes used 
with didactic purposes, also including the 
question of the relation between those 
situations and the mathematical knowledge 
(questioning that these “real situations”, on 
their own, have didactic properties).  

• A cognitive approach that emerges from the 
necessity of a deeper understanding of the 
cognitive processes that students activate 
when they are involved in modelling / 
application tasks. 

It is well known that the question of students’ 
cognitive processes has provoked the emergence 
of new research trends that have produced 
important research results. However, this 
questioning has also provoked an inversion in 
the way of questioning the modelling process: as 
the cognitive analysis shows that performing 
modelling and applications tasks involve the 
activation of complex cognitive processes, the 
necessity of an explicit teaching of modelling 
techniques and skills in educational institutions 
(not necessarily specialized) emerges. Thus, the 
two initial approaches converge in what can be 
summarized as the “problem of modelling”, 
formulated as follows: 

How to get students develop non routine 
modelling skills by themselves (generally 
referring to extra-mathematical situations)? 

Although there exist a great variety of 
researches dealing with this topic what makes 
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any attempt to organise it difficult (see Blum, 
2002), we propose a possible structure using the 
determination levels explained above. 

A great part of the existing research places 
“modelling” on a thematic level, giving rise to 
the construction of specific and isolated 
mathematical praxeologies. In general, the 
research problem can be synthesized as follows: 
how does a person act when s/he is trying to 
solve a specific “real problem” that implies the 
necessity to model a system? It is specific 
because the research problem is confined to 
what the institutions consider a unique type of 
task. It is generally limited to a particular 
modelling process, that is, to an isolated system 
(generally extra-mathematical). The student has 
to construct a model that represents this system, 
work within the model and obtain a solution that 
needs to be confronted with the initial system. 
Once the model has been constructed and the 
solution has been found, the system disappears, 
the model becomes part of the student’s 
mathematical heritage and a new modelling 
process begins, not necessarily connected to the 
previous one. The isolated nature of that type of 
problems often makes them become anecdotic: 
the student ignores where they come from and 
where they lead to. All happens as if the 
modelling process was explicitly designed for 
the student to construct a specific concept or to 
put it to the test. Once this objective has been 
achieved, the system and the question that 
initiates the modelling process “dies” and 
“disappears”. Modelling is here a means to reach 
the goal of constructing new knowledge. At 
present there are a large number of researches 
dealing with the “problem of modelling” at this 
specific level, as shown, for instance, in the 
different editions of the conference of the 
International Community of Teachers of 
Mathematical Modelling and Applications 
(ICTMA). 

Apart from researches confined to the specific 
level, there exists another trend where the 
“problem of modelling” is situated at a more 
generic level: the one of the discipline or even 
the links between disciplines. In a general way, 
the problematic question can be summarized as 
follows: how to get students develop general 
modelling skills or a general modelling 
competence linked to the problem solving 
competence? This problem is located at the 
discipline level because it is formulated 

independently of any mathematical content and 
without taking into account the different 
structuring levels of mathematical knowledge 
(domains, sectors, themes). Although the 
modelling competence is developed through 
particular modelling examples, these are only a 
means for the general purpose: the development 
of this general competence. There exits again a 
great variety of points of view in this general 
trend: for example, the research focused in the 
students’/teachers’ beliefs when facing 
modelling tasks (Maaβ, 2005). 

A consequence of the formulation of the 
“problem of modelling” at the discipline level is 
that one of the central aspects for research in 
“modelling and applications” should be the 
curriculum development. Then terms like mixed 
curricula or integrated curricula emerge, 
referred to curricula where modelling questions 
appear either as another theme or mixed with the 
mathematical themes. We could refer for 
instance to the Danish project KOM (Niss, 
2003) where the general aims of mathematical 
education are reformulated in terms of 
competences development, including the 
modelling competence as a general competence 
that students should develop at school. 

Some research trends try to place the “problem 
of modelling” at the sector level, that is at an 
intermediate level between the themes and the 
whole mathematics as a discipline. For instance, 
the research domain known as Realistic 
Mathematics Education2, that considers 
mathematics as a human activity, proposes to 
build didactic trajectories that aim to construct 
mathematical knowledge starting from “real 
situations”3 through the process of 
horizontal/vertical mathematization (from a 
“model of” to a “model for”). 

Most of the educational research carried out in 
the domain of “modelling and applications” 
coincides in using the “modelling cycle” in the 
description of the modelling processes, with 
very few variations. At the most, there is some 
questioning of the cognitive processes activated 
in each step of the modelling cycle or in the 
transition between different steps. This has led 
to an enriched version of the modelling cycle 
                                                 
2 Freudenthal (1973, 1991), Treffers and Goffree 
(1985), De Lange (1996) 
3 The term “real” is not conceived in the “real life” 
sense, but in the sense of “real for students”. 
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(for instance, the one proposed in Blum, 2006). 
In other words, the notion of “modelling” is not 
considered as a problematic notion in the 
research carried out in mathematics education 
(as it is not problematic in biology or 
engineering, where it is also used). What is 
problematic is the teaching and learning of 
modelling or the use of modelling for the 
teaching and learning of mathematics. In fact, 
the built “patterns” of the modelling processes 
are very close to those suggested by 
mathematics itself. They are seldom modified or 
extended from the considered experimental 
facts.  

It is undeniable that a great progress has been 
made and that important new results are 
expected in the future. However, it is also true 
that nowadays the results obtained are far from 
the desired ones. As Blum (2002) says:  

“While applications and modelling also play a 
more important role in most countries’ 
classrooms than in the past, there still exists a 
substantial gap between the ideals of 
educational debate and innovative curricula, 
on the one hand, and everyday teaching 
practice on the other hand.” (p. 150) 

It is necessary, then, to continue working on the 
study of the modelling processes and on their 
relevance to the teaching and learning of 
mathematics, both from the cognitive and the 
epistemological dimensions. Here we will focus 
on the epistemological and institutional 
dimensions. A way to do that, not developed 
enough in the existing research, could be 
through the general epistemological framework 
of mathematics proposed by the ATD, trying to 
reformulate the modelling processes within this 
general theoretical framework. To progress, we 
will work on a new reformulation of the 
modelling processes, beyond the “modelling 
cycle”, as a tool to identify new educational 
problems and find possible solutions. Our aim is 
not to criticize the “modelling cycle” but to 
“transpose” it4 into a solid theoretical 
framework. 

                                                 
4 The term “transpose” is used here as a metaphor of 
the didactic transposition processes. 

3. Reformulating mathematical 
modelling in the ATD 

The research paradigm known as “didactics of 
mathematics” or “epistemological approach of 
didactics”, originated in Guy Brousseau’s first 
works of the 70s (Brousseau, 1997), places the 
question of the epistemological model of 
mathematics in the core of educational research. 
The main hypothesis can be summarized as 
follows: each didactic phenomenon has an 
essential mathematical component and, 
reciprocally, each mathematical phenomenon 
has an essential didactic component (Chevallard, 
Bosch & Gascón, 1997). From this new point of 
view, the “didactic facts” and the “mathematical 
facts” are inseparable. This idea inaugurates a 
new way to tackle the research in the didactics 
of mathematics through the questioning of the 
epistemological models of mathematical 
knowledge used in teaching institutions, 
including those used in educational research. 

The Anthropological Theory of Didactics is 
placed in the Epistemological Programme and 
postulates that “most of the mathematical 
activity can be identified (…) with a 
mathematical modelling activity” (Chevallard, 
Bosch and Gascón, 1997, p. 51). This does not 
mean that modelling is just one more aspect or 
dimension of mathematics, but that 
mathematical activity is essentially a modelling 
activity in itself.  

First, this statement is meaningful if the idea of 
modelling is not limited only to 
“mathematization” of non-mathematical issues, 
that is, when the intra-mathematical modelling is 
considered as an essential and inseparable aspect 
of mathematics. The algebraic modelling of 
geometry, or the geometrical representation of 
algebraic and arithmetical expressions are 
examples of intra-mathematical modelling: 

In Spanish Compulsory Secondary 
Education there are several moments where 
geometric notions act as models of algebraic 
notions. For instance, the graphic resolution 
of systems with two linear equations and 
two variables is modelled by straight lines 
that justify two possible cases: a unique 
solution if the lines intersect (the solution is 
the coordinates of the intersection point) or 
no solution if these lines are parallel. The 
solution of a linear inequality with two 
variables is also modelled using the graphic 
representation of the associated linear 
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equation. And there are also algebraic 
notions that model geometric properties as, 
for instance, the metric relation between the 
sides of a rectangular triangle modelled by 
the algebraic expression 222 cba +=  (being 
a the hypotenuse and b, c the other two 
sides). Given two sides, this algebraic model 
produces knowledge about the triangle (a 
quadratic equation leads us to the unknown 
side). Furthermore, this algebraic model can 
produce knowledge about the nature of a 
given triangle: being a the largest side, if 

222 cba +<  the triangle has three acute 
angles while if 222 cba +>  then the triangle 
has one obtuse angle and two acute angles. 

Second, the axiom of mathematics being 
essentially a modelling activity can only be 
meaningful if a precise meaning is given to the 
modelling activity. In the framework of the 
ATD, what is relevant is not the specific 
problem situation proposed to be solved (except 
in “life or death” situations), but what can be 
done with the solution obtained –that is, with the 
constructed praxeology–. The only interesting 
problems are those that can be reproduced and 
developed into wider and more complex types of 
problems. The study of those fertile problems 
provokes the necessity of building new 
techniques and new technologies to explain 
these techniques. In other words, the research 
should focus on those crucial questions that can 
give rise to a rich and wide set of mathematical 
organizations. Sometimes, those crucial 
questions have an extra-mathematical origin, 
sometimes they have not. 

We assume that the important starting point to 
design a study process should not be the realness 
of the situations or the initial questions, but the 
possibility they offer to create a set of well 
connected and integrated praxeologies that 
would allow the development of a wide 
mathematical activity in a teaching institution, 
taking into account the restrictions and 
conditions imposed by that institution. 

Following the example explained before 
(algebraic notions as models of geometric 
notions and vice versa), the institution seems to 
ignore the reciprocal modelling relation between 
algebra and geometry. A consequence of this 
situation is that students use the same 
mathematical knowledge with different 
meanings and different functions ignoring the 
rich relations existing between them. This fact 

gives rise to a difficult research problem: in an 
institution like Compulsory Secondary 
Education, is it possible to formulate a set of 
crucial questions that will provoke articulated 
study processes where algebraic and geometric 
notions emerge one from the other? Which 
could be these crucial questions? To what extent 
do the restrictions imposed from the different 
determination levels over the institution 
condition these crucial questions and the 
possible study processes that could emerge from 
them?  

We propose to reformulate the modelling 
process as a process of reconstruction and 
interconnection of praxeologies of increasing 
complexity (specific  local  regional). This 
process should emerge from an initial question 
that constitutes the rationale of the sequence of 
praxeologies. From this questioning, some 
crucial questions to be answered by the 
community of study should arise. The answers 
produced in this study process should then be 
materialized in a regional praxeology. 

From this point of view: 

• The notions of model and systems are 
widened to be considered as specific or local 
praxeologies. 

• The modelling processes, which are normally 
described in terms of system-model relations 
and the modelling cycle, can be characterized 
in terms of praxeologies and relations 
between praxeologies. 

• A praxeology can be considered as a model 
or a system depending on the kind of 
questions put; being a model of a system is a 
function of a praxeology, it is not in its 
nature. 

• Modelling process, either as an object to be 
taught or as a means for the teaching and 
learning of particular mathematical contents, 
cannot be considered as independent from the 
rest of the mathematical activity. 

This new interpretation of modelling entails a 
rupture with the tradition of “modelling and 
applications” developed over the last 25-30 
years by the Mathematics Education community. 
However we consider that the reformulation 
explained above does not contradict the 
previously obtained results. On the contrary, in a 
certain sense, it complements them introducing a 
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new didactic tool to structure the modelling 
processes and to integrate them in a more 
general epistemological model of institutional 
mathematical activities. We are convinced that 
the introduction of a deeper epistemological 
dimension (with a solid theoretical base) in the 
international debate on modelling can lead us to 
improve our future research.  

4. The school mathematics 
disconnection: A research problem 

At present, in many countries (particularly in 
Spain) the curriculum of the educational 
institutions is structured in three main sections: 
concepts or conceptual contents, procedures and 
attitudes. Each section is specifically expressed 
in a list of contents, generally not too structured. 

Furthermore, the mathematical curriculum is 
structured in a set of domains or “block of 
contents” subdivided in different sectors. For 
instance, in Compulsory Secondary Education in 
Andalusia (one of the seventeen regions that 
form Spain) there are five domains called: 
numbers and measures, algebra, geometry, 
functions and their graphic representation, 
statistics and chance. The geometry domain, for 
instance, is structured in different sectors: 
elements and organization of the plane, element 
and organization of the space or translations, 
symmetries and rotations in the plane, etc. 

It is assumed that all these contents form a 
bigger organization –called “mathematics”– but 
it does not establish how these contents should 
be connected (or separated), apart from some 
general considerations. In general, according to 
the syllabi instructions, the problem solving and 
the applications of mathematics in “real” 
context are supposed to have a “connecting 
power” of the different contents included in the 
various sectors and domains. For instance, we 
can read some proposals as: 

“The contents are organized in five nuclei 
(…). In each nucleus the different contents are 
formulated in an integrated way: specific 
procedures, forms of expression and particular 
representations, concepts, facts, habits and 
attitudes. Daily life situations or problems 
where the contents appear are also 
appropriate. 

The teaching and learning process has to 
integrate contents from different mathematical 

fields (as simultaneous or complementary). 
Starting from the same experiences, 
problematic situations or activities, knowledge 
related to magnitudes, arithmetic, geometry, 
algebra, statistics or probability can be jointly 
elaborated.”  (CECJA, 2002, pp. 146-147) 

Thus, the general task of school but mainly the 
teacher’s task can be described as follows: given 
a list of contents organised in different blocks, 
how to make students carry out some “real” 
mathematical activity to make sure they enter in 
the desired mathematical works5. The crucial 
problem is how to structure and organize the set 
of contents included in the curriculum, that is, 
the elaboration of a students’ programme of 
study. We call this problem the problem of the 
curriculum elaboration, which can no be tackled 
independently of the domains and sectors the 
curriculum is structured in (imposed by the legal 
sphere) and of the restrictions proceeding from 
school (for instance, the distribution of the 
mathematic classes in three hours per week but 
in different days or the fact that every 
mathematical knowledge has to be evaluated in 
a relatively short period of time). 

Usually it is assumed that the problem of the 
curriculum elaboration can be solved focusing 
on the teaching, independently of the 
mathematical knowledge that is the object of 
this teaching. That is, what it is supposed to be 
problematic is: 

• The way contents should be selected, ordered 
and sequenced. 

• The way to teach these contents, conceiving 
teaching as the set of actions teachers should 
carry out to ensure the students’ learning. 

However, without an explicit questioning of the 
mathematical knowledge involved, one ends up 
assuming that there is a relatively universal and 
non problematic way to describe and organize 
school mathematics. And the same happens with 
the distribution in domains and sectors provided 
by the curricular documents. Moreover, 
inasmuch as this curricular organization is 
imposed by the legal sphere (politicians, 
educational authorities, etc.), the teacher’s role 
is to select the questions proposed to be studied 
at school and the themes in which these 

                                                 
5 Oeuvres, in French 
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questions are included6 (phenomenon of 
teacher’s confinement). That will partly explain 
the interest of certain domains of mathematical 
education (close to teachers and to the daily 
practice in the classroom) in the design and 
testing of modelling processes and applications 
of mathematics to real situations. The aim is to 
produce readymade examples to implement in 
the classroom.7  

The epistemological programme of research in 
didactics of mathematics tries to fight against 
this situation (obviously in a metaphorical sense) 
through the introduction of the epistemological 
model of mathematics questioning, instead of 
considering it transparent and fixed. 

“The didactic point of view claims that the 
problem of the curriculum elaboration (…) 
has an essential mathematical component. The 
problem is not only to order and sequence the 
curriculum contents (…). It is a full creative 
reconstruction of the works that form the 
curriculum.” (Chevallard, Bosch and Gascón, 
1997, p. 127) 

The problem of the connection of school 
mathematics could be initially described as 
follows: 

How to organize the school teaching of 
mathematics so as to provoke the connection 
of the different types of contents: concepts, 
procedures and attitudes? How to obtain that 
the mathematical knowledge learned by 
students will not be reduced to a set of 
disconnected techniques more or less 
algorithmic and without any sense? 

However, this first formulation, which rises 
from a first observation of the didactic system, 
needs to be reformulated into a research 
problem. That is, the assumption of a theoretical 
framework not only determines the possible 
answers that can be produced but also the 
possible research problems to work on. As a 
                                                 
6 Often, this responsibility is left in hands of the 
textbooks. 
7 Generally the interest is in innovative and 
motivational aspects. The lack of an epistemological 
question normally leads to the creation of isolated 
modelling processes and applications. They are 
supposed to be interesting on their own. There is no 
intention to build a wide and well-articulated set of 
modelling examples because supposedly it is not the 
mathematical knowledge contained in these 
situations that is problematic, but the way to 
transpose it into the classroom. 

matter of fact, it is formulated more like a 
problem of the individuals of the institution 
(teacher and students) than like a problem of the 
mathematics teaching system, implicitly 
assuming that there exists a unique and 
unquestionable form to describe the 
mathematical knowledge8. 

We propose the following reformulation of this 
“educational problem” into an explicit research 
problem within the ATD: 

Problem of school mathematics connection: 
How to design didactic praxeologies to 
articulate the mathematical curriculum both 
between domains and sectors in an 
educational level as between different levels? 
Particularly, what should be the characteristics 
of a didactic praxeology to take old contents 
up again, including those of previous school 
levels, and question, develop and integrate 
them into wider and more complex 
mathematical praxeologies? 

Like any other problem of didactic research, it 
presents two inseparable faces: 

• It is a problem of mathematical engineering, 
dealing with the analysis of mathematical 
praxeologies in the current curriculum and 
also with the construction of mathematical 
praxeologies.  With relation to the analysis, 
we will ask about the nature of the limitations 
and insufficiencies of those mathematical 
praxeologies to engender and give sense to 
wider and more complex praxeologies, 
overcoming the thematic level. With relation 
to the construction, we will ask how to 
complete the existing praxeologies and how 
to connect them. 

• It is a problem of didactic engineering, 
dealing with the construction of didactic 
praxeologies that allow the reconstruction of 
wide and complex mathematical 
praxeologies, overcoming the “theme 

                                                 
8 In the formulation and solution of this educational 
problem, it is usual that “the mathematical” is 
identified with the “student’s mathematical 
knowledge” (the knowledge they have to achieve) 
and “the didactic” with the classroom processes and 
mainly with the teacher’s actions (see Gascón (1999) 
for a detailed explanation of the educational 
problems and the didactic problems). Again the 
teacher-student binomial, without taking into account 
the third didactic system component: the 
mathematical knowledge. 
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confinement” and connecting mathematical 
contents in each educational level and 
throughout different levels. 

In the framework of the ATD numerous 
researches which can be connected to the 
general didactic problem of school mathematics 
articulation have been carried out9. In the 
following part of the paper we will focus on the 
teaching of functional relationships in Spanish 
Compulsory Secondary Education, following the 
researches of García (2005) and García and Ruiz 
(2006). 

5. The process of studying functional 
relationships between magnitudes 

The research problem treated in García (2005) 
starts from the study of the teaching and learning 
of proportionality between magnitudes in 
Spanish Compulsory Secondary Education. A 
first “spontaneous analysis10” of the current 
curricular documents and textbooks presently 
used shows a strong atomization in the current 
study processes developed in Spanish 
classrooms. This first empirical fact allows us to 
state that the problem of the teaching and 
learning of proportionality can be reformulated, 
from the research in didactics, as a manifestation 
of the phenomenon of the disconnection of 
school mathematics. 

The problem of the teaching and learning of 
proportionality has been amply studied in the 
cognitive programme of research in mathematics 

                                                 
9 Gascón (2001b) faces the disconnection between 
synthetic geometry and analytic geometry from 
Spanish Compulsory Secondary Education (students 
from 12 to 16 years old) to post-compulsory 
Secondary Education (16-18 years old). Bolea 
(2002), Bolea, Bosch and Gascón (2001a, 2001b, 
2003) study the teaching of algebra as a modelling 
process. Fonseca (2004) and Bosch, Fonseca, Gascón 
(2004) analyses the changes in the study of 
mathematics in the transition between post-
compulsory Secondary Education and University. 
10 We interpret a “spontaneous analysis” of the 
curricular documents and textbooks as that kind of 
analysis that only observes and describes the contents 
included in these documents and their distribution, 
without theoretical tools.  This analysis does not 
pretend to be explicative but descriptive. It can be 
interpreted as a first contact with the empirical field 
that will be object of research later. 

education (see, for instance, Harel & Behr 
(1989), Hart (1988), Karplus, Pulos & Stage 
(1981, 1983a, 1983b), Lamon (1991), Noelting 
(1980a, 1980b), Singer & Resnick (1992), 
Tourniaire (1986), Tourniaire & Pulos (1985)). 
Although the theoretical frameworks and the 
methodologies used are varied, an isolation of 
proportional relationships from other kinds of 
relationships between magnitudes can be 
observed. In fact, many of these researches 
focus on the study of the “proportional 
reasoning” and on the fact that many students 
apply a proportional reasoning to non-
proportional situations. 

The epistemological programme depersonalizes 
the didactic question and considers the 
institutional mathematical activity as its primary 
object of study. It is assumed, as a main 
hypothesis, that not only “the mathematic” is 
dense in “the didactic”, but also that, 
reciprocally, every mathematical activity is a 
didactic activity or a study of mathematics 
activity. The didactic problematic is widened 
including both the mathematical knowledge and 
the educational system (Chevallard, Bosch and 
Gascón, 1997). 

We propose the reformulation of the educational 
problem of teaching and learning of 
proportionality in terms of the didactic problem 
of the connection of the functional relationships 
studied in Compulsory Secondary Education, 
starting from previous works of Bosch (1994), 
Bolea (2002) and García & Ruiz (2002). 

5.1. The problem of connecting functional 
relationships between magnitudes in 
Compulsory Secondary Education 

The research problem we are facing can be 
described as follows: 

How to design didactic praxeologies to 
connect the different relationships between 
magnitudes proposed by the curriculum, both 
between domains and sectors in a specific 
educational level and between different 
levels? What should be the characteristics of a 
didactic praxeology to take old contents up 
again, the ones related to the study of 
variation systems between magnitudes, 
including those of previous school levels, in 
order to question, develop and integrate them 
into wider and more complex mathematical 
praxeologies? 
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Moreover, we postulate that the rationale of the 
“relationships between magnitudes” in 
Secondary Education has its origin in the 
problem of modelling systems where two or 
more magnitudes can be considered as 
depending one on the others. The explicit 
construction of an epistemological model of the 
variation between magnitudes will be necessary. 
It will be the researcher’s reference both to 
observe the actual mathematical praxeologies 
proposed to be reconstructed at school and to 
construct a new didactic organization allowing 
the development of a modelling process (in the 
ATD sense previously introduced) and 
generating a set of connected and integrated 
praxeologies around the variation systems.  

5.2. An epistemological model of reference 
around the modelling of variation systems 
between magnitudes 

In a general sense, in every mathematical 
teaching system we can find a dominant 
epistemological model, generally implicit, that is 
assumed by the individuals of that institution. 
This model has a crucial didactic relevance, 
because it determines how the “learning and 
teaching of mathematics” is conceived in that 
institution. 

The epistemological programme postulates the 
necessity to explicitly construct an 
epistemological reference model (ERM from 
now on) of the mathematical knowledge 
involved. This model has to be provisional and 
open to further modifications according to the 
obtained results. This ERM will also be essential 
to study the mathematical knowledge before it is 
transformed to be taught (didactic transposition 
processes). 

In García (2005) we constructed an ERM that 
starts form the questioning and characterization 
of different types of variations between 
magnitudes. In order to do that, and taking into 
account the institutional restrictions coming 
from Compulsory Secondary Education, we 
have opted to consider only the relationship 
between two magnitudes M and M’ and also to 
consider that the set of magnitude quantities is a 
discrete one ({ },...,...,, 21 iaaa  represents a set of 
quantities of the magnitude M and 
{ },...,...,, 21 iaaa ′′′  the correspondent quantities in 
M’). 

We will also consider that the starting point is a 
set of quantities of M in arithmetic progression 
( Mk ∈  is the difference between two 
consecutive terms) and we will question the 
nature of the variation in the corresponding 
quantities in M’. We have introduced five 
variation types (or variation conditions) that we 
summarize as follows11: 

• Equity condition: every arithmetic 
progression {ai} of M elements and 
difference k is transformed into an arithmetic 
progression of M’ elements and difference k’. 

Mk ∈∀ , ∃ '' Mk ∈  /  
∆ai = ai+1 – ai = k ⇒  ∆a’i = a’i+1 – a’i = k’. 

• Linear condition: more restrictive than the 
previous one, it implies that not only every 
arithmetic progression of M quantities is 
transformed into an arithmetic progression of 
M’ quantities, but also that every geometric 
progression of M quantities is transformed 
into a geometric progression of M’ quantities 
with the same ratio.12 
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This condition can also be formulated in 
continuous terms: if  ')',( MMaa ×∈  is a 
system state (that is, a pair of related 
quantities), then )',( kaka  and )',( 11 akak −−  
are also system states { }( )0−ℜ∈∀k . 

• n-level difference constant condition: every 
arithmetic progression {ai} of M elements 
and difference k is transformed into a 
progression with the n-level differences 
constant and equal to k’. 
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• Constant ratio condition: every arithmetic 
progression {ai} of M elements and 
difference k is transformed into a geometric 
progression with a ratio k’. 

Mk ∈∀ , ∃ ℜ∈'k   

                                                 
11 A wider description can be found in García (2005) 
12 The use of the notation ∇ai has no relation with its 
proper use in mathematics as the gradient vector. 
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• “Inverse linear” condition13: every 
geometric progression of M quantities and 
ratio k is transformed into a geometric 
progression of M’ quantities and ratio 1/k. 
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From this point of view, the direct proportional 
relationship is reformulated as a relation 
between two magnitudes characterized by the 
linear condition. Equally, the inverse 
proportional relationship is the relation 
characterized by the “inverse linear” condition. 
However new kinds of relationships (as 
quadratic and exponential) can be considered 
depending on the variation condition assumed. 

The ERM starts from the integrated study of 
systems where quantities of magnitude can vary 
under different variation conditions, as the ones 
described above or others. It then “evolves” with 
the construction, extension and integration of 
different kinds of variation praxeologies and 
generates a regional mathematical organization 
articulated by the theory of real-valued 
functions. 

In García (2005) we have used this ERM as a 
tool to characterize the praxeologies proposed to 
be studied in the textbook usually used in the 
current Spanish Compulsory Secondary 
Education. Now we will illustrate how it can be 
used to elaborate a study process as an answer to 
the curricular problem of the connection of 
functional relationships. 

5.3. A modelling process dealing with the 
variation systems: “The savings plans” 

                                                 
13 We have chosen this name using the analogy with 
the “linear condition” although the term “inverse 
linear” can be contradictory from a strict 
mathematical point of view. 

Every study and research activity starts from a 
productive question Q that allows the emergence 
of a kind of problems and a technique to solve 
them, as well as a technology to justify and 
understand the mathematical activity performed 
(Chevallard, 1999). 

If this productive question Q is fertile enough, it 
can give rise to new problematic questions that 
will generate new types of tasks to be solved, 
producing a sequence of articulated 
mathematical praxeologies in a relatively large 
period of time, that is, a study and research 
course (SRC from now on). 

The question of the rationale that motivated the 
creation and development of a mathematical 
content and that justified its inclusion in the 
syllabus of a teaching institution should be 
formulated at the beginning of every study 
process. In the case of “real functions”, although 
a precise formulation of a unique productive 
question is not possible, it is evident that the 
origin of that question is related to the study of 
variations. Such question should deal with the 
characterization of type of variation. 
Provisionally, we will enunciate the productive 
initial question as follows: 

Qi: Starting from a situation Si where it is 
possible to establish a relationship between 
magnitudes, some of them varying in relation 
to one other, what are the characteristics of 
that variation? 

That leads us to a more general productive 
question that we will use as the starting point for 
the generation of the SRC: 

Qvar: what principles can be used to define 
different “types of variation”? 

We conceive the term system as a praxeology or, 
at least, as a set of praxeological components 
including a minimum of two magnitudes and a 
technological component that gives sense to a 
possible relationship between them. The extra or 
intra mathematical nature of this technological 
component, that determines the context where 
the system is placed, will be considered as a 
secondary aspect in the mathematical activity 
that will arise from the study of the system 
variation (although it is necessary to choose this 
context carefully if we want to ensure the 
cultural and social legitimacy of the constructed 
praxeology). 
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In the SRC that we have designed, we propose 
to place the system in an economic-commercial 
context (building of savings plans) because it is 
a familiar context to students in Secondary 
Education and also a part of society that school 
should take into account if it really wants to be 
an instrument to “improve citizens’ lives14”. 
Moreover, being coherent with the 
epistemological reference model constructed 
before, this context gives sense to discrete sets 
of quantities for each magnitude (for example, 
considering time divided in months, weeks, 
days, etc.). 

Once the first step has been done (level 0: 
system delimitation and placement), it is time to 
delimit the magnitudes involved and to 
formulate the productive question that launches 
us into the study process (level 1, that has been 
assumed by the researcher, although other 
decisions could be taken): 

• V1  the “savings plan” (SP from now on) 
period of time and the temporal distribution 
of the instalments. 

• V2  the amount of money accumulated in 
each instalment. 

We will also suppose that there is a one-to-one 
relationship between V1 and V2. That is, for a 
specific SP, each instalment (V1 quantity) is 
associated to only one amount of saved money 
(V2 quantity). Taking into account that the study 
process starts from the different 
characterizations in the variation of these 
magnitudes, there is a third variable in play: the 
evolution of the amount of money given in each 
instalment. Obviously, this variable is not 
independent of the other two. Indeed, as a 
quantification of V1 to V2 variation, this variable 
really represents the different values of the 
derivative of this function.  

                                                 
14 Chevallard (2001, 2006) considers that the current 
dominating school epistemology is characterized by 
the elimination of the raison d’être (rationale) of the 
praxeologies proposed to be studied at school. A 
monumentalization phenomenon of these 
praxeologies, which are taken to school as ready-
made objects (valuable in themselves) intended for 
students to visit, is produced. It is vital to modify the 
school epistemology to make a place for the raison 
d’être of the studied praxeologies if we pretend 
compulsory education to be a means to “improve 
citizens’ lives”.  

The delimitation just explained is enough to 
formulate a productive question that will be able 
to produce/start up the desired SRC and, in 
particular, to transfer to students the necessity of 
a second construction level. Taking into account 
the previous construction levels 0 and 1, this 
crucial question (“savings question”) will be the 
following: 

QS: what principles can be used to plan a 
specific “savings plan” (SPi)? 

We consider that it really is a productive 
question because: (A) its generality makes new 
structuring and delimitation levels necessary 
(but now as part of students’ responsibility), (B) 
it is able to produce a mathematical activity 
starting from a relatively simple mathematical 
context (elementary arithmetic techniques), and 
(C) it allows the construction and simulation of 
different savings plans, which will emerge 
firstly as specific praxeologies. 

The study community task (but mainly the 
student’s task) will be: 

• To choose a first system state, that is, a 
starting amount of money. This first state is 
provisional and could be changed. It acts as a 
parameter of the situation. 

• To decide how the next states will be 
generated, that is, the variation condition that 
characterizes the system. There is not a 
unique way to accomplish this task. It 
requires choosing between two system 
variables. 

Firstly, it is necessary to decide on a 
temporal distribution that will rule the 
saving. A way to do that is through an equal 
distribution of the instalments (for instance, 
daily, weekly, monthly, etc.). In that case, the 
set of V1 measures can be identified with the 
discrete set { },...3,2,1,0 . Obviously, other 
instalments distribution could be considered 
(even an arbitrary distribution or a 
continuous one). 

Secondly, it is necessary to decide the 
amount of money to save in each instalment. 
Again, there are too many possibilities, from 
an arbitrary distribution (a different amount 
in each instalment, not related with the 
previous) to a distribution following a rule. 
However, we consider a recurrence rule 
appropriate (taking into account the 
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institutional restrictions and the mathematical 
activity that we want to develop). That is: if I 
give an amount Cn in the instalment n, I have 
to give an amount Cn+1 in the instalment n+1 
related to Cn in the same form as Cn was 
related to Cn-1. 

• To simulate the system, that is, to construct a 
set of states wide enough to develop the 
experimental activity needed in the study 
process. 

Although students have a lot of freedom, it is 
reasonable to expect the emergence of savings 
plans with equal temporal distribution of 
instalments and recurrent rules. We propose the 
following (although it is possible to consider 
different ones). 

Equitable variation savings plans (Eq): a fixed 
amount C is given in each instalment. 

Accumulative with increasing amount savings 
plans ( AcVar ): a higher amount is given in each 
instalment. It can be distinguished depending on 
the evolution of that amount: 

• 1
AcVar : if an amount C is given in the first 

instalment then the same amount given in the 
previous one plus C is given in each 
instalment (if we give C in the first 
instalment, we will give C + C in the second 
one, 2C+C in the third one and so on). 

• 2
AcVar : if an amount C is given in the first 

instalment then a multiple (by a constant 
factor k > 1) of the previous one is given in 
each instalment (if we give C in the first 
instalment, we will give k·C in the second 
one, k2·C in the third one and so on). For 
instance, if we consider an increase of 15%, 
then k = 1,15. 

Accumulative with amount share savings plans: 
a lower amount is given in each instalment. 
Depending on the evolution of that amount, we 
can distinguish: 

• 3
AcVar : if an amount C is given in the first 

instalment then the same amount given in the 
previous one minus a “discount amount D” is 
given in each instalment (if we give C in the 
first instalment, we will give DC −  in the 
second one, ( ) DDC −−  in the third one 
and so on). 

• 4
AcVar : if an amount C is given in the first 

instalment then a multiple (by a constant 
factor 0 < k < 1) of the previous one is given 
in each instalment (if we give C in the first 
instalment, we will give k·C in the second 
one, k2·C in the third one and so on). For 
instance, if we consider a decrease of 15%, 
then k = 0,85. 

5.4. The development of the “savings plans” 
study and research course  

The study and research course will start from the 
simulation of different savings plans depending 
on the variation condition chosen. First of all, 
students have to choose the number of 
instalments, the temporal distribution and the 
initial parameters (initial amount and, if needed, 
the auxiliary quantities to calculate the evolution 
of this amount). The simulation will lead them 
to a final saved amount Cf. 

For the management of the moment of the first 
encounter, the following task can be proposed to 
our students (as a particularization of the 
previous productive question): 

QS: “We want to plan the final course trip 
with enough time. We have to decide different 
ways to save money to achieve the amount of 
money needed for this trip. Although we do 
not know this quantity yet, we can start 
making an estimation of money needed and 
taking decisions about our personal savings 
plans: number of instalments, shares, etc. 
Obviously, it is not our task to decide today 
how much money we have to give and how, 
but  try to anticipate the necessities we will 
have when we know the expenses of the trip by 
the end of the year”. 

This initial question opens a great variety of 
decisions to be taken: the number of instalments 
and their temporal distribution, the existence of 
an initial amount (C0) and the evolution of the 
amount given across the savings plan. It is 
reasonable to foresee (and it really happened in 
our experimentations) that students first consider 
equitable savings plans.  

Anyway, once a variation type has been decided 
(not necessarily the same for all students), a first 
task emerges “naturally”: testing of our savings 
plans (calculate the money accumulated in each 
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+ C + (2C+C) + (C+C) 

instalment) and observing what happens15. We 
have called this first type of tasks “simulation 
tasks” (Tsimulation), which provokes the transition 
to and the development of the exploratory 
moment. 

The performance of this type of task leads to the 
creation of different primitive arithmetic 
techniques (that we call arithmeticτ ) depending on 
the type of variation. It is possible to introduce a 
spreadsheet to accomplish this task, giving rise 
to a “mixed technique” (variation of the SRC 
that we used in the two experimentations carried 
out). For instance, measuring instalments in 
months and supposing that students have chosen 
an accumulative with increasing amount savings 
plan 1

AcVar , this arithmetic technique can be 
described as follows: 

1
Acτ :   according to 1

AcVar , in each instalment we 
have to give  the same amount as in the previous 
one but increased by C: 

x 
(months) 0 1 2 3 4 5  

y 
(euros) 0C  

1y  2y  
3y  

4y  
5y   

 

 

Obviously, it is possible to construct such 
techniques for each type of variation. The 
construction of these techniques gives rise to a 
set of specific praxeologies constructed for each 
type of variation: SP(Eq), SP( 1

AcVar ), 

SP( 2
AcVar ), SP( 3

AcVar ) and SP( 4
AcVar ). 

The mathematical activity that is possible to 
develop with these specific praxeologies is 
rather limited. That limitation is more evident 
when we do not only want to calculate system 
states but also to control the system (in the sense 
of taking decisions concerning the parameters), 
that is, when we want to know the appropriate 
initial quantities to anticipate the system 
development and, mainly, to construct systems 
in accordance with the desired final amount Cf.  
We have called these types of tasks control 
                                                 
15 Sometimes we reach a great amount in few 
instalments but, at other times, we only obtain a little 
amount after a lot of instalments. The feedback 
provided by the system will provoke a variation of 
the initial quantities and the performance of new 
simulations. 

tasks16. The previous techniques also show their 
weakness to accomplish comparison tasks 
among different savings plans. 

The importance of this type of tasks is that the 
previous arithmetic techniques learned by 
students work successfully in some of them but 
fail in others. This problem is more evident in 
non-equitable savings plans and provokes the 
necessity to widen the initial specific 
praxeologies with the aim of getting techniques 
that will ensure the control and anticipation of 
the system (first, the students choose the initial 
quantities at random and act by essay-error but 
they soon notice the difficulties to get to the 
desired final amount). We have called this type 
of tasks algebraic modelling tasks (Talg_mod). 

The mathematical activity gives rise to the 
creation of different local praxeologies that we 
name MOL(Eq), MOL( 1

AcVar ), MOL( 2
AcVar ), 

MOL( 3
AcVar ) and MOL( 4

AcVar ), depending on the 
variation type. The study community has to work 
on each savings plan type with the aim of 
constructing algebraic models that connect the 
initial quantities with the final amounts. In the 
development of our SRC, this moment 
corresponds to the moment of working on the 
technique. The formulation of the system 
variation as a recurrent rule makes possible to 
obtain an algebraic model working on the 
different states (technique of recurrence: recτ ): 
starting from the amount saved in an instalment 
n (yn), work on it trying to decompose it in terms 
of the previous amounts until the initial 
quantities are reached (parameters of the 
system). 

For instance, if we are working on an 
accumulative with increasing amount savings 
plan ( 1

AcVar  type): 

recτ :    00 Cy =  
CCy += 01  

CCCCyy 22 012 ++=+=  
CCCCCyy 323 023 +++=+=  

                                                 
16 Working on a specific savings plan and given a 
final amount Cf, we can formulate at least three 
different control tasks (in the simplest case) 
depending on the known quantities and the one to be 
calculated (playing with three variables: the number 
n of instalments, the first instalment C and its 
evolution and the initial amount C0). 
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. . . . . . . . . . 

∑
=

− ⋅+=+=
n

k
nn CkCnCyy

1
01

 

The general formula CCy nn
n 2

)1(
0

++=  can be 

obtained (given that ∑
=

+=
n

k

nnk
1

2
)1( ). In this 

formula, time is considered as a discrete 
magnitude. Making a variable change (n  x), 
extending this variable to the set of real numbers 
and working on the expression, it is possible to 
obtain the algebraic model:  

0
2

22
)( CxCxCxfy ++==  

This algebraic model allows the construction of  

different but connected techniques to control the 
evolution of the SP and also the comparison 
between different SP. When an algebraic model 
is constructed for each type of variation, it is 
also possible to compare savings plans of 
different nature. It then emerges a connected and 
integrated mathematical activity around different 
types of variation. 

In a general way, the development of the 
experimented SRC is summarized in figure 1. 
The different tasks and techniques will emerge 
several times during the study process and 
depend on the variation type considered. García 
(2005) provides a more detailed description of 
each task and each technique.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Study and Research Course “The Savings Plans” 

 

Thus, working on each type of variation, 
controlling and comparing different savings 
plans, it is possible to get a set of praxeologies 
of increasing complexity (summarized in figure 

2) giving rise to a regional praxeology MOR(SP) 
articulated by the theory of real-valued 
functions, that is, a modelling process on the 
study of functional relationships. 
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Figure 2. Articulation, integration and amplification of praxeologies in the “Savings Plans” SRC 

To finish with our description, it is important to 
stop for an instant in the moments of 
institutionalization and evaluation. 
Traditionally, these moments correspond to the 
instant when the work done is taken up again, 
reviewed, reorganized, tested and put in relation 
to our previous knowledge. Usually, the 
dominant school epistemology assigns this role 
to the teacher. We have tried to delegate this 
responsibility to the students through the request 
of a report for the school principal that would be 
useful for their school partners in the following 
years. 

6. Summary and conclusions 
We started this paper with a revision of the 
research done in mathematics education in the 
“modelling and applications” domain. As a 
consequence of this analysis, we propose a 
reformulation of the notion of modelling, both to 
identify new didactic phenomena and to 
formulate new research problems a well as 
possible ways to face them. 

One of these didactic phenomena, directly 
related to the lack of mathematical modelling 
processes at school, is the disconnection of 
school mathematics, which extends to almost all 
mathematics teaching system levels. This 
disconnection is provoked by many factors. The 
identification of those factors is a wide and 
difficult research problem. However, the 
Anthropological Theory of the Didactic (ATD) 
provides a valuable didactic tool to go deeper in 

its origins and to elaborate possible solutions at 
least to reduce the effects of this phenomenon. 

Although it is true that official curricular 
documents consider the problem solving 
activity, in general, and the mathematical 
modelling, in particular, as didactic tools useful 
to integrate curricular contents (see, for instance, 
the Andalusia curriculum or the standard 
“connections” included in the Standards of the 
National Council of Teachers of Mathematics), 
it seems difficult for the integration to be 
produced by itself. It is important to take into 
account that the way the research interprets 
mathematical modelling (that essentially 
depends on the theoretical position and 
framework assumed/adopted by the researcher) 
determines the role it could play in the school 
mathematics integration. 

In our research we proposed to reformulate the 
modelling processes as processes of 
reconstruction and connection of praxeologies of 
increasing complexity (specific  local  
regional) that should emerge from the 
questioning of the rationale of the praxeologies 
that are to be reconstructed and connected.  

We focused on the problem of the connection of 
functional relationships between magnitudes in 
Compulsory Secondary Education (in Spain). 
After the precise identification and formulation 
of this problem in the ATD, we designed and 
carried out a study process: “the savings plans”, 
that constitutes not only a modelling example, 
but as a research result. 

QS 

SP(Eq) MOL(Eq) 

SP( 1
AcVar ) MOL( 1

AcVar ) 

SP( 2
AcVar ) MOL( 2

AcVar ) 

SP( 4
AcVar ) MOL( 4

AcVar ) 

SP( 3
AcVar ) MOL( 3

AcVar ) 

MOR(SP) 
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To elaborate this study process as a study and 
research course, we have had to explicitly 
construct an epistemological reference model of 
the variation systems between magnitudes. The 
study and research course designed has played a 
double function in our research: it has shown the 
power and relevance of the reformulation of the 
modelling notion as a didactic analysis tool and 
it provides a solution to the problem of the 
connection of functional relationships between 
magnitudes. 

Although we already carried out two 
implementations of the study and research 
course in two school in Andalusia during 2004 
and 2005 (with students from 14 to 16 years old, 
see García, 2005), we consider that new 
experimentations are necessary to go deeper in 
the characterizing of these modelling processes 
that imply the construction, amplification and 
integration of a set of praxeologies. It would be 
especially crucial to progress in the knowing of 
the set of cultural, didactic and mathematical 
restrictions that hinder the development of these 
modelling processes at school. 
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