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Abstract. In this paper the notion of prime matrix is introduced. It is

shown that if R is a PID then every full rank prime submodule of R(n) is

the row space of a prime matrix. Hence the notion of a prime matrix may

be regarded as a generalization of the notion of a prime element. Finally,

using prime matrices, we obtain the radical of submodules of R(n), as well

as the radical submodules.

1. Introduction

Throughout this paper R denotes a principal ideal domain (PID). Note that
every PID is a UFD and so a greatest common divisor (GCD) of any collection
of elements always exists. Also for every a, b ∈ R and prime element p ∈ R such
that p/a the congruence equation ax ≡ b (mod p) has a solution. These and
other basic results related to PID’s which may be found in [1], are essential for
the proofs of the results of this article. Now let M be a unitary R-module. A
submodule N of M is called prime if N 6= M and given r ∈ R, m ∈ M , rm ∈ N

implies m ∈ N or r ∈ (N : M), where (N : M) = {r ∈ R : rM ⊆ N}. The radical
of N ≤ M is given by radM (N) = ∩P , where the intersection is over all prime
submodules of M containing N . If there is no prime submodule containing N ,
then we put radM (N) = M . N is called a radical submodule if radM (N) = N .
Let m and n be positive integers and let A = (aij) ∈ Mm×n(R). Let F be the
free R-module R(n). We shall use the notation < A > for the submodule N of
F generated by the rows of A, and the notation (r1, . . . , rm)A, ri ∈ R ,for an
element of N . Let B ∈ Mm(R). We denote the adjoint matrix of B by B′, so
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that BB′ = B′B = (detB)Im, where Im is the m ×m identity matrix. In [5], a
characterization of prime submodules is given by prime ideals of R and certain
finite systems of equations. We state below another characterization, valid only
for PID’s, which will be needed in the sequel.

Theorem 1.1. Let R be a PID, F = R(n) and N be a submodule of F with
rank N = m. Let N =< A > for some A ∈ Mm×n(R).Then

i) If m < n, then N is prime if and only if a GCD of the determinants of all
m×m submatrices of A is 1.

ii) If m = n, then N is prime if and only if there exist an irreducible element
p ∈ R, a unit u ∈ R and a positive integer α ≤ n, such that detA = upα and a
GCD of entries of A′ is pα−1.

Proof. Theorem 2.6 in [2]. £

The next result will be widely used in the sequel. The proof is straightforward.

Lemma 1.2. Let A ∈ Mn(R) , det(A) 6= 0 and A′ = (a′ij) be the adjoint matrix
of A. Then (x1, . . . , xn) ∈< A >, for some xi ∈ R (1 ≤ i ≤ n) if and only if

det(A) |
n

∑

i=1

xia
′
ij, for every j, 1 ≤ j ≤ n.

Finally, to avoid technical problems, we accept the following convention. If
A = (aij) ∈ Mm×n(R) then ai0 = a0j = 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Also if
(r1, . . . , rn) ∈ R(n) then r0 = 0.

2. Prime matrices

In this section we introduce the notion of a prime matrix. As will be shown
later, prime matrices provide a useful tool for studying the radical of submodules
of R(n). Let J = {j1, . . . , jα} be a subset of {1, . . . , n} and let p ∈ R be a prime
element. A matrix A ∈ Mn(R), A = (aij), is said to be a p-prime matrix (or
simply prime) if A satisfies the following conditions:

i) A is upper triangular.
ii) For all i, 1 ≤ i ≤ n, aii = p if i ∈ J and aii = 1 if i /∈ J .
iii) For all i, j, 1 ≤ i < j ≤ n, aij = 0 except possibly when i /∈ J and j ∈ J .
Sometimes we call J the set of integers associated with A and denote it by JA.

By (i) and (ii) it is clear that det(A) = pα.

Lemma 2.1. Let n be a positive integer and let ri ∈ R, 1 ≤ i ≤ n. Let p ∈ R

be a prime element and J = {j1, . . . , jα} be a subset of {1, . . . , n}. Let Jk =
{0, 1, . . . , jk} − J, 1 ≤ k ≤ α. Then (r1, . . . , rn) ∈< A >, for some p-prime
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matrix A ∈ Mn(R) with JA = J if and only if for every k, 1 ≤ k ≤ α, the
equation

∑

j∈Jk

rjxj ≡ rjk
(mod p) has a solution.

Proof. Let A = (aij) be a p-prime matrix with JA = {j1, . . . , jα} and let A′ =
(a′ij). For all i, j, 1 ≤ i, j ≤ n, it is easy to see that a′ii = pα−1 if i ∈ JA, a′ii = pα if
i /∈ JA and a′ij = −pα−1aij if i 6= j. Hence by Lemma 1.2, (r1, . . . , rn) ∈< A > if

and only if pα |
n

∑

j=1

rja
′
jl, 1 ≤ l ≤ n, if and only if pα |

l−1
∑

j=0

rj(−pα−1ajl)+pα−1rl,

for every l ∈ JA, if and only if p |
∑

j∈Jk

−rjajjk
+ rjk

, 1 ≤ k ≤ α, if and only if

∑

j∈Jk

rjajjk
≡ rjk

(mod p) for every k, 1 ≤ k ≤ α. £

Lemma 2.2. Let m and n be positive integers such that m < n. Suppose that
B ∈ Mn×m(R), Y ∈ Mn×1(R) and X = (x1, . . . , xm)t. Let C ∈ Mn×(m+1)(R) be

the augmented matrix [B
...Y ]. Let p ∈ R be a prime element. If p does not divide

the determinant of at least one m×m submatrix of B, then the system of equations
BX ≡ Y (mod p) has a solution if and only if p divides the determinants of all
(m + 1)× (m + 1) submatrices of C.

Proof. Suppose BX ≡ Y (mod p) has a solution. Suppose that C0 is an
(m + 1) × (m + 1) submatrix of C. If Y0 is the last column of C0 and B0

consists of all columns of C0 except for Y0, then B0X ≡ Y0 (mod p), so that
C ′

0B0X ≡ C ′
0Y0 (mod p). The last equation of this system is 0 ≡ det(C0) (mod p).

Hence p | det(C0). Conversely, assume that p divides the determinants of all
(m + 1) × (m + 1) submatrices of C. Let B0 be an m ×m submatrix of B such
that p/det(B0).Without loss of generality, we may assume that B0 consists of
the first m rows of B. If Y0 consists of the first m rows of Y then it is easy
to see that the system B0X ≡ Y0 (mod p) has a solution, say xi = ri for some
ri ∈ R, 1 ≤ i ≤ m. Let k be an arbitrary positive integer, m < k ≤ n. Let
C1 = (cij) be the (m + 1) × (m + 1) submatrix of C consisting of the first m

rows of C and row k. If C ′
1 = (c′ij), then c′(m+1)(m+1) = det(B0) and we have

m+1
∑

j=1

c′(m+1)jcji = 0 for every i, 1 ≤ i ≤ m. Thus c′(m+1)(m+1)(
m

∑

i=1

c(m+1)iri) =

m
∑

i=1

(c′(m+1)(m+1)c(m+1)i)ri =
m

∑

i=1

(
m

∑

j=1

−c′(m+1)jcji)ri = −
m

∑

j=1

c′(m+1)j(
m

∑

i=1

cjiri).
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As
m

∑

i=1

cjiri ≡ cj(m+1) (mod p) for all j, 1 ≤ j ≤ m, −
m

∑

j=1

c′(m+1)j(
m

∑

i=1

cjiri) ≡

−
m

∑

j=1

c′(m+1)jcj(m+1) (mod p). Note that by hypothesis p | det(C1). Therefore

−
m

∑

j=1

c′(m+1)jcj(m+1) ≡ c′(m+1)(m+1)c(m+1)(m+1) (mod p).

As p/c′(m+1)(m+1) = det(B0), the above calculation implies that
m

∑

i=1

c(m+1)iri ≡

c(m+1)(m+1) (mod p). Since k is arbitrary, we conclude that xi = ri, 1 ≤ i ≤ m,
is a solution for the system BX ≡ Y (mod p). £

The method used in the proof of the following basic result is in fact an algorithm
for calculating the prime matrices and finding a generating set of the radical of a
submodule [see Theorem 3.4].

Theorem 2.3. Let m, n and α be positive integers such that m ≤ n and
1 ≤ α ≤ n. Let B ∈ Mm×n(R) and let p ∈ R be a prime element. Then
< B >⊆< A > for some prime matrix A ∈ Mn(R) with det(A) = pα if and only
if p divides the determinants of all (n− α + 1)× (n− α + 1) submatrices of B.

Proof. Let < B >⊆< A > for some prime matrix A with det(A) = pα. So there
exists C ∈ Mm×n(R) such that B = CA. Let B0 be an (n− α + 1)× (n− α + 1)
submatrix of B. Thus there exist an (n − α + 1) × n submatrix C0 of C and an
n × (n − α + 1) submatrix A0 of A such that B0 = C0A0. Suppose that A1 is
an (n − α + 1) × (n − α + 1) submatrix consisting of rows i1, . . . , in−α+1 of A0.
Since JA has α elements, hence ik ∈ JA for some k, 1 ≤ k ≤ n− α + 1. It follows
that the entries of row ik of A0 are 0 or p. Thus p | det(A1). Hence p | det(B0),
because by the Binet-Cauchy formula [3, Theorem 1], det(B0) may be expressed
as a linear combination of the determinants of all (n − α + 1) × (n − α + 1)
submatrices of A0. Conversely, assume that p divides the determinants of all
(n − α + 1) × (n − α + 1) submatrices of B. By adding some zero rows to B if
necessary, we may suppose that B ∈ Mn(R). We use induction on α. For α = 1,
by assumption p | det(B). Let k be the smallest integer such that p divides the
determinants of all k× k submatrices of Bk where Bk ∈ Mn×k(R) consists of the
first k columns of B. If B = (bij) then by Lemma 2.2, the system of equations

{
k−1
∑

j=0

bijxj ≡ bik (mod p)| 1 ≤ i ≤ n} has a solution. Therefore by Lemma 2.1,
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there exists a prime matrix A with JA = {k} such that < B >⊆< A >. Now
suppose that the assertion is true for some α, 1 ≤ α ≤ n − 1. Assume that
p divides the determinants of all (n − α) × (n − α) submatrices of B = (bij).
Hence p divides the determinants of all (n − α + 1) × (n − α + 1) submatrices
of B. Therefore by the induction hypothesis there exists a prime matrix A with
det(A) = pα such that < B >⊆< A >. Let JA = {j1, . . . , jα} and let Jk =
{0, 1, . . . , jk}−JA, 1 ≤ k ≤ α. Fix k for the moment. By Lemma 2.1, the system
of equations {

∑

j∈Jk

bijxj ≡ bijk
(mod p)| 1 ≤ i ≤ n} has a solution, say xj = rj for

some rj ∈ R, j ∈ Jk. Thus we have

(1)
∑

j∈Jk

bijrj ≡ bijk
(mod p) ∀i, 1 ≤ i ≤ n.

Let B0 be the n × (n − α) submatrix obtained by deleting columns j1, . . . , jα

from B. Let l be the smallest integer such that p divides the determinants of all
l× l submatrices of Bl where Bl ∈ Mn×l(R) consists of the first l columns of B0.
Assume that j0 is the integer such that column l of B0 is column j0 of B. Clearly
j0 /∈ JA. Let J0 = {0, . . . , j0−1}−JA. By Lemma 2.2, It follows that the system
of equations {

∑

j∈J0

bijxj ≡ bij0 (mod p)| 1 ≤ i ≤ n} has a solution, say xj = sj for

some sj ∈ R, j ∈ J0. Therefore we have

(2)
∑

j∈J0

bijsj ≡ bij0 (mod p) ∀i, 1 ≤ i ≤ n.

Put J ′ = {j1, . . . , jα, j0} and let J ′k = {0, 1, . . . , jk} − J ′. If jk > j0, then
combining (1) and (2) yields bijk

≡
∑

j∈J ′k

bijrj + (
∑

j∈J0

bijsj)rj0 (mod p) for every

i, 1 ≤ i ≤ n. Hence the system of equations {
∑

j∈J ′k

bijxj ≡ bijk
(mod p)| 1 ≤ i ≤ n}

has a solution. On the other hand, if jk ≤ j0, then obviously the above system has
a solution by (1). Since k is arbitrary, hence by Lemma 2.1, there exists a prime
matrix A0 with det(A0) = pα+1 such that < B >⊆< A0 > and JA0 = J ′. Thus
the assertion is true for α+1 and hence by induction for every α, 1 ≤ α ≤ n. £

Proposition 2.4. Let n be a positive integer and let B ∈ Mn(R). Let p ∈ R

be a prime element and let α , 1 ≤ α ≤ n , be the greatest integer such that
pα | det(B) and pα−1 divides all entries of B′. Then p divides the determinants
of all (n− α + 1)× (n− α + 1) submatrices of B.
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Proof. By Theorem 3.2 in [1], there exist a diagonal matrix C = (cij) and
invertible matrices P, Q ∈ Mn(R) such that BQ = PC, so that Q′B′ = C ′P ′. By
hypothesis, pα−1 divides all entries of B′ and hence those of C ′P ′. Let C ′ = (c′ij).
If p2 | cjj for some j, 1 ≤ j ≤ n, then pα−1/c′jj . Hence p divides all entries of row
j of P ′. Thus p | det(P ′) which contradicts the fact that P is invertible. Since
pα | det(C), hence p divides at least α entries of the diagonal of C. Therefore we
conclude that p divides entries of at least one column of every (n−α+1)×(n−α+1)
submatrix of PC. Thus p divides the determinants of all (n−α+1)× (n−α+1)
submatrices of PC and by the Binet-Cauchy formula it is easy to see that p divides
the determinants of all (n−α+1)×(n−α+1) submatrices of B = (PC)Q−1. £

The next theorem is the main result of this section.

Theorem 2.5. Every full rank prime submodule of R(n) is the row space of a
prime matrix and vice versa.

Proof. Let N be a prime submodule of R(n) with rank N = n. Then N is
free and so there exists B ∈ Mn(R) such that N =< B >. By Theorem 1.1,
det(B) = upα for some prime p ∈ R, unit u ∈ R and integer α, 1 ≤ α ≤ n;
also a GCD of entries of B′ is pα−1. Hence by Proposition 2.4, p divides the
determinants of all (n−α+1)×(n−α+1) submatrices of B and hence by Theorem
2.3, N ⊆< A > for some prime matrix A with det(A) = pα. Thus B = CA for
some C ∈ Mn(R) and therefore upα = det(B) = det(C)det(A) = det(C)pα.
Thus det(C) = u and so C is invertible. Hence C−1B = A. It follows that
< A >⊆< B >= N . Therefore N =< A >. That the row space of every prime
matrix is a prime submodule, is clear by Theorem 1.1. £

For example, for every prime element p ∈ Z, the prime submodules N of
Z(3) = Z⊕ Z⊕ Z such that (N : Z(3)) = pZ are as follows:

<







p 0 0

0 1 0

0 0 1





 >, <







1 a12 0

0 p 0

0 0 1





 >, <







1 0 a13

0 1 a23

0 0 p





 >, <







p 0 0

0 p 0

0 0 1





 >,

<







p 0 0

0 1 a23

0 0 p





 >, <







1 a12 a13

0 p 0

0 0 p





 >, <







p 0 0

0 p 0

0 0 p





 >,

where 0 ≤ aij ≤ p− 1, 1 ≤ i < j ≤ 3. Thus it is easily seen that for every prime
integer p, there exist exactly 2p2 + 2p + 3 prime submodules N of Z(3) such that
(N : Z(3)) = pZ.
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3. Radicals of Submodules

In this section we shall try to identify the radical of submodules of R(n) as far
as possible. We first state some useful results about prime matrices.

Proposition 3.1. Let n be a positive integer and let p ∈ R be a prime element.
Let A, B ∈ Mn(R) be p-prime matrices such that < A >⊆< B >. Then JB ⊆ JA.

Proof. Let det(B) = pα for some positive integer α, 1 ≤ α ≤ n. Suppose
that there exists some j0 ∈ JB − JA. By hypothesis row j0 of A belongs to
< B >. Hence by Lemma 1.2, pα divides the product (row j0 of A)(column j0 of
B′)= pα−1, a contradiction. Therefore JB ⊆ JA. £

Proposition 3.2. Let n be a positive integer and let p ∈ R be a prime element.
Let A, B ∈ Mn(R) be p-prime matrices. Then < A >=< B > if and only if
JA = JB and the corresponding entries of A and B are equivalent modulo p.

Proof. Let A = (aij) and B = (bij). Suppose that JA = JB . Let det(A) = pα =
det(B). Note that by Lemma 1.2, < A >⊆< B > if and only if for all i /∈ JA and

j ∈ JA, 1 ≤ i < j ≤ n, pα |
n

∑

k=1

aikb′kj = aiib
′
ij + aijb

′
jj = −pα−1bij + aijp

α−1; if

and only if aij ≡ bij (mod p) . By symmetry, this is equivalent to < B >⊆< A >.
Now the result follows from Proposition 3.1. £

Proposition 3.3. Let m ≤ n be positive integers and let B ∈ Mm×n(R). Let
p ∈ R be a prime element and let α be the greatest integer such that p divides
the determinants of all (n − α + 1) × (n − α + 1) submatrices of B. Then there
exists a p−prime matrix A ∈ Mn(R) with det(A) = pα such that < A > is
minimum among all prime submodules N of R(n) containing < B > such that
p ∈ (N : R(n)).

Proof. By Theorem 2.3, there exists a prime matrix A ∈ Mn(R) with det(A) =
pα such that < B >⊆< A >. Let N be any prime submodule of R(n) such that
< B >⊆ N and p ∈ (N : R(n)). Thus pR(n) ⊆ N , so that rank N = n. By
Theorem 2.5, there exists a prime matrix C ∈ Mn(R) such that N =< C >.
Since pR(n) ⊆ N , hence C is p−prime. It is easy to see that < A > ∩ < C >

is a prime submodule of R(n) and so again by Theorem 2.5, there exists a prime
matrix D ∈ Mn(R) such that < A > ∩ < C >=< D >. By Proposition 3.1,
since < D >⊆< A >, hence JA ⊆ JD. By hypothesis and Theorem 2.3, JD

may have at most α element(s). Thus JD = JA. By the proof of Proposition
3.2, since < D >⊆< A >, hence < A >=< D >=< A > ∩ < C >. Therefore
< A >⊆< C > . £
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Let m ≤ n be positive integers and let B ∈ Mm×n(R). By Theorem 3.2 in [1],
B is equivalent to a diagonal matrix C; i.e. there exist invertible matrices P ∈
Mm(R) and Q ∈ Mn(R) such that B = PCQ. If C0 ∈ Mm(R) is the submatrix
consisting of the first m columns of C, then C = C0I where I ∈ Mm×n(R)
consists of the first m rows of In. Put D = PC0 and B0 = IQ. Hence B = DB0

and it is easily seen that det(D) is a GCD of the determinants of all m × m

submatrices of B and a GCD of the determinants of all m × m submatrices of
B0 is 1. If det(D) is a unit, then D is invertible so that < B >=< B0 >. Thus
for m < n by Theorem 1.1, < B > is a prime submodule of F = R(n) and
hence radF (< B >) =< B >. The following theorem characterizes the radical of
submodules of R(n). A characterization has been carried out in [6] in the general
case; however, when R is a PID, the characterization given below seems to be
more practical.

Theorem 3.4. Let m ≤ n be positive integers and let F = R(n). Suppose that
B ∈ Mm×n(R) and D and B0 are as above. Let d = det(D) = upβ1

1 . . . pβt

t be a
prime decomposition. If Ak = (akij), 1 ≤ k ≤ t, is the pk−prime matrix as in
Proposition 3.3, then radF (< B >) =< C > ∩ < B0 > where C = (cij) ∈ Mn(R)
is an upper triangular matrix such that for all i, k, 1 ≤ i ≤ n, 1 ≤ k ≤ t,

i) cii = pδ1
1 . . . pδt

t where δk = 1 if i ∈ JAk
and δk = 0 if i /∈ JAk

.

ii) cij ≡
j−1
∑

l=0, l/∈JAk

cilaklj (mod pk) ∀j ∈ JAk
.

Proof. That there exists such a matrix C satisfying (i) and (ii) is guaranteed
by the Chinese remainder theorem. Now assume that N is a prime submodule of
F containing < B >. Hence the rows of D′B = D′DB0 = det(D)ImB0 = dB0

belong to N . Thus d < B0 >⊆ N . If N does not contain < B0 >, then
d ∈ (N : F ). Note that (N : F ) is a prime ideal of R. Therefore pk ∈ (N : F ) for
some k, 1 ≤ k ≤ t. Note that by Theorem 1.1, if m < n then < B0 > is a prime
submodule of F . Thus by Proposition 3.3, it is easy to see that radF (< B >)

=
t

⋂

k=1

< Ak > ∩ < B0 >. Now it remains to show that
t

⋂

k=1

< Ak >=< C >.

By the proof of Lemma 2.1, condition (ii) is equivalent to < C >⊆< Ak > for

every k, 1 ≤ k ≤ t, so that < C >⊆
t

⋂

k=1

< Ak >. Conversely, suppose that
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(r1, . . . , rn) ∈
t

⋂

k=1

< Ak >. Therefore for every k, 1 ≤ k ≤ t, we have

(3)
j−1
∑

i=0, i/∈JAk

riakij ≡ rj (mod pk) ∀j ∈ JAk
.

Let C ′ = (c′ij). Note that C ′ is an upper triangular matrix. By Lemma 1.2, to

prove that (r1, . . . , rn) ∈< C >, we have to show that det(C) |
n

∑

i=1

ric
′
ij =

j
∑

i=1

ric
′
ij

for every j, 1 ≤ j ≤ n. Let det(Ak) = pαk

k , 1 ≤ k ≤ t. By (i), it follows that
det(C) = pα1

1 . . . pαt
t . Let k, 1 ≤ k ≤ t, be fixed and arbitrary. Hence it is

enough to show that pαk

k |
j

∑

i=1

ric
′
ij for every j, 1 ≤ j ≤ n. We use induction on

j. For j = 1, if 1 /∈ JAk
, then pk /c11. Since pαk

k | det(C), hence pαk

k | r1c11c
′
11

and so pαk

k | r1c
′
11. If 1 ∈ JAk

, then by (3), r1 ≡ 0 (mod pk), so pk | r1. Since

pαk−1
k | det(C)

c11
= c′11, hence pαk

k | r1c
′
11. Thus the assertion is true for j = 1.

Assume inductively that pαk

k |
j

∑

i=1

ric
′
ij for every j, 1 ≤ j ≤ j0 − 1. We have

to show that pαk

k |
j0

∑

i=1

ric
′
ij0 . We have

j0
∑

j=1

cjj0(
j

∑

i=1

ric
′
ij) =

j0
∑

j=1

j0
∑

i=1

ric
′
ijcjj0 =

j0
∑

i=1

ri(
j0

∑

j=1

c′ijcjj0) = rj0det(C). Therefore

(4) cj0j0

j0
∑

i=1

ric
′
ij0 = rj0det(C)−

j0−1
∑

j=1

cjj0(
j

∑

i=1

ric
′
ij)

Now two cases may occur: Case 1. j0 /∈ JAk
. Thus pk /cj0j0 . Hence (4) and

the induction hypothesis imply that pαk

k | cj0j0

j0
∑

i=1

ric
′
ij0 . Since pk /cj0j0 , hence

pαk

k |
j0

∑

i=1

ric
′
ij0 . Case 2. j0 ∈ JAk

. Let J0 = {0, 1, . . . , j0} − JAk
. By (ii),
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pk |
∑

l∈J0

cjlaklj0 − cjj0 , so that by induction hypothesis,

pαk+1
k | (

j
∑

i=1

ric
′
ij)(

∑

l∈J0

cjlaklj0 − cjj0) for every j, 1 ≤ j ≤ j0 − 1. Thus

pαk+1
k |

j0−1
∑

j=1

[(
j

∑

i=1

ric
′
ij)(

∑

l∈J0

cjlaklj0 − cjj0)]

⇒ pαk+1
k |

j0−1
∑

j=1

[
j0−1
∑

i=1

∑

l∈J0

ric
′
ijcjlaklj0 − cjj0

j
∑

i=1

ric
′
ij ]

⇒ pαk+1
k |

j0−1
∑

j=1

j0−1
∑

i=1

∑

l∈J0

ric
′
ijcjlaklj0 −

j0−1
∑

j=1

cjj0(
j

∑

i=1

ric
′
ij)

⇒ pαk+1
k |

j0−1
∑

j=1

j0−1
∑

i=1

ri(
∑

l∈J0

c′ijcjl)aklj0 −
j0−1
∑

j=1

cjj0(
j

∑

i=1

ric
′
ij)

⇒ pαk+1
k |

∑

l∈J0

rl(det(C))aklj0 − rj0det(C) + rj0det(C)−
j0−1
∑

j=1

cjj0(
j

∑

i=1

ric
′
ij)

⇒ pαk+1
k | (det(C))(

∑

l∈J0

rlaklj0 − rj0) + cj0j0

j0
∑

i=1

ric
′
ij0 .

By (3), pk|
∑

l∈J0

rlaklj0 − rj0 . Thus pαk+1
k | (det(C))(

∑

l∈J0

rlaklj0 − rj0). Hence by

above

pαk+1
k | cj0j0

j0
∑

i=1

ric
′
ij0 . Therefore pαk

k |
j0

∑

i=1

ric
′
ij0 and so by induction pαk

k |
j

∑

i=1

ric
′
ij

for all j, 1 ≤ j ≤ n. £

In the previous theorem, if m = n, we can simply choose D = B and B0 = In

and therefore we have radF (< B >) =< C >. Some results concerning radical
submodules may be found in [4]. Now let r ∈ R and B ∈ Mm×n(R). By the
notation r | B, we mean r divides all entries of B. The following notation defined
in [3], is used in the next result. Let 1 ≤ i1 < · · · < it ≤ m and 1 ≤ j1 <

· · · < jt ≤ n be some integers and 1 ≤ t ≤ min(m, n). Then B

[

i1 . . . it
j1 . . . jt

]

denotes the determinant of the t × t submatrix of B consisting of rows i1, . . . , it
and columns j1, . . . , jt.
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Theorem 3.5. Let m ≤ n be positive integers and let F = R(n). Suppose that B ∈
Mm×n(R) and that d is a GCD of the determinants of all m×m submatrices of
B. Then < B > is a radical submodule of F if and only if for every prime element
p ∈ R and positive integer β, pβ | d implies that p divides the determinants of all
(m− β + 1)× (m− β + 1) submatrices of B.

Proof. Suppose that d = upβ1
1 . . . pβt

t is a prime decomposition. By Theorem
3.4, there exist D ∈ Mm(R), B0 ∈ Mm×n(R) and Ak ∈ Mn(R), 1 ≤ k ≤ t,

such that B = DB0, det(D) = d and radF (< B >) =< B0 > ∩
t

⋂

k=1

< Ak >.

Assume that radF (< B >) =< B >. If q = p1 . . . pt, then by Lemma 1.2,

(0, . . . , 0, q, 0, . . . , 0)B0 ∈< B0 > ∩
t

⋂

k=1

< Ak > with the q as the ith compo-

nent (1 ≤ i ≤ m). Thus (0, . . . , 0, q, 0, . . . , 0)B0 ∈ radF (< B >) =< B >.
Therefore there exist si ∈ R, 1 ≤ i ≤ m, such that (0, . . . , 0, q, 0, . . . , 0)B0 =
(s1, . . . , sm)B = (s1, . . . , sm)DB0, whence (0, . . . , 0, q, 0, . . . , 0) = (s1, . . . , sm)D.
It follows that (0, . . . , 0, q, 0, . . . , 0)D′ = (s1, . . . , sm)det(D)Im = (s1, . . . , sm)d.
Hence d | (0, . . . , 0, q, 0, . . . , 0)D′ with the q as the ith component (1 ≤ i ≤ m).
Let k, 1 ≤ k ≤ t, be arbitrary. Then pβk−1

k | D′. Thus p
(βk−1)m
k | det(D′) = dm−1

and hence (βk − 1)m ≤ βk(m − 1) whence βk ≤ m. Also by Proposition
2.4, since pβk−1

k divides all entries of D′, hence pk divides the determinants
of all (m − βk + 1) × (m − βk + 1) submatrices of D. Since B = DB0, we
conclude by the Binet-Cauchy formula that pk divides the determinants of all
(m− βk + 1)× (m− βk + 1) submatrices of B .
Conversely, assume that for every k, 1 ≤ k ≤ t, βk ≤ m and pk divides the
determinants of all (m − βk + 1) × (m − βk + 1) submatrices of B. Fix k for
the moment. Since m − βk + 1 = n − (n − m + βk) + 1, hence by Theorem
2.3, < B >⊆< A > for some prime matrix A with det(A) = pn−m+βk

k . Let
α = n − m + βk and C = 1

pα
k
BA′. Since < B >⊆< A >, by Lemma 1.2,

C ∈ Mm×n(R). Let (x1 . . . xn) ∈ radF (< B >) be arbitrary. Since radF (< B >)
⊆< B0 >, hence (x1 . . . xn) = (r1 . . . rm)B0 for some ri ∈ R, 1 ≤ i ≤ m.
Also since radF (< B >) ⊆< A >, hence (x1 . . . xn) = (r1 . . . rm)B0 ∈< A >.
Again by Lemma 1.2, pα

k | (r1 . . . rm)B0A
′, so that pα

k d | (r1 . . . rm)D′(BA′).
Therefore d and so pβk

k divides all components of (r1 . . . rm)D′C. If we show
that there exists an m × m submatrix C0 of C such that pk /det(C0), then we
may conclude that pβk

k | (r1 . . . rm)D′C0 and hence pβk

k | (r1 . . . rm)D′C0C
′
0 =
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(r1 . . . rm)D′det(C0)Im. It will follow that pβk

k | (r1 . . . rm)D′. Since k is ar-
bitrary, hence d | (r1 . . . rm)D′. Thus there exist si ∈ R, 1 ≤ i ≤ m, such
that d(s1, . . . , sm) = (r1, . . . , rm)D′. Hence d(s1, . . . , sm)B = (r1, . . . , rm)D′B =
(r1, . . . , rm)dB0, so that (x1 . . . xn) = (r1 . . . rm)B0 = (s1, . . . , sm)B ∈< B >.
Therefore radF (< B >) =< B >. Now suppose on the contrary that pk divides
the determinants of all m × m submatrices of C. We shall show that pβk+1

k di-
vides the determinants of all m × m submatrices of B. Let j1 < · · · < jm be
some arbitrary integers between 1 and n. Since C = ( 1

pk
B)( 1

pα−1
k

A′), hence by
the Binet-Cauchy formula, we have
(5)

C

[

1 . . . m

j1 . . . jm

]

=
1

pm
k

∑

i1<···<im

B

[

1 . . . m

i1 . . . im

]

(
1

pα−1
k

A′)
[

i1 . . . im
j1 . . . jm

]

Note that
1

pα−1
k

A′ = −A + (1 + pk)In. By the definition of prime matrices,

it follows that (
1

pα−1
k

A′)
[

i1 . . . im
j1 . . . jm

]

= 0 except possibly when the following

two conditions are satisfied:
(i) {i1, . . . , im} ∩ JA ⊆ {j1, . . . , jm} and (ii) {j1, . . . , jm} − JA ⊆ {i1, . . . , im}.

Let J = {j1, . . . , jm} ∪ JA have (n − l + 1) element(s). We use induction on l.
For l = 1, we have J = {1, . . . , n}. For every i ∈ {i1, . . . , im}, if i /∈ JA then
i ∈ J − JA ⊆ {j1, . . . , jm} and if i ∈ JA then by (i), again i ∈ {j1, . . . , jm}. Thus
{i1, . . . , im} = {j1, . . . , jm}. Hence by (5), we have

C

[

1 . . . m

j1 . . . jm

]

=
1

pm
k

B

[

1 . . . m

j1 . . . jm

]

(
1

pα−1
k

A′)
[

j1 . . . jm

j1 . . . jm

]

=
1

pm
k

B

[

1 . . . m

j1 . . . jm

]

pm−βk

k =
1

pβk

k

B

[

1 . . . m

j1 . . . jm

]

.

Since pk | C

[

1 . . . m

j1 . . . jm

]

, hence pβk+1
k | B

[

1 . . . m

j1 . . . jm

]

. Thus the asser-

tion is true for l = 1. Assume inductively that pβk+1
k | B

[

1 . . . m

i1 . . . im

]

whenever

{i1, . . . , im}∪JA has at least (n−l+1) elements. Suppose that J = {j1, . . . , jm}∪
JA has (n− l) element(s). If {i1, . . . , im} ⊆ J then {i1, . . . , im}− JA ⊆ J − JA ⊆
{j1, . . . , jm} whence by (i), {i1, . . . , im} = {j1, . . . , jm}. If {i1, . . . , im} 6⊆ J then
by (ii), we have J = ({j1, . . . , jm} − JA) ∪ JA ⊂ {i1, . . . , im} ∪ JA, so that
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{i1, . . . , im}∪JA has at least (n− l+1) elements. Hence by the induction hypoth-

esis pβk+1
k | B

[

1 . . . m

i1 . . . im

]

whenever {i1, . . . , im} 6⊆ J . Thus by (5), we con-

clude that C

[

1 . . . m

j1 . . . jm

]

=
1

pm
k

∑

B

[

1 . . . m

i1 . . . im

]

(
1

pα−1
k

A′)

[

i1 . . . im
j1 . . . jm

]

+
1

pm
k

B

[

1 . . . m

j1 . . . jm

]

(
1

pα−1
k

A′)

[

j1 . . . jm

j1 . . . jm

]

where the summation is over all

i1 < · · · < im such that {i1, . . . , im} 6⊆ J . Thus since pk | C

[

1 . . . m

j1 . . . jm

]

, hence

pm+1
k |

∑

B

[

1 . . . m

i1 . . . im

]

(
1

pα−1
k

A′)

[

i1 . . . im
j1 . . . jm

]

+ B

[

1 . . . m

j1 . . . jm

]

p
m−βk−l
k . By (ii), we have p

m−βk−l
k | ( 1

pα−1
k

A′)

[

i1 . . . im
j1 . . . jm

]

.

It follows that pm−l+1
k |

∑

B

[

1 . . . m

i1 . . . im

]

(
1

pα−1
k

A′)
[

i1 . . . im
j1 . . . jm

]

and so

pm−l+1
k | B

[

1 . . . m

j1 . . . jm

]

pm−βk−l
k whence pβk+1

k | B

[

1 . . . m

j1 . . . jm

]

. Hence

by induction, pβk+1
k divides the determinants of all (m×m) submatrices of B and

so pβk+1
k | d, a contradiction. £
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