PRIME AND RADICAL SUBMODULES OF FREE MODULES OVER A PID

S. HEDAYAT AND R. NEKOOEI
Communicated by Jutta Hausen

Abstract

In this paper the notion of prime matrix is introduced. It is shown that if R is a PID then every full rank prime submodule of $R^{(n)}$ is the row space of a prime matrix. Hence the notion of a prime matrix may be regarded as a generalization of the notion of a prime element. Finally, using prime matrices, we obtain the radical of submodules of $R^{(n)}$, as well as the radical submodules.

1. Introduction

Throughout this paper R denotes a principal ideal domain (PID). Note that every PID is a UFD and so a greatest common divisor (GCD) of any collection of elements always exists. Also for every $a, b \in R$ and prime element $p \in R$ such that $p \nmid a$ the congruence equation $a x \equiv b(\bmod p)$ has a solution. These and other basic results related to PID's which may be found in [1], are essential for the proofs of the results of this article. Now let M be a unitary R-module. A submodule N of M is called prime if $N \neq M$ and given $r \in R, m \in M, r m \in N$ implies $m \in N$ or $r \in(N: M)$, where $(N: M)=\{r \in R: r M \subseteq N\}$. The radical of $N \leq M$ is given by $\operatorname{rad}_{M}(N)=\cap P$, where the intersection is over all prime submodules of M containing N. If there is no prime submodule containing N, then we put $\operatorname{rad}_{M}(N)=M . N$ is called a radical submodule if $\operatorname{rad}_{M}(N)=N$. Let m and n be positive integers and let $A=\left(a_{i j}\right) \in M_{m \times n}(R)$. Let F be the free R-module $R^{(n)}$. We shall use the notation $\langle A\rangle$ for the submodule N of F generated by the rows of A, and the notation $\left(r_{1}, \ldots, r_{m}\right) A, r_{i} \in R$,for an element of N. Let $B \in M_{m}(R)$. We denote the adjoint matrix of B by B^{\prime}, so

[^0]that $B B^{\prime}=B^{\prime} B=(\operatorname{det} B) I_{m}$, where I_{m} is the $m \times m$ identity matrix. In [5], a characterization of prime submodules is given by prime ideals of R and certain finite systems of equations. We state below another characterization, valid only for PID's, which will be needed in the sequel.
Theorem 1.1. Let R be a PID, $F=R^{(n)}$ and N be a submodule of F with rank $N=m$. Let $N=<A>$ for some $A \in M_{m \times n}(R)$. Then
i) If $m<n$, then N is prime if and only if a GCD of the determinants of all $m \times m$ submatrices of A is 1 .
ii) If $m=n$, then N is prime if and only if there exist an irreducible element $p \in R$, a unit $u \in R$ and a positive integer $\alpha \leq n$, such that $\operatorname{det} A=u p^{\alpha}$ and a $G C D$ of entries of A^{\prime} is $p^{\alpha-1}$.

Proof. Theorem 2.6 in [2].
The next result will be widely used in the sequel. The proof is straightforward.
Lemma 1.2. Let $A \in M_{n}(R), \operatorname{det}(A) \neq 0$ and $A^{\prime}=\left(a_{i j}^{\prime}\right)$ be the adjoint matrix of A. Then $\left(x_{1}, \ldots, x_{n}\right) \in<A>$, for some $x_{i} \in R(1 \leq i \leq n)$ if and only if $\operatorname{det}(A) \mid \sum_{i=1}^{n} x_{i} a_{i j}^{\prime}$, for every $j, 1 \leq j \leq n$.

Finally, to avoid technical problems, we accept the following convention. If $A=\left(a_{i j}\right) \in M_{m \times n}(R)$ then $a_{i 0}=a_{0 j}=0$ for all $1 \leq i \leq m, 1 \leq j \leq n$. Also if $\left(r_{1}, \ldots, r_{n}\right) \in R^{(n)}$ then $r_{0}=0$.

2. Prime matrices

In this section we introduce the notion of a prime matrix. As will be shown later, prime matrices provide a useful tool for studying the radical of submodules of $R^{(n)}$. Let $J=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ be a subset of $\{1, \ldots, n\}$ and let $p \in R$ be a prime element. A matrix $A \in M_{n}(R), A=\left(a_{i j}\right)$, is said to be a p-prime matrix (or simply prime) if A satisfies the following conditions:
i) A is upper triangular.
ii) For all $i, 1 \leq i \leq n, a_{i i}=p$ if $i \in J$ and $a_{i i}=1$ if $i \notin J$.
iii) For all $i, j, 1 \leq i<j \leq n, a_{i j}=0$ except possibly when $i \notin J$ and $j \in J$.

Sometimes we call J the set of integers associated with A and denote it by J_{A}. By (i) and (ii) it is clear that $\operatorname{det}(A)=p^{\alpha}$.

Lemma 2.1. Let n be a positive integer and let $r_{i} \in R, 1 \leq i \leq n$. Let $p \in R$ be a prime element and $J=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ be a subset of $\{1, \ldots, n\}$. Let $J_{k}=$ $\left\{0,1, \ldots, j_{k}\right\}-J, 1 \leq k \leq \alpha$. Then $\left(r_{1}, \ldots, r_{n}\right) \in<A>$, for some p-prime
matrix $A \in M_{n}(R)$ with $J_{A}=J$ if and only if for every $k, 1 \leq k \leq \alpha$, the equation $\sum_{j \in J_{k}} r_{j} x_{j} \equiv r_{j_{k}}(\bmod p)$ has a solution.

Proof. Let $A=\left(a_{i j}\right)$ be a p-prime matrix with $J_{A}=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ and let $A^{\prime}=$ $\left(a_{i j}^{\prime}\right)$. For all $i, j, 1 \leq i, j \leq n$, it is easy to see that $a_{i i}^{\prime}=p^{\alpha-1}$ if $i \in J_{A}, a_{i i}^{\prime}=p^{\alpha}$ if $i \notin J_{A}$ and $a_{i j}^{\prime}=-p^{\alpha-1} a_{i j}$ if $i \neq j$. Hence by Lemma $1.2,\left(r_{1}, \ldots, r_{n}\right) \in<A>$ if and only if $p^{\alpha} \mid \sum_{j=1}^{n} r_{j} a_{j l}^{\prime}, 1 \leq l \leq n$, if and only if $p^{\alpha} \mid \sum_{j=0}^{l-1} r_{j}\left(-p^{\alpha-1} a_{j l}\right)+p^{\alpha-1} r_{l}$, for every $l \in J_{A}$, if and only if $p \mid \sum_{j \in J_{k}}-r_{j} a_{j j_{k}}+r_{j_{k}}, 1 \leq k \leq \alpha$, if and only if $\sum_{j \in J_{k}} r_{j} a_{j j_{k}} \equiv r_{j_{k}}(\bmod p)$ for every $k, 1 \leq k \leq \alpha$.

Lemma 2.2. Let m and n be positive integers such that $m<n$. Suppose that $B \in M_{n \times m}(R), Y \in M_{n \times 1}(R)$ and $X=\left(x_{1}, \ldots, x_{m}\right)^{t}$. Let $C \in M_{n \times(m+1)}(R)$ be the augmented matrix $[B: Y]$. Let $p \in R$ be a prime element. If p does not divide the determinant of at least one $m \times m$ submatrix of B, then the system of equations $B X \equiv Y(\bmod p)$ has a solution if and only if p divides the determinants of all $(m+1) \times(m+1)$ submatrices of C.

Proof. Suppose $B X \equiv Y(\bmod p)$ has a solution. Suppose that C_{0} is an $(m+1) \times(m+1)$ submatrix of C. If Y_{0} is the last column of C_{0} and B_{0} consists of all columns of C_{0} except for Y_{0}, then $B_{0} X \equiv Y_{0}(\bmod p)$, so that $C_{0}^{\prime} B_{0} X \equiv C_{0}^{\prime} Y_{0}(\bmod p)$. The last equation of this system is $0 \equiv \operatorname{det}\left(C_{0}\right)(\bmod p)$. Hence $p \mid \operatorname{det}\left(C_{0}\right)$. Conversely, assume that p divides the determinants of all $(m+1) \times(m+1)$ submatrices of C. Let B_{0} be an $m \times m$ submatrix of B such that $p \nmid \operatorname{det}\left(B_{0}\right)$. Without loss of generality, we may assume that B_{0} consists of the first m rows of B. If Y_{0} consists of the first m rows of Y then it is easy to see that the system $B_{0} X \equiv Y_{0}(\bmod p)$ has a solution, say $x_{i}=r_{i}$ for some $r_{i} \in R, 1 \leq i \leq m$. Let k be an arbitrary positive integer, $m<k \leq n$. Let $C_{1}=\left(c_{i j}\right)$ be the $(m+1) \times(m+1)$ submatrix of C consisting of the first m rows of C and row k. If $C_{1}^{\prime}=\left(c_{i j}^{\prime}\right)$, then $c_{(m+1)(m+1)}^{\prime}=\operatorname{det}\left(B_{0}\right)$ and we have $\sum_{j=1}^{m+1} c_{(m+1) j}^{\prime} c_{j i}=0$ for every $i, 1 \leq i \leq m$. Thus $c_{(m+1)(m+1)}^{\prime}\left(\sum_{i=1}^{m} c_{(m+1) i} r_{i}\right)=$ $\sum_{i=1}^{m}\left(c_{(m+1)(m+1)}^{\prime} c_{(m+1) i}\right) r_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{m}-c_{(m+1) j}^{\prime} c_{j i}\right) r_{i}=-\sum_{j=1}^{m} c_{(m+1) j}^{\prime}\left(\sum_{i=1}^{m} c_{j i} r_{i}\right)$.

As $\sum_{i=1}^{m} c_{j i} r_{i} \equiv c_{j(m+1)}(\bmod p)$ for all $j, 1 \leq j \leq m,-\sum_{j=1}^{m} c_{(m+1) j}^{\prime}\left(\sum_{i=1}^{m} c_{j i} r_{i}\right) \equiv$ $-\sum_{j=1}^{m} c_{(m+1) j}^{\prime} c_{j(m+1)}(\bmod p)$. Note that by hypothesis $p \mid \operatorname{det}\left(C_{1}\right)$. Therefore $-\sum_{j=1}^{m} c_{(m+1) j}^{\prime} c_{j(m+1)} \equiv c_{(m+1)(m+1)}^{\prime} c_{(m+1)(m+1)}(\bmod p)$.
As $p \nmid c_{(m+1)(m+1)}^{\prime}=\operatorname{det}\left(B_{0}\right)$, the above calculation implies that $\sum_{i=1}^{m} c_{(m+1) i} r_{i} \equiv$ $c_{(m+1)(m+1)}(\bmod p)$. Since k is arbitrary, we conclude that $x_{i}=r_{i}, 1 \leq i \leq m$, is a solution for the system $B X \equiv Y(\bmod p)$.

The method used in the proof of the following basic result is in fact an algorithm for calculating the prime matrices and finding a generating set of the radical of a submodule [see Theorem 3.4].

Theorem 2.3. Let m, n and α be positive integers such that $m \leq n$ and $1 \leq \alpha \leq n$. Let $B \in M_{m \times n}(R)$ and let $p \in R$ be a prime element. Then $\subseteq<A>$ for some prime matrix $A \in M_{n}(R)$ with $\operatorname{det}(A)=p^{\alpha}$ if and only if p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B.

Proof. Let $\subseteq<A>$ for some prime matrix A with $\operatorname{det}(A)=p^{\alpha}$. So there exists $C \in M_{m \times n}(R)$ such that $B=C A$. Let B_{0} be an $(n-\alpha+1) \times(n-\alpha+1)$ submatrix of B. Thus there exist an $(n-\alpha+1) \times n$ submatrix C_{0} of C and an $n \times(n-\alpha+1)$ submatrix A_{0} of A such that $B_{0}=C_{0} A_{0}$. Suppose that A_{1} is an $(n-\alpha+1) \times(n-\alpha+1)$ submatrix consisting of rows $i_{1}, \ldots, i_{n-\alpha+1}$ of A_{0}. Since J_{A} has α elements, hence $i_{k} \in J_{A}$ for some $k, 1 \leq k \leq n-\alpha+1$. It follows that the entries of row i_{k} of A_{0} are 0 or p. Thus $p \mid \operatorname{det}\left(A_{1}\right)$. Hence $p \mid \operatorname{det}\left(B_{0}\right)$, because by the Binet-Cauchy formula [3, Theorem 1], $\operatorname{det}\left(B_{0}\right)$ may be expressed as a linear combination of the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of A_{0}. Conversely, assume that p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B. By adding some zero rows to B if necessary, we may suppose that $B \in M_{n}(R)$. We use induction on α. For $\alpha=1$, by assumption $p \mid \operatorname{det}(B)$. Let k be the smallest integer such that p divides the determinants of all $k \times k$ submatrices of B_{k} where $B_{k} \in M_{n \times k}(R)$ consists of the first k columns of B. If $B=\left(b_{i j}\right)$ then by Lemma 2.2 , the system of equations $\left\{\sum_{j=0}^{k-1} b_{i j} x_{j} \equiv b_{i k}(\bmod p) \mid 1 \leq i \leq n\right\}$ has a solution. Therefore by Lemma 2.1,
there exists a prime matrix A with $J_{A}=\{k\}$ such that $\subseteq<A>$. Now suppose that the assertion is true for some $\alpha, 1 \leq \alpha \leq n-1$. Assume that p divides the determinants of all $(n-\alpha) \times(n-\alpha)$ submatrices of $B=\left(b_{i j}\right)$. Hence p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B. Therefore by the induction hypothesis there exists a prime matrix A with $\operatorname{det}(A)=p^{\alpha}$ such that $\subseteq<A>$. Let $J_{A}=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ and let $J_{k}=$ $\left\{0,1, \ldots, j_{k}\right\}-J_{A}, 1 \leq k \leq \alpha$. Fix k for the moment. By Lemma 2.1, the system of equations $\left\{\sum_{j \in J_{k}} b_{i j} x_{j} \equiv b_{i j_{k}}(\bmod p) \mid 1 \leq i \leq n\right\}$ has a solution, say $x_{j}=r_{j}$ for some $r_{j} \in R, j \in J_{k}$. Thus we have

$$
\begin{equation*}
\sum_{j \in J_{k}} b_{i j} r_{j} \equiv b_{i j_{k}}(\bmod p) \forall i, 1 \leq i \leq n \tag{1}
\end{equation*}
$$

Let B_{0} be the $n \times(n-\alpha)$ submatrix obtained by deleting columns $j_{1}, \ldots, j_{\alpha}$ from B. Let l be the smallest integer such that p divides the determinants of all $l \times l$ submatrices of B_{l} where $B_{l} \in M_{n \times l}(R)$ consists of the first l columns of B_{0}. Assume that j_{0} is the integer such that column l of B_{0} is column j_{0} of B. Clearly $j_{0} \notin J_{A}$. Let $J_{0}=\left\{0, \ldots, j_{0}-1\right\}-J_{A}$. By Lemma 2.2, It follows that the system of equations $\left\{\sum_{j \in J_{0}} b_{i j} x_{j} \equiv b_{i j_{0}}(\bmod p) \mid 1 \leq i \leq n\right\}$ has a solution, say $x_{j}=s_{j}$ for some $s_{j} \in R, j \in J_{0}$. Therefore we have

$$
\begin{equation*}
\sum_{j \in J_{0}} b_{i j} s_{j} \equiv b_{i j_{0}}(\bmod p) \forall i, 1 \leq i \leq n \tag{2}
\end{equation*}
$$

Put $J^{\prime}=\left\{j_{1}, \ldots, j_{\alpha}, j_{0}\right\}$ and let $J_{k}^{\prime}=\left\{0,1, \ldots, j_{k}\right\}-J^{\prime}$. If $j_{k}>j_{0}$, then combining (1) and (2) yields $b_{i j_{k}} \equiv \sum_{j \in J_{k}^{\prime}} b_{i j} r_{j}+\left(\sum_{j \in J_{0}} b_{i j} s_{j}\right) r_{j_{0}}(\bmod p)$ for every $i, 1 \leq i \leq n$. Hence the system of equations $\left\{\sum_{j \in J_{k}^{\prime}} b_{i j} x_{j} \equiv b_{i j_{k}}(\bmod p) \mid 1 \leq i \leq n\right\}$ has a solution. On the other hand, if $j_{k} \leq j_{0}$, then obviously the above system has a solution by (1). Since k is arbitrary, hence by Lemma 2.1, there exists a prime matrix A_{0} with $\operatorname{det}\left(A_{0}\right)=p^{\alpha+1}$ such that $\subseteq<A_{0}>$ and $J_{A_{0}}=J^{\prime}$. Thus the assertion is true for $\alpha+1$ and hence by induction for every $\alpha, 1 \leq \alpha \leq n$.

Proposition 2.4. Let n be a positive integer and let $B \in M_{n}(R)$. Let $p \in R$ be a prime element and let $\alpha, 1 \leq \alpha \leq n$, be the greatest integer such that $p^{\alpha} \mid \operatorname{det}(B)$ and $p^{\alpha-1}$ divides all entries of B^{\prime}. Then p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B.

Proof. By Theorem 3.2 in [1], there exist a diagonal matrix $C=\left(c_{i j}\right)$ and invertible matrices $P, Q \in M_{n}(R)$ such that $B Q=P C$, so that $Q^{\prime} B^{\prime}=C^{\prime} P^{\prime}$. By hypothesis, $p^{\alpha-1}$ divides all entries of B^{\prime} and hence those of $C^{\prime} P^{\prime}$. Let $C^{\prime}=\left(c_{i j}^{\prime}\right)$. If $p^{2} \mid c_{j j}$ for some $j, 1 \leq j \leq n$, then $p^{\alpha-1} \nmid c_{j j}^{\prime}$. Hence p divides all entries of row j of P^{\prime}. Thus $p \mid \operatorname{det}\left(P^{\prime}\right)$ which contradicts the fact that P is invertible. Since $p^{\alpha} \mid \operatorname{det}(C)$, hence p divides at least α entries of the diagonal of C. Therefore we conclude that p divides entries of at least one column of every $(n-\alpha+1) \times(n-\alpha+1)$ submatrix of $P C$. Thus p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $P C$ and by the Binet-Cauchy formula it is easy to see that p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $B=(P C) Q^{-1}$.

The next theorem is the main result of this section.
Theorem 2.5. Every full rank prime submodule of $R^{(n)}$ is the row space of a prime matrix and vice versa.

Proof. Let N be a prime submodule of $R^{(n)}$ with rank $N=n$. Then N is free and so there exists $B \in M_{n}(R)$ such that $N=$. By Theorem 1.1, $\operatorname{det}(B)=u p^{\alpha}$ for some prime $p \in R$, unit $u \in R$ and integer $\alpha, 1 \leq \alpha \leq n$; also a $G C D$ of entries of B^{\prime} is $p^{\alpha-1}$. Hence by Proposition 2.4, p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B and hence by Theorem $2.3, N \subseteq<A>$ for some prime matrix A with $\operatorname{det}(A)=p^{\alpha}$. Thus $B=C A$ for some $C \in M_{n}(R)$ and therefore $u p^{\alpha}=\operatorname{det}(B)=\operatorname{det}(C) \operatorname{det}(A)=\operatorname{det}(C) p^{\alpha}$. Thus $\operatorname{det}(C)=u$ and so C is invertible. Hence $C^{-1} B=A$. It follows that $<A>\subseteq=N$. Therefore $N=<A>$. That the row space of every prime matrix is a prime submodule, is clear by Theorem 1.1.

For example, for every prime element $p \in \mathbb{Z}$, the prime submodules N of $\mathbb{Z}^{(3)}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ such that $\left(N: \mathbb{Z}^{(3)}\right)=p \mathbb{Z}$ are as follows:

$$
\begin{aligned}
&<\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)>,<\left(\begin{array}{ccc}
1 & a_{12} & 0 \\
0 & p & 0 \\
0 & 0 & 1
\end{array}\right)>,<\left(\begin{array}{ccc}
1 & 0 & a_{13} \\
0 & 1 & a_{23} \\
0 & 0 & p
\end{array}\right)>,<\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & 1
\end{array}\right)> \\
&<\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & 1 & a_{23} \\
0 & 0 & p
\end{array}\right)>,<\left(\begin{array}{ccc}
1 & a_{12} & a_{13} \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right)>,<\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right)>,
\end{aligned}
$$

where $0 \leq a_{i j} \leq p-1,1 \leq i<j \leq 3$. Thus it is easily seen that for every prime integer p, there exist exactly $2 p^{2}+2 p+3$ prime submodules N of $\mathbb{Z}^{(3)}$ such that $\left(N: \mathbb{Z}^{(3)}\right)=p \mathbb{Z}$.

3. Radicals of Submodules

In this section we shall try to identify the radical of submodules of $R^{(n)}$ as far as possible. We first state some useful results about prime matrices.
Proposition 3.1. Let n be a positive integer and let $p \in R$ be a prime element. Let $A, B \in M_{n}(R)$ be p-prime matrices such that $<A>\subseteq$. Then $J_{B} \subseteq J_{A}$.
Proof. Let $\operatorname{det}(B)=p^{\alpha}$ for some positive integer $\alpha, 1 \leq \alpha \leq n$. Suppose that there exists some $j_{0} \in J_{B}-J_{A}$. By hypothesis row j_{0} of A belongs to $$. Hence by Lemma $1.2, p^{\alpha}$ divides the product (row j_{0} of A) (column j_{0} of $\left.B^{\prime}\right)=p^{\alpha-1}$, a contradiction. Therefore $J_{B} \subseteq J_{A}$.
Proposition 3.2. Let n be a positive integer and let $p \in R$ be a prime element. Let $A, B \in M_{n}(R)$ be p-prime matrices. Then $<A>=$ if and only if $J_{A}=J_{B}$ and the corresponding entries of A and B are equivalent modulo p.
Proof. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Suppose that $J_{A}=J_{B}$. Let $\operatorname{det}(A)=p^{\alpha}=$ $\operatorname{det}(B)$. Note that by Lemma $1.2,<A>\subseteq$ if and only if for all $i \notin J_{A}$ and $j \in J_{A}, 1 \leq i<j \leq n, p^{\alpha} \mid \sum_{k=1}^{n} a_{i k} b_{k j}^{\prime}=a_{i i} b_{i j}^{\prime}+a_{i j} b_{j j}^{\prime}=-p^{\alpha-1} b_{i j}+a_{i j} p^{\alpha-1}$; if and only if $a_{i j} \equiv b_{i j}(\bmod p)$. By symmetry, this is equivalent to $\subseteq<A>$. Now the result follows from Proposition 3.1.

Proposition 3.3. Let $m \leq n$ be positive integers and let $B \in M_{m \times n}(R)$. Let $p \in R$ be a prime element and let α be the greatest integer such that p divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of B. Then there exists a p-prime matrix $A \in M_{n}(R)$ with $\operatorname{det}(A)=p^{\alpha}$ such that $<A>$ is minimum among all prime submodules N of $R^{(n)}$ containing $$ such that $p \in\left(N: R^{(n)}\right)$.
Proof. By Theorem 2.3, there exists a prime matrix $A \in M_{n}(R)$ with $\operatorname{det}(A)=$ p^{α} such that $\subseteq<A>$. Let N be any prime submodule of $R^{(n)}$ such that $\subseteq N$ and $p \in\left(N: R^{(n)}\right)$. Thus $p R^{(n)} \subseteq N$, so that rank $N=n$. By Theorem 2.5, there exists a prime matrix $C \in M_{n}(R)$ such that $N=<C>$. Since $p R^{(n)} \subseteq N$, hence C is p-prime. It is easy to see that $<A>\cap<C>$ is a prime submodule of $R^{(n)}$ and so again by Theorem 2.5, there exists a prime matrix $D \in M_{n}(R)$ such that $<A>\cap<C>=<D>$. By Proposition 3.1, since $<D>\subseteq<A>$, hence $J_{A} \subseteq J_{D}$. By hypothesis and Theorem 2.3, J_{D} may have at most α element(s). Thus $J_{D}=J_{A}$. By the proof of Proposition 3.2, since $<D>\subseteq<A>$, hence $<A>=<D>=<A>\cap<C>$. Therefore $<A>\subseteq<C>$.

Let $m \leq n$ be positive integers and let $B \in M_{m \times n}(R)$. By Theorem 3.2 in [1], B is equivalent to a diagonal matrix C; i.e. there exist invertible matrices $P \in$ $M_{m}(R)$ and $Q \in M_{n}(R)$ such that $B=P C Q$. If $C_{0} \in M_{m}(R)$ is the submatrix consisting of the first m columns of C, then $C=C_{0} I$ where $I \in M_{m \times n}(R)$ consists of the first m rows of I_{n}. Put $D=P C_{0}$ and $B_{0}=I Q$. Hence $B=D B_{0}$ and it is easily seen that $\operatorname{det}(D)$ is a $G C D$ of the determinants of all $m \times m$ submatrices of B and a $G C D$ of the determinants of all $m \times m$ submatrices of B_{0} is 1 . If $\operatorname{det}(D)$ is a unit, then D is invertible so that $=<B_{0}>$. Thus for $m<n$ by Theorem 1.1, $$ is a prime submodule of $F=R^{(n)}$ and hence $\operatorname{rad}_{F}()=$. The following theorem characterizes the radical of submodules of $R^{(n)}$. A characterization has been carried out in [6] in the general case; however, when R is a PID, the characterization given below seems to be more practical.

Theorem 3.4. Let $m \leq n$ be positive integers and let $F=R^{(n)}$. Suppose that $B \in M_{m \times n}(R)$ and D and B_{0} are as above. Let $d=\operatorname{det}(D)=u p_{1}^{\beta_{1}} \ldots p_{t}^{\beta_{t}}$ be a prime decomposition. If $A_{k}=\left(a_{k i j}\right), 1 \leq k \leq t$, is the p_{k}-prime matrix as in Proposition 3.3, then $\operatorname{rad}_{F}()=<C>\cap<B_{0}>$ where $C=\left(c_{i j}\right) \in M_{n}(R)$ is an upper triangular matrix such that for all $i, k, 1 \leq i \leq n, 1 \leq k \leq t$,
i) $c_{i i}=p_{1}^{\delta_{1}} \ldots p_{t}^{\delta_{t}}$ where $\delta_{k}=1$ if $i \in J_{A_{k}}$ and $\delta_{k}=0$ if $i \notin J_{A_{k}}$.
ii) $c_{i j} \equiv \sum_{l=0, l \notin J_{A_{k}}}^{j-1} c_{i l} a_{k l j}\left(\bmod p_{k}\right) \forall j \in J_{A_{k}}$.

Proof. That there exists such a matrix C satisfying (i) and (ii) is guaranteed by the Chinese remainder theorem. Now assume that N is a prime submodule of F containing $$. Hence the rows of $D^{\prime} B=D^{\prime} D B_{0}=\operatorname{det}(D) I_{m} B_{0}=d B_{0}$ belong to N. Thus $d<B_{0}>\subseteq N$. If N does not contain $<B_{0}>$, then $d \in(N: F)$. Note that $(N: F)$ is a prime ideal of R. Therefore $p_{k} \in(N: F)$ for some $k, 1 \leq k \leq t$. Note that by Theorem 1.1, if $m<n$ then $<B_{0}>$ is a prime submodule of F. Thus by Proposition 3.3, it is easy to see that $\operatorname{rad}_{F}()$ $=\bigcap_{k=1}^{t}<A_{k}>\cap<B_{0}>$. Now it remains to show that $\bigcap_{k=1}^{t}<A_{k}>=<C>$. By the proof of Lemma 2.1, condition (ii) is equivalent to $<C>\subseteq<A_{k}>$ for every $k, 1 \leq k \leq t$, so that $<C>\subseteq \bigcap_{k=1}^{t}<A_{k}>$. Conversely, suppose that
$\left(r_{1}, \ldots, r_{n}\right) \in \bigcap_{k=1}^{t}<A_{k}>$. Therefore for every $k, 1 \leq k \leq t$, we have

$$
\begin{equation*}
\sum_{i=0, i \notin J_{A_{k}}}^{j-1} r_{i} a_{k i j} \equiv r_{j}\left(\bmod p_{k}\right) \quad \forall j \in J_{A_{k}} \tag{3}
\end{equation*}
$$

Let $C^{\prime}=\left(c_{i j}^{\prime}\right)$. Note that C^{\prime} is an upper triangular matrix. By Lemma 1.2, to prove that $\left(r_{1}, \ldots, r_{n}\right) \in<C>$, we have to show that $\operatorname{det}(C) \mid \sum_{i=1}^{n} r_{i} c_{i j}^{\prime}=\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}$ for every $j, 1 \leq j \leq n$. Let $\operatorname{det}\left(A_{k}\right)=p_{k}^{\alpha_{k}}, 1 \leq k \leq t$. By (i), it follows that $\operatorname{det}(C)=p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}$. Let $k, 1 \leq k \leq t$, be fixed and arbitrary. Hence it is enough to show that $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j} r_{i} c_{i j}^{\prime}$ for every $j, 1 \leq j \leq n$. We use induction on j. For $j=1$, if $1 \notin J_{A_{k}}$, then $p_{k} \nmid c_{11}$. Since $p_{k}^{\alpha_{k}} \mid \operatorname{det}(C)$, hence $p_{k}^{\alpha_{k}} \mid r_{1} c_{11} c_{11}^{\prime}$ and so $p_{k}^{\alpha_{k}} \mid r_{1} c_{11}^{\prime}$. If $1 \in J_{A_{k}}$, then by $(3), r_{1} \equiv 0\left(\bmod p_{k}\right)$, so $p_{k} \mid r_{1}$. Since $p_{k}^{\alpha_{k}-1} \left\lvert\, \frac{\operatorname{det}(C)}{c_{11}}=c_{11}^{\prime}\right.$, hence $p_{k}^{\alpha_{k}} \mid r_{1} c_{11}^{\prime}$. Thus the assertion is true for $j=1$. Assume inductively that $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j} r_{i} c_{i j}^{\prime}$ for every $j, 1 \leq j \leq j_{0}-1$. We have to show that $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$. We have $\sum_{j=1}^{j_{0}} c_{j j_{0}}\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)=\sum_{j=1}^{j_{0}} \sum_{i=1}^{j_{0}} r_{i} c_{i j}^{\prime} c_{j j_{0}}=$ $\sum_{i=1}^{j_{0}} r_{i}\left(\sum_{j=1}^{j_{0}} c_{i j}^{\prime} c_{j j_{0}}\right)=r_{j_{0}} \operatorname{det}(C)$. Therefore

$$
\begin{equation*}
c_{j_{0} j_{0}} \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}=r_{j_{0}} \operatorname{det}(C)-\sum_{j=1}^{j_{0}-1} c_{j j_{0}}\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right) \tag{4}
\end{equation*}
$$

Now two cases may occur: Case 1. $j_{0} \notin J_{A_{k}}$. Thus $p_{k} \nmid c_{j_{0} j_{0}}$. Hence (4) and the induction hypothesis imply that $p_{k}^{\alpha_{k}} \mid c_{j_{0} j_{0}} \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$. Since $p_{k} \nmid c_{j_{0} j_{0}}$, hence $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$. Case 2. $j_{0} \in J_{A_{k}}$. Let $J_{0}=\left\{0,1, \ldots, j_{0}\right\}-J_{A_{k}}$. By (ii),
$p_{k} \mid \sum_{l \in J_{0}} c_{j l} a_{k l j_{0}}-c_{j j_{0}}$, so that by induction hypothesis,
$p_{k}^{\alpha_{k}+1} \mid\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)\left(\sum_{l \in J_{0}} c_{j l} a_{k l j_{0}}-c_{j j_{0}}\right)$ for every $j, 1 \leq j \leq j_{0}-1$. Thus
$p_{k}^{\alpha_{k}+1} \mid \sum_{j=1}^{j_{0}-1}\left[\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)\left(\sum_{l \in J_{0}} c_{j l} a_{k l j_{0}}-c_{j j_{0}}\right)\right]$
$\Rightarrow p_{k}^{\alpha_{k}+1} \mid \sum_{j=1}^{j_{0}-1}\left[\sum_{i=1}^{j_{0}-1} \sum_{l \in J_{0}} r_{i} c_{i j}^{\prime} c_{j l} a_{k l j_{0}}-c_{j j_{0}} \sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right]$
$\Rightarrow p_{k}^{\alpha_{k}+1} \mid \sum_{j=1}^{j_{0}-1} \sum_{i=1}^{j_{0}-1} \sum_{l \in J_{0}} r_{i} c_{i j}^{\prime} c_{j l} a_{k l j_{0}}-\sum_{j=1}^{j_{0}-1} c_{j j_{0}}\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)$
$\Rightarrow p_{k}^{\alpha_{k}+1} \mid \sum_{j=1}^{j_{0}-1} \sum_{i=1}^{j_{0}-1} r_{i}\left(\sum_{l \in J_{0}} c_{i j}^{\prime} c_{j l}\right) a_{k l j_{0}}-\sum_{j=1}^{j_{0}-1} c_{j j_{0}}\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)$
$\Rightarrow p_{k}^{\alpha_{k}+1} \mid \sum_{l \in J_{0}} r_{l}(\operatorname{det}(C)) a_{k l j_{0}}-r_{j_{0}} \operatorname{det}(C)+r_{j_{0}} \operatorname{det}(C)-\sum_{j=1}^{j_{0}-1} c_{j j_{0}}\left(\sum_{i=1}^{j} r_{i} c_{i j}^{\prime}\right)$
$\Rightarrow p_{k}^{\alpha_{k}+1} \mid(\operatorname{det}(C))\left(\sum_{l \in J_{0}} r_{l} a_{k l j_{0}}-r_{j_{0}}\right)+c_{j_{0} j_{0}} \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$.
$\operatorname{By}(3), p_{k} \mid \sum_{l \in J_{0}} r_{l} a_{k l j_{0}}-r_{j_{0}}$. Thus $p_{k}^{\alpha_{k}+1} \mid(\operatorname{det}(C))\left(\sum_{l \in J_{0}} r_{l} a_{k l j_{0}}-r_{j_{0}}\right)$. Hence by
above
$p_{k}^{\alpha_{k}+1} \mid c_{j_{0} j_{0}} \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$. Therefore $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j_{0}} r_{i} c_{i j_{0}}^{\prime}$ and so by induction $p_{k}^{\alpha_{k}} \mid \sum_{i=1}^{j} r_{i} c_{i j}^{\prime}$ for all $j, 1 \leq j \leq n$.

In the previous theorem, if $m=n$, we can simply choose $D=B$ and $B_{0}=I_{n}$ and therefore we have $\operatorname{rad}_{F}()=<C>$. Some results concerning radical submodules may be found in [4]. Now let $r \in R$ and $B \in M_{m \times n}(R)$. By the notation $r \mid B$, we mean r divides all entries of B. The following notation defined in [3], is used in the next result. Let $1 \leq i_{1}<\cdots<i_{t} \leq m$ and $1 \leq j_{1}<$ $\cdots<j_{t} \leq n$ be some integers and $1 \leq t \leq \min (m, n)$. Then $B\left[\begin{array}{ccc}i_{1} & \ldots & i_{t} \\ j_{1} & \cdots & j_{t}\end{array}\right]$ denotes the determinant of the $t \times t$ submatrix of B consisting of rows i_{1}, \ldots, i_{t} and columns j_{1}, \ldots, j_{t}.

Theorem 3.5. Let $m \leq n$ be positive integers and let $F=R^{(n)}$. Suppose that $B \in$ $M_{m \times n}(R)$ and that d is a GCD of the determinants of all $m \times m$ submatrices of B. Then $$ is a radical submodule of F if and only if for every prime element $p \in R$ and positive integer $\beta, p^{\beta} \mid d$ implies that p divides the determinants of all $(m-\beta+1) \times(m-\beta+1)$ submatrices of B.

Proof. Suppose that $d=u p_{1}^{\beta_{1}} \ldots p_{t}^{\beta_{t}}$ is a prime decomposition. By Theorem 3.4, there exist $D \in M_{m}(R), B_{0} \in M_{m \times n}(R)$ and $A_{k} \in M_{n}(R), 1 \leq k \leq t$, such that $B=D B_{0}, \operatorname{det}(D)=d$ and $\operatorname{rad}_{F}()=<B_{0}>\cap \bigcap_{k=1}^{t}<A_{k}>$. Assume that $\operatorname{rad}_{F}()=$. If $q=p_{1} \ldots p_{t}$, then by Lemma 1.2, $(0, \ldots, 0, q, 0, \ldots, 0) B_{0} \in<B_{0}>\cap \bigcap_{k=1}^{t}<A_{k}>$ with the q as the i th component $(1 \leq i \leq m)$. Thus $(0, \ldots, 0, q, 0, \ldots, 0) B_{0} \in \operatorname{rad}_{F}()=$. Therefore there exist $s_{i} \in R, 1 \leq i \leq m$, such that $(0, \ldots, 0, q, 0, \ldots, 0) B_{0}=$ $\left(s_{1}, \ldots, s_{m}\right) B=\left(s_{1}, \ldots, s_{m}\right) D B_{0}$, whence $(0, \ldots, 0, q, 0, \ldots, 0)=\left(s_{1}, \ldots, s_{m}\right) D$. It follows that $(0, \ldots, 0, q, 0, \ldots, 0) D^{\prime}=\left(s_{1}, \ldots, s_{m}\right) \operatorname{det}(D) I_{m}=\left(s_{1}, \ldots, s_{m}\right) d$. Hence $d \mid(0, \ldots, 0, q, 0, \ldots, 0) D^{\prime}$ with the q as the i th component $(1 \leq i \leq m)$. Let $k, 1 \leq k \leq t$, be arbitrary. Then $p_{k}^{\beta_{k}-1} \mid D^{\prime}$. Thus $p_{k}^{\left(\beta_{k}-1\right) m} \mid \operatorname{det}\left(D^{\prime}\right)=d^{m-1}$ and hence $\left(\beta_{k}-1\right) m \leq \beta_{k}(m-1)$ whence $\beta_{k} \leq m$. Also by Proposition 2.4, since $p_{k}^{\beta_{k}-1}$ divides all entries of D^{\prime}, hence p_{k} divides the determinants of all $\left(m-\beta_{k}+1\right) \times\left(m-\beta_{k}+1\right)$ submatrices of D. Since $B=D B_{0}$, we conclude by the Binet-Cauchy formula that p_{k} divides the determinants of all $\left(m-\beta_{k}+1\right) \times\left(m-\beta_{k}+1\right)$ submatrices of B.
Conversely, assume that for every $k, 1 \leq k \leq t, \beta_{k} \leq m$ and p_{k} divides the determinants of all $\left(m-\beta_{k}+1\right) \times\left(m-\beta_{k}+1\right)$ submatrices of B. Fix k for the moment. Since $m-\beta_{k}+1=n-\left(n-m+\beta_{k}\right)+1$, hence by Theorem $2.3,\subseteq<A>$ for some prime matrix A with $\operatorname{det}(A)=p_{k}^{n-m+\beta_{k}}$. Let $\alpha=n-m+\beta_{k}$ and $C=\frac{1}{p_{k}^{\alpha}} B A^{\prime}$. Since $\subseteq<A>$, by Lemma 1.2, $C \in M_{m \times n}(R)$. Let $\left(x_{1} \ldots x_{n}\right) \in \operatorname{rad}_{F}()$ be arbitrary. Since $\operatorname{rad}_{F}()$ $\subseteq<B_{0}>$, hence $\left(x_{1} \ldots x_{n}\right)=\left(r_{1} \ldots r_{m}\right) B_{0}$ for some $r_{i} \in R, 1 \leq i \leq m$. Also since $\operatorname{rad}_{F}() \subseteq<A>$, hence $\left(x_{1} \ldots x_{n}\right)=\left(r_{1} \ldots r_{m}\right) B_{0} \in<A>$. Again by Lemma $1.2, p_{k}^{\alpha} \mid\left(r_{1} \ldots r_{m}\right) B_{0} A^{\prime}$, so that $p_{k}^{\alpha} d \mid\left(r_{1} \ldots r_{m}\right) D^{\prime}\left(B A^{\prime}\right)$. Therefore d and so $p_{k}^{\beta_{k}}$ divides all components of $\left(r_{1} \ldots r_{m}\right) D^{\prime} C$. If we show that there exists an $m \times m$ submatrix C_{0} of C such that $p_{k} \nmid \operatorname{det}\left(C_{0}\right)$, then we may conclude that $p_{k}^{\beta_{k}} \mid\left(r_{1} \ldots r_{m}\right) D^{\prime} C_{0}$ and hence $p_{k}^{\beta_{k}} \mid\left(r_{1} \ldots r_{m}\right) D^{\prime} C_{0} C_{0}^{\prime}=$
$\left(r_{1} \ldots r_{m}\right) D^{\prime} \operatorname{det}\left(C_{0}\right) I_{m}$. It will follow that $p_{k}^{\beta_{k}} \mid\left(r_{1} \ldots r_{m}\right) D^{\prime}$. Since k is arbitrary, hence $d \mid\left(r_{1} \ldots r_{m}\right) D^{\prime}$. Thus there exist $s_{i} \in R, 1 \leq i \leq m$, such that $d\left(s_{1}, \ldots, s_{m}\right)=\left(r_{1}, \ldots, r_{m}\right) D^{\prime}$. Hence $d\left(s_{1}, \ldots, s_{m}\right) B=\left(r_{1}, \ldots, r_{m}\right) D^{\prime} B=$ $\left(r_{1}, \ldots, r_{m}\right) d B_{0}$, so that $\left(x_{1} \ldots x_{n}\right)=\left(r_{1} \ldots r_{m}\right) B_{0}=\left(s_{1}, \ldots, s_{m}\right) B \in$. Therefore $\operatorname{rad}_{F}()=$. Now suppose on the contrary that p_{k} divides the determinants of all $m \times m$ submatrices of C. We shall show that $p_{k}^{\beta_{k}+1}$ divides the determinants of all $m \times m$ submatrices of B. Let $j_{1}<\cdots<j_{m}$ be some arbitrary integers between 1 and n. Since $C=\left(\frac{1}{p_{k}} B\right)\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)$, hence by the Binet-Cauchy formula, we have

$$
C\left[\begin{array}{lll}
1 & \ldots & m \tag{5}\\
j_{1} & \ldots & j_{m}
\end{array}\right]=\frac{1}{p_{k}^{m}} \sum_{i_{1}<\cdots<i_{m}} B\left[\begin{array}{lll}
1 & \ldots & m \\
i_{1} & \ldots & i_{m}
\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}
i_{1} & \ldots & i_{m} \\
j_{1} & \ldots & j_{m}
\end{array}\right]
$$

Note that $\frac{1}{p_{k}^{\alpha-1}} A^{\prime}=-A+\left(1+p_{k}\right) I_{n}$. By the definition of prime matrices, it follows that $\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}i_{1} & \ldots & i_{m} \\ j_{1} & \cdots & j_{m}\end{array}\right]=0$ except possibly when the following two conditions are satisfied:
(i) $\left\{i_{1}, \ldots, i_{m}\right\} \cap J_{A} \subseteq\left\{j_{1}, \ldots, j_{m}\right\}$ and (ii) $\left\{j_{1}, \ldots, j_{m}\right\}-J_{A} \subseteq\left\{i_{1}, \ldots, i_{m}\right\}$.

Let $J=\left\{j_{1}, \ldots, j_{m}\right\} \cup J_{A}$ have $(n-l+1)$ element(s). We use induction on l. For $l=1$, we have $J=\{1, \ldots, n\}$. For every $i \in\left\{i_{1}, \ldots, i_{m}\right\}$, if $i \notin J_{A}$ then $i \in J-J_{A} \subseteq\left\{j_{1}, \ldots, j_{m}\right\}$ and if $i \in J_{A}$ then by (i), again $i \in\left\{j_{1}, \ldots, j_{m}\right\}$. Thus $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}$. Hence by (5), we have

$$
C\left[\begin{array}{lll}
1 & \cdots & m \\
j_{1} & \cdots & j_{m}
\end{array}\right]=\frac{1}{p_{k}^{m}} B\left[\begin{array}{ccc}
1 & \cdots & m \\
j_{1} & \cdots & j_{m}
\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}
j_{1} & \cdots & j_{m} \\
j_{1} & \cdots & j_{m}
\end{array}\right]
$$

$=\frac{1}{p_{k}^{m}} B\left[\begin{array}{ccc}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right] p_{k}^{m-\beta_{k}}=\frac{1}{p_{k}^{\beta_{k}}} B\left[\begin{array}{ccc}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right]$.
Since $p_{k} \left\lvert\, C\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$, hence $p_{k}^{\beta_{k}+1} \left\lvert\, B\left[\begin{array}{ccc}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$. Thus the assertion is true for $l=1$. Assume inductively that $p_{k}^{\beta_{k}+1} \left\lvert\, B\left[\begin{array}{ccc}1 & \ldots & m \\ i_{1} & \ldots & i_{m}\end{array}\right]\right.$ whenever $\left\{i_{1}, \ldots, i_{m}\right\} \cup J_{A}$ has at least $(n-l+1)$ elements. Suppose that $J=\left\{j_{1}, \ldots, j_{m}\right\} \cup$ J_{A} has $(n-l)$ element(s). If $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq J$ then $\left\{i_{1}, \ldots, i_{m}\right\}-J_{A} \subseteq J-J_{A} \subseteq$ $\left\{j_{1}, \ldots, j_{m}\right\}$ whence by (i), $\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}$. If $\left\{i_{1}, \ldots, i_{m}\right\} \nsubseteq J$ then by (ii), we have $J=\left(\left\{j_{1}, \ldots, j_{m}\right\}-J_{A}\right) \cup J_{A} \subset\left\{i_{1}, \ldots, i_{m}\right\} \cup J_{A}$, so that
$\left\{i_{1}, \ldots, i_{m}\right\} \cup J_{A}$ has at least $(n-l+1)$ elements. Hence by the induction hypothesis $p_{k}^{\beta_{k}+1} \left\lvert\, B\left[\begin{array}{ccc}1 & \ldots & m \\ i_{1} & \ldots & i_{m}\end{array}\right]\right.$ whenever $\left\{i_{1}, \ldots, i_{m}\right\} \nsubseteq J$. Thus by (5), we conclude that $C\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right]=\frac{1}{p_{k}^{m}} \sum B\left[\begin{array}{lll}1 & \ldots & m \\ i_{1} & \ldots & i_{m}\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}i_{1} & \ldots & i_{m} \\ j_{1} & \ldots & j_{m}\end{array}\right]$ $+\frac{1}{p_{k}^{m}} B\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \cdots & j_{m}\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}j_{1} & \cdots & j_{m} \\ j_{1} & \cdots & j_{m}\end{array}\right]$ where the summation is over all $i_{1}<\cdots<i_{m}$ such that $\left\{i_{1}, \ldots, i_{m}\right\} \nsubseteq J$. Thus since $p_{k} \left\lvert\, C\left[\begin{array}{lll}1 & \cdots & m \\ j_{1} & \cdots & j_{m}\end{array}\right]\right.$, hence $p_{k}^{m+1} \left\lvert\, \sum B\left[\begin{array}{ccc}1 & \ldots & m \\ i_{1} & \ldots & i_{m}\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{ccc}i_{1} & \ldots & i_{m} \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$ $+B\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right] p_{k}^{m-\beta_{k}-l}$. By (ii), we have $p_{k}^{m-\beta_{k}-l} \left\lvert\,\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}i_{1} & \ldots & i_{m} \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$. It follows that $p_{k}^{m-l+1} \left\lvert\, \sum B\left[\begin{array}{ccc}1 & \ldots & m \\ i_{1} & \ldots & i_{m}\end{array}\right]\left(\frac{1}{p_{k}^{\alpha-1}} A^{\prime}\right)\left[\begin{array}{lll}i_{1} & \cdots & i_{m} \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$ and so $p_{k}^{m-l+1} \left\lvert\, B\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right] p_{k}^{m-\beta_{k}-l}\right.$ whence $p_{k}^{\beta_{k}+1} \left\lvert\, B\left[\begin{array}{lll}1 & \ldots & m \\ j_{1} & \ldots & j_{m}\end{array}\right]\right.$. Hence by induction, $p_{k}^{\beta_{k}+1}$ divides the determinants of all $(m \times m)$ submatrices of B and so $p_{k}^{\beta_{k}+1} \mid d$, a contradiction.

Acknowledgement. The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] P.B. Bhattacharya, S.K. Jain and S.R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, New York, 1986.
[2] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston Journal of Mathematics, 31(1), 2005, 75-85.
[3] P. Lancaster and M. Tismenetsky, The Theory of Matrices second edition with applications, Academic Press, San Diego, New York, 1985.
[4] M.E. Moore and S.J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30 (10), (2002), 5037-5064.
[5] Y. Tiras, A. Harmanci and P.F. Smith, A characterization of prime submodules, Journal of Algebra 212, (1999), 743-752.
[6] D.P. Yilmaz and P.F. Smith, Radicals of submodules of free modules, Comm. Algebra, 27 (5), (1999), 2253-2266.

Received March 26, 2004
Revised version received September 19, 2004
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.
E-mail address: rnekooei@mail.uk.ac.ir

[^0]: 2000 Mathematics Subject Classification. 13C13, 13C99.
 Key words and phrases. Prime submodules, radical of a submodule.

