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Abstract—A simple yet effective multi-label learning method, called label powerset (LP), considers each distinct combination of labels
that exist in the training set as a different class value of a single-label classification task. The computational efficiency and predictive
performance of LP is challenged by application domains with large number of labels and training examples. In these cases the number
of classes may become very large and at the same time many classes are associated with very few training examples. To deal with these
problems, this paper proposes breaking the initial set of labels into a number of small random subsets, called /abelsets and employing
LP to train a corresponding classifier. The labelsets can be either disjoint or overlapping depending on which of two strategies is used
to construct them. The proposed method is called RAKEL (RAndom k labELsets), where k is a parameter that specifies the size of the
subsets. Empirical evidence indicate that RAKEL manages to improve substantially over LP, especially in domains with large number
of labels and exhibits competitive performance against other high-performing multi-label learning methods.

Index Terms—Categorization, Multi-label, Ensembles, Labelset

1 INTRODUCTION

RADITIONAL single-label classification is concerned
with learning from a set of data that are associated
with a single label A from a set of disjoint labels L of
size M, with M > 1. If M = 2, then the learning task is
called binary classification, concept learning, or filtering,
while if M > 2, then it is called multi-class classification.
In several application domains however, data are as-
sociated with a set of labels Y C L. In text categoriza-
tion for example, a newspaper article concerning the
reactions of the Christian church to the release of the
”Da Vinci Code” film can be classified into both of the
categories society\religion and arts\movies. Similarly in
semantic scene classification [1], [2], [3], a photograph
can belong to more than one conceptual class, such as
sunset and beach at the same time. Other interesting
applications of multi-label classification include music
categorization into emotions [4], [5], [6], semantic video
annotation [7], [8], direct marketing [9] and automated
tag suggestion [10], [11].

This paper focuses on the label powerset (LP) multi-
label learning method [1], [12], which considers each
subset of L, hitherto called labelset, that exists in the
training set as a different class value of a single-label
classification task. LP is an interesting approach to study,
as it has the advantage of taking label correlations into
consideration. This way it can, in some cases, achieve
better performance compared to computationally sim-
pler approaches like binary relevance (BR), which learns
a binary model for each label independently of the rest
[13].
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However, LP is challenged by application domains
with large number of labels and training examples, due
to the typically proportionally large number of labelsets
appearing in the training set. The large number of these
labelsets (class values for the single-label classifier of
LP), raises the computational cost of LP on one hand,
and makes its learning task quite hard on the other,
as many of these labelsets are usually associated with
very few training examples. Moreover, LP can only
predict labelsets observed in the training set. This is an
important limitation, because new labelsets typically do
appear in test sets, which simulate unseen data.

In order to deal with the aforementioned problems
of LP, this work proposes randomly breaking the initial
set of labels into a number of small-sized labelsets, and
employing LP to train a corresponding multi-label clas-
sifier. This way, the resulting single-label classification
tasks are computationally simpler and the distribution of
their class values is less skewed. The proposed method
is called RAKEL (RAndom k labELsets) [13], where k
is a parameter that specifies the size of the labelsets.
Two different strategies for constructing the labelsets
are studied. The first one leads to disjoint, whereas the
second to overlapping labelsets.

Empirical evidence indicate that both approaches
manage to significantly improve LP, especially in do-
mains with large number of labels. The overlapping
strategy achieves higher predictive performance than the
disjoint one, as the aggregation of multiple predictions
for each label via voting allows the correction of po-
tential uncorrelated errors. Finally, a comparative study
against other multi-label learning methods, indicates that
RAKEL with overlapping labelsets is highly competitive.

The rest of this paper is structured as follows. The
following section presents related work on learning from
multi-label data. Section 3 discusses the motivations
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and rationale for using RAKEL and describes the two
alternative strategies for creating the labelsets in detail.
Section 4 describes the datasets that are involved in the
experiments and the evaluation measures, while Section
5 presents and discusses the results. Finally, the last
section highlights the main points of this work and
presents its conclusions.

2 RELATED WORK

Multi-label learning methods can be grouped into two
categories [12]: i) problem transformation, and ii) algorithm
adaptation. Methods of the first group transform the
learning task into one or more single-label classification
or ranking tasks, for which a large bibliography of
learning algorithms exists. The second group of methods
extend specific learning algorithms in order to handle
multi-label data directly.

2.1

The following paragraphs describe a number of prob-
lem transformation methods from the literature. For
the formal description of these methods, we will use
L={\j:j=1... M} to denote the finite set of labels in
a multi-label learning task and D = {(#},Y;),i=1...N}
to denote a set of multi-label training examples, where
T; is the feature vector and Y; C L the set of labels of
the i-th example.

There exist several transformations that can be used
to convert a multi-label dataset into a single-label one,
where a single-label classifier that outputs a probability
distribution over the classes can be applied in order to
learn a label ranker [1], [14]. The copy transformation
replaces each multi-label example (x;,Y;) with |Y;| ex-
amples (z;,\;), for every A\; € Y;. A variation of this
transformation, dubbed copy-weight, associates a weight
of ﬁ to each of the produced examples. The select
family of transformations replaces Y; with one of its
members. This label could be the most (select-max) or
least (select-min) frequent among all examples. It could
also be randomly selected (select-random). Finally, the
ignore transformation simply discards every multi-label
example.

Binary relevance (BR) is a popular problem trans-
formation method that learns M binary classifiers, one
for each different label in L. It transforms the original
dataset into M data sets Dy,,j = 1...M that contain
all examples of the original dataset, labeled positively
if the label set of the original example contained A;
and negatively otherwise. For the classification of a new
instance, BR outputs the union of the labels A; that are
predicted by the M classifiers.

Label powerset (LP) is a simple but effective problem
transformation method that works as follows: It consid-
ers each unique set of labels that exists in a multi-label
training set as one of the classes of a new single-label
classification task. Given a new instance, the single-label

Problem Transformation Methods

classifier of LP outputs the most probable class, which
actually represents a set of labels.

Ranking by pairwise comparison (RPC) [15] trans-
forms the multi-label data set into % binary label
datasets, one for each pair of labels (A;,A;),1 < i <
j < M. Each dataset contains those examples of D that
are annotated by at least one of the two corresponding
labels, but not both. A binary classifier that learns to
discriminate between the two labels, is trained from
each of these datasets. Given a new instance, all binary
classifiers are invoked, and a ranking is obtained by
counting the votes received by each label. The multi-
label pairwise perceptron (MLPP) algorithm [16] is an
instantiation of RPC using perceptrons for the binary
classification tasks.

Calibrated label ranking (CLR) [17] extends RPC by
introducing an additional virtual label, which acts as a
natural breaking point of the ranking into a relevant and
an irrelevant set of labels. The binary models that learn
to discriminate between the virtual label and each of
the other labels, correspond to the models of BR. This
occurs, because each example that is annotated with a
given label is considered as positive for this label and
negative for the virtual label, while each example that is
not annotated with a label is considered negative for it
and positive for the virtual label.

2.2 Algorithm Adaptation Methods

The following paragraphs briefly report a plethora of
algorithm adaptation methods grouped by the learning
paradigm that they extend.

Decision Trees and Boosting. The C4.5 algorithm was
adapted in [18] for the handling of multi-label data.
AdaBoost.MH and AdaBoost.MR [19] are two extensions
of AdaBoost for multi-label data. A combination of Ad-
aBoost. MH with an algorithm for producing alternating
decision trees was presented in [20]. The main motiva-
tion was the production of multi-label models that can
be understood by humans.

Probabilistic Methods. A probabilistic generative
model for multi-label text classification is proposed in
[21], according to which, each label generates different
words. Based on this model a multi-label document is
produced by a mixture of the word distributions of its
labels. A similar word-based mixture model is presented
in [22]. A deconvolution approach is proposed in [23],
in order to estimate the individual contribution of each
label to a given item. The use of conditional random
fields is explored in [24], where two graphical models
that parameterize label co-occurrences are proposed.

Neural Networks and Support Vector Machines.
BP-MLL [25] is an adaptation of the popular back-
propagation algorithm for multi-label learning. The main
modification to the algorithm is the introduction of a
new error function that takes multiple labels into ac-
count. This error function is similar to the ranking loss
[19]. ML-RBF [26] is a recent approach for adapting



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

radial basis function networks to multi-label data. The
multi-class multi-label perceptron (MMP) [27] is a family
of online algorithms for label ranking from multi-label
data based on the perceptron algorithm. MMP maintains
one perceptron for each label, but weight updates for
each perceptron are performed so as to achieve a perfect
ranking of all labels. An SVM algorithm that minimizes
the ranking loss is proposed in [28].

Lazy and Associative Methods. A number of meth-
ods [29], [5], [30], [2], [31] are based on the popular
k Nearest Neighbors (kKNN) lazy learning algorithm.
The first step in all these approaches is the same as
in kNN, i.e. retrieving the k nearest examples. What
differentiates them is the aggregation of the label sets
of these examples. MMAC [32] is an algorithm that
follows the paradigm of associative classification, which
deals with the construction of classification rule sets
using association rule mining. Finally, an approach that
combines lazy and associative learning is proposed in
[33], where the inductive process is delayed until an
instance is given for classification.

3 RANDOM k-LABELSETS

Label powerset (LP) is a relatively simple method with
the advantage of taking label correlations into account.
However, as briefly mentioned in the introduction of this
article, it is challenged by domains with large number
of labels, M, and training examples, N.

The computational complexity of LP with respect to
M and N depends on the computational complexity of
the underlying single-label classification algorithm with
respect to the number of examples N and the number of
classes, which is equal to the number of labelsets that are
used as annotations for the instances of the training set.
This number is upper bounded by min(N,2M), but is
usually much smaller in practice. Columns bound and
actual of Table 2 show the bound of the number of
labelsets and their actual number, for the datasets that
are used in the experiments. Note that apart from the
dataset with the fewest number of labels (6), in the rest
the bound is equal to N. The actual number of labelsets
in a dataset ranges from 5% to 44% of this bound,
as indicated by column diversity, which measures the
diversity of the labelsets that exist in a dataset. Despite
being smaller than the bound, the high number of these
labelsets can constitute an important scalability problem
for LP, especially for large values of N and M.

In addition, the fact that many of these labelsets are
associated with very few examples, makes the learning
process difficult as well. As an example, consider the
mediamill dataset [8], which is described in more detail
in Section 4.1 along with the rest of the datasets that are
used in the experiments. Figure 1 shows a histogram
of the number of appearances of the 6555 different
labelsets that exist in this dataset. The total number of
appearances (examples in the dataset) is 43907. The y
axis (logarithmic scale with base 10) shows the number

of labelsets, whose number of appearances falls into the
corresponding bin of the = axis (logarithmic scale with
base 2). It can be seen that most of the labelsets are very
infrequent. In fact, 4104 labelsets appear just once in this
dataset, while those that appear up to 8 times account
for 92% of all 6555 distinct labelsets.
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Fig. 1. Histogram of the number of appearances of the
6555 different labelsets in the mediamill dataset. The
counts in the y axis (logarithmic scale with base 10)
correspond to the number of labelsets that exhibit the cor-
responding bin of appearances in the z axis (logarithmic
scale with base 2).

The main idea in this work is to randomly break a
large set of labels into a number of small-sized labelsets,
and for each of them train a multi-label classifier using
the LP method. For the multi-label classification of an
unlabeled instance, the decisions of all LP classifiers are
gathered and combined. For simplicity, we only consider
labelsets of the same size, k. A labelset R C L with
k = |R| is called k-labelset. Therefore, the proposed
approach is dubbed RAKEL (RAndom k labELsets). This
paper examines the construction of two different types
of labelsets: a) disjoint (RAKEL;), and b) overlapping
(RAEEL,). In the following two sections we describe the
functionality of both variations of RAKEL in more detail.

RAEEL offers advantages over LP for the following
reasons. First of all, the resulting single-label classifica-
tion tasks are computationally simpler. To see why this
occurs, consider the case of the mediamill dataset again. If
we break the set of 101 labels of mediamill into a number
of labelsets of size k = 3, then each LP model will have
to predict 8 (2%) classes in the worst case. If we construct
200 such models, training each of them using a one-vs-
rest support vector machine, then 1600 (200 * 8) binary
models will be built in the worst case, which is much less
compared to the 6555 binary models required by the full
LP using the same underlying learning algorithm. On
the other hand, using a decision tree learning algorithm
underneath will probably lead RAKEL to a larger overall
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computational cost, as decision tree learners are sublin-
ear with respect to the number of classes. A complexity
analysis is presented in Section 3.3.

In addition, the resulting single-label classification
tasks are characterized by a much more balanced distri-
bution of class values. Using the same example as above,
we can see that the distribution of the 8 class values of
each simpler problem, will not be as skewed as that of
the 6555 class values that we have seen in Figure 1. This
in turns means an easier single-label learning problem
to deal with. Note that this benefit is independent of the
single-label learning algorithm used underneath.

Finally, in the case of overlapping labelsets, RAKEL
can gather multiple predictions for the same label by
the different LP models that include this label in their
labelset. As the different LP models are trained on a
different output space (different class labels), they offer
a diverse view of the task of predicting the value for
specific labels. Therefore combining their output through
a voting process, offers the chance of correcting potential
uncorrelated errors, and improving the overall perfor-
mance. In this respect, RAKEL reminds ensemble meth-
ods, like ECOC (error correcting output codes) [34], that
construct multiple single-label models by manipulating
the output space [35].

3.1 RAKEL,

Given a size of labelsets k, RAKEL, initially partitions
L randomly into m = [M/k] disjoint labelsets Rj;,
j=1...m, Nj_, R; = 0. Labelsets Rj, j = 1...m — 1
are k-labelsets. If M/k is an integer, then labelset R,, is
also a k-labelset, otherwise R,, contains the remaining
M mod k labels. Then RAKEL; learns m multi-label
classifiers hj, j = 1...m using LP. Each classifier h;
confronts a single-label classification task having as class
values all the subsets of R; that are found in the training
set.

The training set for h;, denoted as Dj, contains all
examples of the original training set annotated with
the intersection of their original annotations and R;:
D; = {(z;,Y; N R;j),i = 1...N}. Note that this may
lead to the empty set appearing as an annotation for
an example. This doesn’t mean that these examples are
excluded from D;. The empty set is just another class
of the single-label classification task of h;. Actually, the
empty set is an acceptable annotation based on the
definition of a multi-label dataset (Y; € L) and most
multi-label learners (including LP) handle it without
any special consideration. Figure 2 offers an algorithmic
presentation of the training process of RAKEL,.

Given a new multi-label instance Z, the binary predic-
tions h;(Z, ;) of all classifiers h; for all labels A\; € R;
are gathered in order to build the final multi-label classi-
fication vector (see Figure 3). Note that it is possible for
RAEKEL, to predict a labelset that has not appeared in
the training set, as its final prediction is assembled from
different parts of existing labelsets.

Input: Set of labels L of size M, training set D,
labelset size k
Output: Number of models m, k-labelsets R;,
corresponding LP classifiers h;
m=[M/k];
for i=1 to m do
i — 0;
for j=1 to k do
if L =0 then
| break;
A; <« randomly selected label from L;
RZ‘ — RZ U {/\] },‘
L— L\{\}
| train an LP classifier h; based on D and R;;

Fig. 2. The training process of RAKEL,.

Input: Number of models m, new instance &,
k-labelsets R;, corresponding LP classifiers h;
Output: Multi-label classification vector Result
for i=1 to m do
L forall \; € R; do
| Result; < hi(x, \;);

Fig. 3. The classification process of RAKEL,.

3.2 RAKEL,

We first introduce some additional notation. Let the
term L* denote the set of all distinct k-labelsets of L.
The size of L* is given by the binomial coefficient:
IL*| = (*}). Given a size of labelsets k and a number
of desired classifiers m < |L*|, RAKEL, initially selects
m k-labelsets R;, i = 1...m from the set L* via random
sampling without replacement. Note that in this case the
labelsets may overlap, while the overlap is certain when
mk > M. Then RAKEL, learns m multi-label classifiers
hi, i = 1...m using LP, as in the case of RAKEL,.
Figure 4 presents the training process of RAKEL, in
pseudocode.

Input: Set of labels L of size M, training set D,
labelset size k, number of models m < (A,f )
Output: k-labelsets R;, corresponding LP classifiers
h;
S «— Lk,’
for i « 1 to min(m, |L*|) do
R; «— a k-labelset randomly selected from S;
train an LP classifier h; based on D and R;;
S S\{Rr:};

Fig. 4. The training process of RALEL,,.

For the multi-label classification of a new instance 7,
each model h; provides binary predictions h;(Z, ;) for
each label )\; in the corresponding k-labelset R;. Subse-
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quently, RAKEL, calculates the mean of these predictions
for each label A; € L and outputs a final positive decision
if it is greater than a 0.5 threshold. This intuitive thresh-
old corresponds to the majority voting rule for the fusion
of classifier decisions. It has been used for deriving a
final decision in the problem transformation method
RPC [15] as well. The pseudocode of the classification
process of RAKELo is given in Figure 5, while Table 1
exemplifies it for a run with £ = 3 and m = 7 on a multi-
label training set with 6 labels {\1, Ag, ..., Ag}. Similarly
to RAKEL,;, RAKEL, can also predict a labelset that is
not present in the training set, as its final prediction is
obtained through a voting process, based on predictions
that correspond to different overlapping parts of existing
labelsets.

TABLE 1
An example of the classification process of RAKEL, run
with £ = 3 and m = 7 on a multi-label training set with 6

labels.
predictions
model labelset A1 A2 A3 A4 A5 A6
7 Loa, hel 1 0 - - - 1
ho {/\2, A3, /\4} - 1 1 0 - -
hs  {A3, A5, A} - ; 0 § 0 1
ha {2, A4 A5} - 0 - 0 0 -
hs {1, 24, A5} 1 - - 0 1 -
he {1, A2, A3} 1 0 - - -
hr {1, A4, N6} 0 - - 1 - 0
average votes 3/4 1/4 2/3 1/4 1/3 2/3
final prediction 1 0 1 0 0 1

Input: Set of labels L of size M, number of models
m, k-labelsets R;, corresponding LP
classifiers h;, new instance

Output: Multi-label classification vector Result

for j — 1 to M do

Sum; «— 0;

| Votes; —0;

for i« 1 tom do

forall labels A\; € R; do

Sumj — Sumj + hl(f, )\j);
L Votes; <+ Votes; +1;

for j — 1 to M do
Avgj «— Sum;/Votes;;
if Avg; > 0.5 then

| Result; —1;

else Result; — 0 ;

Fig. 5. The classification process of RAKEL,.

Note that user-specified parameters m (number of
classifiers) and k (size of labelsets) determine the ex-
pected number of predictions for each label, which is
equal to 7. We hypothesize that the larger the expected
number of predictions per label, the larger the predictive
accuracy of RAKEL,, due to the fusion of more predic-
tions. Given that k£ should be small to avoid the problems

of LP, then in order to increase km, one should select a
large value for the number of models, m. The empirical
study that follows, studies the relationship of m and %
and provides guidelines for appropriate values.

3.3 Complexity Analysis

If the complexity of the algorithm employed to
learn the transformed single-label classification task is
O(g(C, N, A)) for a dataset with C' class values, N exam-
ples and A predictive attributes, then the computational
complexity of RAKEL is O(mg(min(N,2%), N, A)), where
m = [M/k] in the case of disjoint labelsets. It is linear
with respect to the number of LP classifiers and it
further depends on the complexity of the single-label
classification algorithm.

The number of LP classifiers, m, is linear with respect
to M in the case of disjoint labelsets. The empirical study
that follows, indicates that in the case of overlapping
labelsets a value of m that is linear with respect to M
(e.g. 2M) suffices for reaching a high level of predictive
performance. Finally, note that the exponential factor 2%
does not pose a problem, as k will be set to a small value.

4 EXPERIMENTAL SETUP

This section provides details on the experimental setup.
More specifically, Section 4.1 describes the datasets and
Section 4.2 the measures that were used to empirically
evaluate the performance of the proposed approach.

4.1 Datasets

Experiments were conducted on 8 multi-label datasets’.
Table 2 includes basic statistics, such as the number
of examples and labels, along with statistics that are
relevant to labelsets, such as their bound, actual number
and diversity. Short descriptions of these data sets are
given in the following paragraphs.

TABLE 2
Multi-label datasets and their statistics sorted by
increasing order of number of labels.

bound of actual labelset
name examples labels labelsets labelsets diversity
scene 2407 6 64 15 23%
yeast 2417 14 2417 198 8%
tmc2007 28596 22 28596 1341 5%
medical 978 45 978 94 10%
enron 1702 53 1702 753 44%
mediamill 43907 101 43907 6555 15%
reuters 6000 101 6000 1028 17%
bibtex 7395 159 7395 2856 39%

The scene dataset contains 2407 images annotated with
up to 6 concepts such as beach, mountain and field [1].
Each image is described with 294 visual features.

The yeast dataset [28] contains micro-array expressions
and phylogenetic profiles for 2417 yeast genes. Each gene

1. Available at http://mlkd.csd.auth.gr/multilabel. html
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is annotated with a subset of 14 functional categories
(e.g. metabolism, energy, etc) from the top level of the
functional catalogue (FunCat).

The tmc2007 dataset is based on the data of the
competition organized by the text mining workshop of
the 7th SIAM international conference on data mining?.
The original data contained 28596 aviation safety reports
in free text form, annotated with one or more out of
22 problem types that appear during flights [36]. Text
representation follows the boolean bag-of-words model.
Feature selection was then in order to reduce the compu-
tational cost of training. We used the x? feature ranking
method separately for each label in order to obtain a
ranking of all features for that label. We then selected the
top 500 features based on the their maximum rank over
all labels. A similar approach was found to have high
performance in previous experimental work on textual
datasets [37].

The medical dataset’ is based on the data made avail-
able during the Computational Medicine Center’s 2007
Medical Natural Language Processing Challenge*. The
dataset consists of 978 clinical free text reports labeled
with one or more out of 45 disease codes.

The enron dataset is based on a collection of email
messages exchanged between the Enron Corporation
employees, which was made available during a legal
investigation. It contains 1702 email messages that were
categorized into 53 topic categories, such as company
strategy, humor and legal advice, by the UC Berkeley Enron
Email Analysis Project’.

The mediamill dataset was part of the Mediamill chal-
lenge for automated detection of semantic concepts in
2006 [8]. It contains 43907 video frames annotated with
101 concepts (e.g. military, desert, basketball, etc). The
specific dataset we used corresponds to experiment 1
(visual feature extraction) as described in [8]. Each video
frame is characterized by a set of 120 visual features.

The bibtex dataset [10] is based on the data of the
ECML/PKDD 2008 discovery challenge. It contains 7395
bibtex entries from the BibSonomy social bookmark and
publication sharing system, annotated with a subset of
the tags assigned by BibSonomy users (e.g. statistics,
quantum, datamining). The title and abstract of bibtex
entries were used to construct features using the boolean
bag-of-words model.

The reuters (rcvl) dataset is a well known benchmark
for text classification methods. We have used an existing
subset of this dataset (subsetl) that contains 6000 news
articles assigned into one or more out of 101 topics. In
order to reduce the feature space we have kept only
words that appear at least 50 times in the corpus leading
to a reduced feature space of 1654 features. An extensive
description of this dataset can be found in [38].

2. http:/ /www.cs.utk.edu/tmw07/

3. Originally obtained from http://www.cs.waikato.ac.nz/~jmr30/
4. http:/ /www.computationalmedicine.org/challenge/index.php

5. http:/ /bailando.sims.berkeley.edu/enron_email. html

4.2 Evaluation Measures

The evaluation of multi-label learning methods requires
different measures than those used in the case of single-
label data. A unified presentation and categorization of
existing evaluation measures for multi-label classifica-
tion is given in [13]. The evaluation in this work is based
on the popular and indicative micro F; and macro F}
measures.

The F; measure is the harmonic mean of precision
and recall and is a popular evaluation measure in the
research area of information retrieval. Formally, given
the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn), F} is defined
as follows:

2xtp

2xtp+ fp+ fn M

1=

Micro F; and macro F; are the micro-averaged
and macro-averaged versions of F; respectively. Micro-
averaging as well as macro-averaging [39] are ways
to calculate binary evaluation measures across sev-
eral labels. Consider a binary evaluation measure
B(tp,tn, fp, fn). Let tpy, fpa, tny and fny be the number
of true positives, false positives, true negatives and false
negatives after binary evaluation for a label A. The
micro-averaged and macro-averaged versions of B, are
calculated as follows:

Bmicro = B <Z tpx, Z fpka Ztn)\a Z f’l’))\> (2)
A=1 A=1
M
Bracro = M zzj tp>\, fox,tny, fn)\) 3)

5 RESULTS AND DISCUSSION

This section presents the results obtained from our em-
pirical study and concludes on the applicability and
performance of RAKEL. The first part studies the per-
formance of RAKEL; and RAKEL, with respect to their
parameters and compares them with LP and each other.
Then they are compared against baseline and high-
performing multi-label classifiers. Finally, three different
single-label classification algorithms are used to study
their effect on the performance of RAKEL,.

In all experiments, RAKEL; and RAKEL, are run 10
times using different seed values for the initialization
of the pseudo-random number generator that guides
the selection of the labelsets, in order to obtain more
representative results on one hand and assess the effect
of the stochastic component of the algorithm on the
other.
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5.1

In this section, the evaluation is based on the micro Fj
measure, estimated via the holdout method using the
original train and test subsets provided with the releases
of the 8 datasets.

The first two parts of this section examine the perfor-
mance of the two RAKEL variations with respect to their
parameters, which for RAKEL, is the size of the labelset,
k, while for RAKELo is both k and the number of models,
m. Instead of absolute micro F; values, the percentage
of improvement over LP is shown. This improves the
legibility of the figures and simplifies the interpretation
of the results across several different datasets. The last
part compares the absolute micro F; performance of
RAKEL; and RAKEL, using specific parameters against
LP and each other.

The C4.5 decision tree learning algorithm was used as
the base-level single-label classification algorithm of LP
and the LP classifiers of RAKEL. We used the implemen-
tation of C4.5 within Weka [40] and our implementations
of LP and RAKEL within Mulan [13].

Empirical Evaluation of RAKEL

5.1.1 Evaluation of RAKEL,

Figure 6 presents the percentage of improvement of
RAKEL,; over LP in terms of micro F} measure with
respect to the size of the labelset (k) in all datasets. The
values of k correspond to different fractions of the total
number of labels (from k = [M/10] to k = [9M/10]), so
that the effect of & is studied for a broad range of values
and at the same time results are comparable across all
datasets. When k£ = M, RAKEL; becomes equivalent to
LP.
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Fig. 6. Percentage of micro F; measure improvement of
RAEKEL, over LP with respect to &

A first observation is that RAKEL,; provides a substan-
tial improvement over the LP classifier for all datasets

with the exception of scene, where it leads to worse
performance for k = [6M/10] = 4. However, this was
an expected result due to the small number of labels in
this dataset (6).

Concerning the effect of k on the predictive per-
formance of RAKEL,;, we could argue that in general
smaller values of k usually lead to better results. This
confirms the hypothesis made earlier that splitting the
initial multi-label problem into a number of simpler and
smaller subproblems will improve the performance of
LP. On the other hand, greater values of k£ allow the LP
models of RAKEL, to take larger labelsets (and poten-
tially more correlations) into account. This is a plausible
explanation for the fact that RAKEL;’s performance is
not always degrading with respect to k. Nevertheless,
values of k that are close to M perform worst and
approximate the performance of LP.

Concerning the performance of RAKEL,; with respect
to the number of labels (1/), we notice that the greatest
improvement is achieved in datasets with large number
of labels such as reuters (101 labels), bibtex (159 labels)
and enron (53 labels), where the performance of LP is
poor (micro Fi: 0.0979, 0.2897, 0.3953 respectively). An
exception to this rule is mediamill (101 labels), where the
improvement is similar to datasets with small M. This
can be explained firstly by the higher performance of
LP in this dataset (micro Fi: 0.4539). Secondly, even the
smallest k£ value in the graph ([M/10]) is quite large
for mediamill (equal to 10). If we select smaller values
for k we will observe greater improvement over LP. For
example £ = 2 leads to an 11.23% improvement and
k = 3 leads to an 8.9% improvement.

In conclusion, we could state that setting k to small
values is expected to lead to substantial better results

compared to LP, especially in datasets with large number
of labels.

5.1.2 Evaluation of RAKEL,

Figure 7 presents the percentage of improvement of
RAEKEL, over LP in terms of micro F} measure with
respect to the size of the labelset (k) in all datasets. Based
on the conclusions of the previous section we use small
values for k£ (from 2 to 10). The number of models (m)
is set to 2, so that each label appears in the output of
RAEEL,’s models approximately 2k times irrespectively
of the number of labels in the dataset. Note that the scene
plot can not be extended more than k = 4 because the
small number of labels (6) limits the number of different
labelsets that can be created.

We first observe that RAKEL, outperforms LP for all
values of k in all datasets. As k increases, the perfor-
mance of RAKEL, exhibits an increasing trend in most
of the datasets, in contrast to what we have seen for
RAKEL, in the previous section. The reason is that in
this experiment, bigger values of k lead to more votes
for each label, as the number of models is constant (2M).
In turn, more votes lead to more accurate estimates of
the true value of each label. Finally, as in RAKEL,, the
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Fig. 7. Percentage of micro F; improvement of RAKEL,
(m = 2M) over LP with respect to k.

improvement in performance is in general greater in data
sets with larger number of labels.

Figure 8 presents the percentage of micro F; improve-
ment of RAKEL, over LP using k¥ = 3 with respect to
various values of m in all datasets. In order to improve
the legibility of the figure, the values of m correspond
to different fractions of the total number of labels (from
[M/5] to 2M). What we observe is that as the number
of classifiers increases, so does the performance of the
ensemble. As before, this is due to the fact that bigger
values of m lead to more votes for each label. An
important finding that holds for all datasets is that after
a certain number of models, the performance of RAKEL,
does not exhibit substantial improvement. In most cases
M is a good approximation of this number.

In conclusion, increasing either m or k leads RAKEL,
to improved performance. The main reason for this
behavior is that the number of votes received for each
label is proportional to km. Since the complexity of
RAEEL grows exponentially with respect to k, but only
linearly with respect to m, it is more efficient to increase
the value of m instead of k. As a guideline, we suggest
using a small value for k (e.g. k¥ = 3), and a value that
is between M and 2M for m.

One thing to note, however, is that the process of
selecting the labels is random, and as such, it could lead
to the case, where none of the labelsets include one or
more from the original set of labels. In this case, the
algorithm will not be able to make a rational decision
about the value of this (or these) particular label(s). In
this respect, increasing m further, reduces the probability
of a label receiving no votes from the models

Fig. 8. Percentage of micro F; measure improvement for
RAEEL (k = 3) over LP with respect to m

5.1.3 Disjoint vs. Overlapping Labelsets

Table 3 presents the micro F; value of LP, RAKEL, (k =
3), and RAKEL, (k = 3, m = 2M). For RAKEL,; and
RAKEL, the percentage of improvement in micro F; over
LP is also presented.

We observe that RAKEL, provides a higher improve-
ment over LP than RAKEL,4. This fact confirms the
assumption that ensemble voting will further enhance
the overall performance. An exception to this observa-
tion is the medical dataset, where RAKEL, provides a
slightly smaller improvement. However, in this dataset
there is a very small number of distinct labelsets (94),
despite the relatively large number of labels (45). This
explains both the good performance of LP and the minor
improvements of RAKEL, due to the small diversity of
its ensemble of LP classifiers.

In Table 3 the number of classes resulting from the
transformation process of the three methods is pre-
sented. For RAKEL; and RAKEL, the classes of all LP
models are summed. The number of classes can be con-
sidered as an estimator of computational requirements.
We observe that RAKEL, presents less classes than LP in
all datasets. Note the substantial reduction in number of
classes in datasets tmc, enron, mediamill, reuters and bibtex.
RAKEL,, as expected, presents greater number of classes
compared to RAKEL; due to the additional classfiers.
However, in datasets bibtex, enron and tmc it presents
lower number of classes than LP.

5.2 Comparison with Other Methods

In this section, the evaluation is based on both the micro
Fy and the macro F; measures, estimated via 10 repeated
holdout experiments, each using a random 66% of each
dataset for training and the rest for evaluation. So, in this
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TABLE 3
Comparison of RAKEL,; and RALKEL,

LP RAEKELy (kK = 3) RAEKEL, (k =3,m =2M)

micro classes micro I Imp. over LP  classes micro I Imp. over LP  classes
scene 58.75% 14 58.7610.49% 0.02% 10.8 67.021+0.69% 14.08% 66.3
yeast 52.65% 164 54.1140.63% 2.78% 33.7 61.5010.62% 16.81% 207.3
tmc2007 78.79% 1172 83.031+0.37% 5.38% 53.6 85.76+2.53% 8.84% 317.4
medical 74.54% 77 78.8140.53% 5.72% 58.3 78.694+1.04% 5.56% 351.8
enron 39.53% 545 49.94+1.29% 26.33% 91.8 54.394+0.62% 37.59% 554.7
mediamill 45.39% 4913 49.43+0.25% 8.90% 176.7 55.804+0.39% 22.94% 1054.7
reuters 9.79% 523 12.40+0.16% 26.64% 1514 12.71+£0.18% 29.80% 922.9
bibtex 28.97% 2058 39.0740.33% 34.85% 255.8 39.954+0.27% 37.89% 1542.8

case RAKEL,; and RAKEL, are run a total of 100 times
each, as 10 different seeds are used for each different
holdout experiment. To calculate the performance of
RAEKEL for a specific holdout experiment we average
the values obtained from these 10 additional internal
executions.

RAKEL is compared against the simple baseline meth-
ods BR and LP, as well as against three high performing
multi-label methods that have been found to perform
better than a number of other multi-label methods in
a variety of datasets. The first one is a multi-label
version of the k nearest neighbors algorithm, called
MLANN [2]. The second one is a multi-label version
of the back propagation algorithm for training multi-
layer perceptrons, called BPMLL [25]. The last one is
the pairwise comparison method, called calibrated label
ranking (CLR) [17].

The C4.5 decision tree learning algorithm was used as
the base-level single-label classification algorithm of BR,
LP, the LP classifiers of RAKEL and the binary classifiers
of CLR. For RAKEL,; we set k£ to 3 and for RALKEL,
we set k to 3 and m to 2M in all data sets. Note that
these are generic settings based on the conclusions of
the previous section, and definitely not the optimal ones
as also shown in the previous section. For MLANN, the
number of neighbors is set to 10 and the smoothing
factor is set to 1 as recommended in [2]. For BPMLL,
the learning rate is set to 0.05, the number of epochs is
set to 100 and the number of hidden units is set to 20%
of the input units, as recommended in [25]. We used
the implementation of C4.5 within Weka [40] and our
implementations of BR, LP, RAKEL, CLR, MLANN and
BPMLL within Mulan [13] for unified experiments and
evaluation.

Tables 4 and 6 present the average and standard devi-
ation of the micro F; and macro F; measure respectively,
for all method-dataset pairs. Tables 5 and 7 present the
rank of each method in terms of micro F; and macro
Fy respectively in each dataset, along with the average
rank of each method. Following the suggestions in [41],
we compare the different methods according to their
average rank.

We observe that RAKEL, exhibits the highest average
rank both in the micro I} and the macro F; measures.
RAEKEL, presents the second worst average rank in terms

of micro-F; (outperforming only LP) but the third best
average rank in terms of macro F; outperforming LP,
MLENN, BPMLL and CLR. It is interesting to notice that
the baseline BR presents the second best average rank in
both metrics.

In addition, the Wilcoxon signed-rank test (a=0.05)
was applied in order to examine if RAKEL, (or even
RAKEL,) have a statistical significant advantage over the
rest of the methods. Over all datasets, RAKEL, proved
to outperform significantly BR, LP, RAKEL; and CLR
in terms of micro Fj. On the other hand, RAKEL,,
proved significantly better than LP only. In terms of
macro Fj, RAKEL, proved to be significantly better than
LP, RAKEL;, MLANN and CLR. RAKEL,; significantly
outperformed LP only, as for micro Fj.

5.3 The Effect of the Classification Algorithm

This section studies the effect of the single-label classi-
fication algorithm that is used to train the LP models
of RAEKEL, on the performance of RAKEL,. We compare
the performance of RAKEL, with k = 3 and m = 2M
using three different base-level learning algorithms: a)
the C4.5 algorithm that was used in the experiments
sofar, b) a naive Bayes (NB) algorithm and c) a support
vector machine (SVM) learning algorithm (one-vs-rest).
We used the implementations of these algorithms that
are available within Weka [40] (The Weka port of Lib-
SVM [42] was used for the SVM). The SVM was set with
polynomial kernel. We tuned the regularization (C) and
degree (d) parameters of the SVM by searching the space
defined by the values d = {1,2,3} and C = {1,10,100}.
As in Section 5.1, the evaluation here is also based on
the micro I measure, estimated via the holdout method
using the original train and test subsets provided with
the releases of the 8 datasets.

Table 8 presents the results of the experiments. The
best performance at each dataset is indicated with bold
typeface. In general, C4.5 and SVM perform better than
NB in almost all datasets. C4.5 and SVM achieve the
best performance in 4 datasets each. This phenomenon
can be explained by considering that SVMs are more
accurate classifiers but, on the other handed, decision
trees are well suited for training ensembles of classifiers
as RAKEL, does.
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TABLE 4
Comparative results in terms of micro Fj.

BR LP RAKEL, RAKEL, MLENN BPMLL CLR
scene 6236F1.01% 60.05+1.14% 59.87£0.82% 69.58+1.53% 7229+1.08% 48.18£5.19% 62.82+0.92%
yeast 57.674+1.89%  53.04+1.03%  54.26+0.58%  61.89+0.74%  63.93+1.06%  63.11£1.47%  61.69+1.29%
tmc2007 68.80+0.28%  61.87+£0.30%  67.7840.32%  71.7840.22%  63.21+0.52%  71.23+£0.23%  70.73+0.32%
medical 79.344+1.02%  74.37+1.87%  79.214+0.89%  79.34+1.22%  66.23+1.77%  60.40+5.81%  78.67+1.14%
enron 51.93+1.93%  41.33+£1.00%  50.69+0.48%  55.35£0.94%  44.42+3.00% 56.01+£1.15%  54.65+1.24%
mediamill ~ 55.3540.22%  49.2140.27%  54.2840.14%  60.81+0.16%  58.15+0.27%  49.30+0.58%  58.5140.24%
reuters 37.1240.47%  29.88+0.71%  36.31+0.38%  38.21+0.13%  20.10+1.55%  05.99+0.33%  32.74+0.81%
bibtex 39.584+0.74%  29.3240.69%  39.13+0.67%  40.36£0.71%  20.56+0.94%  45.81+£0.45%  32.54+0.70%

TABLE 5
Ranking of methods according to their micro F; performance (see Table 4)
BR P RAKEL; RAKEL, MLENN BPMLL CIR
scene 4 5 6 2 1 7 3
yeast 5 7 6 3 1 2 4
tmc 4 7 5 1 6 2 3
medical 1 5 3 2 6 7 4
enron 4 7 5 2 6 1 3
mediamill 4 7 5 1 3 6 2
reuters 2 5 3 1 6 7 4
bibtex 3 6 4 2 7 1 5
average rank 3.38 6.13 4.63 1.75 4.50 4.13 3.50
TABLE 6
Comparative results in terms of macro F3.

BR LP RAKELy RAKEL, MLANN BPMLL CLR
scene 6341£091% 61.04£1.16% 60.90£0.88% 70.26+1.64% 72.63%1.37 51.29£526% 64.23%0.89%
yeast 38.29+0.59%  37.36£1.09%  38.84+0.50%  40.66+0.77%  36.34+0.79  42.85+1.02%  38.52+0.96%
tmc2007  57.8240.52%  50.37+047%  57.04+0.54%  59.90+0.41% 41.61+1.08 61.88+0.69%  58.5940.67%
medical 35.6742.27%  33.38+£1.94%  35.6242.07%  36.98+£1.81% 20.26+1.36 22.83+3.04%  34.63+1.65%
enron 14.2140.74%  13.66+1.43%  14.454+0.55%  14.65+0.63%  7.43+1.18  17.04+1.18%  13.1040.70%
mediamill  18.644+0.61%  17.90+0.33%  19.7840.38%  21.26+0.50%  14.1840.23  9.86+0.24%  11.81+0.33%
reuters 21.814£0.79%  16.8140.87%  21.12+0.60%  21.25+0.45%  8.40+0.68  5.22+0.08%  11.77+0.57%
bibtex 27.1240.66%  20.39+0.79%  26.4040.59%  26.774+058%  6.424041  31.73+0.32%  16.6840.53%

TABLE 7

Ranking of methods according to their macro F; performance (see Table 6)

BR LP RAKEL; RAKEL, MLKNN BPMLL CLR
scene 4 5 6 2 1 7 3
yeast 5 6 3 2 7 1 4
tmce 4 6 5 2 7 1 3
medical 2 5 3 1 7 6 4
enron 4 5 3 2 7 1 6
mediamill 3 4 2 1 5 7 6
reuters 1 4 3 2 6 7 5
bibtex 2 5 4 3 7 1 6
average rank 3.13  5.00 3.63 1.88 5.88 3.88 4.63

6 CONCLUSIONS

This paper has presented a new multi-label classification
method, called RAEKEL, that learns an ensemble of LP
classifiers, each one targeting a different small random
subset of the set of labels. The motivation was the com-
putational efficiency and predictive performance prob-
lems of the simple and effective standard LP method,
when faced with domains with large number of labels
and training examples.

We examined both disjoint and overlapping subsets
and found that both lead to improved results over the
standard LP method, especially in domains with many
labels. We also found that overlapping subsets lead to

better results compared to disjoint ones, due to the
classifier fusion process that takes place for each label.
The results of comparing the predictive performance of
the proposed approach with three high-performing algo-
rithm adaptation methods were in favor of the proposed
approach (using overlapping subsets).

RAKEL could be more generally thought of as a new
approach for creating an ensemble of multi-label clas-
sifiers by manipulating the label space using random-
ization. In this sense, RAKEL could be independent of
the underlying method for multi-label learning, which
in this paper is LP. However, we should note that only
multi-label learning methods that strongly depend on
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TABLE 8
Micro F; of RAKEL, using three different single-label
classification algorithms

dataset NB C4.5 SVM

scene 62.96+0.38%  67.02+0.69%  72.59+0.21%
yeast 57.00+0.65%  61.50+0.62%  64.88+0.37%
tmc2007 60.42+1.86%  85.76+2.53%  71.74+0.35%
medical 46.54+0.43%  78.69+1.04%  78.0540.52%
enron 33.02+0.72%  54.39+0.62%  55.81£0.32%
mediamill  17.424+0.34%  55.80+0.39%  47.37+0.13%
reuters 8.88+0.60%  12.71+0.18%  3.3940.03%
bibtex 22.31+0.10%  39.95+0.27%  41.66+£0.11%

the specific set of labels used to annotate each example,
such as LP and PPT [43] (an extension of LP), are good
candidates for this generalized version of RAKEL. BR for
example wouldn’t benefit at all, while MLANN would
only slightly be affected, as it is heavily based on the
feature space (the nearest neighbors will always be the
same for all different labelsets).
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