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Abstract 

Video analysis of human dynamics is an important area of research devoted to detecting people and 

understanding their dynamic physical behavior in a complex environment that can be used for biometric 

applications. This paper provides a detailed survey of the various studies in areas related to the tracking of 

people and body parts such as face, hands, fingers, legs, etc., and modeling behavior using motion analysis. 

 

1. Introduction 

In biometric research we are particularly interested in understanding and interpreting human behavior in 

complex environments. In a number of applications it is important to identify the actions of certain parts of 

the body, e.g. hand-gestures, gait analysis, and facial expression analysis. Such applications are important in 

areas related to human computer communication, security and biometrics aimed at identifying an individual 

through their actions. In a number of other applications, it is quite often important to analyze the overall 

human body dynamics. Such high level analysis is interested in interpreting behavior in a video sequence to 

understand human actions [99]. Such work has applications in areas related to classifying active from passive 

attention, security, and monitoring an environment for novel behaviors. Finally, the modeling of human 

behavior can be used for a number of applications such as generating natural animation or graphics, 

understanding normal and pathological behaviors, and analysis of data for medical applications, e.g. 

sensor/prosthetic development. There are three major areas related to interpreting human motion: 1) motion 

analysis involving individual human body parts; 2) human body motion and behavior analysis using single or 

multiple cameras; and 3) higher level analysis of human dynamics using computer modeling. In this paper 
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we provide an overview of research in the above areas. Our aim is to highlight the work of important studies 

in these areas. Figure 1 shows the taxonomy of the current research in the area of studying human dynamics 

using computational models. We follow this figure as the basis of our discussion in the followings sections 

and subsections. Section 2, 3 and 4 discuss the areas (1-3) mentioned above. It should be noted that our 

review does not aim to provide detailed discussion on studies in other related areas; (reviews in these areas 

are available as follows: face detection [264]; face recognition [46,78]; facial expression analysis [176], 

gesture recognition [195]).  

 

2. Tracking 

Tracking of objects in video sequences is the most basic of image processing steps to understand their 

dynamic behavior. The main aim is to track object motion in a sequence of video frames. The results of 

tracking are then analyzed mathematically to interpret the motion behavior of objects. Object motion can be 

perceived as a result of either camera motion with a static object, object motion with static camera, or both 

object and camera moving. Tracking techniques include 2D tracking which estimates 3D motion parameters, 

3D tracking which gives the position and orientation of the object in 3D space, and high level tracking which 

tracks the deformation of the object. Tracking is often facilitated through the use of special markers, 

correlation measures and a combination of color and shape constraints. There are two broad approaches to 

tracking moving objects: motion- and model-based. Motion-based approaches depend on a robust method for 

grouping visual motions consistently over time. They tend to be fast, but do not guarantee that the tracked 

regions have any semantic meaning. Model-based approaches, on the other hand, can impose high-level 

semantic knowledge but suffer from being computationally expensive due to the need to cope with scaling, 

translation, rotation and deformation. In both cases tracking is performed using measurements provided by 

geometric or region-based properties of the tracked object. In this direction there are two main approaches: 

boundary/edge-based and region-based approaches. Edge-based approaches match the edges of objects in 

images and region-based approaches use image templates. If we are to assume that there is little difference 

between two images (limited motion), then these approaches can achieve fairly accurate results in tracking. 

However, when this assumption does not hold, which is very often the case in practical applications, these 

algorithms provide sub-optimal results and they have to depend on some remedial measures to resume 

tracking. Edge-based and region-based tracking methods generally need more computational resources 
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which makes it hard to realise them for real-time applications. On the other hand, blob-based (a blob is a 

connected set of regions with some semantic identity) tracking algorithms do not use local image information 

such as edge and region, but instead rely on color, motion, and rough shape to segment objects from the 

background. They are computationally efficient and robust. In the following discussion we review past 

research on the tracking of different human body parts, especially head, face, hands, fingers, and then the 

body as a whole. A summary is shown in Table 1 for the different body parts that are tracked and the well-

known approaches used for this purpose. 

 

2.1. Tracking faces/heads 

In order to track a human face or head, the system not only needs to locate a face/head, but it also needs to 

find the same face/head in a sequence of images. The task of finding a face is known as "face detection", and 

several survey papers have appeared on this topic in the past [e.g. 264]. Finding the same face in a sequence 

of images is a difficult task as the environment may be changing, e.g. changes in illumination, object motion 

and the entry/exit of objects in frames. Often, non conventional methods such as blink detection [53] have 

been used for finding faces. In the following discussion we detail the studies that have used popular and 

well-established methods of using color information, facial features, templates, optic flow, contour analysis 

and a combination of methods for this purpose. 

 

 2.1.1 Tracking face/head using color information 

Skin color is a strong cue in tracking. It has been shown in several studies that skin color clusters well [235] 

and it can be easily discriminated from other colors present in the background. Previous research has also 

investigated in detail the use of different color spaces to extract features for skin detection that are robust to 

illumination changes. Several studies have tried to track face/head using color information. Approaches used 

to track faces/heads using color information fall under into two main categories: statistical and model-based. 

The statistical approaches can be further subdivided into methods using Guassian models 

[59,161,162,163,164,165,202,203], histogram analysis [27,198, 218,267] and color probability distribution 

[34,47,75,225]. 
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Gaussian modeling is one of the most commonly used methods in statistical approach. The general idea of 

Gaussian modeling is to model the skin color using a single Gaussian distribution [59], or alternatively, to 

model the skin color using a mixture of Gaussian models [161,162,163,164,165,202,203]. The other 

commonly used method is histogram analysis [27,198, 218,267], where chromatic color space or normalised 

color space is normally used (see Figure 1). One of the main challenges is to make the color space insensitive 

to small variations in the image [267], and develop a robust tracker that is insensitive to out-of-plane 

rotation, til ting, severe but brief occlusion, arbitrary camera movement, and other movements in the 

background [27]. One of the ways in which robust tracking can be achieved using histogram analysis is 

through a new Monte Carlo tracking technique as introduced by Pérez et al. [198]. Color probabili ty 

distribution is another color based approach used for tracking face [34,47,75,225]. It is useful to apply robust 

statistics which ignores outliers in data for generating better results [34]. Often color information is extracted 

from hair and skin regions [47,75,225]. Usually, skin region and hair region is extracted by estimation the 

skin/hair color li kelihood for each pixels with the skin/hair color distribution [225], and geometric properties 

such as area, center and geometric moment of each region are computed [47].  

    

Figure 1: An example of color histogram used for face tracking 

In model-based approaches, a combination of stochastic model with motion and camera models is used 

[262,263]. These three model compensate for different problems, e.g. the stochastic model is adaptable to 

different people and different lighting conditions in real-time; the motion model is used to estimate image 

motion and to predict search window; and the camera model is used to predict and to compensate for camera 

motion.     
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2.1.2 Tracking faces/heads using facial features 

One of the earliest investigation of head tracking using facial features was based on tracking corners of the 

eyes and mouth [12]. However this approach is limited to sequences in which the same points were visible 

over the entire image sequence. Since then nose has been used as well as eyes and mouth [117,120]. Jacquin 

and Eleftheriadis [117] use these features to form a rectangular “eyes-nose-mouth” region for tracking a 

head. A similar approach was proposed by Jebara and Pentland [120] who used these features to select the 

candidate formation that maximizes the likelihood of being a face. The combination of these three facial 

features can help achieve tracking accuracy of between 90%-95%. Other facial features such as iris, brow, 

cheek and transient features such as wrinkles and furrows, in combination of the three facial features 

mentioned before have been used and tested with 98% tracking accuracy [236]. 

 

2.1.3 Tracking faces/heads using template 

The two types of template model explored for tracking faces in video sequences are 2D template and 

deformable template. Rather than tracking facial features, the distributed response of a set of 2D templates 

can be used to characterize a given face region [72] (see Figure 2). The 2D templates are robust and fast, but 

they require initial training or initialisation, and are limited in terms of the range of head motions that they 

can track. A prototype-based deformable template models was used by Zhong et al. [269] to represent an 

object by its contours/edges. It has several advantages over the standard 2D templates including: a) The 

object of interest in the image sequence can vary from frame to frame due to a change in the view point, the 

motion of the object, or the non-rigid nature of the object, and these shape variations can be captured by the 

deformable shape model; b) Although the object shape varies from frame to frame, the overall structure of 

the object is generally unchanging. The deformable shape model can capture this overall structure by using 

an appropriate prototype; and c) The motion or deformation between two successive frames is not 

significantly large so that the converged configuration in the current frame can be used to provide a 

reasonable initialisation for the next frame. The prototype-based deformable model also has an advantage 

over the widely used “snake model” in tracking applications since it inherently contains global structural 

information about the object shape, which makes it less sensitive to weak or missing image features. 
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Figure 2: An example of the template model used for tracking face 

 

2.1.4 Tracking face/head using active contours 

An active contour or snake is a deformable curve or contour which is influenced by its interior and exterior 

forces to grow or shrink. The interior forces impose smoothness constraints on the contour and the exterior 

forces attract the contour to significant image features. The exterior forces of the snakes can be defined using 

color features [228,229].  Similarly, the contours of head(s) can be obtained by using segmentation method, 

and the boundary of the contour can be tracked over a sequence of frames [135]. An example is shown in 

Figure 3. 

 
Figure 3: An example of tracking faces using active contours. 

 

 2.1.5 Tracking faces/heads using optic flow 
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Optic flow has been widely used to track head motion [18,29,268]. It can be interpreted in terms of a planar 

2D patch [29]. Even though this approach has been reported to achieve high accuracy, it limits accurate 

tracking to medium-sized head motions, and fails when large head rotations or scaling is present. This 

approach was extended by [18] to interpret the optic flow field using a 3D model rather than using a simple 

planar model. The technique used for tracking this 3D model is called "motion regularization" or "flow 

regularization". A face model with a closed-form formula based on the ESQ (Extended super-quadric) can 

be used to regularize optic flow in order to estimate the 3D head motion [268]. This approach is effective and 

not sensitive to occlusion during head tracking.  

 

2.1.6 Tracking face/head using a combination of cues/methods  

Often a single feature or cue is not sufficient to perform object tracking. Several studies have investigated 

combining evidence from different sources to get better results [89,98,110,111,180,242]. Generally, color 

and shape information are combined to locate and track faces [98,111]. The studies that use this combination 

have achieved accuracy between 96% to100%. Often, motion and color information is combined with other 

cues such as shape information [89], texture properties to characterise 2D blobs [180], intensity change and 

contrast range [242], and coherence [110] for face tracking. This combination leads to a substantial 

improvement in robustness of tracking in comparison to that of using only one feature. In addition, 

combination can also be achieved at the output level where a number of classifiers or trackers of different 

nature attempt to solve the same problem and their output is combined for a final output [242]. 

    

Sherrah and Gong [219] used an approach referred to as “perceptual fusion”, which involves the integration 

of multiple sensory modules to arrive at a single perceptory output. The sensory modules all use the same 

physical sensor, the video camera, but compute different information. Data fusion is used to integrate these 

different sources of perceptual information. Similarity-to-prototype measures (e.g. Euclidean distance) are 

used to estimate head pose, and then the head pose and the face position are tracked using skin color with 

CONDENSATION (Conditional Density propagation) algorithm, which is a particle filtering method that 

models an arbitrary state distribution by maintaining a population of state samples and their likelihood 
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compared to Kalman filter (a single Gaussian density based model) commonly adopted for temporal 

tracking.  

 

McKenna and Gong [159,160] integrate motion-based tracking with model-based face detection, where the 

motion of moving image contours are estimated using temporal convolution, and the objects are tracked 

using Kalman filters (Kalman filters can be used to track objects robustly from measurements of position, 

motion, and shape [161]) and faces are detected using neural networks. The essence of the system is that the 

motion tracker is able to focus attention for a face detection network whilst the latter is used to aid the 

tracking process.  

 

Robust tracking performance can be achieved using multi-modal integration, combining stereo, color and 

grey-scale pattern matching modules into a single system [58]. Stereo processing can be used to isolate the 

figure of a user from other objects and people in the background, while skin-hue classification identifies and 

tracks the likely body parts within the foreground region, and a face pattern detection module discriminates 

and localizes the face within the tracked body parts.  

 

Another way of using combination of methods to track faces is to use Bayesian modality fusion to fuse 

different tracking algorithms [241].  Algorithms using color, motion, and background subtraction modalities 

can be fused into a single estimate of head position in an image. The heart of the model is the Bayesian 

network model that indicates the reliability of the different tracking algorithms.  A system built using this 

combination of methods can be correctly recognize and track heads for over 99% of the time when that a 

person was in view [241].  

 

2.1.7 Tracking face/head using other methods 

A number of studies build a training model of object poses which helps predict a test object pose and track it 

through a sequence of frames in video. Methods for face pose estimation can be classified into two main 

categories: model-based [26,40,50,71,105,122,148,156,184,231,246,249, 253] and appearance based 

approaches [21,59,88,104,170,201,203,205,227]. Model-based approaches assume a 3D model of the face 
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and typically recover the face pose by first establishing 2D/3D feature correspondences and then solving for 

the face pose using the conventional pose estimation techniques. The most commonly used facial features are 

eyes [101,105,173] and mouth [101]. Model-based methods are simple to implement, highly accurate and 

efficient. However, their accuracy depends on the accuracy of facial features detection that varies under 

different illumination and orientations. Appearance based approaches, on the other hand, assume that there 

exists a unique relationship between 3D face pose and certain properties of the facial image. Their goal is to 

determine this relationship from a large number of training images with known 3D face poses. Overall, the 

appearance-based methods are simpler, but they are less accurate, since many of them require interpolation 

and a large number of training images. We describe these methods in the following sections. 

 

Model based approaches 

Model-based approaches include the use of a 3D model [105,184,249], ell ipse model [26,122] texture model 

[40,71,148,231,246], partition tree model [156], Euclidean model [253], and camera model [50]. We 

describe these techniques in brief here. The 3D model tracks the head using depth approximation and pose 

calculation [184]. It has the advantage that it is computationally efficient. However, due to the fact that this 

model only deals with two successive frames, this may lead to tracking failure after a large number of 

frames. Moreover, the problem of occlusion is not considered. The position of facial feature points of the 

face can also be used to construct the face in a 3D model [249,105]. Ellipse model is based on the premise 

that ell ipses closely resemble face and head shape. After ell ipse fitting the 3D position and orientation of the 

face can be estimated from the detected face [122]. Similarly, a head tracker can be constructed using an 

ell ipse to approximate the head’s contour [26]. The tracker should overcome problems including full body 

rotation, occlusion and reacquisition. Texture model is another popular choice for head tracking. The first 

example of this is the 3D texture-mapped model. In this scheme the head is modeled as a texture-mapped 

cylinder [40], and tracking is formulated as an image registration problem in the cylinder’s texture map 

image. Fast and stable on-line tracking can be achieved via regularized weighted least squares minimization 

of the registration error. A 3D face model can be constructed by texture-mapped heads-on view of the face 

[231], where feature points in face-texture are then selected based on using image Hessians. Another 

example of texture model is a texture and wire-frame face model, which allows analysis and synthesis 

modules to visually cooperate in the image plane directly by using 2D patterns synthesized by the face model 
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[246]. This system is robust to occlusion from a small number of objects such as a finger. Another texture 

model is the ‘ contour-texture’ type model that can be used to construct a geometric model of video frame 

[71], that is used to detect and track faces. This model performs well even in difficult situations such as 

partial occlusion of the face by the hand-held moving object. Texture models in general can also be used in 

combination with geometric and shape models to construct a multi-view dynamic face model [148]. A binary 

partition tree model has been used by [156] to tackle the problem of face tracking. Other studies have used 

an aff ine camera model in conjunction with affine-deformable eye contours to track the head in real-time 

[50]. Mathematical model such as Euclidean model have also been used [253] with hyper-patches that 

contain information about both the orientation and intensity pattern variation of roughly planar patches on an 

object (e.g. head). This information allows both the spatial and intensity distortions of the projected patch to 

be modeled accurately under 3D object motion. 

 

Appearance based approaches 

These approaches aim to construct a simple image-based model to explicitly model how a change in pose 

and illumination of a face, or target region on a face can produce changes in the observed image. Neural 

network [104,201], probabilistic [205] and grey-level histogram [203], Gabor decomposition [227], and 

eigenspace methods [59,88,170,227] have been used to track head movements. The eigenspace approach has 

been the most popular approach so far. The principal components of several views of a single object are used 

to describe changes due to rotation in depth and il lumination conditions [170]. Often eigenspace-based face 

analysis is used for accurate face tracking [59]. Another way of tackling the problem using the eigenspace 

property is by measuring the temporal changes in the pattern vectors of eigenface projections, and then train 

a set of neural networks to track head movement [88].  

 

2.1.8 Tracking facial features/facial motions 

Tracking of facial features achieves the following purposes: (a) to track faces [10,86,123,152,216, 237]; and 

(b) to understand facial expressions/emotion [29,172]. See Figure 4 for some example facial features and 

facial motions that can be tracked. For the first task, an interesting approach to tracking faces is to first 

determine their landmarks, e.g. eyes or mouth and then track these landmarks in video sequences. In 
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particular, eye tracking has been used in a number of studies on its own. Other facial features analyzed 

include mouth, eyebrows, nose, ears etc.. For the second task, landmarks are tracked to identify specific 

facial expressions, e.g. smile, sorrow, etc.. 

 

 

Figure 4: An example of the type of facial features and facial motions that can be tracked 

 

For tracking eyes there is a need to recover the state of the eyes (e.g. whether they are open or closed) and 

the parameters of an eye model (e.g. the location and radius of the iris, the corners and heights of the eye 

opening). [237] describes a dual-state model to detect and track whether the eyes are open or closed. This 

technique is quite useful since other available eye trackers only work well for eyes when they are open and 

simply track the location of the eyes. In addition to using eyes as a whole, parts of the eyes can also be used, 

such as eyelid [152], which can be tracked using feature point tracking; and the pupil [123] which can be 

tracked and used for eyelid movement monitoring, gaze estimation and face orientation determination. This 

approach can also be extended to track other facial features such as eyebrows and gaze [216], nose and 

mouth [86, 10] etc..  

 

Facial motion/expressions also play an important role in human-computer interaction (see [215] for a review 

on facial expression analysis). Facial features such as mouth, eyes, eyebrows and nose can be tracked using 

dynamic contour to estimate facial deformations [172]. Rigid and non-rigid facial motions can be modeled as 

a collection of parameterised flow models and used to predict and describe a temporal structure of the facial 
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expression [29]. Another two surveys on facial expression analysis are available [187,188] that discuss face 

detection, facial expression data extraction and its classification.  

 

2.2 Tracking hands 

The tracking of hands is important in applications such as gesture recognition and human-computer 

interaction. This process can be modeled as a system of rigid bodies connected together by joints with one or 

more degrees of freedom. Gloves or markers are often used for hand tracking that are easier to recognise in 

complex environments (e.g. Kahn and Swain [131] developed a real-time system called Perseus that tracks 

hands or heads by instantiating a marker and then parameterises the marker with a tracking function). The 

tracking of hands, and fingers in particular, is a difficult task in a complex environment because of the 

background complexity. For gesture recognition, several studies have used a uniformly colored background 

to distinguish hand/finger regions for tracking. However, more realistic studies dealing with complex 

backgrounds have struggled with advanced skin detection and hand localisation models. The following 

discussion describes some of the popular approaches to hand tracking. 

 

2.2.1 Tracking hands using kinematic models 

Kinematic models are based on the knowledge of the human anatomy and predefined templates of behavior 

of the hand are recorded through a large number of observations (see Figure 5). These models can then be 

used for tracking hands both in 2D and 3D [151,174,206,207,208,209]. DigitEyes is a well-known hand 

tracking system [206,207], which models the hand with 27 degrees of freedom. DigitEyes tracking model 

integrates different types (boundary and region) and sources (intensity and motion detection) of information, 

which leads to a system where the boundary and the region module operate simultaneously, while the 

contour propagation is guided by regularity, boundary and region-based forces. This system however has the 

following limitations. Firstly, the system requires the knowledge of the kinematics and the geometry of the 

target hand to be known in advance. Secondly, the initial configuration of the hand must be known before 

local hand tracking can begin, which means that the subject is required to place their hand in a certain pose 

and location to initiate tracking. Finally, it performs poorly in cases of occlusion where the output of the 

model is a single curve for both objects. 
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A 3D model-based hand tracking method on the other hand is usually more robust to occlusions and local 

minima. In [174] the hand-tracking is performed by fitting the 3D hand model to the hand in the image. The 

hand is modeled as a collection of 21 segments and 20 joints on the basis of anatomical knowledge. This 

study however does not consider the size variation and marker occlusion problems. The size difference 

between the hand model and the real hand wil l introduce large fitting error. The model fitting methods used 

in general to track hands consist of 1) finding the closed-form inverse kinematics solution for the finger 

fitting process, and 2) defining the alignment measure for the wrist fitting process [151].  

 

Self-occlusion is a ubiquitous property of articulated object motion that complicates tracking. Self-occlusion 

adds a combinatorial aspect to tracking – the visibility of different parts of the model must be estimated in 

addition to the registration of the model with the image. This problem can be solved using two types of 

templates [208,209]. Firstly, visibil ity ordering templates are determined from the kinematic model and 

updated over time. Secondly, partially occluded templates are registered using window functions determined 

by the ordering. Using this framework, a direct energy-based formulation of articulated tracking can be 

obtained. 

 

Figure 5: An example of kinematic model of hand 

 

2.2.2 Tracking hands using color information 

Color information is not only useful to track human faces/heads, but it also acts as a cue for hand tracking. 

There are mainly three types of approaches that use color to track hands: blobs [112,116], histogram 
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[5,157,243], and combining color and motion analysis [220,221]. An example of blob-based approach is 

presented in [116]. In this study a hand tracker which combines color blob-tracking with a contour model 

was implemented that is shown to be extremely robust. To track the uncovered/unmarked hands of a person, 

the technique starts by extracting the face and hand regions using their skin colors, and then computes blobs 

to track the location of each hand using a Kalman filter. The only deficiency of the method is that it cannot 

track hands completely since it has problems distinguishing between multiple objects – the head, left hand 

and right hand. The use of color histograms is another popular choice for tracking skin regions. Image 

differencing and normalised histogram matching can be used to detect and track hands [5,157], and even 

color-information based filter can be used [243]. However, there are several drawbacks of this type of 

approach. Firstly, only rotations parallel to the camera plane are covered. Rotating the hand around the other 

two axes can confuse the system. Secondly, although the system is quite insensitive to the image 

background, only one skin colored object may be present in the image at any one time. This means that the 

system cannot yet handle two hands in the image. Finally, the system for recovering joint angles occasionally 

has problems detecting the fingertip, mainly due to the limitations of the hand model used. Apart from these 

disadvantages, this approach is quite stable and robust, particularly for the position and orientation tracking 

component.  

 

The third approach to skin detection and hand-tracking involves using color models and motion analysis 

using optic flow [220]. An example study [221] uses Bayesian Belief Networks to fuse high-level contextual 

knowledge with sensor-level observations where an inference-based tracker was tested and compared with 

dynamic and non-contextual approaches. The results indicate that fusion of all available information at all 

levels significantly improves the robustness and consistency of tracking. 

 

 2.2.3 Tracking hands using active contours/deformable models 

2D deformable active shape models (or smart snakes) [51] are another popular approach used to track hands 

(see Figure 6). The deformable outline model tracks a hand in an image by being “attracted” to edges in the 

images. The initial position of the hand can be determined using a number of methods, e.g. using a genetic 

algorithm to perform an initial image search in order to locate the hand [96].  A 3D version of the Point 

Distribution Model (PDM) [95] which is a statistically derived deformable model [94] is another way used to 
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tackle hand tracking problem. The model is constructed from real-life examples of hands in various 

positions, and the hand is modeled as a surface mesh from which the positions of expected contours are 

easily derived. The main strength of this approach is the use of the PDM, which is a very compact and 

accurate model for a range of valid hand shapes, providing good contour information. Also, themes from 

tracking theory i.e. elastic models and stochastic filtering, can be combined with the notion of affine 

invariance to synthesize an effective framework for contour tracking [30]. A Kalman-filter based active 

contour model is used for tracking of nonrigid objects in [199] which employs measurements of gradient-

based image potential and optic-flow along the contour as system measurements. 

 

 

Figure 6: An example of deformable model of hand 

 

2.2.4 Tracking hands using other methods 

It is sometimes useful to track hands without using skin color to detect them (as the hands may be clothed 

[158]). A concept that departs from explicit models is the eigen-image method that uses view interpolation 

on training images to perform tracking [61]. Simple hand gestures using “eigen -tracking” builds a 

representation of the hand model from training images and uses this representation to compute an eigen-

image set [28]. It then finds and tracks these images in a video stream using a pyramid approach. The major 

contribution of this work is that it uses eigen techniques to solve for the view transformation of an object at 

the same time that it finds the object’s motion. Apart from eigen -images based approach, finite element 

model can also be used for hand tracking [244] based on the recovery of dense motion vector.   
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2.2.5 Tracking fingers 

The identification and tracking of individual fingers is quite important for gesture recognition (see Figure 7). 

A number of different approaches have been used for this purpose including Kalman filters [31], active 

contours [54] and correlation methods [54]. Often one feature does not give enough information to help track 

an object, and multiple-cues are helpful. Motion and color information are often used [121], where motion is 

used to identify the gesticulating arm after skin detection [256]. The finger point can be found by analyzing 

the arm’s outline, and the 3D trajectory is derived by first tracking the 2D positions of the user’s elbow and 

shoulders. The tracking performed is not as precise as of other systems that employ more cameras and use a 

smaller field of view. On the other hand, the advantage is that the system need not be pre-calibrated and it 

can be set up quickly. Finally, marked gloves have been used with kinematic models for finger tracking. This 

approach is simple, cheap and robust against occlusion and accurate [69], and it can be easily be used in a 

teaching environment, or as an intuitive gesture interface at a distance. 

 

    

Figure 7: An example of finger tracking 

 

2.3 Tracking human body 

One of the most difficult problems for a dynamic vision system is to track non-rigid objects, such as a human 

body in a cluttered environment. Since people wear clothes of different colors and textures, simple skin 

detection cannot be used for identifying the contours of the body. The main    cues include object motion and 

a priori models of human motion. Here we review studies dealing with tracking a single or multiple human 

bodies in 2D and 3D.  

 

2.3.1 Tracking a single human body in 2D 
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The studies on 2D human tracking can be classified into two categories: appearance based 

[37,42,97,119,126,146,153,189,217] and model based [17,33,90,194,196,210,211,259,260]. Appearance 

based approaches use color or texture information of the object to be tracked, whereas model based methods 

use a priori knowledge of possible human motion. Most studies deal with recovering information from 

tracking to synthesise human behavior however some studies have also used tracking as means of controlling 

cameras to keep an object in view [52]. 

 

Appearance-based approaches 

Appearance-based approaches have used the following techniques of analysis: Gaussian model [126,189], 

Kalman filter [42,119], temporal differencing [146,153], clustering [97], active contours [217], and multiple-

camera data analysis [37].  

 

The motion detection and tracking problem can be implemented as a front propagation problem where the 

inter-frame difference is modeled by a mixture of two Gaussian distributions [189]. This model is not 

capable of dealing with cases where we have a texture background (with edges) close to the objects, but it is 

very fast and it can be used under any evolving speed. Self-occlusion problems can be solved using fast 

tracking based on articulated 3D Gaussian model [126] that is insensitive to depth-dependent scale changes.  

 

Kalman filtering and its variants [42] have been also used for human body tracking. To solve the problem of 

a target disappearing totally or partially due to occlusion by other objects, an extended version of Kalman 

filter - Structural Kalman filter is proposed by [119]. It utilizes the relational information among sub-regions 

of a moving object but fails if the initial model itself turns out to be occluded. Temporal differencing models 

have been developed to overcome the requirement of using a predictive temporal filter such as a Kalman 

filter to provide robust tracking. Temporal derivates and edge map can be used in combination to help the 

segmentation of region of a moving object [146]. In [153], a tracker is implemented using a combination of 

appearance-based correlation matching and motion detection, where motion regions are used to guide 

correlation processing and template updating. This combination makes the tracker robust to changes in target 

appearance, occlusion, and cessation of target motion. Temporal differencing is used to guide vision-based 
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correlation matching, which allows continuous tracking despite occlusions and cessation of target motion, 

and prevents templates “driftin g” onto background texture. In addition, it also provides robust tracking 

without the requirement of having a predictive temporal filter such as a Kalman filter.  

 

Data clustering has also been applied by some studies for tracking human motion. In general, such 

approaches use a clustering algorithm for image segmentation, and colour information for labelling the likely 

skin regions. These skin regions are then tracked using their centroid on a per frame basis. An example study 

of Heisele et al. [97] suggests that using the above approach using K-mean clustering can lead to a robust 

tracker with respect to shape variations and partial occlusions of the objects.  

 

Color information with the contour of a human body has also been used to help track a person [217]. The 

contour method does not require homogeneous illumination but assumes significant contrast between person 

and the background of the scene. Contour tracking using snakes is quite popular and has been shown in 

several studies to be a good method of real-time data analysis. 

 

Often a single camera is not enough to track the human body, especially when the object walks out of view. 

Using multiple cameras for tracking is an obvious solution to tackle this problem. A multiple cameras system 

starts by tracking from a single camera view. When the system predicts that the active camera will no longer 

have good view of the subject of interest, tracking is switched to another camera that provides a better view 

to continue tracking. The non-rigidity of the human body is taken into account by matching points in the 

middle of the image, both spatially and temporally, using Bayesian classification schemes. Multivariate 

normal distributions are often employed to model class-conditional densities of the features for tracking, 

such as location, intensity, and geometric features. An example system on this theme was developed by Cai 

and Aggarwal [37].  
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Model based approaches 

The human figure exhibits complex and rich dynamic behavior that is both non-linear and time varying. The 

models used to interpret the human figure includes kinematic models [260], dynamic models [194,211], 

deformable models [17,196], contour models [210,259], and stick figures [33,90].  

 

Kinematic models study the human body in terms of the degrees of freedom it exhibits. An example study by 

[260] uses both kinematic and geometric models, where optical flow features are used to track human arm 

and torso.  

 

Although the use of kinematic models in body tracking is now commonplace, dynamic models have received 

relatively little attention. Most work on tracking figures has employed either simple, generic dynamic models 

or highly specific hand-tailored ones. Biomechanical approaches have been criticised for difficulties in 

measuring the dynamics of complex figures involving a large number of masses and applied torques, along 

with reaction forces. In addition, with biomechanical approaches it may be difficult to reduce the complexity 

of the model to exploit a small set of motion. A common approach to using such a model involves the use of 

Kalman filters with Hidden Markov Models (HMM) [194,211]. HMM is used for capturing the shape of a 

person within an image frame, and the Kalman filter uses the output of the HMM for tracking the person by 

estimating a bounding box trajectory indicating the location of the person within the entire video sequence. 

 

Articulated deformable models often use optic flow information [196]. One can construct a region-based 

deformable model with a contour-based deformable model [17] and use them in combination to track human 

body. The region of interest outline is initialised by a motion-based segmentation algorithm, and it is tracked 

by a new deformable region model which exploits the full information given by the region’s texture. The use  

of a texture-based region deformable model allows the tracking algorithm to handle region texture, large 

displacements, and cluttered backgrounds and it is robust to partial occlusion. The method reported in [17] is 

also robust to partial occlusion.  
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The contour models of tracking an articulated structure avoid the need to use a 3D model. One example 

study combines an estimation of the apparent displacement of the limb contours in the image, with a 

trajectory prediction and reconstruction scheme in the XT-slices relying on a general manoeuvre model 

[210]. Even though this method needs to assume that the legs of the moving person are sufficiently visible in 

the image sequence, it performs rather well in situations involving occlusions or crossing. Another study 

[259] uses 2D shape contours to summarize human motion where the tracking of such motion is treated as 

multivariate time series prediction on the motion trajectories.  

 

Stick figure models aim to understand how the human body moves. In general, the human body structure is 

modeled by a stick-figure model with 6 joints [90], and then fitted to a silhouette contour to minimize noise. 

Alternatively, a 3D skeletal structure of a human can be encapsulated with a non-linear point distributed 

model, which allows a direct mapping to be achieved between the external boundary of the human body and 

its anatomical position [33]. Using stick figure for tracking human has proven to be stable under different 

conditions and has been shown to be computationally inexpensive for real-time tracking.  

 

 

2.3.2 Tracking a single human body in 3D 

Almost all approaches to tracking a human body in 3D are model-based approaches. Models of human 

motion can be derived using mathematical tools through the analysis of video footage. These models are 

built using either training data of some landmark features, e.g. contours, motion data, measurements from 

gait analysis, or graphical models derived from video. The most commonly used model is 3D model that is 

based on the analysis of the different degrees of freedom of the human body components 

[65,66,83,84,85,129,130,143,181,182,226]. Other approaches have used contour model [20], hierarchical 

model [134], markers [142] and a combination of color and motion information [45]. 

 

In general, 3D models represent the human body with its component degrees of freedom, whether it is a 17 

degrees of freedom model for human upper model [83,84], or a 22 degrees of freedom model for the whole 

body [85]. The human body is modeled through rigid 3D parts that are connected in a kinematic chain [143], 
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where shapes such as cylinders, spheres, ellipsoids and hyper-rectangles are used. Some studies have 

simplified the problem of tracking human body by making the assumption that the human subjects wear 

tight-fitting clothes with contrasting sleeves [85]. Some studies extend this 3D model approach by including 

a perspective camera model [226]. Sometimes, a single camera does not provide enough information and 

multiple cameras are required to construct a better model. A 3D model of the human body is first captured 

and the complex dynamics of the human body movement is then analysed, based on the explicit knowledge 

of the kinematics of the human body [181,182]. Alternatively, the projections of a 3D model of a person in 

the images are compared to the detected silhouettes of the person, and forces are created that move the 3D 

model towards the final estimate of the real pose. Most of the methods using a 3D model for tracking have 

the drawback that they can only handle small movements and they need the images to be of good quality to 

perform segmentation. Some studies that use multiple cameras with 3D models remove this drawback by 

modeling the forces between the 3D model and the image contours of the moving person. These forces are 

then applied to each rigid part of the model [65,66] to generate behaviour that can be matched with the real 

action. In some other studies [129,130], these forces are used for estimating a better 3D shape model. This 

application of using 3D model for tracking human body has the utility that it has the ability to cope with fast 

movements, self-occlusions and noisy images.   

 

Sometimes the contour of a person can give sufficient information to help track that person. A tracker based 

on the contour model is object specific and utilises a specific shape model based on the training set [20]. 

However, the tracker will only work properly for poses and views that are sufficiently well represented in the 

training set. Another model used for tracking human body that acts in a similar way to the contour model is 

the hierarchical model. This model is trained on real life examples using a Gaussian Mixture Model (GMM) 

to encode geometry and kinematics, and a HMM to encode dynamics [134]. 

 

In some cases, external sensory information is useful for tracking the human body. A typical example is the 

use of markers. The data is collected using 3D motion capture equipment that uses IR-reflective markers 

placed on the points of interest on the subject’s body. The coordi nates of each marker are estimated in every 

frame and tracked across an image sequence (e.g. using a radial basis function neural network [142]). The 

key novelty is its robustness to occlusions for relatively long durations and the ease of its implementation.  
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 2.3.3 Tracking multiple human bodies 

Tracking multiple human bodies is important in several surveillance applications. Such implementations 

often use single or multiple cameras that capture images from the top only or from the sides. Some of the 

challenges in this area of research are to develop a system that is robust to occlusion and illumination 

changes, and it can work in real-time. The approaches used to track multiple human bodies include: 1) 

Appearance-based approaches [1,13,36,38,42,57,91,114,222, 223,254], which use methods such as Bayesian 

modality fusion [42,222,223], Gaussian models [36,38], temporal information [91] and color-information 

[1,13,57,114,254]; and 2) Model/shape-based approaches [41,68,84,85,93,133,155,190,191,208,247], which 

use kinematic models [84,85,208], contours [41,190,191], cardboard model [93], space-variant model [133], 

selective attention model [247], Kalman filters [68] and probabilistic exclusion principle [155]. These are 

described in more detail below. 

 

Appearance based approaches 

Probability based approaches have been used for tracking human bodies in several studies. A typical 

example of this approach is Bayesian modality fusion. A Bayesian network is used to combine multiple 

modalities for matching subjects between multiple camera views. Multiple cameras are used to obtain 

continuous visual information of people in one or more cameras so that they can be tracked through 

interactions. This type of approach can achieve high accuracy (e.g. [42] shows performance levels between 

96.5% to 99.1%). An example system, VIGOUR [222] is based on the principle of Bayesian modality fusing. 

The system integrates 7 perception modules including pixel-wise motion from frame differencing, pixel-wise 

skin color classification, clustering into regions of interest, SVM (support vector machine) for face detection, 

head and hands tracker, gesture recognition, and head pose estimation. Bayesian modality fusion network 

uses continuous domain variables [223], and it distinguishes between cues that are necessary from those that 

are redundant for detecting the object’s presence.  

 

Tracking human motion in a sequence of monocular images consists of detecting motion, segmenting 

moving objects by recovering the background and then tracking the objects of interests. Multivariate 

Gaussian models are also applied to find the most likely matches of human subjects between consecutive 
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frames taken by cameras mounted at various locations [36,38].  Instead of using the image intensity directly 

from camera outputs, the multivariate Gaussian model uses the ratio between the average intensities of 

different cameras to formulate average intensity of feature points and uses this to track the position and 

velocity of feature points in different camera outputs. 

 

Temporal information is used for providing information on tracking. By linearly subtracting the temporal 

average of the previous frame from the new frame, a “disturbance map” can be obtained, which is then used 

for tracking non-rigid patterns of motion [91]. Since the shape of the disturbance wave in the map does not 

depend on the object’s shape, by tracking along the waves in the disturbance map, good separation is 

achieved between different objects. The method can track occluded objects as well as a large number of 

independently moving objects. This approach compares favourably with optic flow, and since it relies on 

spatial information within the frame, tracking is restricted to only small amounts of motion.  

 

Color blob tracking has been used for monitoring the movements of multiple bodies [114]. This approach 

only works well when the color features are robust. Often motion cues are used in addition to color 

information to improve performance [1,57]. Pfinder developed by Wren et al. [13,254] is a well-known 

tracking system that combines color information with other cues. The system uses a multi-class statistical 

model of color and shape to obtain a 2D representation of the head and hands in a wide range of viewing 

conditions. Pfinder performs robust color-region tracking and uses statistically derived rules to determine 

body features in the contours of the silhouette. This approach allows meaningful, interactive-rate 

interpretation of the human form without custom hardware. The drawback however is that Pfinder is 

restricted to environments with relatively well-controlled lighting conditions due to its slow dynamics for 

recovering the changes of the background. 

 

Model/shape based approaches 

Human bodies can be modeled as a system of rigid bodies connected together by joints with one or more 

degrees of freedom. Hence human sensing can be formulated in terms of real-time visual tracking of 

articulated kinematic chains, and therefore kinematic model is the most commonly used model for tracking 
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multiple human bodies [84,85,208]. These implementations require accurate initialisation through the use of 

local image features and as a result they require massive computational resources. 

 

In the contour model approach, multiple moving objects are tracked by the propagation of curves with the 

assumption that there is a static observer as well as a background reference frame [190]. Tracking is 

performed using an improved Geodesic active contour model that incorporates boundary-based and region-

based motion information [191]. This approach results in a powerful global tracking model where different 

sources of information could be used under a common framework that integrates the minimization of an 

objective function with the curve evolution process. On the other hand, simple refined boundaries of the 

objects can be tracked from the previous frame to the current frame in the presence of self-occlusion and 

object-to-object occlusion [41]. 

 

W4S system developed by Haritaoglu et al. [93] makes no use of the color cues, but instead uses stereo 

information in combination with shape analysis to locate and track people and their parts. The shape 

information is implemented using a cardboard model which represents the relative positions and sizes of the 

body parts. Along with the second order predictive motion models of the body and its parts, the cardboard 

model can be used to predict the positions of the individual body parts from frame to frame. When a person 

is occluded, template matching is used to track body parts instead of using the shape model. 

 

Space-variant model [133], a biologically inspired model based on the simplified properties of the ganglion 

cells, can be used to detect and track moving objects with small amounts of motion in the region of interest 

in real time. However, it can only detect one target for two objects upon occlusion and it cannot detect the 

motion of small objects in the periphery of the image [133].  

 

The selective attention model consists of a state-dependent event detector and an event sequence analyzer. 

The former detects image variation (event) in a limited image region (focusing region) that is not affected by 

occlusions and outliers. The latter analyzes a sequence of detected events, and activates all feasible states 

based on multi-object behaviors [247].  
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Often, simply instantiating several independent 1-body trackers is not an adequate solution for tracking 

multiple targets because the independent tracker can coalesce into the best fitting target. The solution is to 

estimate an observation density for tracking which exhibits the probabilistic exclusion principle. This 

prevents a single image data from independently contributing to simpler hypotheses for different targets. In 

its raw form, as proposed by MacCormick and Blake [155], the model is only applicable for wire-frame 

objects but extensible to solid objects. 

 

Multiple articulated and occluded moving objects can also be tracked using Kalman filters. Each object is 

isolated into an individual region, and the size and the average motion of the region is calculated and fitted 

with a precise bounding box. Kalman filter is modeled with a state vector for each tracked objects. 

Dockstader and Tekalp [68] introduced modification to the standard Kalman filter method. Their approach is 

founded on the use of change detection to provide pixel accurate observation of non-occluded regions and 

the use of coarse motion estimation to develop sufficiently accurate predictions for partially occluded and/or 

articulated regions. 

 

3. Motion analysis of full body and body parts 

In this section we review the studies related to full body motion analysis as well as the analysis of hand 

motion (gesture analysis) and leg motion (gait analysis). Human motion analysis is based on the assumption 

that humans have predictable appearance that can be modeled using the laws of physics, and that humans 

actively shape purposeful motion that can be easily categorised. Motion can be classified as the motion of 

rigid parts (articulated motion), the motion of coherent objects (elastic motion) and the motion of fluids 

(fluid motion). Articulated motion occurs in situations where individual rigid parts of an object move 

independent of one and another. Elastic motion is non-rigid motion whose constraints include some degree 

of continuity or smoothness. This includes examples such as the motion of a heart, the waving of a cloth, or 

the bending of a metal sheet, where the shape of the object deforms under certain constraints. Fluid motion is 

non-rigid motion that violates the continuity assumption. It may involve topological variations and turbulent 

deformations. In the study of human dynamics most of the motion can be characterised as “non -rigid” and 
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piecewise rigid (articulated motion), see Figure 8. The rigid parts conform to the rigid motion constraints, but 

the overall motion is not rigid. The study of such motion is based on either kinetics or kinematics. Kinetics 

involves the study of the forces/torques in generating the movements. Kinematics on the other hand is 

concerned with the geometry of the object, including its position, orientation, and deformation. In the 

following section we first discuss articulated motion that forms the basis of most human dynamics research. 

After this we discuss pose estimation, and gesture and gait analysis. 

 

3.1 Articulated motion 

There are two typical approaches to the motion analysis of human body parts [2,3,4] depending on whether a 

priori shape models are used or not. In each of these approaches, varying models of increasing complexity 

are used. Simple models include stick figures, whereas more complex models involve 2D/3D contours. 

  

It is important to select an appropriate model of articulated motion for analyzing human behavior. The stick 

figure representation is based on the observation that human motion is essentially the movement of the 

human skeleton brought about by the attached muscles. The use of 2D contours to represent the human body 

is directly associated with the projection of the human figure in images. Volumetric models, such as 2D 

ribbons, generalized cones, elliptical cylinder and spheres, are capable of accordingly representing the details 

of the human body, but they do require a large number of parameters for computation. Each model can be 

scaled according to the height of the subject. The following two sections review research into the study of 

articulated motion without and with the use of a priori shape models. 

 

Figure 8: An example of models used for full body human motion analysis 
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3.1.1 Articulated motion without a priori shape models 

Models for articulated motion without a priori shape information can be categorised as those using either 

stick figures or 2D contours. 

 

Stick figures 

The simplest representation of a human body is a stick figure that consists of line segments linked by joints 

[200]. The motion of joints provides the key to motion estimation and recognition of the behaviour of the 

whole figure. This concept was initially proposed by Johansson [124] who showed that the human eyes can 

interpret a moving human-like structure with moving light displays (MLD). MLDs consist of bright spots 

attached to an actor dressed in black moving in front of a dark background. The collection of spots carry only 

2D, but no structural information since they are not connected. A set of static spots is meaningless to 

observers whereas their relative movement creates a vivid impression of a person walking, running, dancing, 

etc.. In this vein, attempts have been made to recover a connected human structure with a projected MLD by 

assuming that points belonging to the same object have higher correlations in projected positions and 

velocities [204]. The recovery of 3D structures of Johansson-type figures in motion is possible by assuming 

that each rigid object (or part of an articulated object) motion is constrained so that its axis of rotation 

remains fixed [250,251]. Some studies have concentrated on the trajectories of the MLD’s joints [32], where 

the human movement is represented based on space curves in subspaces of a “phase space” [39]. MLD 

works in a similar way to markers, however, it needs external help to provide extra information.  

 

Another reliable stick figure representation of the human body can also be obtained using XT-slices. Some 

studies use XT-Slices (x-axis vs. time) of the cube near the ankle as a braided signature for walking patterns 

[178], which are utilized to outline the contour of a walking human based on the observation. The stick 

figure representation can be derived from these outline images.  

 

A variation of the stick figure is called the “star” skeleton [81]. The notion is that a simple form of 

skeletonization, which only extracts the broad internal motion features of a target, can be employed to 

analyze its motion. Once a skeleton is extracted, motion cues can be determined from it. The two cues used 
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are cyclic motion of “leg” segments, and the posture of the “torso” segment. These cues when taken together 

can be used to classify the motion of an erect human as “walking” or “running”. There are three advantages 

of this type of skeletonization process. It is not iterative and is, therefore, computationally cheap. It also 

explicitly provides a mechanism for controlling scale sensitivity and relies on no a priori human shape 

model.  

 

2D contours 

Another way to describe the human body is by using 2D contours, which are a higher-level features that 

reduce the possibility of false matching. In this representation, the human body segments are analogous to 

2D ribbons [141], blobs [224], 2D contour [129] or templates [214]. Joints of articulated objects and rough 

motion can be estimated using extracted ribbons [141]. Various curve-based geometric constraints are used 

to integrate descriptions from the retained ribbons after mismatched ribbons are filtered out. The articulations 

are located among connected or close ribbons. 2D translation motion of human blobs is another example of 

2D models that is used to define the human body. The blobs can be grouped based on the magnitude and 

direction of the pixel velocity, which is obtained using optic flow based methods [224]. 2D contours are used 

for segmentation and motion estimation, where joint locations are detected as the center of the overlapping 

area of two connected contours. Segmentation, shape and motion estimation can be integrated to build 

deformable models [129]. Human motion can also be described by a set of templates where the temporal 

component is embedded without explicit temporal analysis or sequence matching. A view specific 

representation of the human motion is constructed in [214] based on the position and temporal characteristics 

of motion.  

 

3.1.2 Articulated motion with a priori shape models 

These approaches use a priori shape models. The use of models constrains the search process for possible 

behavior and makes it easier to analyze data as it is no longer treated as a result of a random process. The 

approaches used include stick figures, 2D contours, volumetric models and a mixture of models. 
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Stick figures 

Stick figure model is often used to recover the 3D configuration of a moving subject according to its 

projected 2D image. Some studies use stick figure model to represent the features of the head, torso, arms 

and legs with segments and joints ([48] used 17 segments and 14 joints). Some studies use stick figure to 

model the lower limb of the human body, where joints such as hips, knees and ankles are considered [25]. 

An improved stick figure representation was proposed by Huber [109] where the joints are connected by line 

segments with a certain degree of constraint that can be relaxed by “virtual springs”. This articulated 

kinematic model behaves analogous to a mass-spring-damper system. Motion and stereo measurements of 

joints are confined to a 3D space called Proximity Space (PS). The human head serves as the starting point 

for tracking all PS locations. In the end, a known set of gestures is recognized based on the PS states of the 

joints associated with the head, torso, and arms. 

 

2D contours  

2D ribbons are commonly used 2D-contour models for representing human body in model-based approaches. 

A 2D ribbon model consists of two components: the basic human body model and the extended body model 

[147]. The basic human body model outlines the structural and shape relationships between the body parts. It 

is made up of a body trunk, 5 U-shaped ribbons along with their spines, 7 joint points, and several midpoints 

of the segments. The extended model consists of three patterns: the support posture model, the side view 

kneeling model, and side horse motion model. It is intended to resolve ambiguities in the interpretation 

process by identifying a certain pattern from the outline picture. Some studies use two sets of 2D ribbons 

(one for each side of the moving edge, either a part of the body or that of the background) for identification 

according to their shape changes over time, and the body parts are labelled according to the human body 

model. Based on this, a description of the body parts and the appropriate body joints is obtained [118]. 

 

Volumetric models (3D) 

Elliptical cylinders are one of the commonly used volumetric models for modeling human forms in 3D 

[103,209,212]. The human body is represented by a collection of elliptical cylinders. Each cylinder is 

described by three parameters: the length of the axis, and the major/minor axes of the ellipse cross-section. 
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The number of cylinders and joints used is variable (e.g. 14 elliptical cylinders [103,212]). The origin of the 

coordinate system is fixed at the center of the torso. Some studies involving elliptical models compare the 

contours of the model with grey-value edge points with [212] and without removing where hidden model 

contours [103]. The cylinder model can also be used to model articulated and self-occluding objects such as 

fingers [209].  

 

Other volumetric models such as spherical models have also been used frequently. O' Rourke and Badler 

[185] used 600 overlapping spheres to define the human body which consists of 25 segments. Spherical 

models can be used with other volumetric models to define human body, where both the upper and lower 

arms are modeled as truncated circular cones, and the shoulder and elbow joints are assumed to be spherical 

joints [87]. Some studies have used a variation of the spherical models called the cue spheres in combination 

with cue circles to model the human body [49]. 

 

Simple stick/skeleton models can be used in combination with volumetric models such as cone model [7], or 

various 3D primitives [169,197]. While the stick/skeleton model provides the basic shape of the human 

body, the volumetric model/3D primitives define the outer appearance of a person with a description of the 

surface and body segments. 

 

3.2. Full human body motion analysis 

A number of studies have investigated the motion of multiple body parts or the human body as a whole. The 

approaches used for this include the template matching approach [62], state space approach [261], 

marker/glove [99], articulated models [7,150,185,186], and deformable models [130]. We describe these in 

brief here. 

 

Template matching approach and state space approach are two of the approaches used to recognize human 

activities. Human movements can be represented using temporal templates, that are static vector-images 

where the vector value at each point is a function of the motion properties at the corresponding spatial 

location in an image sequence. Davis and Bobick [62] explored the representational power of a simple two 
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component version of the templates that consists of a motion-energy image (MEI) and a motion-history 

image (MHI). These templates are matched against the stored models of views of known actions. However, 

template matching approach has the drawback that it is too sensitive to the variance of movement duration. 

State space approach avoids this problem by defining each static posture as a state. The motion sequence is 

translated into a sequence of states and a transition between the states is defined by probabilities. Mesh 

features are an example of state space approach that have been used as feature vectors and applied to HMMs 

to recognize tennis motion [261]. 

 

Markers or marked gloves can provide vital information on human body motion. In systems that use these 

devices, colour coded glove and coloured markers are mostly used at elbows and shoulder. The system 

derives from the 2D position of hands, the positions of elbows and shoulder [99]. The analysis consists of 

calculating the missing third dimension using a geometric model of the human hand-arm arrangement. Hence 

the 3D position data is converted into motion representation composed of displacement vectors. Finally, a 

rule-based classification of the performed motion is carried out.  

 

Articulated models exhibit the ability to model human body movement realistically, and they have been 

explored for estimating the posture of moving human bodies in visual surveillance applications [150]. Two 

directions of research can be unified to understand the movement of the human body through computer 

analysis of real image sequences: (a) research into artificial figures generated by the computer, and (b) 

research into Johansson-type figures that consist of rigid line segments whose terminal points represent 

shoulders, elbows, hips etc. [7]. In the articulated model, the motion of each constituent part is rigid, but the 

motion of the whole object is non-rigid. In some studies, the typical motion model has a coplanar motion 

with a known or fixed point, a fixed axis of motion, and at least one known point [186]. In other studies the 

human body is modeled using a detailed frame or schema, and all of the information extracted from the 

images is interpreted through a constraint network based on the structure of the human model. This model is 

then used to predict or anticipate future positions of the body [185]. 

 

Some studies suggest the use of extended deformable models for full body motion analysis. These systems 

have a motion analysis and a motion playback part. The analysis part is based on the spatio-temporal analysis 
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of the subject’s silhouette from image sequences acquired simultaneously from multiple cameras. Th is 

method is based on the use of occluding contours and it obviates the need for markers or other devices and 

mitigates the difficulties resulting from occlusion [130]. 

 

3.3 3D Pose estimation 

It is useful to be able to estimate the overall body posture in 3D in order to understand subject behavior. In 

most studies either view-based [168] or model-based [8,167, 70] approaches have been used for pose 

estimation.  

 

The main philosophy behind the view-based pose estimation approach is to store a number of exemplar 2D 

views of the human body in a variety of different configurations and camera viewpoints [166]. In each of 

these stored views, the location of the body joints (left elbow, right knee, etc.) are manually marked and 

labelled for future use. The test shape is then matched to each of the stored views. An example of the 

matching technique is the shape context technique of Belongie et al., [22,23]. This technique is based on 

representing a shape by a set of sample points from the external and internal contours of an object found 

using an edge detector. Assuming that there is a stored view that is sufficiently similar to the test case in 

terms of configuration and pose, the correspondence process will succeed. The location of the body joints is 

then transferred from the exemplar view to the test shape. Given the joint locations, the 3D body 

configuration and pose are estimated using the algorithm of Taylor [234].  

 

In several 3D human pose estimation applications of this kind, it is desirable to be able to estimate the pose 

under monocular vision. The ambiguities related to this are usually handled by introducing a priori 

knowledge in the form of a human model. The human model is usually presented in a phase space spanned 

by its different degrees of freedom and uses the analysis-by-synthesis approach to match the phase space 

model with real images. The pose estimation is based on matching colour and silhouettes [167]. 

Alternatively, 3D geometric models can be used for pose estimation where the model of a person is 

constituted by a set of cylinders that fit to the moving parts profile. The model consists of two coaxial 

cylinders that are adjusted to the head and the body, and also a set of up to four cylindrical surfaces that are 
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adjusted for the arms. The experimental results in [8] show that good results can be achieved in cluttered 

scenes, poor lighting conditions and with large displacements of the moving target.  

 

Different types of camera models can be used to estimate 3D pose using 2D to 3D point and line 

correspondences [70]. For such an approach, either a weak perspective camera model can be used iteratively 

to determine the pose from point correspondences, or a para-perspective camera model can be used 

iteratively which computes the first order approximation of perspective.  

 

3.4 Gait and Gesture Recognition  

The recognition of gait and gesture is important for several biometric applications. The following description 

summarises some of the important studies in these areas. 

 

3.4.1 Gait analysis 

There are four areas of gait analysis research [252]: kinematics, kinetics, electromyography, and engineering 

mathematics. Kinematics is the measurement of movement. The earliest kinematic research on human 

walking was performed in the 1870s by Marey in Paris and Muybridge in California [252]. These early 

investigations made use of still cameras. Considerable improvements in accuracy followed the development 

of cine photography which became the main method for taking kinematic measurements until relatively 

recently. Kinetic measurements are largely influenced by the forces acting between the foot and the ground, 

which are measured by an instrumented section of the floor known as a “force platform”. Modern gait 

analysis systems provide additional kinetic information in the form of joint movements and joint powers 

based on kinematic and force platform data, and the use of engineering mathematics. Electromyography 

(EMG), the measurement of the electrical activity of muscles, was developed during the first half of the 

twentieth century. The first major studies of the EMG during walking were performed in the 1940s and 

1950s by Californian [113]. The first major application of engineering mathematics to studying gait took 

place in the earlier 1890s when a detailed study was published in Germany by Braune and Fischer [252]. 

This approach was further elaborated in the 1930s by Bernstein, working in Moscow and by the Californian 

group in the 1950s. From 1960s onwards, a number of important studies have been published on the 
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transmission of forces and moments at different joints, and on the ways in which energy is both used and 

conserved in walking. Nowadays, most gait analysis involves the use of “inverse dynamics” to calculate joint 

moments and powers, using the limb motion from a kinematic system, and ground reaction force from a 

force platform as input data. 

 

Gait analysis has been performed from varying perspectives (see Figure 9), e.g. as a biometric signature for 

person identification or sex discrimination, or detecting abnormality in walking behavior (clinical 

applications). In our review we do not cover in detail studies related to clinical applications however some of 

them are mentioned in passing at the end of this section. Gait has been studied in a number of ways with the 

aim of training a system to recognise gait signatures. This training is based on gathering image data and 

applying statistical tools to characterise gait (feature/appearance based approach) or by storing templates or 

models of human gait for matching (model based approach). Statistical analysis includes the use of features 

derived from eigenspace [106,107,175,176,177,230], spatio-temporal information [178,179], time series 

[55,67], silhouettes [144] and markers [265]. Model based approaches include the use of HMM 

[44,132,166], active contours [233], skeleton model [138,192], cardboard model [127] and motion model 

[103,213]. In the following sections we detail the two main approaches in further detail. 

 

Figure 9: An example of the type of action analyzed in gait analysis 
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Feature/appearance based approaches to gait analysis 

Eigenspace is an important feature used to analyze gait [106,107,175,176,177,230]. Based on principal 

component analysis (PCA), eigenspace transformation (EST) has been demonstrated to be a potent metric in 

automatic face recognition and gait analysis by template matching. A statistical approach that combines EST 

with canonical space transformation (CST) can be used for gait recognition using temporal templates from a 

gait sequence as features [106,107]. This method can be used to reduce data dimensionality and to optimise 

the class separability of different gait classes simultaneously. Using template matching, recognition of 

human gait becomes much more accurate and robust in this new space.  

 

Spatio-temporal information is also useful for gait analysis. A set of techniques has been developed in 

[178,179] for analyzing the patterns generated by people walking across the field of views. This is done by 

first recovering the gait parameters which define the two canonical spatio-temporal surfaces which coarsely 

track the individual and then deform these spatio-temporal surfaces to fit image data which allows for 

accurate tracking of the individual. 

 

Gait analysis can also be viewed as an estimation problem with multivariate time series data. It has been 

suggested that the techniques for analyzing continuous non-linear and chaotic time series data could be 

applied to kinematic data collected during continuous over-ground walking [67]. Time frequency analysis 

could be applied to detect and characterize the periodic motion, where an object’s self -similarity is calculated 

as it evolves through time [55]. 

 

The outline of a person is further useful for gait analysis. The gait representation can be based on simple 

features such as moments extracted from orthogonal view of the video silhouettes of human walking motion 

[144]; or as different anatomical landmarks obtained using markers [265], where the features’ location are 

predicted using Kalman filter. A view-based approach to recognize personal identity through gait can use a 

trained continuous Hidden Markov Models (HMM) to capture structural and transitional features that are 

unique to an individual. This methodology results in compact structural and transitional features that are 

unique to an individual. The statistical nature of the HMM makes it well-suited to overall robustness in the 

analysis of gait representation and recognition [132]. 
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Model based approaches to gait analysis 

HMM is a typical model used in model-based gait analysis of actions such as walking, running, hopping and 

limping. Body parts are modeled using images of different people identified in every frame (by a mixture of 

densities) taking into account the anatomic relationship between parts. The motion trajectories are used to 

extract features from two successive frames, which describe the periodic component of the motion of the 

body parts. An HMM is trained for recognizing each gait action [166]. Systems that use HMM have the 

advantage that there is no need to use markers on the human body or sophisticated model matching between 

the 2D and 3D model and the input images. Instead multi-state model is exploited to effectively recognize 

body posture and generate motion characteristic of the human body [44].  

 

The study of [233] details the use of active contours for gait analysis. The active contour model is used to 

detect walking in humans and to train neural networks for human motion analysis. The human body is 

modeled using seven segments (three segments each for the two lower limbs, and the head, arms and trunk 

(HAT) included as one segment). The limb angles and velocities are measured and joint moments are 

applied. The behaviour of the model is assessed with a set of initial conditions and moment histories, and 

Lagrangian mechanics is applied for the study of human gait [183]. 

 

Skeleton models study gait using stick figures. The general idea for an experiment can be prompted by 

Johansson’s Moving Light Display method described earlier. Po int light sources are attached to the joints of 

a person and the surrounding area is darkened. When the individual walks, runs, rides a bicycle, or does 

push-ups, only an array of correlated movements among lights can be seen. On the basis of this, statistical 

analysis can be used for either distinguishing between the type of action, e.g. leg motion [192], or for 

distinguishing between the sex of the person [138]. 

 

A variation of the skeleton model is called the “cardboard model” presented by Ju et al. [127], which extends 

the work of Blakc and Yacoob [29]. A person’s limbs are represented by a set of connected planar patches to 

analyze human walking motions. A parameterised model of optic flow is used to deal with the articulated 

motion of human limbs. An explicit motion model that is based on analytically derived motion curves for the 
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body parts is used to represent human body as well as its movement. This estimates the 3D positions and 

postures of people from images [103,213]. 

 

A review of different techniques used in clinical gait analysis (whereby examining a patient’s gait, the doctor 

can make suggestions for treatment) is available in [252]; whereas the process of developing techniques for 

gait analysis to help in diagnosing walking disorders is described in [125, 128].  

 

3.4.2 Hand gesture/movement analysis 

The analysis of hand gestures is important as it acts as a medium of communication in both clinical 

[108,192,238] and non-clinical applications [108,232]. In addition, hand movements can be analyzed to 

understand specific activities, e.g. analyzing swimming strokes. A detailed review on the topic is available in 

[195]. There are three main approaches to hand gesture/movement analysis: glove-based analysis, vision-

based analysis, and analysis of drawing gestures. Some important studies in these areas are summarised 

below. 

 

Glove-based analysis 

The analysis of hand gestures using glove-based devices has been around since the late 1970s. Glove-based 

devices employ sensors attached to a glove that transduces finger flexion and abduction into electrical signals 

for the purpose of determining the hand posture [19,74,76,140,248]. The relative position of the hand is 

determined by an additional positional sensor attached to the glove. A detailed survey of glove-based input 

devices can be found in [232]. A number of systems have been developed in this area for practical 

applications. One of the most widely glove input devices in use nowadays is DataGlove by VPL research 

developed by Fels and Hinton [74], which uses optic fiber technology for flexion detection and a magnetic 

sensor for position tracking with 16 degrees of freedom. Glove-Talk [74] is another system developed by 

Fels and Hinton’s that interface between a user’s hand and a speech synthesizer which use s five neural 

networks to define a 203 gesture-to-word vocabulary mapping. Charade is another famous glove-based 

system that uses hand gestures to control browsing in a hypertext presentation system [19], which has been 

shown to run in real-time for recognizing 16 gestural commands. The system was built to train and direct 
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robot via hand gestures. The Virtual End-Effector pointing system was developed by [248] using neural-

network-based skeleton transform and applied to work piece inspection for surface flaw identification [248]. 

GIVEN (Gesture-based Interaction in Virtual Environments) is another glove-based system that enables the 

user to grab and interact with virtual objects [76]. A similar concept called Responsive Workbench was 

developed to locate virtual objects and it uses control tools on a real workbench and promotes collaboration 

between users working on the same project [140]. 

 

Vision-based analysis 

Vision-based analysis of hand gestures is the most natural way of constructing a human –computer gestural 

interface (compared to the glove-based analysis [108]). Vision-based analysis can be achieved using either 

markers [64,77,239] or models [6,56,60,139,145]. Hand models can realistically model the hand gestures. 

Statistical Point Distribution Model (PDM) [6] can be used to provide a compact parameterised description 

of the shape of the hand for any gesture or the transition between them. Then a multi-gesture model, which is 

essentially a set of models, one for each gesture, is used for tracking with the appropriate model selected 

automatically. This process is stable, robust to noise and fast, however, this type of model has been proven 

from experimental results that it can only hand one hand in the image at any on time. 

 

An alternative approach is to use an ensemble of 2D models to represent a complex articulated object as it 

performs a particular gesture. In this approach, a set of view-based correlation models is used to represent 

spatio-temporal gesture patterns. Hand and face gestures are modeled using an appearance-based approach in 

which patterns are matched using a vector of similarity scores to a set of view models defined in space and 

time [56,60]. Some virtual world systems that are buil t based on a similar concept allow the user to explore 

and interact with the objects using hand gestures [139].  

 

Higher level gesture analysis systems are based on three dimensional hand skeleton models with fixed 

degrees of freedom. Such systems constrain the human hand kinematics to reduce the model parameter space 

search. Specially marked gloves can be used to simplify the model matching process [145]. Given the fact 

that the human hand represents a geometric shape that consists of a highly non-convex volume, markers are 
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placed on the fingertips to overcome this problem [77]. They are colored in a manner easily detectable 

through the image histogram analysis. Once the markers are detected and tracked, the gesture recognition can 

be accomplished using classification techniques. The system computes motion trajectories and uses them to 

determine the start and the end position of the gesture. Each gesture is then modeled by a set of start-end 

vectors. A morphological algorithm can be used for segmenting markers attached to a human body and this 

is used to predict the location of the marker and match them at each frame [77]. An alternative use of 

markers has been suggested for the identification of fingertips based on cylindrical fingertip model which is 

used to determine the three dimensional hand motion [64]. The three dimensional finger position and motion 

parameters can be calculated for controlling a robot manipulator [239]. 

 

Analysis of drawing gestures 

Drawing gestures are aimed at inputting commands to a computer through a sequence of hand strokes. It 

usually involves the use of a stylus or computer mouse as an input device. Image mapping techniques based 

upon higher order geometric and polynomial motion models, also called spatial transformations (ST), are 

used to analyze human hand movements [92]. The basic concept behind ST algorithms is to model the 

motion between two images by a set of transformation functions. There are several advantages of using this 

algorithm over the more traditional block matching algorithms. Since the ST models need not be restricted to 

pure translation motion, unlike the block matching algorithms, they are able to describe additional motion 

classes such as affine rigid body motion.  Also the number of degrees of freedom in the motion model is 

greater which leads to a more accurate prediction. In addition, different articulated hand motion can be 

captured using a cardboard hand model with full degrees of freedom [257,258].  

 

4. Discussion 

The number of studies published in the area of video based human dynamics has grown exponentially over 

the last decade as the hardware has become cheaper, and the importance of biometrics has increased. Since, 

the technology behind the analysis of human dynamics in video requires several components, e.g. body part 

detection, its tracking, semantic interpretation, etc., several studies focus on one or more of these issues. 

Only a few studies describe a completely developed system. In this section we attempt to round up our 
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survey by presenting our opinion a few important questions. These are: (a) What are our main conclusions 

based on the detailed survey of studies?; and, (b) What are the main technologies and applications emerging 

that relate to video dynamics?  

 

Our main conclusions can be summarised as follows: 

i) It appears that there is a vast range of technology that has been implemented by different studies. 

Each of the video dynamics component (detecting face/head/facial features/legs, tracking these 

and then interpreting complex interactions between the behaviour and the environment) requires 

a complex set of operations that are not easy to model for real life scenarios. Given the fact that 

something as simple as face detection requires sophisticated models that are often dedicated to a 

given task in terms of parameter settings rather than generic in nature, confirms the highly 

complex nature of studying human dynamics. The development of technology that minimises 

parameter settings and works in any unconstrained environment, is the holy grail of most 

research. 

ii) Technologies that involve multiple cues, or fusion of information have a clear proven advantage 

in this research area. Information can be fused by simply using more than one sensor for the 

same task (e.g. using a thermal camera in addition to optical camera for skin detection), using 

multiple features from the same image for solving the same problem (e.g. those based on shape, 

motion, texture, edge information, color, etc.), or using multiple methods of analysis (e.g. using 

two different tracking modules, or using more than one classifier and perform decision voting). 

The main drawback of using multiple cues technology has been the limitation with regards to 

resources available. Given that most video dynamics is best analysed in real-time, this imposes a 

serious limitation on how must information can be fused. 

iii) The results of most studies have to be taken with a pinch of salt. Everything is not as what it 

seems. Most studies report very high recognition rates and tracking accuracies. When you look 

closer, it is easy to see that most of them do not use benchmarks, it is very hard to replicate these 

studies, the data used is not enough, the experiments are often in constrained environments, and 

comparative results with other methods are missing. 
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iv) The use of a priori knowledge, specially in cases where it is possible to know in advance what 

the structure of behaviour of an object might be, is useful for improving the quality of 

classification, tracking and semantic analysis. Model based approaches have been highly 

successful when integrated with low-level pixel information from images.  

 

There is no doubt that video-based human dynamics will be actively studied for several years to come. So 

what are the hot topics in this research? Well, most of these topics relate to improving the robustness of 

systems, making them generic, and computationally cheap. For example, how to match two tracked 

sequences of video, doing the same action but of different lengths, is a complex task and some novel findings 

have been made in this area [24,136]. Some other emerging topics relate to using unconventional, by today’s 

standards, tools for solving complex problems. Examples include the use of range imaging and 3D 

computationally intensive modelling in human dynamics, especially using multiple video streams. Other 

cutting-edge research focuses on integrating audio with visual cues for studying video dynamics. There is 

much to be gained by using audio information from the environment to help recognize human activities, e.g. 

walking, opening a door, etc.  

 

The following list of applications details where most of such technology will be employed in the future [14]. 

a) Engineering: analysis and simulation for virtual prototyping and simulation-based design. 

b) Virtual-conferencing: efficient teleconferencing using virtual representations of participants to reduce 

transmission bandwidth requirements. 

c) Interaction: agents and avatars that insert real-time humans into virtual worlds with virtual reality. 

d) Monitoring: acquiring, interpreting and understanding shape and motion data on human movement, 

performance, activities or intent. 

e) Virtual environments: living and working in a virtual place for visualization, analysis or just the 

experience of it. Increasingly, human dynamics is also being studied to generate virtual models of the human 

body using skeletal and muscular approaches [240]. When modeling human motion, three important areas of 

research include: (a) Modeling of actions such as walking, jumping, hand movements, etc. 

[149,171,173,245,255]; (b) Simulation of human movements [9,14,16,35,63,79,80,100,102,137]; and (c) 
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Modeling of human expressions, clothing etc. [11,115,266] to improve the quality of simulation or 

animation. 

f) Games: real-time animated characters [240] with actions and personality for fun and profit. 

g) Training: skill development, team coordination and decision-making 

h) Education: distance mentoring, interactive assistance and personalised instruction. 

i) Military: battlefield simulation with individual participants, team training and peace keeping operations. 

j) Design/maintenance: design for access, ease of repair, safety, tool clearance, visibility, etc. 

k) Clinical applications: understanding human biomechanical performance [171]. 

l) General video analysis, especially for event mining. 

 

5. Conclusion 

In this paper we have surveyed some of the important studies in the area of computer analysis of human 

dynamics. This is a fast growing research area and it is not possible to cover all research here. However, our 

paper presents a survey of some of the important studies in the area by grouping them in homogeneous 

contexts. It is recommended that the studies discussed here will be a good starting point for further 

exploration in this research area. Human dynamics will continue to remain an actively researched area since 

the computer understanding of human behavior is extremely important for several military and civil 

applications. 
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Tracking 
Techniques 

Aspects tracked Example References 

Gaussian models 1. Faces/heads 
2. Single human body in 2D 
3. Multiple human bodies 

1. [59,161,162,163,164,165,202,203] 
2. [126,189] 
3. [36,38] 

Histogram 
analysis 

1. Faces/heads 
2. Hands 

1. [27,193,198,218,267] 
2. [5,157] 

Probability 
distribution / 

exclusion 

1. Faces/heads 
2. Multiple human bodies 

1. [34,47,75,205,225] 
2. [155] 
 

Neural network 1. Faces/heads 
2. Single human body in 2D 
3. Single human body in 3D (RBF) 

1. [104, 110, 201] 
2. [259] 
3. [142] 

Eigenspace 1. Faces/heads 
2. Facial features 
3. Hands 

1. [59,88,170,227] 
2. [10] 
3. [28,61,244] 

Kalman filter 1. Faces/heads 
2. Facial features 
3. Hands 
4. Fingers 
5. Single human body in 2D 
6. Multiple human bodies 

1. [161] 
2. [126] 
3. [112,157,199] 
4. [31] 
5. [42,119] 
6. [68] 

Bayesian 
network 

1. Faces/heads 
2. Hands 
3. Single human body in 2D 
4. Multiple human bodies 

1. [241] 
2. [221] 
3. [37,42,119,194] 
4. [42,223] 

Hidden 
Markov 
Models 

1. Single human body in 2D (with 
Kalman fil ter) 

2. Single human body in 3D (with 
GMM) 

1. [194,211] 
 
2. [134] 
 

Support 
Vector 

Machine 

1. Multiple human bodies 
 

1. [222] 
 

Table 1: Various tracking techniques
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Figure 1. A taxonomy of computational analysis of human dynamics 


